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1 Introduction

In the early days of general relativity, Einstein predicted the existence of gravitational
waves [1] and cast the emission from a compact system into the, now famous, Quadrupole
formula for gravitational radiation. A little while later, in a spectacular breakthrough
the LIGO/Virgo collaboration [2] confirmed Einstein’s prediction by directly detecting the
gravitational waves emitted from a binary black hole (BBH). Higher order corrections
to Einstein’s Quadrupole formula in the context of the quasi-circular orbit general rela-
tivistic two-body problem — needed to enable such detections — have traditionally been
obtained in the post-Newtonian (PN) [3, 4] formalism, within numerical relativity [5] and
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black hole perturbation theory [6, 7], as well as models combining these approaches [8–
10]. More recently, however, efforts have been focused on the BBH scattering problem,
in order to connect classical computations performed in the context of post-Minkowskian
(PM) theory [11–24], with those approaches based on the classical limit of QFT scattering
amplitudes [25–46].

Until recently, the scattering amplitudes approach to the two-body scattering problem
had mostly focused it’s efforts in the conservative sector, although hints from soft theorems
suggest that they can also be used to address the radiative sector [47–49]. The introduction
of the Kosower, Maybee and O’Connell (KMOC) formalism [50], enabling the computation
of classical observables directly from the scattering amplitude, proved to be extremely
useful in determining radiative observables. Using this formalism, an amplitudes derivation
of the waveform from hyperbolic, soft encounters was presented in [51], encapsulating the
gravitational memory content of the signal [52]. In this same formalism, the computation of
the full leading PM order radiated four-momentum was recently presented in [53, 54]; these
results were subsequently confirmed by other methods in [55–57]. Simultaneously, using a
worldline-QFT formalism [58], the computation of the gravitational waveform valid for all
values for the momentum of the emitted graviton, was computed in [59] (see also [60]), and
extended to include spin effects in [61]. Analogously, the scattering amplitudes approach
has been employed to study radiation scattering off of a single massive source [62, 63], where
a novel connection between scattering amplitudes and black hole perturbation theory has
emerged [64], shedding light on how to obtaining the higher-spin gravitational Compton
amplitude [65] (see also [66, 67]).

Even with the powerful scattering amplitudes techniques at hand, so far, radiative
information from bodies moving on bounded orbits has been obtained only via analytic
continuation [18, 19] of radiation observables of scattering bodies [53, 68, 69] (applying
mainly in the large eccentricity limit). However, the almost 40 year old derivation of the
Einstein quadrupole formula from a Feynman diagrammatic perspective by Hari Dass and
Soni [70], and the more recent derivation by Goldberger and Ridgway using the classical
double copy [13], suggest that scattering amplitudes can indeed be used to derive grav-
itational radiation emitted from objects moving on general closed orbits (including the
zero eccentricity limit, i.e., quasi-circular orbits). In this work we follow this philosophy
to compute the gravitational waveform emitted from an aligned spin BBH on general and
quasi-circular orbits, up to quadratic order in the constituents spin at the leading order
in the velocity expansion and to sub-leading order in the no-spin limit, from a 5-pt scat-
tering amplitude of two massive particles exchanging and emitted gravitons. We contrast
and compare these results to the analogous classical derivation of the corrections to the
Einstein quadrupole formula using the well-established multipolar post-Minkowskian for-
malism [3, 71–74].

We find perfect agreement between the classical and the scattering amplitudes deriva-
tion of all radiative observables we consider, to the respective orders in the spin and velocity
expansions. Furthermore, we show that at leading order in the BBH velocities, there is a
one-to-one correspondence between the BBH source’s mass and current multipole moments,
and the scalar and linear-in-spin 5-pt scattering amplitude, respectively. At quadratic or-
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der in the BHs’ spin, we demonstrate explicitly that the corresponding contribution from
the quadratic-in-spin scattering amplitude does not provide additional spin information
at the level of the waveform; hence, we conjecture this to hold for higher-spin amplitudes
as well, based on the aforementioned correspondence. Then, the leading in velocity, all
orders-in-spin waveform, is obtained purely through the solutions to the equations of mo-
tion (EoM) of the conservative sector of the BBH. Furthermore, the gauge dependence of
gravitational radiation information at future null infinity is a potential source of difficulty
when comparing results obtained by different approaches. In this work, we provide evi-
dence that gauge freedom partially manifests itself in the integration procedure appearing
in the computation of the waveform directly from the scattering amplitude. For quasi-
circular orbits, the orbit’s kinematic variables are subject to certain relations, such that
the gravitational waveform can take different forms without affecting the gauge invariant
information contained in the total instantaneous gravitational wave energy flux.

This paper is organized as follows: in section 2, we begin by reviewing the classical
derivation of the conservative sector of the spinning BBH to all orders in the spins at
leading PN. In section 2.2, we derive the associated gravitational wave emission from this
system to all order in the BHs’ spins. We then proceed with the scattering amplitudes
derivation of the waveform in section 3, with the general formalism outlined in section 3.1.
In section 3.2 we present the relevant scattering amplitudes needed for the computation,
obtained only through the Compton and the 3-pt amplitudes, and subsequently use them
in section 3.3 for explicitly determining the waveform. In section 3.4, we briefly discuss
the computation of the gauge invariant energy flux, and comment on the manifestation
of the gauge freedom. We conclude with a discussion in section 4. In this paper we
use Greek letters α, β . . . for spacetime indices and Latin letters i, j . . . for purely spatial
indices. Furthermore, we use G = c = 1 units throughout, assume ε0123 = 1, and use the
2∇[α∇β]ωµ = Rαβµ

νων Riemann tensor sign convention.

2 Classical derivation

In order to approach the bound orbit from a classical point of view, we utilize an effective
worldline action [12, 75–80], parametrizing the complete set of spin-induced interactions of
the two spinning BHs in the weak-field regime, at linear order in the gravitational constant,
i.e. at PM order. As we are interested in bound, as opposed to unbound, orbits, we will
be focusing on the leading PN contribution to the 1PM conservative sector at each order
in the BHs’ spins. In the following, we first briefly summarize the necessary conservative
results established in refs. [79, 81–94]. Using these results, we then tackle the radiative
sector, utilizing the multipolar post-Minkowskian formalism [4, 71–74] (see also ref. [3] and
references therein). We derive the transverse-traceless (TT) pieces of the linear metric
perturbations, hTT

µν , and the total instantaneous gravitational wave power, F , radiated by
this source to future null infinity. We achieve this, considering all orders in the spins,
both for an aligned spin system on general orbits at leading order in velocities, as well as
specialize to quasi-circular orbits at leading and first sub-leading orders in velocities. In
this section, we work in the −+ ++ signature for the flat metric, and set G = 1.
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2.1 Classical spinning binary black hole

Let us begin by briefly reviewing the approach to the conservative sector of the BBH
dynamics at the respective orders in the weak-field and low-velocity regimes using an
effective worldline action. In section 2.1.1 we present the necessary spin-interactions to
describe a rotating BH, while in section 2.1.2 we review how an effective spinning BBH
action, needed for the computation of the radiation field, can be derived.

2.1.1 Effective binary black hole action

An effective description of a rotating black hole (BH), obeying the no-hair theorems, as
a point particle with suitable multipolar structure in the weak-field regime rests solely on
its worldline and spin degrees of freedom [12, 76, 78, 92, 95]. The former are given by
a worldline zµ(λ) of mass m, with 4-velocity uµ = dzµ/dλ, while the latter are encoded
in the BH’s (mass-rescaled) angular momentum vector1 aµ, and local frame eµA(λ). An
effective worldline action, S, that entails the dynamics of such a BH (or, more generally,
a compact object) in the weak-field regime was developed in refs. [75–79]; see ref. [80]
for further details. This action S[h,K], describing a rotating compact object, is built
considering all possible couplings of gravitational, h = {hµν}, and object specific degrees
of freedom, K = {zµ, uµ, aµ, eµA}, requiring covariance, as well as reparameterization and
parity invariance [78, 80, 96, 97]. At the 1PM level, a matching procedure between the
linearized Kerr metric [93, 98, 99] and the gravitational field hµν , emanating from a generic
compact object described by S[h,K], leads to a unique set of non-minimal couplings between
h and K. This ultimately results in an effective 1PM BH worldline action SBH[h,K]. This
action can be extended to higher orders in G in spins (see for instance refs. [100–103]).

It was shown in ref. [99] that for a harmonic gauge linearized Kerr BH the infinite set of
spin-couplings present in the 1PM effective worldline action SBH[h,K] can be resumed into
an exponential function. In a linear setup, a BH of mass m traveling along the worldline
zµ(λ), sources the gravitational field, gµν = ηµν + hKerr

µν +O(h2), with [99]

hKerr
µν = 4Pµναβ T̂ Kerr

αβ

1
r̂
, T̂ Kerr

µν = m exp(a ∗ ∂)(µ
ρuν)uρ. (2.1)

Here we define (a∗∂)µν = εµναβa
α∂β and introduced the trace reverser Pµναβ = (ηµαηνβ +

ηναηµβ − ηµνηαβ)/2. Additionally, r̂ labels the proper distance between the spacetime
point x and the worldline zµ(λ), within the slice orthogonal to uµ [99]. In the following,
we restrict ourselves to the leading PN part of the 1PM ansatz, since this is the natural
setting for closed orbits in the weak field regime. However, while we are expanding in
εPN ∼ v2/c2 ∼ GM/rc2, we consider all orders in the spins, i.e., consider εspin ∼ χGM/rc2

non-perturbatively (here, χ the black hole’s dimensionless spin parameter). To that end,
we choose the Minkowski coordinate time t to parameterize the worldline zµ, i.e., λ → t,
and expand the 4-velocity uµ = (1,v)µ + O(v2), with zi = dzi/dt = vi. Given this and

1This angular momentum vector aµ = εµναβu
νSαβ/(2m) emerges from the spin tensor Sαβ assuming the

covariant spin supplementary condition, pµSµν = 0, and a local body-fixed frame eµA(λ). See, for instance,
ref. [95] for details.
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utilizing the three-dimensional product (a× ∂)i = εijka
j∂k, the metric (2.1) reduces to its

leading PN form:

hKerr
00 =

(
2 cosh(a× ∂)− 4vi sinh(a× ∂)i

) m
r̂

+O(v2),

hKerr
0i = (4vi cosh(a× ∂)− 2 sinh(a× ∂)i)

m

r̂
+O(v2),

hKerr
ij =

(
2δij cosh(a× ∂)− 4v(i sinh(a× ∂)j)

) m
r̂

+O(v2).

(2.2)

Note that even at zeroth order in velocity, the solution contains non-trivial gravito-
magnetic contributions, hKerr

0i , due to the presence of the BH spin. Conversely, an effective
stress-energy distribution Tµν can be derived that yields (2.2) via the linearized Einstein
equations2 �hKerr

µν = −16πPµναβTαβ . This distribution has support only on the worldline
zi(t) and, with the above parameterization, is given by

Tµν(t, xi) = T̂ Kerr
µν δ3(x− ẑ(t)) +O(v̂2). (2.3)

Collecting these within the worldline action, we can construct an effective binary BBH
SBBH that encodes the conservative dynamics with the complete spin information at the
leading PM level [99] or leading PN level [93, 94]. That is, given two worldlines zµ1,2, with
velocities uµ1,2, masses m1,2, and two spin vectors aµ1,2 — conveniently collected in the sets
K1,2 — the spin interactions within the binary are obtained by integrating out the gravi-
tational field in a Fokker-type approach [104]. Following [94, 99], in practice, the effective
action for the second BH SBH[h,K2] (containing this BH’s degrees of freedom K2) is eval-
uated at the metric of the first BH h→ h1, such that SBH[h,K2]→ SBH[h1,K2]. However,
since the metric h1, explicitly given in (2.1), is effectively a map from the gravitational
degrees for freedom into that BHs’ degrees of freedom, i.e., h1 → K1, the BBH action
SBH[h1 → K1,K2]→ SBBH[K1,K2], solely depends on the BHs’ degrees of freedom.

2.1.2 Conservative dynamics

In order to write out the effective BBH action SBBH[K1,K2] explicitly, let us define the
spatial separation ri = zi1−zi2, with r = |r|, between the two worldlines, as well as the spin
sums ai+ = ai1 + ai2 and ai− = ai1 − ai2. The angular velocity3 3-vectors Ωi

1,2 are introduced
for completeness, however, the aligned-spin dynamics are independent of Ωi

1,2. Finally, we
define the center of mass frame velocity vi = ṙi = vi1 − vi2. In refs. [93, 94] it was shown
that after integrating out the gravitational degrees of freedom, as described in the previous
section, the effective BBH action SBBH reduces to the two-body Lagrangian

LBBH =
[
m1
2 v2

1 + m1
2 εijka

i
1v
j
1v̇
k
1 +m1a

i
1Ω1,i + (1↔ 2)

]

+
[

cosh(a+ × ∂) + 2vi sinh(a+ × ∂)i
]
m1m2
r

,

(2.4)

2At leading PN order, the spacetime effectively decomposes into space and time parts, yielding a sim-
plification of the linearized Einstein equations: �−1

ret.Tµν → ∆−1Tµν (see ref. [3] for details).
3The angular velocity tensor Ωµν = eµ · Deν/dλ is defined by means of the body fixed frame eµA(λ)

along the worldline. The corresponding angular velocity vector is then given by Ωi = εijkΩjk/2. See, for
instance, ref. [95] for details.
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at the leading PN level. Note that here and in the remainder of this section ∂ir
−1 =

∂r−1/∂zi1 = −∂r−1/∂zi2. So far, we have assumed a leading PN treatment at each order in
spin, but kept the dynamics unrestricted. In the following we assume that the spin degrees
of freedom are fixed, i.e., the spin vectors are independent of time, ȧ1,2 = 0, and aligned
with the orbital angular momentum of the system: ai1,2 ∝ Li; hence, the motion is confined
to the plane orthogonal to Li. For later convenience, we define the unit vector `i, such that
Li = |L|`i. Varying this action with respect to the worldline zi1, the classical EoM of the
system are4 [93, 94]

v̇i1 =
(
∂i− εijka

k
1v
l∂l∂

j
)

cosh(a+ × ∂)m2
r

+ 2
(
vj∂

i − δijvk∂k
)

sinh(a+ × ∂)jm2
r

+O(v2).
(2.5)

A geometric approach using oblate spheroidal coordinates [93, 98, 99] or an algebraic
approach, exploiting properties of the Legendre polynomials [94], under the assumption
that the motion takes place in the plane orthogonal to the spin vectors, can be used to
resum the series of differential operators in (2.5).

In order to present the contribution of the conservative sector needed for the radiative
dynamics, we specialize to the center of mass frame for the rest of this section. The
transformation into the center of mass variables ri based on (2.4) (and using the total
mass M = m1 + m2), is corrected by the presence of the spins only at sub-leading orders
in velocities:

zi1 = m2
M

ri − bi, zi2 = −m1
M

ri − bi, bi := 1
M
εijk(vj1Sk1 + vj2S

k
2 ). (2.6)

In this center of mass frame, the EoM are readily solved for quasi-circular motion. In that
scenario, the separation ri is related to its acceleration r̈i by ri = −r̈i/ω2, where ω is the
system’s orbital frequency. This ansatz picks out the quasi-circular orbits allowed by the
BBH EoM (2.5) and is equivalent to finding a relation between the frequency x = (Mω)2/3,
the BHs spins ai1,2, and the separation of the binary r. This relation, at the leading PN
order at each order in the BHs’ spins, is given by [94]

r(x) =

√
M2

x2 + ā2
+

(
1− x3/2M

3
σ̄∗ + 2ā+
M2 + x2ā2

+

)
, (2.7)

where σ̄∗ = (m2ā1 +m1ā2)/M and we defined ā1,2 = ai1,2`i. It should be emphasized that
the even-in-spin part of (2.7) contains only O(v0) information, while the odd-in-spin pieces
are non-zero only at first sub-leading order in velocities, at O(v1). This solution can then
be used to compute gauge invariant quantities of the conservative sector, such as the total
binding energy and angular momentum [94].

4The corresponding equation for −v̇i2 emerges from the right hand side of (2.5) under the replace-
ment ai1 ↔ ai2.
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2.2 Linearized metric perturbations at null infinity

With the conservative results in hand, in this subsection, we compute the gravitational
waves from the BBH system at future null infinity. In section 2.2.1 we briefly review the
general approach of mapping the source’s multipole moments into the radiation field, while
in section 2.2.2 we derive the TT part of the linear metric perturbations (the gravitational
waves) at null infinity utilizing this mapping.

2.2.1 General approach

A natural choice of gauge invariant quantity capturing the radiative dynamics at null
infinity is the Newman-Penrose Weyl scalar Ψ4. This contains both polarization states, h+
and h×, of the emitted waves, which are the observables measured by gravitational wave
detectors. Upon choosing a suitable null tetrad, the TT part of the gravitational field,
hTT
µν , can be related to Ψ4:

Ψ4 ∼ ḧ+ − iḧ× = m̄µm̄ν ḧTT
µν . (2.8)

The complex conjugate pair {mα, m̄α} is typically defined with respect to the flat spher-
ically symmetric angular coordinate directions m = (Θ + iΦ)/

√
2. With this choice in

place, we restrict our attention to the spatial components hTT
ij , as these contain the full

information of Ψ4, i.e., the radiative, non-stationary, degrees of freedom.5

In the previous section, we summarized the leading PN conservative dynamics of a
spinning BBH to all orders in their spins. Given this, the well-established multipolar post-
Minkowskian formalism [3, 71–74] is ideally suited to determine the time-dependent metric
perturbations at null infinity. Within this framework, the stress energy distribution of
the source, T source

µν , is mapped into a set of mass and current symmetric and trace free
(STF) source multipole moments Ii1...i`(t) and Ji1...i`(t). We denote 〈i1 . . . i`〉 as the STF
projections of the indices i1 . . . i`. Then the STF multipole moments evaluated at the
retarded time TR = t−R are defined by [3]

Ii1...i` =
∫
dµ
(
δ`x〈i1...i`〉Σ− f1,`δ`+1x〈ii1...i`〉Σ̇

i + f2,`δ`+2x〈iji1...i`〉Σ̈
ij
)

(x, TR + zr),

Ji1...i` =
∫
dµ εab〈i`

(
δ`xi1...i`−1〉

aΣb − g1,`δ`+1xi1...i`−1〉c
aΣ̇bc

)
(x, TR + zr),

(2.9)

where xi1...i` = xi1 . . . xi` ,

f1,` = 4(2`+ 1)
(`+ 1)(2`+ 3) , f2,` = 2(2`+ 1)

(`+ 1)(`+ 2)(2`+ 5) , g1,` = 2`+ 1
(`+ 2)(2`+ 3) , (2.10)

and the integration measure
∫
dµ = FP

∫
d3x

∫ 1
−1 dz. The source energy-momentum distri-

bution enters in Σ, via (valid only at leading PN orders)6

Σ = T 00 + T ijδij , Σi = T 0i, Σij = T ij . (2.11)
5As we will see below, this choice of purely spatial mα is equivalent to choosing a gauge, in which the

graviton polarization tensor is also purely spatial.
6At sub-leading PN orders, the stress energy of the emitted gravitational waves contributes to Σ.
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The source’ finite size retardation effects are contained in the z-integral with δ` = δ`(z)
in (2.9), which are given explicitly in eq. (120) of ref. [3]. At the orders considered in
this work, at the leading PN orders, finite size-retardation effects vanish and the z-integral
trivializes:

∫ 1
−1 dz δ`(z)f(x, TR + rz) = f(x, TR) +O(v2). We discuss in section 3.1, how a

similar structure as in (2.9) appears in the scattering amplitudes approach, as well as what
precisely encapsulates the “finite size” retardation effects in that context. The lowest order
moments I, Ii, and Ji are constants of motion representing the total conserved energy,
center of mass position and total angular momentum, respectively. Only for ` ≥ 2, do the
multipoles contribute non-trivially.

A matching scheme enables to directly relate these functionals for the source’s stress-
energy distribution, to the radiation field at null infinity (at 1PM order)7 [3]

hij = −4
∞∑
`=2

(−1)`

`!

[
∂i1...i`−2 Ïij

i1...i`−2R−1 + 2`
`+ 1∂ai1...i`−2ε

ab
(iJ̇j)bi1...i`−2R−1

]
. (2.12)

Here ∂aR−1 = −Na/R
2 is to be understood as the derivative in the background Minkowski

spacetime, where Na is radially outwards pointing from the source to spatial infinity, with
NaN

a = 1. To solely focus on the radiation at null infinity, we work to leading order in
the expansion in R−1. Therefore, the spatial derivatives in (2.12) act purely on the source
multipole moments, and there, can be traded for time derivatives: ∂af(t − R) = −ḟNa.
Similarly, the total instantaneous gravitational wave energy flux F can be derived directly
from the source multipole moments [3].

2.2.2 Gravitational radiation from spinning binary black hole

At the 1PM level, non-linear effects vanish such that the energy-momentum of the BBH is
simply the superposition of two linearized Kerr BHs’ energy momentum distributions (2.3),
T source
µν = TKerr,1

µν + TKerr,2
µν . This superposition holds in the conservative sector, while the

radiative dynamics are derived directly from derivatives acting on T source
µν in the manner

described in the previous section. From the scattering amplitudes perspective, this super-
position is reflected in the onlytwo channel factorization of the classical 5-pt amplitude,
into the product of a 3-pt amplitude and the gravitational Compton amplitude, as we will
see in section 3.2.

Leading order in velocities. As the radiative quantities hTT
ij and F depend on time deriva-

tives of the source multipole moments, we focus on time-dependent terms after fixing the
angular momentum dynamics. For the case of the above spinning BBH with aligned spins,
at the leading PN order, we expand the source T source

µν analogously to (2.2). Given this, the
resulting leading-in-velocity contributions to the source multipole moments, utilizing (2.9),
are [92, 94, 105]

Iij(0) = m1z
〈ij〉
1 + (1↔ 2), J ij(0) = 3

2S
〈i
1 z

j〉
1 + (1↔ 2), (2.13)

7Beyond linear theory, corrections to these multipole moments are necessary [3].
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where (0) indicates the order in velocities. It should be stressed that these are all multipoles
needed for the gravitational waveform to all orders in the BHs’ spins, at leading order
in velocity [94]. From the amplitudes perspective, this will be reflected in the need for
only the scalar and linear-in-spin scattering amplitudes at the leading orders in velocities.
While all higher-order spin terms in the source multipole moments vanish identically, spin
contributions to the waveform at arbitrary order in the spin expansion could enter through
the solution to the EoM (2.7). We see below that this solution to the classical EoM (2.5)
introduces non-zero contributions at arbitrary orders in the BHs’ spins for quasi-circular
orbits.

Given (2.13), the metric perturbation at null infinity, for general orbits at zeroth order
in velocities, assuming aligned spins, is

h
(0)ij
S∞ (TR, R,N , z1, z2) = 2m1

R

{
d2

dt2

[
zi1z

j
1

]
+ εpq

(i
(
a
j)
1 v̇

p
1 + v̇

j)
1 a

p
1

)
N q
}∣∣∣∣
t=TR

+ (1↔ 2),

(2.14)

i.e. the Einstein Quadrupole formula with spinning corrections for a binary system. We
specialize to quasi-circular orbits by introducing the orthogonal unit vectors

ni = ri/r = (cosωt, sinωt, 0)i, λi = vi/v = (− sinωt, cosωt, 0)i, (2.15)

in the center of mass frame that rotate with frequency ω in the orbital plane. The spin
vectors ai1,2 ∝ `i are aligned orthogonal to the orbital plane, niλjεijk = `k, such that
`i = (0, 0, 1)i. Furthermore, the TT projector

Πij
kl = P ikP

j
l −

1
2P

ijPkl (2.16)

is defined relative to Na, where Pij = δij − NiNj . Utilizing (2.6), together with the
solution (2.7) to the EoM, as well as (2.13), the gravitational waves emitted by the spinning
BBH to all orders in the BHs’ spins is conveniently written as

hTT
ij (TR) = 2µ

R
Πij

abĥab
∣∣∣
t=TR

, (2.17)

where at leading order in velocities, we have ĥ(0)
ab = ĥ

(0),I2
ab + ĥ

(0),J2
ab , with

ĥ
(0),I2
ab = − 2x

(
1 +

ā2
+x

2

M2

)
(nanb − λaλb)

ĥ
(0),J2
ab = − x2ā−

M

√
1 +

ā2
+x

2

M2 , εkl(a(`b)nk + nb)`
k)N l.

(2.18)

Notice that here, the odd-in-spin contribution, ĥ(0),J2
ab , is a series that has non-zero

coefficients at arbitrary orders in spin, arising from the odd part of the solution (2.7),
while, on the other hand, the even-in-spin part, ĥ(0),I2

ab , provides coefficients that vanish for
O(a`≥3). This is analogous to the cancellations observed in the conservative and radiative
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sectors reported in ref. [94]. We find agreement with the results reported in refs. [105–
107] to the respective finite order in spin. To check for consistency to all orders in spin,
the gravitational wave modes are extracted from the spatial part of the metric pertur-
bations, in (2.18), by projecting onto a suitably defined basis of spin-weighted spherical
harmonics, −2Y`m(Θ,Φ). Explicitly, the gravitational wave modes h`m are defined to be
h`m =

∫
dΩ −2Ȳ`m(Θ,Φ)m̄µm̄νhTT

µν . These modes, obtained from (2.18) in conjunction
with the above defined polarization tensor m̄αm̄β , agree with the results in ref. [94] to all
orders in the BHs’ spins at leading order in their velocities.

Sub-leading order in velocities. The sub-leading corrections to the above radiation field are
obtained in much the same way. The additional contributions to the source multipole mo-
ments, beyond the leading pieces (2.13), at sub-leading orders in velocities are [92, 94, 105]

Iij(1) = 4
3
(
2va1Sb1εab〈iz

j〉
1 − z

a
1S

b
1εab

〈ivj〉
)

+ (1↔ 2),

Iijk(1) = m1z
〈ijk〉
1 − 3

m1
S
〈i
1 S

j
1z
k〉
1 + (1↔ 2),

J ij(1) = m1z
a
1v

b
1εab

〈iz
j〉
1 + 1

m1
va1S

b
1εab

〈iS
j〉
1 + (1↔ 2),

J ijk(1) = 2S〈i1 z
jk〉
1 + (1↔ 2).

(2.19)

Also here, we focused only on those pieces that are time-dependent, i.e., that will contribute
non-vanishing terms in h(1)TT

ij . Additionally, as pointed out above, these are all necessary
contributions for the full all orders-in-spin information at sub-leading orders in velocities
(at leading PN order) [94]. Using this, together with the mapping (2.12), the decomposi-
tion (2.17), and ĥ(1)

ab = ĥ
(1),I2
ab + ĥ

(1),J2
ab + ĥ

(1),I3
ab + ĥ

(1),J3
ab , the sub-leading contribution h(1)TT

ij

to all orders in spin from a spinning binary black hole on quasi-circular orbits are

ĥ
(1),I2
ab = 4x5/2

3M3

(
2ā+M

2 +
(
M2 − 2r2

ex
2
)
σ̄∗
)

(nanb − λaλb) ,

ĥ
(1),J2
ab = x5/2

3M4re

[
2r4
ex

2δm+ ā−M
(
2ā+(M2 − r2

ex
2) + 3r2

ex
2σ̄ +M2σ̄∗

)]
× εpq(aN q

(
np`b) + nb)`

p
)
,

ĥ
(1),I3
ab = rex

9/2

15M4

[
15ā+ā−M`〈a`bλk〉 − r2

eδm
(
30λ〈aλbλk〉 − 105n〈anbλk〉

)]
Nk,

ĥ
(1),J3
ab = − 48r2

ex
9/2σ̄∗

6M3 εpq(aδb)kn
(kλp`e)N qNe.

(2.20)

Here re = (ā2
+ + M2/x2)1/2, which is just the leading-in-velocities (even-in-spin) solution

to the classical EoM (2.7) for quasi-circular orbits. We check the gravitational wave modes
obtained from (2.20) with those presented in ref. [94] and find agreement to all orders in
spin. Additionally, we compute the gauge invariant gravitational wave energy flux with the
above result together with the leading-in-velocities radiation field and find agreement with
results reported in [92, 94] (see also a detailed discussion in section 3.4 below). Finally, in
order to compare to the scalar amplitude at first sub-leading orders in the BHs’ velocities in
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section 3.3.4, we also present the radiation field of a non-spinning BBH system on general
orbits, to sub-leading order in velocities:

h
(1),ij
S0,TT = 2m1

3R Πij
ab

[
4εpq(a

{
∂2
t (εcde)zc1vd1δe〈bz

p〉
1 )
}
N q +Nk∂

3
t (z〈a1 zb1z

k〉
1 )
]

+ (1↔ 2). (2.21)

3 Scattering amplitudes derivation

In the previous sections, we obtained the form of the gravitational waves emitted from a
spinning BBH on general closed orbits with aligned spins, to leading order in the BHs’
velocities (2.14) [and on quasi-circular orbits given in (2.18)], whereas at sub-leading order
in v, and for quasi-circular orbits, we derived (2.20), at each order (and to all orders) in the
BHs’ spins. In the following, we show that these results follow directly from the classical
limit of a 5-pt spinning scattering amplitude. More precisely, at leading order in velocity
there is a one-to-one correspondence between the source’s mass and current multipole
moments (2.13), and the scalar and linear-in-spin contribution to the scattering amplitude,
respectively. This correspondence allow us to derive the linear in spin, general orbit result
for the radiated gravitational field (2.14), from an amplitudes perspective. At quadratic
order in the BHs’ spins, and for quasi-circular orbits, we demonstrate that the contribution
from the quadratic in spin amplitude is canceled by the contribution of the scalar amplitude
in conjunction with the O(S2)-piece of the EoM (2.5). This leaves only the quadrupole
field, (3.22), supplemented with the solution to the EoM (2.7), to enter at quadratic order
in spin. Although we explicitly demonstrate the cancellation for quasi-circular orbits and
up to quadratic order in spin only, we expect this theme to continue to hold for more
complicated bound orbits, as well as to higher spin orders in the 5-pt scattering amplitude,
as suggested by the classical multipole moments (2.13). At sub-leading orders in the BHs’
velocities the situation becomes more complicated; there, we demonstrate the matching of
the amplitudes to the classical computation in the spin-less limit for quasi-circular orbits,
and briefly comment on extensions to higher orders in spin. In this section, we use the
mostly minus signature convention for the flat metric ηµν = diag(1,−1,−1,−1).

3.1 General approach

To compute the radiated field at future null infinity from the BBH system we follow the
approach used by Goldberger and Ridgway in [13] to derive the Quadrupole formula, and
extend it to include relativistic and spin effects. This approach is based on the classical EoM
for the orbiting objects in combination with the corresponding 5-pt (spinning) scattering
amplitude (see figure 1). It is valid for BBHs whose components have Schwarzschild radii
r1,2 = 2m1,2 much smaller than their spatial separation r, i.e., r1,2 � r, while the radiation
field wavelength is much bigger than the size of the individual components λ � m1,2, as
well as the size of the system λ � r.8 Therefore, we expect our results to be situated in
the PN regime of the binary inspiral.9

8In the long distance separation regime, radiation reaction effects can be neglected, since they become
important only when the separation of the two bodies is comparable to the system’s gravitational radius [108]
eq. (36.11).

9We stress that even though we concentrate mostly in the computation of gravitational waveform, an
analogous derivation follows for electromagnetic radiation, as already pointed out in [13].
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p1, S1

p1 − q1, S1

p2, S2

p2 − q2, S2k

Figure 1. Bremsstrahlung (outgoing graviton) emitted during the scattering of two spinning
massive bodies (massive spin-s quantum particles) exchanging gravitational/electromagnetic waves.

Let us start by noting that in the limit in which R→∞, where R is the distance from
the source to the observer (i.e., the radial coordinate in Bondi-Sachs gauge) as defined
above, the time domain waveform at retarded time TR, has the asymptotic form [109]

hijTT(TR, R,N , z1, z2) = κ

16πRΠij
ab

∫
dω̄e−iω̄ TRT ab(ω̄,N , z1, z2). (3.1)

Here κ2 = 32π (recall we set G = 1), ω̄ is the frequency of the radiated wave with
four momentum kµ = ω̄Nµ = ω̄(1,N)µ, and Πij

ab is the TT-projector defined in (2.16).
As above, the locations of the binary’s components are denoted by zi1,2. Analogous to
the previous section, we focus only on the spatial components of hµν , which contain all
the radiative degrees of freedom. In what follows we also simplify the notation for the
source T ab(ω̄,N , z1, z2) → T ab(k, z1, z2), where it is understood that kµ has implicit the
dependence in both, ω̄ and N .

The source T ab(k, z1, z2), is related directly to the 5-pt scattering amplitude in figure 1;
therefore, in order to focus on the spatial components, it is sufficient to work in a gauge,
in which the graviton polarization tensor εµν = εµεν , is the tensor product of two purely
spatial polarization vectors εν . From the classical perspective, this choice of gauge is
analogous to the conjugate pair {mα, m̄α} (defined in section 2.2.1) to be purely spatial.
Notice, however, the radiation field computed from a 5-pt scattering amplitude, and the
corresponding field computed classically in the previous section, can in general differ by a
gauge transformation. As shown below, this is directly related to a freedom in choice of an
integration by parts (IBP) prescription in (3.1).

We proceed by writing the explicit form of the source T ij(k, z1, z2) in terms of the
classical 5-pt scattering amplitude. In the classical computation, T ij corresponds to the
source entering on the right hand side of field equations, at a given order in perturbation
theory. To leading order, for scalar particles, it was shown in [13] that the source can be
rearranged in such a way, so that the scalar 5-pt amplitude can be identified as the main
kinematic object entering the graviton phase space integration, as well as the integration
over the particles proper times (which account for the particles history). In this paper we
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propose that formula to also hold for spinning particles. That is,

T ij(k, z1, z2) = i

m1m2

∫
dτ1dτ2d̂

4q1d̂
4q2δ̂

4 (k − q1 − q2) eiq1·z1eiq2·z2〈M ij
5 (q1, q2, k)〉. (3.2)

Here 〈M ij
5 〉 is the classical 5-pt amplitude.10 Conventions for the particles’ momenta and

the spins are shown in figure 1, with the condition for momentum conservation q1 +q2 = k.
We have used the notation d̂4qi = d4qi

(2π)4 , and similarly for the momentum-conserving delta
function δ̂4(p) = (2π)4δ4(p). The position vectors are zµA = (τA, zA)µ, with A = 1, 2, as
described in section 2.1.1, where the proper times τA, parametrize the BHs’ trajectories.
Here the product of the exponential functions,

∏
A e

iqA·zA , represents the two-particles
initial state where each particle is taken to be in a plane-wave state. This is nothing but
the Born approximation in Quantum Mechanics (see also [70]).

We have striped away the graviton polarization tensor in (3.2), assuming there exist
the aforementioned gauge fixing for which the graviton polarization tensor is purely spatial.
We can further rewrite the source using the symmetric variable q = (q1 − q2)/2, as well as
exploiting the momentum conserving delta function to remove one of the qi-integrals. The
result reduces to

T ij(k, z1, z2) = i

m1m2

∫
dτ1dτ2d̂

4qeik·z̃e−iq·z21〈M ij
5 (q, k)〉, (3.5)

where z̃ = (z1 + z2)/2 and zBA = zB − zA. Since we are interested in the bound-orbit
problem, we take the slow-motion limit. Therefore, we can write the momenta of the BHs
moving on closed orbits in the form pµ1,2 = m1,2v

µ
1,2. As noted above, we choose the frame

in which vµ1,2 = (1,v1,2)µ + O(v2
1,2), where vi1,2 = dzi1,2/dt, i.e. with the proper times τ1,2

replaced by the coordinate time (see details below). On the other hand, in the closed orbits
scenario the typical frequency of the orbit ω, scales with v as ω ∼ v/r, where ω = v/r

for quasi-circular orbits (see also (2.15)). In this bound-orbits case, the integration in q is
restricted to the potential region (technically, as an expansion in powers of q0/|q|), where
the internal graviton momentum has the scaling q ∼ (v/r, 1/r), while the radiated graviton

10To motivate this formula, although this is by no means a formal derivation, as already observed in [13]
for the tree-level amplitude, we can take the expression for the radiation kernel eq. (4.42) in the KMOC
original work [50]

J = lim
~→0

1
m1m2

〈∫ 2∏
i=1

[
d̂4qiδ̂(vi·qi − q2

i /(2mi))eibi·qi
]
δ̂4(k − q1 − q2)M5

〉
, (3.3)

and use the integral representation for the on-shell delta functions δ(x) ∼
∫
dyeixy. Identifying the asymp-

totic trajectories for the particles zi(τi) = bµi + vµi τi, plus a quantum correction zµQ(τi) = − qi
2mi

τi, and upon
restoring the ~-counting in the exponential, the radiation kernel can be rewritten as

J = lim
~→0

1
m1m2

〈∫ 2∏
i=1

[
dτid̂

4qie
iqi·(zi(τi)+~zQ(τi))] δ̂4(k − q1 − q2)M5

〉
. (3.4)

In the classical limit, and to leading order in perturbation theory, we can simply drop quantum correction
to the particles trajectories zµQ(τi), and recover the formula (3.2) upon promoting zi(τi) to be valid for
generic time dependent orbits.
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momentum scaling is k ∼ (v/r, v/r) = ω̄(1,N) (with ω̄ ∼ ω). Integration in the potential
region ensures that from the retarded propagators,

1
(q0 + i0)2 − q2 →

1
v2(q0 + i0)2 − q2 ≈ −

1
q2 +O(v2), (3.6)

entering in the scattering amplitude, retardation effects only become important at order
O(v2), which we do not consider here. At subleading orders in velocities, the amplitude
〈M ij

5 (q, k)〉 has no explicit dependence on q0. This takes care of the q0-integration in (3.5),
which results in the delta function δ(t2 − t1); this can be used to trivialize one of the time
integrals.11 With all these simplifications in hand, the source (3.5) becomes

T (0) ij(k,z1,z2)= i

m1m2

∫
dtd̂3qeiω̄ t−iq·z21〈M (0) ij

5,S0 (q, ω̄)+M (0) ij
5,S1 (q, ω̄)+M (0) ij

5,S2 (q, ω̄)〉+ · · · ,
(3.7)

where the amplitude was written in a spin-multipole decomposition. The superscript (0)

indicates that we restrict these to the leading-in-v contribution to the scattering amplitude
(see section 3.3.4 for the computation at the first sub-leading order in velocities contribu-
tion, for spinless BHs).

3.2 Scattering amplitude and double copy

With the general formalism to compute the radiated field for the BBH system outlined
above, we are left to provide the classical limit of the 5-pt amplitude to be used in the
waveform formula (3.1). The amplitude takes the general form [51]

〈Mh
5 〉=

−i
(q·k)h−1

[
n

(a)
h

(q2−q·k)(p1·k)2 + n
(b)
h

(q2+q·k)(p2·k)2

]
, (3.8)

where n(i)
h are kinematic numerators given below. Here we have also included the photon

case h = 1, in order to make contact with existing literature, as well as providing new results
at O(S2). This formula follows from the factorization of the 5-pt amplitude (figure 1) into
the product of a Compton- and a 3-pt amplitude.12 Then, each kinematic numerator is
computed from the residue of the 5-pt amplitude, at the corresponding pole. Schematically,
we have

〈Mh
5 〉 =

p1, S1

q2←−

p2, S2

+ (1↔ 2) . (3.9)

From this factorization, it is clear that the spurious pole q·k appearing in (3.8) for
the gravitational case, h = 2, arises from the t-channel of the gravitational Compton

11As a connection with the classical computation, the source multipole moments [given in (2.13)] contain
the finite size and retardation effects of the binary, though, at leading and sub-leading orders in velocities,
these effects vanish (see e.g., [3]), which is equivalent to the replacement τ1,2 → t above.

12In [44] it was also shown that for gravity, this classical formula follows directly from the classical limit
of the standard BCJ double copy [110], where superclassical contribution to the amplitude can be gauged
away by the use of a Generalized Gauge Transformation of the BCJ numerators.
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amplitude, and cancels out in the final result. It was also shown extensively in [51] that
the gravitational numerators in (3.8) can be computed from a double copy of two photon
numerators. That double copy is nothing but the result of the KLT double copy of 3-
and 4-pt amplitudes entering in (3.9), which can be written symbolically as A(s,gr)

n =
KnA

(0,em)
n × A(s,em)

n for n = 3, 4; i.e., they factorize into the product of the scalar and the
spin-s electromagnetic amplitudes [36]. Here we make use of this factorization to write out
the explicit form of the numerators for both, photon and graviton radiation.

3.2.1 Electromagnetic 5-pt amplitude

We now provide the explicit example for the 5-pt amplitude (3.8), in the electromagnetic
case. We start by introducing the notation for the contractions F ·Js,A = FµνJ

νµ
s,A, where

Fµν is the electromagnetic field strength tensor, and Jνµs,A are the spin-s generators for
particle A, in Maxwell theory. Furthermore, we also define the variables

Rµνi = p
[µ
i (2ηiq − k)ν], R̂µνi = 2(2ηiq − k)[µJ

ν]α
s,i (2ηiq − k)α, (3.10)

with η1 = −1 and η2 = 1. With this notation in hand, the scalar numerators for photon
radiation read explicitly

n
(a)
0,ph=4e3p1·R2·F ·p1, n

(b)
0,ph=4e3p2·R1·F ·p2, (3.11)

where e is the electron charge. This is nothing but the gluing of the numerator of the
spinless electromagnetic Compton amplitude, A4 ∼ pi·Fi·Fj ·pi,13 [111], and the scalar
3-pt amplitude A3 ∼ pµi , through the photon propagator ηµν . The triple product nota-
tion here corresponds to the ordered contraction of the Lorentz indices of all components,
pi·Fi·Fj ·pi = pi,µF

µν
i Fj,ν

αpi,α. Furthermore, the linear-in-spin numerators are

n
(a)
1
2 ,ph = n

(a)
0,ph−2e3

[
p1·R2·kF ·Js,1−F1qR2·Js,1+p1·k [F,R2]·Js,1 − p1·F ·R̂2·p1

]
,

n
(b)
1
2 ,ph = n

(b)
0,ph−2e3

[
p2·R1·kF ·Js,2−F2qR1·Js,2+p2·k [F,R1]·Js,2 − p2·F ·R̂1·p2

]
,

(3.12)

where we introduced the commutator notation [F,R2]·Js,i = (FµνRνα2 − R
µ
2,νF

να)(Js,i)µα
These numerators follow analogously from the gluing of the electromagnetic spin-1/2, 3-pt
and 4-pt amplitudes [51]. Using variables (3.10) to rewrite the numerators, trivializes the
check for gauge invariance. Notice, on the other hand, the spin contribution in the R̂i terms
emerges purely from the linear-in-spin piece of the 3-pt amplitude, whereas the linear-in-
spin Compton amplitude is responsible for the remaining terms. One can easily check that
by replacing the numerators (3.11) and (3.12) in the general formula (3.8), we recover the
classical photon radiation amplitude for the scattering of two colorless charges, with and
without spin (compare [112] and [113], respectively). These numerators have the support
of δ(pi·(ηiq − k)), which imposes the on-shell condition for the outgoing massive particles

13Here pi is the incoming passive momentum, and Fi and Fj are the field strength tensors for the incoming
and outgoing photons, respectively.
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in the classical limit.14 Finally, the quadratic order in spin numerators are included in the
supplementary material Mathematica notebook for this paper.

These, again, follow from the electromagnetic quadratic-in-spin 3-pt and 4-pt ampli-
tude, with the latter also included in the supplementary material. For simplicity, at this
order we have restricted to the case in which only one particle has spin, while the other is
scalar.

3.2.2 Gravitational 5-pt amplitude

Let us now provide the relevant amplitudes to be used in (3.1) — the gravitational ampli-
tudes. We start with the scalar case, for which the gravitational numerators are

n
(a)
0,gr = κ3

4

[
(p1·p2F1q − p1·kFp)2 − m2

1m
2
2

2 F 2
1q

]
,

n
(b)
0,gr = −κ

3

4

[
(p1·p2F2q + p2·kFp)2 − m2

1m
2
2

2 F 2
2q

]
,

(3.13)

where we have used Fiq = ηi(pi·F ·q), and Fp = p1·F ·p2. Analogous to the electromagnetic
numerators, this can also be obtained from the gluing of the scalar, 3-pt and 4-pt amplitudes
through the graviton propagator. These numerators can be introduced in the general
formula (3.8), to recover the result for the classical limit of the gravitational amplitude for
scalar particles [44, 113, 114]. Next, the gravitational numerators to linear-order in spin
can analogously be computed to get

n
(a)
1
2 ,gr = κ3

8

{
(p1·p2F1q − p1·kFp) [(p1·p2 q·k+ p1·k p2·k)F ·J2s,1−F1qR2·J2s,1+p1·k [F,R2]·J2s,1]

+m2
2F1q

2
[
F1q(2q−k)·J2s,1·p1−m2

1q·k F ·J2s,1 + p1·k(2q−k)·F ·J2s,1·p1
]}

,

n
(b)
1
2 ,gr = −κ

3

8

{
(p1·p2F2q + p2·kFp) (F2q(2q+ k)·J2s,1·p2− p2·k p2·F ·J2s,1·(2q+ k))

+
m2

2F
2
2q

2 (2q+k)·J2s,1·p1

}
.

(3.14)

Here we point out that the generators J2s,1 act in the gravity theory rather than their
electromagnetic counterpart. Similarly to the scalar case, these numerators can be placed
in (3.8) to recover the corresponding gravitational amplitude. To obtain the full amplitude
for both particles with spin, we utilize the symmetrization mappings

m1 ↔ m2, p1 ↔ p2, q → −q, J2s,1 → J2s,2, (3.15)
14The classical limit is taken using the ~-rescaling of the massless momenta, and then taking the leading

order for ~ →. We have to notice also that in numerators (3.12) and (3.14) below, we have removed the
indices ({α}, {β}) (Jµνs,i )

{β}
{α} that contract with the polarization vectors/tensors for the massive particles.

In the classical setup, we interpret Jµνs,i simply as the classical spin tensor Sµν , which satisfies the spin
supplementary condition pµSµν = 0.
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in the final formula. The resulting amplitude recovers the spinning amplitude in dilaton
gravity computed in [112] for classical spinning sources, once the terms proportional to mi

in the numerators in (3.14), which arise from the graviton propagator, are removed.
Analogous to the electromagnetic case in section 3.2.1, at the quadratic order in spin,

for simplicity, we restrict ourselves to the scenario, where only one BH is spinning, S2 →
0. We include the numerators as well as the gravitational Compton amplitude in the
supplementary material Mathematica notebook. We have checked that up to a contact
term, which is irrelevant for the gravitational waveform, the quadratic-in-spin amplitude
recovers the results in [61].15

3.3 Computation of the radiated field

In the previous sections, we built up the 5-pt gravitational spinning scattering amplitude up
to quadratic order in the BHs’ spins. With this, we can now return to (3.1) to successively
construct the emitted classical gravitational radiation from the spinning BBH at increasing
PN order. First, we compute the gravitational waveform to leading order in velocity up to
quadratic order in the BHs’ spins, while turning to the computation of the waveform at
sub-leading order in the BHs’ velocities in the spin-less limit in section 3.3.4.

3.3.1 Scalar waveform

The derivation of the Einstein quadrupole formula from scattering amplitudes was first
done by Hari Dass and Soni in [70]; more recently, it was derived by Goldberger’s and
Rigway’s classical double copy approach [13]. In the following, we re-derive the scalar term
of the waveform in the Goldberger and Rigway setup, for completeness. This in turn, will
outline the formalism used throughout the remaining sections to arrive at the corrections
to the quadrupole formula. Expanding the scalar amplitude (3.13) to leading order in
velocities v, we find

〈M (0) ab
5,S0 (q, ω̄)〉 = −im

2
1m

2
2

4 κ3
[
2q

aqb

q4 + 1
ω̄q2

(
qavb12 + qbva12

)]
, (3.16)

where vAB = vA − vB. Substituting this amplitude into the scalar source (3.7), and
integrating over q using (A.3), the non-spinning source reduces to

T
(0) ab
S0 (k, z1, z2) = −

∫
dteiω̄ t

κ3

32π
∑
A,B

mAmB

r3

[(
zaABz

a
AB−r2δab

)
+ 2i
ω̄

(
zaABv

b
A+zaABvaA

)]
.

(3.17)
Here, and in the following, single label sums are understood to run over the two massive
particle labels,

∑
A :=

∑2
A=1, while the double sum is performed imposing the constraint

A 6= B:
∑
A,B :=

∑2
A 6=B;A,B=1.

Notice that the term proportional to δab in (3.17) vanishes under the action of the
TT-projector in (3.1). Therefore, in the following, we remove this term from the source
and focus only on those parts contributing non-trivially to the TT radiated field. Now,

15We would like to thank Gustav Mogull et al. for sharing their results with us before publication.
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we use the non-spinning part of the EoM (2.5) to rewrite the second term in the square
bracket of (3.17):

T
(0) ab
S0 (k, z1, z2) = −κ

∫
dteiω̄ t

∑
A,B

κ2mAmB

32π
zaABz

a
AB

r3 − 2i
ω̄

∑
A

mA

(
vbAv̇

a
A + vaAv̇

b
A

) .
(3.18)

The second term of this expression can be further integrated, since vbAv̇
a
A + vaAv̇

b
A =

d
dt

(
vaAv

b
A

)
. As for the first term, this can be rewritten using

κ2

32π
∑
A,B

mAmB
zaABz

a
AB

r3 = −
∑
A

mA

(
z̈aAz

b
A + zaAz̈

b
A

)
, (3.19)

derived from the scalar EoM. Putting these ingredients together into (3.18), we find the
scalar source to be

T
(0) ab
S0 (k, z1, z2) = κ

∫
dteiω̄ t

∑
A

mA

(
z̈aAz

b
A + zaAz̈

b
A + 2vaAvbA

)
. (3.20)

Using the relation 2vaAvbA = d2

dt2

(
zaAz

b
A

)
−
(
z̈aAz

b
A + zaAz̈

b
A

)
, the above expression can be put

into the more compact form

T
(0) ab
S0 (k, z1, z2) = κ

∫
dteiω̄ t

∑
A

mA
d2

dt2

(
zaAz

b
A

)
, (3.21)

which in turn implies that the radiated field (3.1) for a non-spinning BBH takes the familiar
Einstein quadrupolar form:

h
(0) ij
TT, S0(TR, R,N , z1, z2) = κ2

16πRΠij
ab

∑
A

mA

[
d2

dt2

(
zaAz

b
A

)]
t=TR

. (3.22)

The sequence of Fourier transforms in the source (3.21) and (3.1) leads to the evaluation of
the emitted gravitational radiation at retarded time TR, therefore, recovering the classical
result (2.14) in the no-spin-limit. As a quick remark, notice when restoring Newton’s con-
stantG the quadrupole radiation is linear in G, as opposed to gravitational Bremsstrahlung,
which is quadratic [115–118]. This is of course just a feature of using the EoM to rewrite
the source.

3.3.2 Linear-in-spin waveform

In the previous section, the main components of the derivation of the gravitational wave-
form from a compact binary system were outlined. In particular, we have seen that the
classical EoM play an important role in recovering the quadrupole formula. Going be-
yond this, at linear order in the BHs’ spins, there are two contributions to the waveform.
First, the scalar amplitude could be iterated with the linear-in-spin part of the classical
EoM (2.5); this contribution, however, is sub-leading in velocity as made explicit in (2.5).
Secondly, the linear-in-spin amplitude, in conjunction with the non-spinning part of the
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EoM gives rise to a leading in BHs’ velocities and linear-in-their spins contribution to the
waveform. To determine the latter, we start from the linear-in-spin amplitude (3.14), where
the leading in v expression is given by

〈M (0) ab
5,S1 (q, ω̄)〉 = −m1m2κ

3

8 εefk
(
m2S

k
1−m1S

k
2

)
N [e

(
δf ]aδbc+δf ]bδac

) qc
q2 . (3.23)

Analogous to the scalar case, we can substitute this amplitude into (3.7) to get the linear-
in-spin source T (0) ab

S1 . After integrating over q, utilizing (A.3), this source simplifies to

T
(0) ab
S1 (k, z1, z2) = κ3

32πεefk
(
m2S

k
1−m1S

k
2

)
N [e

(
δf ]aδbc+δf ]bδac

) ∫
dteiω̄ t

zc21
r3 . (3.24)

Powers of r in the denominator can be removed by using the scalar limit of the classical
EoM (2.5). Then, analogous to the scalar computation, the linear-in-spin source is

T
(0) ab
S1 (k, z1, z2) = κεefkS

k
1N

[e
(
δf ]aδbc+δf ]bδac

) ∫
dteiω̄ tv̇c1 + (1↔ 2). (3.25)

Finally, the linear in spin corrections to the Einstein quadrupole formula, derived from the
above amplitude, obtained from (3.25), together with (3.1), are

h
(0) ij
TT, S1(TR, R,N , z1, z2) = κ2

16πRΠij
abεefk

∑
A

SkA

[
N [e

(
δf ]aδbc+δf ]bδac

)
v̇cA

] ∣∣∣
TR
. (3.26)

At this stage, this correction is valid, similar to the quadrupole formula, for general closed
orbits. We find a perfect match of these spinning corrections at linear order in the objects’
spins, with the classical derivation, (2.14), using the identity (A.1). The linear-in-spin scat-
tering amplitude is universal [51, 111], therefore, so is the radiated gravitational field (3.26).
Equivalently, the classical spin dipole of a point particle is universal, describing any spin-
ning compact object at leading order. Therefore, non-universality of the waveform at higher
spin orders may enter only through a solution to the classical EoM for a particular compact
binary system. We showed in section 2.2.2 that the closed orbits waveform (2.14) contains
all possible spin effects at leading order in the BHs’ velocities, before specializing the con-
stituents’ trajectories; i.e., h(0),ij

TT,S`≥2 = 0. Therefore, we expect to find cancellations at
higher orders in spins at the level of the scattering amplitude for ` > 1. Finally, as claimed
above, there exists a one-to-one correspondence between source multipole moments and
spinning scattering amplitudes: Iij ↔ 〈M (0) ab

5,S0 〉 and Jij ↔ 〈M (0) ab
5,S1 〉. This holds in the

sense that both Iij and 〈M (0) ab
5,S0 〉 produce the quadrupole formula (and similarly for the

linear-in-spin waveform).

3.3.3 Cancellations at quadratic order in spin

In the previous section, we showed that the gravitational waveform emitted from a spinning
BBH at leading order in its velocities is entirely contained in the linear-in-spin radiation
field (2.14). Equivalently, this waveform is obtained only using the scalar and linear-in-
spin amplitude. The remaining all orders in spin result (2.18) emerges solely from the
solution (2.7) for quasi-circular orbits. To confirm this from the scattering amplitudes
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perspective, we are left to show that higher spin amplitudes do not provide additional non-
trivial contributions to the general closed orbit results presented above. In this section, we
demonstrate the cancellation at the quadratic order in the BHs’ spins, by specializing to
circular orbits and by focusing on the S1 6= 0, S2 → 0 limit.

At leading order in the BHs’ velocities, there are two distinct contributions to the
radiated field from our approach. There is the quadratic-in-spin part of the amplitude on
the one hand (which we provide in the supplementary material Mathematica notebook for
brevity), leading to T (0) ij

1,S2 , and the scalar part (3.16) in conjunction with the quadratic-in-
spin part of the classical EoM (2.5), yielding T (0) ij

2,S2 , on the other hand;16 both combine as

T
(0) ij
S2 (k, z1, z2) = T

(0) ij
1,S2 (k, z1, z2) + T

(0) ij
2,S2 (k, z1, z2). (3.27)

Focusing first on the contribution from the quadratic-in-spin part of the amplitude, to
leading order in v it reads

〈M (0) ab
5,S2 (q, ω̄)〉 = 1

4 im
2
2κ

3Sk1S
l
1

[
V ab
kl,df

qdqf

q2 + Cabkl

]
, (3.28)

where we have defined the tensor V ab
kl,df = δklδ

a
dδ
b
f−

1
2δkd

(
δafδ

b
l + δfbδal

)
, and Cabkl is a contact

term, which we discard, as it is irrelevant for the gravitational waveform. As before, we
insert this amplitude into the source (3.7), and perform the q-integrals aided by (A.3). The
first contribution to the source T (0) ij

S2 is then

T
(0) ab
1,S2 (k, z1, z2) = −1

4
m2κ

3

m14πS
k
1S

l
1V

ab
kl,df

∫
dteiω̄ t

1
r5

[
r2δdf − 3zd21z

f
21

]
. (3.29)

Using the scalar part of the EoM (2.5) to remove three powers of r in the denominator,
the above reduces to

T
(0) ab
1,S2 (k, z1, z2) = −3m2

m1
κSk1S

l
1V

ab
kl,df

∫
dteiω̄ t

1
r2

[(
v̇2·z12
m1

+ v̇1·z21
m2

)
δdf

3 −
(
v̇

(d
2 z

f)
12

m1
+ v̇

(d
1 z

f)
21

m2

)]
,

(3.30)
which, for quasi-circular orbits (2.15), reads

T
(0) ab
1,S2 (k, z1, z2)

∣∣∣
circular

= −2κω̄2µā2
1

∫
dteiω̄t

[
2nanb − λaλb

]
. (3.31)

Recall the definition for the symmetric mass ratio µ = m1m2/M , and ā1 = Si1`i/m1, with
`i perpendicular to both ni and λi. Note, the solution to the classical EoM, r(x), in the
numerator, cancels with the two powers of r in the denominator.

We now turn to the second contribution to the source: T (0) ij
2,S2 . To that end, we first

rewrite (3.17) by expanding the sums and removing those terms that vanish under the TT
projection:

T
(0) ab
2,S2 (k, z1, z2) = −κ3

∫
dteiω̄t

m1m2z
c
12

16πr3

[
δc(az

b)
12 + 2i

ω̄
δc(av

b)
12

]
. (3.32)

16Notice, the linear-in-spin part of the EoM is sub-leading in v, and therefore, when convoluted with
the linear-in-spin amplitude, the resulting quadratic in spin contribution is pushed to sub-leading order in
velocities.
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Next we use the classical EoM to quadratic order in spin, which can be written in the
following form (see appendix B)

v̇l1 = −m2κ
2

32π
zl12
r3 +3

4
Si1S

j
1

m2
1r

2

[(
δij−

5z12,iz12,j
r2

)(
v̇l1−

m2
m1

v̇l2

)
+2δl(i

(
v̇1,j)−

m2
m1

v̇2,j)

)]
. (3.33)

Combining this with (3.32), the scalar part will recover the Einstein quadrupole radia-
tion formula (3.22). We stress that although the quadrupole formula appears to be spin-
independent for general orbits, spin information arises through a specific solution to the
EoM, as pointed out above. In particular, for quasi-circular orbits the Einstein quadrupole
formula provides the quadratic-in-spin result (2.18). Let us, therefore, focus in the remain-
ing contribution of (3.33), which is

T
(0) ab
2,S2 (k, z1, z2) = −3

4κS
k
1S

l
1

∫
dteiω̄t

[
δc(az

b)
12 + 2i

ω̄
δc(av

b)
12

]
× 1
m1r2[(

δkl−
5z12,kz12,l

r2

)(
v̇c1−

m2
m1

v̇c2

)
+2δc(k

(
v̇1,l)−

m2
m1

v̇2,l)

)
+m2
m1

(1↔ 2)
]
.

(3.34)

Using the center of mass parametrization17 (2.6), the quasi-circular orbits condition r̈ =
−ω̄r, and the unit vectors (2.15), the source reduces to

T
(0) ab
2,S2 (k, z1, z2)

∣∣∣
circular

= 3κω̄2µā2
1

∫
dteiω̄t

[
nanb + i(λanb + λbna)

]
, (3.35)

In order to remove the imaginary part of the source, we proceed as before and use an IBP
prescription. Notice, since (λanb + λbna) = − 1

ω
d
dt(λ

aλb), the IBP yields

T
(0) ab
2,S2 (k, z1, z2)

∣∣∣
circular

= 3κω̄2µā2
1

∫
dteiω̄t

[
nanb − λaλb

]
. (3.36)

This has the familiar form found in (2.18). Unlike this form, in (3.31) an extra factor
of two appears in the nanb term. This obscures the desired cancellation between (3.36)
and (3.31) in T

(0) ij
S2 . To address this subtlety, we emphasize the degeneracy in choice of

the IBP prescription. For instance, the relations of the kinematic variables in the center of
mass frame results in − d

dt(λ
aλb) = d

dt(n
anb) = ω(λanb + λbna). Using the latter equality,

the IBP performed in (3.36) results in 2nanb, instead of nanb − λaλb. A priori, neither of
these two choices are preferred. The solution is to notice that the freedom in the choice
of the IBP prescription is a manifestation of the gauge redundancy of the gravitational
waveform at null infinity. That is, below in section 3.4 we show that either choice yields
the same result for the gauge invariant gravitational wave energy flux. For now, we note
only that at the level of the gauge invariant energy flux, one factor of nanb in (3.31)
is equivalent to nanb → 1

2(nanb − λaλb), and postpone the justification to section 3.4.
Therefore, both (3.31) and (3.36) yield the same result, but with opposite sign. This
implies the desired cancellation of the waveform contributions at the quadratic order in
BHs’ spins. Equivalently, using the waveform derived from (3.31) and (3.36) to determine

17Note, the linear-in-spin corrections of this parametrization is sub-leading in velocities.
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the energy flux from each contribution, we see that both contributions are identical up
to an overall sign, hence, cancelling at the level of the gauge invariant gravitational wave
energy flux as well (more on this below).

3.3.4 Scalar waveform at sub-leading order in velocities

So far we have dealt with leading in BHs’ velocities spinning corrections to the Einstein
quadrupole formula (3.22). In this section, we go beyond this restriction and consider a
non-spinning BBH at the first sub-leading order in velocities, therefore, demonstrating the
applicability of our approach (3.1) to determine the radiated gravitational waves also in
this regime. At this order, the scalar 5-pt amplitude is also independent of q0, therefore,
arguments made above in section 3.1 concerning the time integration still holds. In this
case, however, the first relativistic correction, in our Born approximation, as coming from
the product of the plane wave functions in (3.5), appears in the source through the kine-
matic exponential e−ik·z̃, and therefore contributes to the sub-leading source T (1) ab

S0 , due
to the scaling ω̄ ∼ v. That is, after time integration, the exponential function reduces as
eik·z̃ → 1− iω̄N ·z̃ +O(v2) = 1− i

2 ω̄N ·(z1 + z2) +O(v2); hence, the source is built from
the order-v0 non-spinning scattering amplitude, T (1) ab

2,S0 , as well as from the v1-amplitude,
T

(1) ab
1,S0 . More concretely, the sub-leading source decomposes as18

T
(1) ab
S0 (k, z1, z2) = T

(1) ab
1,S0 (k, z1, z2) + T

(1) ab
2,S0 (k, z1, z2), (3.37)

where

T
(1) ab
1,S0 (k, z1, z2) = i

m1m2

∫
dteiω̄ t

∫
d3q

(2π)3 e
−iq·z21〈M (1) ab

5,S0 (q, ω̄)〉, (3.38)

and

T
(1) ab
2,S0 (k, z1, z2) = 1

m1m2

∫
dteiω̄ t

∫
d3q

(2π)3 e
−iq·z21 ω̄

2 N ·(z1 + z2)〈M (0) ab
5,S0 (q, ω̄)〉. (3.39)

Notice the superscripts in the amplitude. First, we focus on the relativistically corrected
scalar amplitude. Analogous to before, we insert (3.13) into (3.8), but now keep the non-
trivial order O(v1) contributions to the 5-pt amplitude:

〈M (1) ab
5,S0 (q, ω̄)〉 = − im

2
1m

2
2κ

3

2 Nl

[
qlqm

q4 δ(a
m(v1+v2)b) + ql

2ω̄q2

(
va1v

b
1 − va2vb2

)

+ qm

ω̄q2

(
vl1v

(a
1 δ

b)
m − vl2v

(a
2 δ

b)
m

) ]
.

(3.40)

18In principle, the classical EoM (2.5) also contain higher-order-in-v corrections, which could be used
in an iterative manner, starting purely from the leading in v-scalar amplitude. However, these velocity
corrections vanish in the no-spin limit considered in this section.
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Subsequently, the source (3.38), after the q-integration, takes the form

T
(1) ab
1,S0 (k, z1, z2) = κ3

16πNl

∫
dteiω̄ t

∑
A,B

mAmB

r3

[
1
2
(
z2
ABδ

lm−zlABzmAB
)
δ(a
m(vA+vB)b)

− i
ω̄
znAB

(
δlnv

a
Av

b
A+2δmn vlAv

(a
A δ

b)
m

) ]
.

(3.41)

In order to remove the powers of zAB ∼ r in the denominator, we use the scalar part of
the EoM (2.5), to obtain

T
(1) ab
1,S0 (k, z1, z2) = 2κNl

∫
dteiω̄ t

[
− 1

2
∑
A,B

mA

(
v̇A·zABδlm−v̇mA zlAB

)
δ(a
m(vA+vB)b)

+ i

ω̄

∑
A

mAv̇
n
A

(
δlnv

a
Av

b
A+2δmn vlAv

(a
A δ

b)
m

) ]
.

(3.42)

The term in the second line can be integrated utilizing the relation v̇nA

(
δlnv

i
Av

j
A+2δmn vlAv

(i
Aδ

j)
m

)
=

d
dt

(viAvjAv
l
A). With this, this piece of the sub-leading scalar source simplifies to

T
(1) ab
1,S0 (k, z1, z2) = −2κNl

∫
dteiω̄ t

[∑
A,B

mA

2
(
v̇A·zABδlm−v̇mA zlAB

)
δ(a
m(vA+vB)b)

−
∑
A

mAv
l
Av

a
Av

b
A

]
.

(3.43)

We now address the second term in (3.37) — the computation of the second contribu-
tion (3.39) to the sub-leading scalar source. The q-integration is identical to the one used
leading up to (3.18). Starting from the latter, using the relation (3.19), and multiplying
the sub-leading prefactor − i

2 ω̄N ·(z1 + z2) we arrive at

T
(1) ab
2,S0 (k, z1, z2) = −κ

∫
dteiω̄ tN ·(z1 + z2)

∑
A

mA

[
iω̄z̈

(a
A z

b)
A − 2v(a

A v̇
b)
A

]
. (3.44)

Lastly, with the replacement ω̄ → i ddt the first term is integrated. The gravitational radia-
tion field is then determined by putting the two sources together in (3.37), and substituting
this into (3.1), to end up at the first sub-leading in BH velocities non-spinning correction
to the Einstein quadrupole formula:

h
(1) ij
TT,S0(TR, R,N , z1, z2) = −κ

2m1
8πR Πij

abNl

[
1
2
(
v̇1·z12δ

lm−v̇m1 zl12

)
δ(a
m(v1 + v2)b)−vl1va1vb1

− 1
2

(
d

dt

(
z̈

(a
1 z

b)
1 (z1 + z2)l

)
+ 2(z1 + z2)lv(a

1 v̇
b)
1

)]
+ (1↔ 2).

(3.45)
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Based on our derivation, this result is valid for generic closed orbits, provided the corre-
sponding EoM. However, the form of this waveform is different from the compact classical
result in (2.21). This is not surprising since, as illustrated above, there is always the free-
dom of choice of IBP prescription, which casts the waveform into different forms. Finding
the prescription, for which both the amplitude’s and the classical waveforms match, could
be cumbersome for generic closed orbits. Therefore, we specialize to the quasi-circular
setting (2.15); in the latter, we find perfect agreement between (3.45) and (2.21). We close
with a remark on the correspondence between the classical source multipole moments lead-
ing to the gravitational radiation via the multipolar post-Minkowskian approach, and our
ansatz to compute the associate gravitational waves using spinning scattering amplitudes.
We saw in section 2.2.2, the sub-leading order result (2.20) is built from both Iijk and
Jij . While at leading order in the BHs’ velocities (see section 3.3.2), there exists a certain
one-to-one correspondence between the source multipole moments, at sub-leading orders
in velocities, no trivial correspondence can be extracted from our results.

3.4 Radiated gravitational wave energy flux

In the previous sections, we showed explicitly that the radiated gravitational field, hTT
ij ,

computed using a classical approach and utilizing a 5-pt spinning scattering amplitude,
agree in the aligned spin, general (and quasi-circular) orbit setup at the considered orders
in the velocity and spin expansions. These are the gravitational waves emitted at an instant
in the binary’s evolution. Information about the frequency dynamics of the radiation is
contained in the emitted gauge invariant gravitational wave energy flux. The latter is
ultimately responsible for the inspiral of the two BHs and for the characteristic increase
in gravitational wave frequency towards the merger, therefore, a crucial ingredient for
gravitational wave search strategies.

In this section, we derive the instantaneous gravitational wave energy flux F using
the TT metric perturbations at null infinity computed in the previous subsections to the
respective orders in the spin and velocity expansions. In general, the total instantaneous
energy loss F can be obtained with

F = R2

32π

∫
S2
dΩ ḣTT

ij ḣ
TT,ij . (3.46)

Let us return here to the justification for the replacements and claims made in section 3.3.3.
The time dependence of hTT

ij is solely contained in the center of mass variables na and
λa, which, in the center of mass frame and for circular orbits, are related by d

dt(n
anb) =

1
2
d
dt(n

anb−λaλb). Since only the time derivative of the radiated field, ḣTT
ij , enters in (3.46),

this justifies the replacement nanb → 1
2(nanb−λaλb) made in section 3.3.3 at the level of the

radiated field. Furthermore, this also shows that the gauge invariant energy flux is, in fact,
independent of the IBP prescription discussed in section 3.3.3. Therefore, the latter can
be viewed as a manifestation of the gauge freedom in the emitted waveform. Indeed, this
extends to the Newman-Penrose scalar Ψ4 ∼ m̄µm̄ν ḧTT

µν in an identical fashion. Exploiting
this, the gravitational wave energy flux is obtained by combining the scalar, (3.22), and
linear-in-spin, (3.26), metric perturbations hTT

ij at leading order in the BHs’ velocities,
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in (3.46). For quasi-circular orbits (2.7), together with (A.2), we find the energy loss

F (0)
circular = 32

5
µ2x5

M2 + 2
5
µ2x7

M2 (32a2
+ + a2

−) +O(a3
1,2, a1a2). (3.47)

Recall from above that x = (Mω)2/3. This matches perfectly with the results reported
in refs. [87, 92, 94, 105–107] to the respective orders in spin. In addition to this match
at leading order in the black holes velocities, the metric perturbations computed in (3.45)
and (2.21) specialized to circular orbits reproduce the correct no-spin gravitational wave
energy flux F (1)

circular = 0 at the first sub-leading order in velocities; this is, again, consistent
with the leading no-spin PN gravitational wave power (see, e.g., [107]). Notice, we explicitly
computed the quadratic-in-spin contributions only for one BH with spin: S1 6= 0, S2 → 0.
However, as noted above, the classical derivation in section 2.2.2 revealed that the high-
order-in-spin contributions to the circular orbit hTT

ij emerge solely from the solution to the
EoM, indicating that (3.47) already contains the a1a2-type interactions; this is the case,
as can be seen in, for instance, [92, 94], or from using (2.17) together with (3.46). At the
level of the transverse traceless metric perturbations hTT

ij , the classical derivation showed
that (2.14) contains the complete all orders-in-spin information at leading order in veloci-
ties, since the remaining contributions to the radiation field — i.e. h(0)TT

ij,S`≥2 = 0 — vanish,
without a specific solution to the EoM. In the scattering amplitudes setting, we confirmed
this explicitly up to ` = 1, since (3.22) and (3.26) agree with (2.14) (exploiting (A.1)),
and we showed the necessary cancellation for ` = 2 in section 3.3.3. Therefore, we conjec-
ture such cancellations to occur at arbitrary order in spin, such that the solution to the
EoM provides the remaining spin-information, at leading order in velocities. The complete
all-orders in spin gravitational power result partially presented in (3.47) was determined
in [94].

4 Discussion

We studied the relationship between the radiative dynamics of an aligned-spin spinning
binary black hole from both, a classical, and a scattering amplitude perspective. For the
former we employed the multipolar post-Minkowskian formalism, whereas for the latter
we proposed a dictionary built from the 5-pt QFT scattering amplitude. More precisely,
the dictionary maps the classical limit of the 5-pt scattering amplitude of two massive
spinning particles exchanging and emitting a graviton, to the source entering in Einstein’s
equation. Furthermore, we included information of the conservative dynamics using the
classical equations of motion. We worked in linearized gravity, i.e., at tree-level, and to
leading order in the black holes’ velocities, but to all orders in their spin, as well as present
preliminary results at sub-leading orders in velocities (in the no-spin limit). To leading
order in the system’s velocities, we showed that there exist a one-to-one correspondence
between the source’s multipole moments, and the scattering amplitudes. That is, the
mass quadrupole in (2.13) corresponds to the scalar amplitude (3.16), while similarly, the
current quadrupole in (2.13) is associated with the linear-in-spin amplitude (3.23). This
correspondence was made explicit in the computation of the transverse-traceless part of
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the linear metric perturbations emitted to null infinity, as well as on the gauge invariant
gravitational wave energy flux. The latter agrees for quasi-circular orbits with the existing
literature [92, 94, 106, 107], both at the considered leading and sub-leading orders in the
black holes’ velocities. Therefore, gravitational waveforms and gauge invariant powers
needed for detecting gravitational waves from inspiraling black holes can be consistently
computed from the classical limit of quantum scattering amplitudes.

The gravitational waveform is, in general, a gauge-dependent object, which makes a
comparison between the classical and the scattering amplitude’s derivations potentially
difficult. In particular, and especially for general orbits and with spin effects, finding
the corresponding gauge to undertake such comparisons can become cumbersome. In this
work, we found evidence that such gauge freedom is related to the integration procedure
used in the source for Einstein’s equation, within the scattering amplitudes derivation.
We demonstrated this explicitly for quasi-circular orbits, as this restriction simplifies the
problem drastically. Importantly, we find that while the form of the gravitational radiation
field is dependent upon the integration procedure used, the gauge-invariant gravitational
wave power is independent of such a prescription — as desired.

In this work, we focused entirely on the derivation of radiative degrees of freedom from
the 5-pt scattering amplitude, while using a classical derivation of the system’s conserva-
tive equations of motion. However, the conservative sector can efficiently be solved also,
utilizing 4-pt scattering amplitudes. Therefore, one can envision combining 4-pt and 5-pt
scattering amplitudes in such a way, as to remove the need for explicitly supplying the
classical equations of motion. This might provide a pathway to deriving a gauge-invariant
definition of the black holes’ worldlines from the 5-point scattering amplitude in (3.2) that
is entirely self-contained. In fact, for scalar sources, it was observed in ref. [70] that the 4-pt
graviton exchange amplitude satisfies the bodies’ classical equations of motion suggesting
such a relation. We leave exploring this avenue to future work.

The amplitudes-based construction of the radiated field (3.1), provided in this work,
has implicitly used the on-shell condition for the outgoing massive particles δ(pi·qi), which
discards terms quadratic in the velocities as indicated by the quantum corrections to the
particles trajectories zQ(τi) in (3.4). These corrections can become important if convo-
luted with superclassical terms coming from loop amplitudes. This then hints that at
higher orders in perturbation theory, a subtraction scheme would be needed to cancel
those superclassical contributions at the level of the gauge invariant observable, which in
this case corresponds to the radiated energy flux F ∼

∫
dωḣij ḣij ; in addition, it would

be desirable to study the connection of our approach and that of analytic continuation
methods of scattering observables [18, 19, 53].

Besides, exploring gauge fixing procedures that allow to match the general orbit re-
sult (3.45) to the classical result (2.21), as well as the inclusion of spin effects at sub-leading
order in velocity is left for future work. Furthermore, in the context of scattering ampli-
tudes, higher orders in velocities are naturally included. However, for closed orbits, these
corrections are consistent only — by virtue of the virial theorem — when also higher orders
in the gravitational constant G are considered. For instance, at quadratic order in the BHs’
velocities, the radiated field could contain contributions from both the tree-level and the
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one-loop 5-pt scattering amplitudes. One might wonder whether the amplitudes approach
could reproduce the higher-order corrections to the energy flux for non-spinning binary
black holes [3].

Finally, the source (3.2) was written in the Born approximation, where the initial state
consists of two particles in their plane-wave states. However, the long-range nature of the
gravitational interactions renders the Born approximation to be invalid in this setting.
Although this is expected to be a higher-G-effect (or equivalently a higher-v-effect in the
closed orbit case), it plays an important role in the determination of the correct gravi-
tational waveform. A modification to the Born approximation was proposed in [70], and
claimed to contain all non-perturbative aspects of the S-matrix elements. We leave the
exploration of this proposal for future work.
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A Useful integrals and identities

Here we write out the identity used in section 3.3.2 for the comparison of the gravitational
waveforms at linear order in spin. That is, given two vectors ai and bi, and the TT projector
defined in (2.16), we have [105, 107]

Πab
ijb

jεik`a
kN ` = Πab

ija
iεjk`b

kN `. (A.1)

Furthermore, the following identity [109], was used in the computation of the energy flux
in section 3.4 ∫

S2
dΩ Ni1...i2` = 4π

(2`+ 1)!! (δi1i2δi3i4 . . . δi2`−1i2` + . . . ). (A.2)

In addition, the following integrals were used during the computation of gravitational
radiation from the amplitudes perspective:∫

d3q

(2π)3 e
iq·z 1

q2 = 1
4π|z| ,∫

d3q

(2π)3 e
iq·z q

i

q2 = izi

4π|z|3 ,
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∫
d3q

(2π)3 e
iq·z q

iqj

q2 = 1
4π|z|5

[
|z|2δij − 3zizj

]
,

∫
d3q

(2π)3 e
iq·z q

iqj

q4 = 1
8π|z|3

[
|z|2δij − zizj

]
,

∫
d3q

(2π)3 e
iq·z q

iqjqk

q4 = − i

8π|z|5
[
|z|2

(
ziδjk + zjδik + zkδij

)
− 3zizjzk

]
.

(A.3)

B The quadratic in spin EoM

In this appendix, we expand the classical equations of motion in (2.5) to quadratic order
in the black holes’ spins (used in section 3.3.3). After setting S2 = 0, and expanding to
second order in S1, as well as taking the leading order in velocity, the equation of motion
reduce to

v̇l1 = −m2κ
2

32π

[
zl12
r3 + 1

2m2
1
Si1S

j
1∂

l∂i∂j
1
r

]
. (B.1)

The spatial derivatives acting on 1/r result in contractions of a symmetric trace-free tensor

∂l∂i∂j
1
r

= 3
r5

[
δijz

l
12 + 2δl(iz12,j) − 5z12,iz12,jz

l
12

r2

]
. (B.2)

Furthermore, we use these equations recursively, to remove powers of 1/r.19 Since we
are interested in the quadratic-in-spin contribution only, we consider only the scalar part
of (B.1) (as well as the analogous equation for vi2) to rewrite (B.2) as follows

∂l∂i∂j
1
r
→ −32π

κ2
3

2m2r2

[(
δij−

5z12,iz12,j
r2

)(
v̇l1−

m2
m1

v̇l2

)
+ 2δl(i

(
v̇1,j)−

m2
m1

v̇2,j)

)]
+O(S2

1),
(B.3)

Notice a factor of 1/3 arises from symmetrization. This, then finally allows us to write the
quadratic-in-spin equations of motion as

v̇l1 = −m2κ
2

32π
zl12
r3 +3

4
Si1S

j
1

m2
1r

2

[(
δij−

5z12,iz12,j
r2

)(
v̇l1−

m2
m1

v̇l2

)
+2δl(i

(
v̇1,j)−

m2
m1

v̇2,j)

)]
. (B.4)

And analogously we also find

v̇l2 = m1κ
2

32π
zl12
r3 + 3

4
Si1S

j
1

m2
1r

2

[(
δij −

5z12,iz12,j
r2

)(
v̇l2 −

m1
m2

v̇l1

)
+ 2δl(i

(
v̇2,j) −

m1
m2

v̇1,j)

)]
.

(B.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

19By restoring Newton’s constant G, the equations of motion can be used to remove powers of G in the
numerator.
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