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1 Introduction

Quantum Field Theory (QFT) provides a framework capable of describing a wealth of
different phenomena with astonishing accuracy. As such, it constitutes one of the pillars
sustaining our modern understanding of Nature. It is hard to overstate the importance
of obtaining a complete and satisfactory understanding of QFTs. These can be thought
as populating a vast landscape, the theory space, which can be explored with the help of
methods such as the Renormalization Group (RG). Conformal Field Theories (CFTs) play
a pre-eminent role in this description as fixed points1 of the RG flows. From these, one can
then explore the theory space by perturbing the corresponding CFT with a given set of
operators. Depending on their scaling dimension, the deforming operators and the associ-
ated RG flows are arranged in three distinctive classes: relevant, marginal and irrelevant.
While considerable work has been devoted to the first two, the irrelevant deformations
have received much less attention and to this date their high-energy physics constitute a
largely unexplored territory. There is a very good reason for this. General arguments of
renormalization show that the perturbative analysis of irrelevant deformations leads to an

1More precisely, the fixed points of the RG flows are scale invariant theories. For a moderately recent
account on the distinction between scale and conformally invariant theories, see [1].
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accumulation of UV divergences which necessarily require an infinite number of counter-
terms, destroying the predictive power of the theory. Ultimately the high-energy behavior
of such theories is completely ambiguous and therefore confined to the realm of effective
field theory.

The grim destiny looming over the UV behavior of irrelevant deformations is not in-
escapable, at least not for all theories. In the last few years, certain special classes of
irrelevant deformations in two space-time dimensions were shown to be under exception-
ally good control, even deep in the UV. The poster child of these is the so-called TT̄
deformation [2, 3], triggered by the composite irrelevant operator built from the compo-
nents of the energy-momentum tensor [4]. This deformation possesses several remarkable
properties. It was shown to be intimately related to two-dimensional gravity [5–8], random
geometry [9], string theory [3, 10–14] and holography [15–17]. The TT̄ deformed theories
are solvable, in the sense that physical observables of interest, such as the finite-volume
spectrum, the S-matrix [2, 3, 5] and the partition functions [6, 9], can be determined ex-
actly in terms of the corresponding undeformed quantities. This high degree of control
means that it is possible to follow the irrelevant flow stemming from the undeformed CFT
all the way to the UV, effectively reversing the renormalisation group trajectory, and to
obtain exact results on the UV physics. The latter are remarkable: the finite-size density of
states grows exponentially at high energies, in a Hagedorn fashion [18] reminiscent of string
theories [19–21]. This exceptional feature is already manifest in the short-scale behavior
of the finite-size groundstate energy. If we let R denote the circumference of the circle
on which the space component of two-dimensional space-time is compactified, then the
groundstate energy Eα(R) of a TT̄ deformed system obeys the functional equation [2, 3]

Eα(R) = Eα=0(R− αEα(R)) , (1.1)

where α is the deformation parameter. Depending on the sign of α, the function Eα(R)
determined by (1.1) either presents a square-root singularity at a positive radius R∗ ∼
|α|−1/2 (for α < 0) or possesses no short-scale singularity at all (for α > 0). Neither of
these is compatible with Wilson’s paradigm of local QFTs [22], leading us to the conclusion
that TT̄ deformed theories cannot be considered conventional UV-complete theories and
that, thanks to their robust features, they represent a sensible extension of the Wilsonian
notion of a local QFT.

The compelling features of TT̄ deformations are in large part shared by larger families
of two-dimensional theories that we will refer to collectively as solvable irrelevant defor-
mations. Important examples are the Lorentz-breaking JT̄ deformations [23], triggered by
the composite operator JT̄ that can be defined whenever the undeformed theory possesses
a conserved holomorphic U(1) current Jµ. Another very large and important family of
solvable irrelevant deformations is available if one considers integrable QFTs [2]. In this
case we have access to an infinite space of conserved currents T (s)

µν labeled by a half-integer
spin2 s ∈ S ⊂ Z/2, and each of these can be used to construct a two-parameter family of

2To be more precise, in complex coordinates (z, z̄) the components T (s)
zz and T (s)

z̄z̄ have spin s+ 1, while
T

(s)
zz̄ and T

(s)
z̄z have spin s − 1. The requirement of locality restricts the spins to be either integers or
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bi-linear irrelevant operators TT̄(s,s′) ≡ εµρενσT (s)
µν T

(s′)
ρσ (here εµν is the totally antisymmet-

ric Levi-Civita symbol in two dimensions). Integrable QFTs deformed by these operators
were shown to preserve their integrability and the corresponding set of local conserved
charges [2, 24, 25], allowing the use of powerful exact, non-perturbative methods in their
analysis. Hence, this vast family of theories represents the perfect playground on which
to study the ultraviolet properties of theories not complying with the Wilsonian QFT
paradigm. Of primary importance is the question concerning the nature of the short-scale
physics of these models, with particular focus on the status of their local structures and
the mechanisms responsible for the appearance of a Hagedorn temperature. Understand-
ing the physics underlying these matters remains the most important open problem in this
context, as well as one of the main motivations for the present work.

Amongst the vast set of irrelevant deformations triggered by the operators TT̄(s,s′), a
sub-family of Lorentz-breaking ones obtained by fixing s′ = 1 was introduced and studied
in [26], while [27] and [28] initiated the analysis of integrable QFTs deformed by linear
combinations of the operators TT̄(s) ≡ TT̄(s,s). In this work we will focus our attention on
particular instances of the latter type of deformations that we will refer to as generalized TT̄
deformations. The most convenient setting to analyze these is provided by the factorised
scattering framework [29]. As explained thoroughly in [28], given an integrable QFT with
elastic two-body S-matrix S0(θ), the space of its generalized TT̄ deformations stands in
one-to-one correspondence with the space of CDD factor deformations of its S-matrix,

S(θ) = S0(θ)Φ(θ) . (1.2)

Here the CDD factor [30] Φ(θ) is a scalar phase factor, arbitrary up to the request that its
presence does not violate the unitarity, crossing symmetry, analyticity and macro-causality
conditions of the S-matrix [31–33]. Ultimately these requirements force the CDD factor to
be a meromorphic function of the rapidity θ of the form

Φ(θ) = Φprod(θ)Φentire(θ) , (1.3)

where the first factor incorporates all the poles at finite θ, whose number N is arbitrary
(and possibly infinite)

Φprod(θ) =
N∏
j=1

sinh θ + sinh θj
sinh θ − sinh θj

. (1.4)

The second factor represents an entire function of θ of the form

Φentire(θ) = exp
[
− i

∑
s∈S

as sinh(sθ)
]
, (1.5)

with S being the characteristic set of spins mentioned above. The series in the exponent
of (1.5) is assumed to be convergent for any θ. Finally, the condition of macro-causality [33]
restricts possible positions of the poles in (1.4) to either the imaginary axis Re θj = 0, or

half-integers. The specific subset S in which s takes values is a characteristic of the integrable QFT under
consideration.

– 3 –



J
H
E
P
0
1
(
2
0
2
2
)
0
3
5

to the strips Im θj ∈ [−π, 0] mod 2π. Each pole has a standard interpretation in terms of
the spectrum of the theory. The purely imaginary ones signal, when their imaginary part is
positive, the presence of bound states of mass 2m cosh (θj/2), where m stands for the mass
of the lightest excitation in the theory. The poles θj with Re θj 6= 0 and −π ≤ Im θj < 0
lie in the so-called unphysical strip3 and are associated with unstable particles, also known
as resonances. The real and imaginary parts of their complex mass 2m cosh (θj/2) are
identified, respectively, with the center-of-mass energy and the width of the resonance.
The last possibility is to have poles lying on the negative imaginary axis. These are usually
referred to as virtual states [34], and while they do not have a clear interpretation in terms
of particles their presence effects an increment of the scattering phase as a function of θ at
low energies.

In this work, we continue the program laid down in [28] by studying a number of models
obtained by deforming a trivial S-matrix S0(θ) = ±1 with Φentire = 1 and a product CDD
factor (1.4),

S(θ) = ±
N∏
j=1

sinh θ + sinh θj
sinh θ − sinh θj

, (1.6)

where the poles
{
θj
}N
j=1 all lie in the unphysical strip, thus corresponding to resonances.

Here the upper (lower) sign corresponds to the fermionic (bosonic) TBA statistics (see §2
of [35] for an explanation of this point). We will be especially interested in a particular
exponent of this class with N =∞ resonances: the elliptic sinh-Gordon model [36].

Our interest in this particular model is two-fold. On one hand we can view it as
the effect of deforming a free theory with a particular combination of generalized TT̄
operators as discussed above. On the other hand its periodic nature allows us to make direct
contact with the periodic S-matrices arising in the recently revived S-matrix bootstrap
program [37, 38], and more generally to theories with a large number of resonances.

In the S-matrix bootstrap program one explores the space of consistent S-matrices
by imposing general principles like unitarity, crossing symmetry and analyticity. When re-
stricting to two spacetime dimensions, integrable theories naturally appear at the boundary
of the allowed space of theories [37–46]. In this way one can rediscover known integrable
models, but also obtain integrable S-matrices with no Lagrangian realization. A paradig-
matic example of the second situation is the O(N) periodic Yang-Baxter model. Its in-
tegrable S-matrix was proposed in [47] and later found sitting at a special point of the
monolith parametrizing the space of theories with a global O(N) symmetry and no bound
states [44]. This model, as the elliptic sinh-Gordon one, has infinite resonances spaced
periodically in the rapidity plane (hence its name). The global symmetry makes it however
more complicated than the single-particle models analyzed in this article, so we restrict
our attention to the simplest periodic S-matrices and leave the study of global symmetry
analogues for future work.

The plan of this paper is as follows. In section 2 we review the elliptic sinh-Gordon
models and the Thermodynamic Bethe Ansatz (TBA), the primary tool we will use to

3This corresponds to the region of the complex center-of-mass energy s-plane reached by analytically
continuing the scattering amplitude through the two-particle branch cut.
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study them. Section 3 contains a review of the numerical approaches to the solution of
the TBA equation, with a special emphasis on the application of the pseudo-arclength
continuation method required to overcome the limitations of the more traditional iterative
methods typically used in the literature. Most of our new results are presented in section 4.
After considering the standard sinh-Gordon model as a warm-up we tackle its elliptic
deformation, in both its fermionic and bosonic flavors, devoting special attention to the
UV and IR behavior of the effective central charge. Section 5 initiates the analysis of
CDD deformations of theories with more than a single stable particle by looking at the
simple examples provided by the S-matrices of the Φ1,3 integrable deformation of the non-
unitary minimal models and their bosonic counterparts. We conclude in section 6 with a
discussion of our results and an outlook for future research directions. Three appendices
provide some background on elliptic functions, an interesting albeit somewhat mysterious
relation between the TBA kernel and the convolution term in the elliptic models, and a more
detailed description of our implementation of the pseudo-arclength continuation method.

2 Elliptic sinh-Gordon models and the thermodynamic Bethe ansatz

The main model of interest in the present work is an elliptic deformation of the sinh-Gordon
model. Its S-matrix was proposed in [36] and reads

Sf,b
a,l (θ) = ±snl (2iKl θ/π) + snl(2Kl a)

snl (2iKl θ/π)− snl(2Kl a) , (2.1)

where a is the coupling constant, the modulus l parametrizes the periodicity in real rapidity,
sn is the Jacobi sine function and Kl is the complete elliptic integral

Kl =
∫ π/2

0

dφ√
1− l2 sin2 φ

. (2.2)

The upper (lower) sign in (2.1) corresponds to the fermionic (bosonic) case. This S-matrix
has two periods, the usual one along the imaginary direction arising from crossing symmetry
and unitarity S(θ) = S(θ+ 2iπ) and an unusual one in the real direction S(θ) = S(θ+Tl).
The latter period is given in terms of elliptic integrals,

Tl = π
K√1−l2

Kl
. (2.3)

The elliptic sinh-Gordon model contains an infinite tower of resonances spaced periodically
in the rapidity plane. We see them as complex zeros4 in the physical rapidity strip defined
by Im(θ) ∈ (0, π). The location of the “fundamental” zeros is θn = iaπ + nTl with n ∈ Z
and the arrangement of the remaining zeros and poles outside the physical strip follows
from the crossing and unitarity conditions of the S-matrix. Figure 1 shows the analytic
structure in the physical strip.

4Due to the unitarity condition S(θ)S(−θ) = 1, complex zeroes in the physical strip are in one-to-one
correspondence with poles in the unphysical strip. Thus their existence signals the presence of a resonance
in the spectrum of the theory.
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Figure 1. Analytic structure of the elliptic sinh-Gordon S-matrix in the complex rapidity plane.
Simple zeros (poles) are depicted by crosses (dots). The shaded region is the physical rapidity strip
0 ≤ Im(θ) ≤ π which contains two crossing symmetric towers of infinite resonances separated in
the real direction by the period Tl.

In order to ensure we have only zeros inside the physical strip — and, consequently,
that the model possesses no bound-state — we need to limit the coupling constant a to
take values in the interval [0, 1]. Moreover, since the model is invariant under a ↔ 1 − a,
we will consider a ∈ [0, 1/2] without any loss of generality. The limit a → 0 leads to free
theory, S f,b

0,l = ∓1. At zero modulus l → 0 — equivalent to infinite period Tl → ∞ — we
recover the usual sinh-Gordon S-matrix with a single resonance

S f,b
a,0 (θ) = Sf,b

shG = ±sinh θ − i sin (πa)
sinh θ + i sin (πa) . (2.4)

Even though the S-matrix (2.1) approaches well-known theories in the above limits,
its physical nature is still mysterious, e.g. there is no known Lagrangian formulation for
the theory. To gain more information about these models and, in particular, about their
ultraviolet behaviour, we will use the Thermodynamic Bethe Ansatz (TBA) to compute
the groundstate energy and the effective central charge of the theory compactified in a
circle of circumference R. In the following we give a brief review of the method, for a more
comprehensive treatment the reader is referred to [48, 49] and references therein.

For the simplest scenario where we have only one type of stable particle of mass m,
the TBA equation is

ε(θ) = r cosh θ ∓
∫ ∞
−∞

ϕ(θ − θ′) ln
[
1± e−ε(θ′)

] dθ′
2π , (2.5)

where r = mR, the S-matrix enters through the kernel ϕ(θ) = −i ∂θ lnS(θ) and one
solves for the pseudo-energy ε(θ). The upper and lower signs refer to the fermionic and
bosonic cases, respectively, and in what follows we will sometimes refer for brevity to the
L-functions L(θ) = ± ln

[
1± e−ε(θ)

]
.

Except for very rare cases such as the standard TT̄ deformation, one needs to solve
the TBA equations (2.5) numerically. As we will see, the S-matrices studied in this paper
require a refined numerical method which we review in section 3. In any case, once a
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solution ε(θ) to (2.5) has been found, the effective central charge and groundstate energy
are computed from the expressions

c̃ f,b(r) = ± 6
π

∫ ∞
−∞

r cosh(θ) ln
[
1± e−ε(θ)

] dθ
2π , E0(R) = −π6

c̃(r)
R

. (2.6)

Due to the absence of massless excitations, the infrared limit r → ∞ consists of a trivial
theory. Accordingly, the effective central charge tends to zero in a precise and universal
fashion, controlled by the modified Bessel function K1,

c̃(r) ∼
r→∞

6 r
π2 K1(r) ∼

r→∞
3
√

2r
π2 e

−r . (2.7)

In the usual situation in which the theory under consideration is UV complete, one
can relate the central charge cUV of the CFT controlling the UV behavior to the effective
central charge in the r → 0 limit

lim
r→0

c̃(r) = cUV − 12(∆min + ∆̄min) , (2.8)

where ∆min is the lowest dimension in the UV theory. The exact value for c̃(r = 0) is
model-dependent but can be obtained fairly easily with the help of the so-called dilogarithm
trick5 [51]. The key point in this calculation is the observation that as r → 0 the pseudo-
energy becomes constant in a region |θ| < ln(2/r). One therefore proceeds to solve the
TBA equation for r = 0 and a constant pseudo-energy ε,

ε = ∓Ω ln
(
1± e−ε

)
with Ω =

∫ ∞
−∞

ϕ(θ)dθ2π . (2.9)

The UV effective central charge is finally computed in terms of Rogers’ dilogarithm function
L(x) = Li2(x) + 1

2 ln(x) ln(1− x), as

c̃(0) = 6
π2 ×


L
( 1

1 + eε

)
fermionic

L (e−ε) bosonic
(2.10)

In the following section we will describe the different algorithms that can be used
to numerically solve the TBA equation (2.5). These methods, specifically the pseudo-
arclength continuation, were implemented to extract the results that will be presented in
section 4 and section 5.

3 Numerical methods

We would like to solve the TBA equation (2.5) numerically for the elliptic sinh-Gordon
models with kernel ϕa,l(θ) given by

ϕa,l(θ) = −i ∂θ lnSa,l(θ) = 4Kl

π

cnl(2iKl θ/π)dnl(2iKl θ/π)snl(2aKl)
snl(2aKl)2 − snl(2iKl θ/π)2 , (3.1)

5To the best of our knowledge, this first appeared in [50] where it was employed to derive the heat
capacity of the Anderson model. For an application of this trick to the TBA of relativistic theories, see [48].
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where snl, cnl and dnl are respectively the basic Jacobi elliptic sine, cosine and delta
amplitude. Note the kernel is identical for the fermionic and bosonic cases, the only
difference between these resides in the TBA equation itself.

Already in [48] it was noted that this equation can be solved numerically by an iterative
process, whereby we start with an initial approximation ε(0)(θ) for the pseudo-energy, and
produce increasingly more accurate ones through

ε(k+1)(θ) = r cosh θ∓
∫ ∞
−∞

ϕa,l(θ− θ′) ln
(
1± e−ε(k)(θ′)

) dθ′
2π for k = 0, 1, . . . . (3.2)

This process is not guaranteed to converge, but if it does the iterations can be stopped
once the desired level of accuracy is reached for the solution.

The only peculiarity in the numerical formulation of our problem is that the kernel
ϕa,l(θ) has a real period, and therefore the result of the convolution is also periodic with
period Tl. The pseudo-energy being an even function of θ, for numerical purposes it is
thus convenient to discretize an interval in the real-θ line centered at θ = 0, whose size is
an even number of Tl periods. More concretely, we take the following discretization of the
interval [−MTl,MTl),

θi = −MTl + i− 1
N

Tl for i = 1, 2, . . . , 2NM and N,M ∈ N , (3.3)

which then allows us to immediately apply the circular convolution theorem to improve the
efficiency of the computation of convolutions. The resulting algorithm is then O(N logN+
NM), since the number of iterations required to converge to a solution is typically O(1).

The procedure described above is well-suited to study families of solutions depending on
continuous parameters. Indeed, one may use a solution found at a given point in parameter
space as an initial approximation to start the iterative process at another nearby point.
For our purposes, this is true both for the coupling constant a and the radius r, since the
discretization (3.3) does not depend on their values. We will however concentrate mostly
on the latter, i.e. we will consider families of solutions related by a continuous variation of
the radius r.

For large values of r we can neglect the convolution term in the TBA equation and
start from the initial approximation ε(0)(θ) = r cosh θ. We may then slowly decrease the
radius, but in some cases it turns out that the iterative process takes longer to converge,
and eventually stops converging altogether, for small enough values of r. However, failure
to converge is only indicative of a numerical instability and should not be confused with
an indication that solutions to (2.5) do not exist beyond what can be found by iteration.
Indeed, this numerical instability could in principle be the result of the family of solutions
approaching a singular point, but this is not necessarily always the case as will be the case
e.g. in section 5.

To address the issue above, we follow6 [28] and implement a pseudo-arclength continu-
ation method [52, 53] on the parameter r. In other words, keeping the discretization (3.3)

6Our implementation in Mathematica 12.3 is a simplified version of the algorithm described there,
relying at its core on the FindRoot function to numerically solve the resulting systems of coupled nonlinear
equations.
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we directly write (2.5) as a set of 2NM coupled non-linear equations on as many variables,
εi = ε(θi) for i = 1, 2, . . . 2NM . We then introduce an arclength parameter s such that
a family of solutions is described by a curve c(s) = (εi(s), r(s)), and impose the normal-
ization condition || dcds || = 1. The whole process can be viewed as a numerical stabilization
mechanism for the iterative solution of (2.5), allowing us to follow the solution curve past
turning points and bifurcations which may constitute the sources of instability for the more
traditional iterative method. We spell out further the pseudo-arclength continuation pro-
cedure in appendix C, while the reader is referred to [28] for more details and to [52, 53]
and references therein for the theoretical background on this procedure.

Complex pseudo-energies. While the TBA equation (2.5) involves a real-valued
pseudo-energy ε : R 7→ R, we can at least in principle consider the natural generaliza-
tion to complex-valued pseudo-energies ε : R 7→ C. From a purely mathematical point of
view this is a well-posed problem, so it may therefore be interesting to explore the space
of complex solutions to (2.5), of which the real-valued physical solutions turn out to be a
non-trivial subspace.

For this purpose, the numerical algorithms described above require only minimal modi-
fications. Indeed, the iterative method remains unchanged, whereas in the pseudo-arclength
continuation method we simply need to double the number of variables to account for both
the real and imaginary parts of ε(θi), updating normalization conditions accordingly.

Bifurcation detection and branch-switching. When studying families of solutions
to the TBA equation related by the variation of the radius r it is important to identify
bifurcation points, i.e. points whose immediate vicinity, no matter how small, includes
multiple branches of solutions. There is a considerable literature dedicated to this issue
in the context of numerical continuation methods [52, 53]. In particular, when performing
pseudo-arclength continuation we can detect bifurcation points by keeping track of the
augmented Jacobian determinant, which in our case reads

J =

∣∣∣∣∣∣
∂F (εi,r)
∂εi

∂F (εi,r)
∂r

dεi
ds

dr
ds

∣∣∣∣∣∣ , (3.4)

where F (εi, r) = 0 is the discretized TBA equation. As we construct a given family
of solutions, the quantity J defined above changes signs whenever a bifurcation point is
crossed. Therefore, as long as we take small enough steps while performing the continuation
we can make sure no bifurcations have inadvertently been skipped. Moreover, once a
bifurcation point has been detected we can pinpoint its precise location using binary search
to increasingly tighten the bounds on the parameters where the sign-change occurs.

Finally, various techniques have been developed in order to “switch branches” for the
purpose of exploring the intersecting family of solutions once a bifurcation point has been
identified. In our case, to accomplish this it is sufficient to introduce small perturbations
to the initial starting point provided to the underlying Newton-like solver. This allows us
to exhaustively explore the space of complex solutions to (2.5) which are connected to the
r →∞ asymptotic solution ε(θ) = r cosh θ.
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4 Models with resonances: turning points in the TBA

4.1 Real branches and asymptotic properties

Before presenting the numerical results for the different models, we review some asymptotic
properties of the TBA equation (2.5).

The large radius analysis of the fermionic TBA equation in [28] shows that the pseudo-
energy admits two possible behaviors for r � 1: the first one is the standard asymptotic
ε(θ) ∼ r cosh(θ), whereas the second one is ε(θ) ∼ −rf(θ), where f(θ) > 0 for θ ∈ Θ and
Θ is a finite subset of the real line.7 The latter case is only allowed when the kernel ϕ(θ)
is positive on the real line and satisfies the inequality

Ω =
∫ ∞
−∞

ϕ(θ)dθ2π > 1 . (4.1)

The integral above counts the number of resonances minus the number of bound states,
so having two more resonances than bound states in the theory will generally allow for
a second branch of solutions. For example, a single CDD-zero S-matrix (i.e. having one
resonance and zero bound states), such as the sinh-Gordon model, has a single branch of
solutions to the TBA equation interpolating between the expected UV and IR behaviours.
On the other hand the two CDD-zeros models studied in [28] have both real branches.8

Now let us turn to the bosonic TBA equation. The asymptotic analysis follows from
the fermionic one through an appropriate redefinition of pseudo-energies and kernel. The
bosonic TBA equation with pseudo-energy ε+(θ) and kernel ϕ+(θ) can be recast into a
fermionic TBA equation with pseudo-energy ε−(θ) and kernel ϕ−(θ) provided we define

ε−(θ) = ln
[
eε

+(θ) − 1
]
,

ϕ−(θ) = ϕ+(θ) + 2πδ(θ) . (4.2)

The delta function in the kernel above effectively adds a resonance to the counting
in (4.1). This interpretation of the bosonic TBA as a fermionic one with an added resonance
is supported by the identity

lim
u→0−

log
[
i sin u+ sinh θ
i sin u− sinh θ

]
= iπ sign(θ) , (4.3)

showing that the δ-function in (4.2) arises as a resonance CDD factor in the limit of the
resonance mass going to zero. Consequently, we expect the single-particle bosonic TBA to
allow for a second branch of solutions already in the presence of a single CDD-zero in the
S-matrix. The leading asymptotic behaviour in the second branch for various quantities
of interest is summarized in table 1.

7A third possibility with ε(θ) ∼ r−1 cosh(θ) is only viable for TT̄ deformations, as opposed to generalized
TT̄ deformations with general integrable S-matrices.

8Note that this argument does not constrain the local properties of the solutions, only their r → ∞
asymptotic behavior. One might, in theory, observe any number of branch points, of any order, at finite r,
so long as only two of the branches flow to r → ∞ (or one, in case (4.1) is violated). Numerical evidence
coming from various models, however, shows that the simplest possible case of a single square-root branch
point (or no branch point if (4.1) is false) is the one presenting itself.
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Fermionic Bosonic

ε(θ) ∼ −rf(θ) e−rf(θ)

L(θ) ∼ rf(θ) rf(θ)
c̃(r) ∝ r2 r2

Table 1. Large radius behaviour of the pseudo-energy, L-function and effective central charge
in the second branch of real solutions, to first order in r. The function f(θ) is non-negative for
rapidities θ ∈ Θ in a finite subset of the real line, and negative elsewhere.

Higher order corrections. We are interested in finding the sub-leading corrections to
the asymptotic behavior ε(θ) ∼ −rf(θ). We can write in full generality9

ε(θ|r) = −rf(θ) + g(θ|r) , lim
r→∞

g(θ|r)
r

= 0 . (4.4)

As mentioned, the function f(θ) is such that
f(θ) ≥ 0 θ ∈ Θ ,

f(θ) = 0 ⇔ θ ∈ ∂Θ ,

f(θ) < 0 θ ∈ Θ⊥ ,
Θ ⊂ R . (4.5)

A careful analysis of the TBA equation in the large r limit, with the above conditions on
the solution, reveals that f(θ) obeys the equation

f(θ) = − cosh θ +
∫

Θ
ϕ(θ − θ′)f(θ′)dθ

′

2π , (4.6)

and that the function g(θ|r) is expanded in negative odd powers of r,

g(θ|r) =
∞∑
`=0

g2`+1(θ)
r2`+1 . (4.7)

Using this expansion one can then systematically extract from (2.5) the equations for the
coefficient functions g2`+1(θ). The first of these reads

g1(θ) = π

12

(
ϕ(θ − θ′)
f ′(θ′)

) ∣∣∣∣∣
θ′∈∂Θ

+
∫

Θ
ϕ(θ − θ′)g1(θ′)dθ

′

2π . (4.8)

An interesting fact that follows from the above equations is that10

∫
Θ

cosh θg1(θ)dθ = −π
2

6

(cosh θ
f ′(θ)

) ∣∣∣∣∣
θ∈∂Θ

. (4.9)

9In the next few formulae we temporarily display explicitly the dependence of all functions on r.
10One can see this by introducing the resolvent K(θ − θ′) of the kernel 1

2πϕ(θ − θ′). Then f and g1

are given by f(θ) = − cosh θ −
∫

Θ dθ
′K(θ − θ′) cosh θ′ and g1(θ) = π2

6

(
K(θ−θ′)
f ′(θ′)

) ∣∣
θ′∈∂Θ

. Finally, since

f(θ)
∣∣
θ∈∂Θ

= 0 by definition and K(−θ) = K(θ), the identity (4.9) follows.
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The left-hand side of the above contributes to the constant term in the large r expansion of
the effective central charge (2.6). A careful analysis of this expansion shows that another
term contributes to this order in r,∫

R
dθ cosh θ log

[
1 + e−|f(θ)|

]
∼ π2

6

(cosh θ
f ′(θ)

) ∣∣∣∣∣
θ∈∂Θ

, (4.10)

where we used the Laplace method to compute the right-hand side above. This term
exactly cancels the one provided by (4.9), so that the effective central charge displays no
constant term in its large-r expansion. Sparing the reader of the uninteresting details,
one can compute the contributions to order r−2, witnessing a similar, albeit not total,
cancellation of terms and arriving at the following expression

c̃(r) = 3
π2 r

2
∫

Θ
cosh θf(θ)dθ + 1

r2

(
g1(θ)
f ′(θ) −

7π2

30
f ′′(θ)
f ′(θ)3

) ∣∣∣∣∣
θ∈∂Θ

+O(r−4) . (4.11)

In principle it should be possible to observe the O(r−2) correction above in our numerical
results, but comparison to the analytic expression is hampered by the fact that we do not
have an explicit form for f(θ). We leave this point to be addressed in future work.

4.2 Fermionic/bosonic sinh-Gordon

Before considering the more interesting bosonic sinh-Gordon model, we first review some
aspects of the well-known fermionic theory defined by the action

A =
∫
d2x

[ 1
4π (∂φ)2 + 2µ cosh (2bφ)

]
. (4.12)

Here µ is a coupling constant of dimensions [mass]2+2b2 , which determines the scale of the
model, while b is a dimensionless parameter that we take, for reasons that will be clarified
momentarily, to lie in the interval b ∈ [0, 1]. The action (4.12) is amenable to various
interpretations. First, we can understand it as defining a free Gaussian theory deformed
by the relevant operator cosh (bφ) with negative dimension11 ∆ = −b2. Another possibility
is to consider (4.12) as a perturbation of Liouville CFT by the operator e−2bφ, again of
negative dimension ∆ = −b2. A further possible interpretation, presented in [54], sees the
sinh-Gordon model as a conformal affine sl2 Toda field theory with spontaneously broken
conformal symmetry. Here we will adopt the first point of view and take sinh-Gordon
theory to be a relevant RG flow from a free bosonic theory in the UV to a trivial IR fixed
point. As is well-known, this model is integrable, its spectrum consisting of a single neutral
particle of mass12 m subject to a factorised two-body scattering with amplitude [56]

S f
shG(θ) = sinh θ − i sin (πa)

sinh θ + i sin (πa) , (4.13)

11The reader might object that a perturbation by an operator of negative dimension destroys unitarity.
This is actually not the case for sinh-Gordon theory, due to the presence of fields with non-vanishing vacuum
expectation values which alter the two-point function’s UV behaviours from their expected CFT ones. A
discussion of this point can be found in [35].

12The particle mass is related to the parameter µ in the action (4.12) by the famous formula [55]

πµ
Γ
(
b2
)

Γ (1− b2) =
[
m

8
√
π
aa (1− a)1−a Γ

(
a

2

)
Γ
(1− a

2

)]2+2b2

.
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Figure 2. Effective central charge of the fermionic sinh-Gordon model at various values of the
coupling a. Numerical solutions were computed using the iterative algorithm described in section 3
with 105 points in the interval θ ∈ [−10, 10).

where a and b are related by

a = b2

1 + b2
. (4.14)

Notice that the S-matrix (4.13) is invariant under the weak-strong duality b → 1/b, or
equivalently a → 1 − a. This is the reason why we restricted the parameter b to the
interval b ∈ [0, 1].

Given the S-matrix (4.13) we can compute the effective central charge via the TBA
from (2.6). In this case, the TBA equation can be solved by a simple iterative routine as
described in section 3, and figure 2 shows the resulting curves c̃(r) for different values of
the coupling a. In particular, we see that there is a single branch of solutions displaying
the expected interpolation between the IR and UV behaviours,

lim
r→∞

c̃(r) = 0 , lim
r→0

c̃(r) = 1 . (4.15)

The above result for the ultraviolet limit of the effective central charge can be obtained
following the lines illustrated in section 2. The peculiarity with this case is that the solution
is such that L → ∞ and ε → −∞. The dilogarithm trick can nonetheless still be applied
and at the end of the day one sees that

lim
r→0

c̃(r) = lim
ε→−∞

6
π2 L

( 1
1 + eε

)
= 1 . (4.16)

Sub-leading effects were computed in [57] and [58], and include soft logarithmic cor-
rections of the form

lim
r→0

c̃(r) = 1− 3π2

2
a(1− a)
(log r)2 +O (log r)−3 . (4.17)
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Figure 3. Effective central charge for the bosonic sinh-Gordon model at various values of the
coupling a. Above a critical radius rc there are two branches of real solutions, whereas below this
radius there is a pair of complex-conjugate solutions with non-vanishing imaginary parts (dashed
lines). The complex effective central charge in the ultraviolet c̃(r = 0) ≈ 0.5 ± 0.617i can be
computed from the plateau solutions as explained in the main text. Numerical solutions were
computed using the pseudo-arclength continuation method described in section 3 with 500 points
in the interval θ ∈ [−6, 6).

We now turn to the bosonic sinh-Gordon model defined through the S-matrix

S b
shG(θ) = −sinh θ − i sin (πa)

sinh θ + i sin (πa) , (4.18)

which differs from the usual sinh-Gordon one by an overall sign. We call this the bosonic
sinh-Gordon model since (4.18) is of bosonic type, i.e. Sb

shG(0) = 1. Even though there is
no associated Lagrangian or known physical realization for this S-matrix, we take the point
of view in which we explore the space of quantum field theories by analyzing consistent S-
matrices. In this sense, the S-matrix (4.18) along with the assumption of elastic scattering
provides the definition of the theory.

The seemingly harmless change of overall sign in the S-matrix (4.18) has profound
consequences for the TBA. As figure 3 shows, there is now a critical radius rc where we
encounter a bifurcation. Above this critical radius we find two branches of real solutions,
whereas below it there is a pair of complex conjugate solutions. From the point of view of
the real solutions, the critical radius is a turning point in which the two possible branches,
i.e. the one with free asymptotic behaviour and the second one with asymptotics described
in section 4.1, merge. Let us focus on these solutions first.

The existence at large radius of two, and only two, real branches is compatible with
the analysis of [28] for generalized TT̄ deformations. That is, for any coupling a ∈ (0, 1/2]
the L1 norm of the kernel is equal to 1, and for the bosonic TBA equation this is enough to
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Figure 4. L(θ) = − ln
[
1− e−ε(θ)] functions for the bosonic sinh-Gordon model with a = 1/2 at

different points along the curve of figure 3. The top figure shows the solutions for r > rc where
we have two real branches (rc ≈ 0.93 for a = 1/2). In blue we have the usual branch with free
asymptotic behaviour ε(θ) ∼ r cosh(θ); and in purple the second branch with asymptotic behaviour
as in table 1. In the bottom figure we have the complex solutions below rc, which form a purely
imaginary plateau (dashed lines) as r → 0.

allow for a second real branch. The branch with lower effective central charge can be found
numerically with the usual iterative method starting from the free solution in the IR. To
get very close and eventually pass the critical radius, we need however to use the pseudo-
arclength continuation method described in section 3. Close to the turning point the curve
is well approximated by a square root, c̃ ≈ α

√
r − rc for some constant α, reminiscent of

the situation in TT̄ deformed theories. The second branch behaves like c̃ ∼ r2 at large
radius, as expected.
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Note that the free theory limit a → 0 is not smooth, since the L1 norm of the kernel
changes discontinuously from 1 for any a ∈ (0, 1) to 0 for a = 0, 1. We find numerically
that as the coupling decreases the critical radius grows, see right panel of figure 7, while
the second real branch approaches the first one at small scales, see figure 3. Of course, both
branches later separate as is required by their corresponding c̃ ∼ 0 and c̃ ∼ r2 asymptotics.
The L-functions are plotted for different radii in figure 4 (top) and are again consistent
with the expected asymptotic behaviour summarized in table 1.

Below rc solutions to the TBA equation become complex. As mentioned in section 3, to
find these solutions it suffices to apply the pseudo-arclength continuation method allowing
pseudo-energies to have real and imaginary parts, introducing small perturbations close
to the critical radius to switch from the real to the complex branch. Note that once an
imaginary part has been acquired by the pseudo-energy the perturbations can be turned
off as the corresponding family of solutions is continued further.

As seen in figure 3, the effective central charge reaches in the ultraviolet limit r → 0
a pair of complex-conjugate values that is independent of the coupling a. We can verify
numerically that the L-functions form a plateau at small radii, as shown in figure 4 (bot-
tom), so that the dilogarithm trick outlined in section 2 is applicable. Since the integral of
the kernel is Ω = 1 we find two complex solutions,

ε = + ln
(
1− e−ε

)
=⇒ ε = ± iπ/3. (4.19)

resulting in c̃ b
shG(0) ≈ 0.5 ± 0.617i which matches the pair of complex conjugate values

found numerically, see figure 3. The fact that these values are the same for any coupling
can thus be traced back to the L1 norm of the kernel being independent of the coupling a.

4.3 Fermionic/bosonic elliptic sinh-Gordon

We now turn to the elliptic sinh-Gordon model. As reviewed in section 2 the model has an
S-matrix with periodicity S(θ+Tl) = S(θ), controlled by the modulus l. There is an infinite
set of resonances for any l ∈ (0, 1) and no bound states. We can therefore immediately
infer that two real branches are allowed in the TBA, and thus expect qualitatively similar
behavior to the bosonic sinh-Gordon model, including the existence of a critical radius
representing a turning point. However, this needs to be checked numerically since the
arguments we have access to at the moment only constrain the asymptotic behavior of the
solutions and tells us nothing about their local properties.

As it turns out, the elliptic sinh-Gordon model has two real branches in both its
fermionic and bosonic flavors, see figures 5 and 6.13 We find that the critical radius where
the turning point is found is always greater in the bosonic than in the fermionic case, see
figure 7. Moreover, the critical radius decreases as we decrease the modulus l (left panel).
In the fermionic case this was expected because in the limit l → 0 we should recover the
results for the fermionic sinh-Gordon model, which does not have two branches. In the
bosonic case, the critical radius approaches in the l → 0 limit the corresponding value

13In a previous attempt to solve the TBA equation for this model [59], the authors mention poor conver-
gence of their iterative method at small radii.
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Figure 5. Effective central charge for the fermionic elliptic sinh-Gordon model. Plots for various
values of l with fixed a = 1/2 (top), and various values of a with fixed l = 1/2 (bottom). Above
a critical radius rc there are two branches of real solutions, whereas below this radius there is
a pair of complex-conjugate solutions with non-vanishing imaginary parts (dashed lines). The
effective central charge in the ultraviolet c̃(r = 0) = 0 can be computed from the plateau solutions
as explained in the main text. Numerical solutions were computed using the pseudo-arclength
continuation method described in section 3 with N = 200 and M = 2.

in the bosonic sinh-Gordon model, cf. rightmost point of the dashed black curve on the
right panel.

The dependence of the critical radius on the coupling a is milder than that on the
modulus l, as can be seen in the right panel of figure 7. We find rc decreases with a, but
this is only noticeable when a ≈ 0. Similarly to the bosonic sinh-Gordon case, the a → 0
limit is not smooth, which again traces back to the fact that the norm of the kernel changes
discontinuously at a = 0.
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Figure 6. Effective central charge for the bosonic elliptic sinh-Gordon model. Plots for various
values of l with fixed a = 1/2 (top), and various values of a with fixed l = 1/2 (bottom). Above
a critical radius rc there are two branches of real solutions, whereas below this radius there is
a pair of complex-conjugate solutions with non-vanishing imaginary parts (dashed lines). The
effective central charge in the ultraviolet c̃(r = 0) = 0 can be computed from the plateau solutions
as explained in the main text. Numerical solutions were computed using the pseudo-arclength
continuation method described in section 3 with N = 200 and M = 2.

There is a surprising property of the family of real solutions, namely the appearance
of an algebraic relation between the kernel ϕa,l(θ) and the convolution term in the TBA
equation. We leave this discussion to appendix B, and now turn instead our attention to
the complex solutions.

Evaluating the augmented Jacobian determinant (3.4) along the family of real solu-
tions, we are able to see that the turning point is actually a simple bifurcation point for the
complexified theory. Indeed, following the real branch from the standard large r regime
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Figure 7. Critical radius as a function of the modulus l (left, a = 1/2) and of the coupling
a (right, l = 1/2). Results for the standard bosonic, elliptic fermionic and elliptic bosonic sinh-
Gordon models are shown in dashed black and solid blue and orange, respectively. On the left
panel the colored dashed lines show extrapolations for l→ 0: the fermionic case linearly approaches
rc(l = 0) = 0, whereas the bosonic case has rc(l) = rc(l = 0) + l2

4(1−l)1/5 with rc(l = 0) ≈ 0.995,
which fits all the datapoints and matches at l = 0 the critical radius obtained for the bosonic
sinh-Gordon model. On the right panel, the critical radii of the bosonic standard and elliptic sinh-
Gordon models are very similar for small a, displaying more significant differences as a ≈ 1/2, while
staying always above the critical radius of the fermionic elliptic model.

with ε(θ) ≈ r cosh(θ) to the non-standard regime with c̃(r) ∼ r2, we have J = −1 in the
lower branch, i.e. before the critical point, and J = 1 afterwards. The precise location of
the critical point can thus be pinpointed using binary search on the pseudo-arclength step
size ∆s. Below the critical radius rc we have a pair of complex conjugate solutions, which
in this case have c̃ → 0 as r → 0. Interestingly, the UV behavior is only observed very
close to r = 0.

To better understand the c̃→ 0 behaviour, we consider k-CDD factors approximating
the elliptic sinh-Gordon S-matrix, and take the k →∞ limit. That is, we take the S-matrix

S f,b
kCDD(θ) = ±

bk/2c∏
j=−bk/2c

sinh(θ)− sinh(iπa+ j Tl)
sinh(θ) + sinh(iπa+ j Tl)

, (4.20)

and analyze it as before with the help of the TBA. In practice, the differences between
the elliptic and the k-CDD models above is that the corresponding kernels start to differ
for |θ| ∼ bk/2cTl. Since we are truncating all numerical integrations, we need to make
sure to include the tails of the k-CDD kernel at large θ. Consequently, deviations are only
noticeable for small r.

Guided by experimental numerical evidence for several k’s, let us assume the associated
TBA has a turning point and the complex solutions reach a plateau as r → 0. Since the
L1 norm of the kernel counts the number of resonances, these constant solutions satisfy
equation (2.9) with Ω = k. There is a simple geometric depiction in terms of the Y -
functions Y (θ) = e−ε(θ), for which the equations read

Y = (1± Y )±k , (4.21)

where the upper (lower) signs refer as usual to the fermionic (bosonic) TBA.
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Figure 8. Constant solutions to equations (4.21) in the complex plane, where k labels the number
of resonances and Y are the constant Y -functions Y = e−ε in the ultraviolet. There are k solutions
to the fermionic equations (left) and k+ 1 to the bosonic ones (right). The filled circles identify the
pair of solutions chosen by the TBA. In the k → ∞ limit, the solutions condense into the circles
centered at Y = ∓1, depicted in black. In this limit the TBA gives Y → 0 for both bosonic and
fermionic equations, resulting in c̃ = 0 in the ultraviolet.

In figure 8 we plot solutions to the above equation for different values of k. In general,
there are k solutions to the fermionic equation and k+1 to the bosonic one.14 As k increases,
the solutions condense into circles of unit radii centered around Y = ∓1, see figure 8. The
TBA, however, picks only two of these O(k) solutions. Which ones? The compelling
answer is: the solutions which minimize |c̃| as computed with Rogers’ dilogarithm (2.10).
In terms of the plots in figure 8, the TBA chooses the pair of solutions closer to Y = 0.
The analysis above is confirmed by our numerical solution to the TBA equations for the
first few non-trivial values of k, namely k ≤ 7 both in bosonic and fermionic equations.
Note that the norm of the kernel is independent from the parameters entering the CDD
factors. Moreover, since we can change these parameters continuously and a different
solution to (4.21) would involve a discontinuous change, we expect the TBA to choose the
solutions closer to Y = 0 no matter the resonance locations.15 This intuition should be
nonetheless confirmed with a detailed numerical analysis.

In figure 9 we show the ultraviolet effective central charge in the complex plane as we
increase the number of resonances in the theory. The curve starts at the bosonic 1-CDD
model as the bosonic sinh-Gordon model in section 4.2 and goes to zero as the number of
resonances goes to infinity as in the elliptic sinh-Gordon models.

14This counting is in agreement with the map between bosonic and fermionic TBA in (4.2).
15For instance, for the 2-CDD model it was shown in [28] that the TBA has a turning point for any

values of the parameters entering the S-matrix, so that the associated complex solutions would agree in the
ultraviolet with figure 8.
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Figure 9. Effective central charge c̃(r = 0) in the complex plane as we increase the number k of
resonances in the theory, computed for the bosonic TBA with the constant solutions of figure 8 and
Rogers’ dilogarithm formula (2.10). We show only one of the complex conjugate pairs for simplicity.
The corresponding curve for fermionic theories is the same provided we map k → k + 1. The first
point k = 1 in red matches the bosonic sinh-Gordon model value, cf. figure 3. In the limit with
infinite resonances k →∞ the complex effective central charge goes to zero as we find in the elliptic
sinh-Gordon models, see figures 5 and 6.

5 Bound state explorations: deformed minimal models

In this section we initiate the study of the CDD deformations of models with more than
one stable particle. We choose as the undeformed theory the well-known Φ1,3 integrable
deformation of the non-unitary minimal models M2,2n+3 — the first of which is the Lee-
Yang model — and investigate its simplest possible CDD deformation,

Φ(θ) = i sin u+ sinh θ
i sin u− sinh θ , (5.1)

in the limit u→ 0−. In other words, recalling (4.3) we will effectively focus our attention
on the bosonic counterparts of the Φ1,3 integrable deformations. Most curiously, at least to
our knowledge these models have not been constructed previously even though they give a
standard (single branch) TBA.

These S-matrices provide a paradigmatic example of how the iterative method to solve
TBA equations can give rise to non-physical instabilities that can be circumvented applying
the pseudo-arclength continuation method described in section 3. Furthermore they offer
a very different testing ground for the condition on the L1 norm of the kernel (4.1) being
the determining factor for the appearance of a critical radius.
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Let us now briefly review some properties of the models. The integrable theories
resulting from the Φ1,3 deformation have a spectrum of n particles of massma = sin

(
aπ

2n+1

)
,

a = 1 . . . n. The scattering amplitudes defining the interactions between them can be
obtained with the usual integrable bootstrap and — contrary to the S-matrices in the
previous section — have bound-state poles. The scattering matrices read

S11(θ) = th 2
2n+1

(θ) , (5.2)

Sab(θ) = th |a−b|
2n+1

(θ) th a+b
2n+1

(θ)
min(a,b)−1∏

k=1

[
th |a−b|+2k

2n+1
(θ)
]2
, (5.3)

where the building blocks thx(θ) are simple CDD poles

thx(θ) = tanh [(θ + iπx)/2]
tanh [(θ − iπx)/2] = sinh(θ) + i sin(πx)

sinh(θ)− i sin(πx) ,

see [60] and references therein.
Following the logic of the previous section, we will study these fermionic models and

their bosonic counterparts defined purely from their S-matrix Sb
ab(θ) = −Sab(θ). The TBA

equations are given by

εa(θ) = mar cosh θ∓
n∑
b=1

∫ ∞
−∞

ϕab(θ−θ′) ln
[
1± e−εb(θ′)

] dθ′
2π for a = 1, . . . , n , (5.4)

and while this is now a coupled system of n equations over the unknown pseudo-energies
εa(θ) for a = 1, . . . , n, all of the numerical techniques described in section 3 can be straight-
forwardly generalized to account for this change.

If we solve the TBA equations (5.4) iteratively, we find that for n > 2 (or n > 1 in the
bosonic case) there is an instability at a finite radius r∗ > 0. For all values of n we notice
that the bosonic case displays this instability before the fermionic one. We could suspect
that this indicates a true physical critical radius, but switching to the pseudo-arclength
continuation method proves this to be false. Indeed, there is nothing strange about these
models and we can continue the solutions all the way to r = 0, reproducing the well-known
effective central charge in the UV for the fermionic models.

Looking closer, it turns out that below r∗ in the iterative method even and odd it-
erations converge to different values.16 This is a purely numerical artifact which we can
expect to avoid using a variation of the iterative algorithm with weighted-updates, i.e.
replacing (3.2) with

ε(k+1)
a (θ) = (1− α)ε(k)

a (θ) + α

(
mar cosh θ ∓

n∑
b=1

∫ ∞
−∞

ϕab(θ − θ′) ln
[
1± e−ε

(k)
b

(θ′)
]
dθ′

2π

)
,

(5.5)
16Note that none of these values are true solutions to the TBA equations, since we have

εeven,odd
a (θ) = mar cosh θ ∓

n∑
b=1

∫ ∞
−∞

ϕab(θ − θ′) ln
[
1± e−ε

odd,even
b

(θ′)
]
dθ′

2π .

– 22 –



J
H
E
P
0
1
(
2
0
2
2
)
0
3
5

Figure 10. Effective central charge (black) for the Φ1,3 deformed minimal model M2,2n+3 with
n = 3, in its fermionic (top) and bosonic (bottom) flavours. The blue curves refer to the single
particle contributions c̃a(r) as in equation (5.6). The vertical gray line shows the radius r∗ where the
iterative method becomes unstable. For r < r∗ we use the pseudo arclength numerical method. The
effective central charges converge in the ultraviolet to 2/3 in the fermionic model and to 0.724253
in the bosonic one.

for a = 1, . . . , n, k = 0, 1, . . . and some α ∈ (0, 1). In practice, α = 1/2 works well, and
we could skip the pseudo-arclength continuation altogether. Note however the latter is a
more robust stabilization method for the TBA equation, as seen in the previous section.

Of course, the fact that there is no critical radius is also expected from the observation
that in this theory there are no resonances and only bound states. Indeed, a condition on
the norm of the kernel in the spirit of (4.1) would not be satisfied, so that we should not
find more than one branch in this theory.

– 23 –



J
H
E
P
0
1
(
2
0
2
2
)
0
3
5

The effective central charge in these models receives contributions from each particle
in the following way

c̃(r) =
n∑
a=1

c̃a(r) =
n∑
a=1
± 6
π

ma

m1

∫ ∞
−∞

r cosh(θ) ln
[
1± e−εa(θ)

] dθ
2π . (5.6)

In figure 10 we show the fermionic (top) and bosonic (bottom) effective central charges
for n = 3. In the fermionic TBA, the effective central charge at r = 0 converges to the
expected values for M2,2n+3 minimal models, given by the formula c̃(n) = 2n/(2n + 3).
In the bosonic case the UV effective central charge is given by larger values in the range
[1/2, 1), which for n > 1 appear to be irrational and for which we have not found an
analytic expression.17 It would be very interesting to see if there exists a simple realization
of these bosonic models.

6 Discussion

In this work we have analyzed the Thermodynamic Bethe Ansatz for various integrable
models defined through consistent 2 → 2 scattering matrices. With the exception of the
results discussed in section 5, we concentrated on theories with a single stable particle and
no bound states. We studied the sinh-Gordon model, which has one resonance, its elliptic
deformation, with infinite resonances, and in-between models with k resonances described
by k CDD-zeros. We have taken a bottom-up approach and studied both the fermionic and
the lesser studied bosonic realizations of the TBA equations for all of the above models.

Following [28], we have confirmed that the determining factor for the TBA to have a
turning point at a critical length scale rc is the L1 norm of the kernel, which measures the
difference between the number of bound states and resonances in the theory. Namely, all
the models with a single stable particle and any number of resonances — with the exception
of the single resonance fermionic model, i.e. sinh-Gordon — have a bifurcation point. The
exact length scale at which the bifurcation happens depends on the details of the model.

An important result in the present work is that we were able to continue the TBA
solutions past the turning point and follow the pair of complex conjugate solutions all
the way to the UV regime. This required an efficient implementation of the pseudo-
arclength continuation method to solve the (complexified) TBA equations. We found
that the complex solutions to the TBA equations are such that the UV effective central
charge is minimized. Moreover, we showed that the latter decreases with the number of
resonances and finally goes to zero as we consider an infinite number of them, as in the
elliptic sinh-Gordon models.

The existence of a turning point in the TBA — interpreted as the presence of a finite
Hagedorn temperature — and of a complex effective central charge at short distances
implies a non-Wilsonian UV behaviour for these theories, just as it is the case in the TT̄-
deformed theories and in their generalizations [28]. Our results shed light on the possible
nature of the theories with infinite resonances ubiquitous in the S-matrix bootstrap, and

17For the curious reader we report c̃(r = 0) ≈ 0.5, 0.641304, 0.724253, 0.778979, 0.817083 for n =
1, 2, 3, 4, 5 .
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add to the body of experimental evidence substantiating the expectation that the majority
of self-consistent S-matrices are not derivable from local QFT. Indeed, there are further
hints that some of the consistent S-matrices found saturating bounds cannot describe
conventional UV-complete theories. In particular, for the O(N) periodic Yang-Baxter
(describing a global symmetry generalization of our infinite resonance model) there are
two concrete pieces of evidence. First, in [61] it was argued with an S-matrix/Form Factor
bootstrap involving c-minimization that this theory seems incompatible with a standard
UV fixed point. Secondly, the authors of [62] observed walking behaviour [63, 64] in this
model for N > 2 and proposed a relation to complex CFTs.

With the above hints and the fact that we are obtaining complex effective central
charges, it is very tempting to think of the underlying UV theories as complex CFTs. This
is an intriguing idea that warrants further investigation. A first step would be to extract the
scaling dimensions of primary operators by considering the excited state TBA equations
obtained by analytically continuing the groundstate ones [65]. Regardless of the details
of the underlying UV theories, we believe that analyzing theories outside the paradigm
of a standard UV fixed point is a worthy endeavour. Moreover, while our work focused
on integrable theories we expect their qualitative properties to be of a universal nature,
applying equally well to non-integrable and non-Wilsonian QFTs, just as it is the case for
the TT̄ deformation.

Finally, the results discussed in section 5 constitute a first incursion into the realm
of CDD deformations of theories with an arbitrary number of stable particles. Specifi-
cally we studied the bosonic counterparts of the S-matrices describing the Φ1,3 deformed
non-unitary minimal models M2,2n+3. We found that these theories possess a standard
Wilsonian UV limit, corresponding to CFTs whose central charges appear to be irrational
numbers between 1/2 and 1. We find it remarkable that these models have never, to the
extent of our knowledge, appeared before in the literature. We believe it would be inter-
esting to look at the bosonic counterparts of other well-known theories — e.g. the unitary
minimal models — as well as to search for their QFT construction. The next natural step
in this direction is to analyze a general family of theories having n bound states and N

resonances. According to the argument we have already put forward before, we expect
these to have a standard Wilsonian UV behavior for n ≥ N , and conversely to develop a
Hagedorn temperature for n < N . We hope to return to this point in a future publication.
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A Some properties of elliptic functions

Elliptic functions are meromorphic functions in the complex plane with two periods ω1, ω2
satisfying Im (ω1/ω2) > 0. In this appendix we review some of their nice properties.18

Poles and zeros. Any non-constant elliptic function must have at least one pole in
a period parallelogram. The sum of all residues at the poles inside this parallelogram
is zero. Therefore, any non-constant elliptic function has at least order two: inside the
period parallelogram we have either two simple poles with opposite residues or a double
pole with zero residue. The former case gives rise to Jacobi elliptic functions while the
latter corresponds to Weierstrass elliptic functions. Any elliptic function can be expressed
in terms of Jacobi or Weierstrass elliptic functions.

Algebraic relations. Two elliptic functions X(θ), Y (θ) with the same periods ω1, ω2
satisfy an algebraic relation of the form

F (X,Y ) =
n∑

i,j=0
i+j≤n

cijX
iY j = 0 . (A.1)

In the following we describe how these polynomial relations arise and in particular how the
total degree of the polynomial is related to the order of the poles in X(θ), Y (θ).

Let a1, a2, . . . , am be the set of distinct poles that belong to at least one of the functions.
The functions might have a pole at the same position with different orders,

X(θ) ∼ rk
(θ − ak)mk

, Y (θ) ∼ r′k
(θ − ak)nk

. (A.2)

We define the total pole order K as the sum of the largest order for each pole,

K =
m∑
k=1

max(mk, nk) . (A.3)

Now let us consider an elliptic function Φ(θ) defined by a polynomial with no constant term

Φ(θ) =
n∑

i,j=0
0<i+j≤n

cijX
iY j . (A.4)

The idea is to fix the coefficients ci,j such that Φ(θ) is an entire function and therefore
equals a constant by Liouville’s theorem.19 The function Φ(θ) can have poles only at
a1, a2, . . . , am, so for it to reduce to a constant the principal parts near these points must
all vanish. For example, close to ak the function Φ(θ) has a Laurent expansion

Φ(θ) =
∞∑
l=0

Al(θ − ak)l +
n×max(mk,nk)∑

l=1
Bl(θ − ak)−l . (A.5)

18There are many textbooks on the theory of elliptic functions, here we follow [66].
19This theorem holds because the function would also be bounded in the period parallelogram with

vertices {0, ω1, ω1 + ω2, ω2}.
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We require that the Bl coefficients in the second sum vanish for all l. In this way we
get n×max(mk, nk) equations Bl [cij , X(ak), Y (ak)] = 0. Repeating this procedure for all
poles gives at most n

∑
kmax(mk, nk) = nK linear homogeneous equations with variables

cij . For a non-trivial solution to exist we need to have more unknowns than equations, i.e.
n(n+ 3)/2 > nK. This leads to a bound on the total degree of the polynomial in terms of
the total pole order, n > 2K − 3.

Having determined the coefficients cij we can now write Φ(θ) = −c00, from which we
recover a non-trivial algebraic equation as (A.1).

B Approximate algebraic relation between kernel and convolution

A curious fact stems from the otherwise trivial observation that in the elliptic sinh-Gordon
models the convolution term in the TBA equation (2.5) has the same real period as the
kernel ϕa,l(θ). If these functions were to share their imaginary period as well it would
imply an algebraic relation between them, as explained in appendix A. Given the analytic
structure of the kernel, we would expect this relation to be of at least second order, i.e. to
be of the form

c00 + c10 C(θ) + c01 ϕa,l(θ) + c11 C(θ)ϕa,l(θ) + c20 C(θ)2 + c02 ϕa,l(θ)2 = 0 , (B.1)

where C(θ) = ε(θ)− r cosh(θ). Note that if such a relation holds, it would not only require
some physical interpretation but also be of practical importance, since it would permit a
much more efficient analysis and solution of the TBA equation.

Having at our disposal numerical solutions for the convolution, determining the co-
efficients cij reduces to performing a linear regression on the 2NM datapoints (3.3) to
minimize the mean squared deviation to (B.1). Restricting ourselves to the real branches,
we find in practice that c11 = c02 = 0, so that fixing the normalization through c20 = 1
we are left with only three undetermined coefficients, c00, c10 and c01. In our experiments
with N = 200 and M = 2, fitting these three parameters produces residuals of relative
magnitude O(10−5) for all real solutions. This is very close to the accuracy of the solutions
themselves, therefore we can assert that the algebraic relation (B.1) is indeed satisfied to
the numerical precision we are working with. For illustration purposes, in figure 11 we
display plots of the non-zero coefficients as a function of r, for the fermionic (left panels)
and bosonic (right panels) models at a = 1/2 and l = 1/2.

While we can verify the algebraic relation (B.1) holds for the real branch of solutions
to the TBA equations, we were unable to do the same for the solutions belonging to the
complex branch. In fact, in order to prove this relation, it would be necessary to establish
the analytic structure of the convolution in the complex plane, as well as the non-trivial
periodicity in the imaginary direction. This involves a non-trivial analytic continuation of
the TBA solutions from the real rapidity line into the complex plane, which we are not
able to do reliably all the way to θ ∈ R+2πi as needed to confirm the validity the algebraic
relation. We leave a deeper exploration of this interesting curiosity to future work.
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Figure 11. Non-vanishing coefficients in the algebraic relation (B.1) between the kernel ϕa,l(θ) and
the convolution C(θ) = ε(θ)− r cosh θ of the elliptic sinh-Gordon models with a = 1/2 and l = 1/2.
Panels on the l.h.s. correspond to the fermionic model, whereas panels on the r.h.s. correspond to
bosonic model.

C Pseudo-arclength continuation of the TBA equation

In this appendix we explain in more detail the application of the pseudo-arclength contin-
uation method to the TBA equation (2.5). After introducing the discretization (3.3), we
have to solve

εi = r cosh θi ∓
∆θ
2π

2NM∑
j=1

(ϕa,l)ij ln
(
1± e−εj

)
for i = 1, 2, . . . , 2NM , (C.1)

where ∆θ = Tl/N , (ϕa,l)ij = ϕa,l(θi − θj) and εi = ε(θi) are 2NM unknowns. We can
accomplish this task using standard Newton-like iterative methods broadly applicable to
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the solution of nonlinear equations, as long as we can provide a good-enough initial starting
point for the discretized pseudo-energy εi.

We consider the situation where the parameters a and l in the kernel above are fixed
beforehand, and we want to solve this problem repeatedly for various values of r. In this
setup, small changes in r and the εi are related by

δεi = δr cosh θi + ∆θ
2π

2NM∑
j=1

(ϕa,l)ij
δεj

eεj ± 1 for i = 1, 2, . . . , 2NM . (C.2)

If we now take (δεi, δr) to be unknown, we need to introduce an additional equation through
the normalization condition

1
2NM

2NM∑
i=1

δε2i + δr2 = 1 , (C.3)

which leaves us with 2NM + 1 equations as required. Once again, providing a starting
point for (δεi, δr) that is close enough to the actual solution is all that is necessary to solve
these equations applying standard Netwon-like methods.

Assuming we already have a sequence of n solutions to (C.1) we wish to extend,20 say
{ε(1)
i , ε

(2)
i , . . . , ε

(n)
i } corresponding to

{
r(1), r(2), . . . , r(n)

}
, we can use its last two elements

to provide an initial guess for (δεi, δr),

δεi ≈ N (ε(n)
i − ε

(n−1)
i ) and δr ≈ N (r(n) − r(n−1)) , (C.4)

where the normalization constant N is given by

N =
(

1
2NM

2NM∑
i=1

(ε(n)
i − ε

(n−1)
i )2 + (r(n) − r(n−1))2

)−1/2

. (C.5)

Solving the derivative equation (C.2) and normalization condition (C.3) for (δεi, δr) then
allows us to construct an approximate solution to the original TBA equation. Indeed,
introducing a pseudo-arclength parameter ∆s controlling how far we want to move away
from the last available solution ε(n)

i , we can use εi ≈ ε(n)
i + δεi∆s as an initial guess for the

solution of (C.1). This corresponds to r ≈ r(n) + δr∆s, therefore we need to promote r to
become an (2NM + 1)-th unknown, while introducing an additional constraint

1
2NM

2NM∑
i=1

δεi(εi − ε(n)
i ) + δr(r − r(n)) = ∆s . (C.6)

Thus, the solution of (C.1) and (C.6) provides a new term ε
(n+1)
i in our sequence, and the

process can be repeated ad arbitrium.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

20These may come, for example, from the application of the iterative method described in section 3.
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