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1 Introduction

During the last decade we have learned that in order to discover new phenomena in Na-
ture, from gravitational wave astronomy [1] to high-energy physics [2, 3], we need not
only very sophisticated, state-of-the-art instrumentation, but also very precise theoretical
predictions. The coming LHC Run 3 and the High Luminosity LHC Run scheduled after
it, require the most precise description of the scattering processes under investigation, in
order to fully exploit the machine’s potential [4, 5]. In the future, the FCC (Future Cir-
cular Collider) project will also further boost the demands in the direction of precision
calculations [6].

Next-to-next-to-leading order (NNLO) accuracy is needed for the vast majority of QCD
dominated scattering processes at the LHC (see [7] and references therein). Over the last
years, NNLO QCD corrections for most of the 2→ 2 processes, including two-jet, top-pair
and gauge bosons production, have been completed and already used in phenomenological
and experimental studies [8]. Two-loop amplitude computations require the reduction of
the scattering matrix element in terms of basis integrals, usually referred to as Master
Integrals (MI). Traditional reduction techniques based on integration-by-part identities [9–
11] (IBP), at the integral level, are now more and more replaced by integrand-reduction
methods [12–14], following the one-loop paradigm [15]. Results for five-point two-loop
amplitudes, relevant for three-jet/photon, W,Z,H + 2 jets production have been recently
presented [16–20]. Moreover, a complete NNLO calculation for the relatively easy case of
three-photon production at the LHC, has been recently published [21, 22]. Despite the
progress in understanding amplitude reduction and real radiation corrections at NNLO, a
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Figure 1. Diagrammatic representation of the planar and non-planar families with one external
massive leg (double line). In the first row, P1 (left), P2 (middle) and P3 (right) planar families are
shown. In the second and third row, N1 (top left), N2 (top middle), N3 (top right), N4 (bottom
left), N5 (bottom right) non-planar families are shown. All internal particles are massless.

remarkable contradistinction with the NLO case is that the basis of Master Integrals at
two loops is still far from complete.1

Multi-loop Master Integrals have been studied for many years now. The most appropri-
ate method to obtain analytic expressions and accurate numerical estimates of multi-scale
multi-loop Feynman Integrals is the differential equations (DE) approach [25–29]. With the
introduction of the canonical form of the differential equations [30], a major step towards
the understanding of the mathematical structure of Feynman Integrals and subsequently
of the scattering amplitudes has been achieved. The complexity of two-loop Feynman
Integrals is determined by the number of internal massive propagators and the number
of external particles, i.e. the total number of independent “kinematical” scales involved.
Feynman Integrals with a relatively small number of scales satisfy canonical differential
equations and can be expressed in terms of multiple (or Goncharov) polylogarithms [31–
33], a class of functions that have been well understood by now. Moreover, in the last
couple of years, new mathematical structures [34–38] (elliptic polylogarithms) have been
studied in order to obtain analytic insight of more complicated Feynman Integrals. With
a complete basis of two-loop Master Integrals, it is hoped that an automation of NNLO
calculations for arbitrary scattering processes can be achieved in the near future.

Five-point two-loop Master Integrals determine the current frontier. The computation
of all planar and non-planar five-point two-loop Master Integrals with massless internal
propagators and on-shell light-like external momenta, has been recently completed [39–42].
The next step on this path of computing the five-point two-loop Master Integrals would be
those with one of the external legs being off-shell. The planar and non-planar topologies
corresponding to these Master Integrals are shown in figure 1. Based on the Simplified

1For interesting alternative approaches see references [23, 24].
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Differential Equations (SDE) approach [43], we have computed and expressed in terms of
Goncharov poly-logarithms, all Master Integrals for the first non-trivial planar family of
five-point two-loop Master Integrals with massless internal propagators and one external
particle carrying a space- or time-like momentum, P1 in figure 1, as well as the full set of
planar five-point two-loop massless Master Integrals with light-like external momenta [39].
Very recently results on all planar families have been reported in reference [44]. In this
paper we present fully analytic results in terms of poly-logarithmic functions for all planar
families, based on the Simplified Differential Equations approach.

In section 2, we define the scattering kinematics and the corresponding integral repre-
sentations of the Master Integrals and derive the form of the canonical differential equation
in the SDE approach. The derivation of the boundary terms and the solution for all Master
Integrals in terms of Goncharov poly-logarithms (GP), is presented in section 3. In section 4
we show how to obtain numerical results from our analytic expressions in all kinematical
regions. Finally in section 5 we summarize our findings and discuss future applications
with emphasis on the computation of the remaining non-planar five-point two-loop Master
Integrals.

2 Planar two-loop five-point Master Integrals with one off-shell leg

There are three families of Master Integrals, labelled as P1, P2 and P3, see figure 1, associ-
ated to planar two-loop five-point amplitudes with one off-shell leg. We adopt the definition
of the scattering kinematics following [44], where external momenta qi, i = 1 . . . 5 satisfy∑5

1 qi = 0, q2
1 ≡ p1s, q2

i = 0, i = 2 . . . 5, and the six independent invariants are given by
{q2

1, s12, s23, s34, s45, s15}, with sij := (qi + qj)2.
In the SDE approach [43] the momenta are parametrized by introducing a dimension-

less variable x, as follows

q1 → p123 − xp12, q2 → p4, q3 → −p1234, q4 → xp1 (2.1)

where the new momenta pi, i = 1 . . . 5 satisfy now
∑5

1 pi = 0, p2
i = 0, i = 1 . . . 5, whereas

pi...j := pi+. . .+pj . The set of independent invariants is given by {S12, S23, S34, S45, S51, x},
with Sij := (pi + pj)2. The explicit mapping between the two sets of invariants is given by

p1s = (1− x)(S45 − S12x), s12 = (S34 − S12(1− x))x, s23 = S45, s34 = S51x,

s45 = S12x
2, s15 = S45 + (S23 − S45)x (2.2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
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xp1
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Figure 2. The two-loop diagrams representing the top-sector of the planar pentabox family P1,
P2 and P3. All external momenta are incoming.

The corresponding Feynman Integrals are defined through

GP1
a1···a11 := e2γEε

∫
ddk1
iπd/2

ddk2
iπd/2

1
k2a1

1 (k1 + q1)2a2(k1 + q12)2a3(k1 + q123)2a4

× 1
k2a5

2 (k2 + q123)2a6(k2 + q1234)2a7(k1 − k2)2a8(k1 + q1234)2a9(k2 + q1)2a10(k2 + q12)2a11
,

(2.3)

GP2
a1···a11 := e2γEε

∫
ddk1
iπd/2

ddk2
iπd/2

1
k2a1

1 (k1 − q1234)2a2(k1 − q234)2a3(k1 − q34)2a4

× 1
k2a5

2 (k2 − q34)2a6(k2 − q4)2a7(k1 − k2)2a8(k2 − q1234)2a9(k2 − q234)2a10(k1 − q4)2a11
,

(2.4)

GP3
a1···a11 := e2γEε

∫
ddk1
iπd/2

ddk2
iπd/2

1
k2a1

1 (k1 + q2)2a2(k1 + q23)2a3(k1 + q234)2a4

× 1
k2a5

2 (k2 + q234)2a6(k2 − q1)2a7(k1 − k2)2a8(k1 − q1)2a9(k2 + q2)2a10(k2 + q23)2a11
, (2.5)

where qi...j := qi + . . .+ qj .
The P1 family consists of 74 Master integrals. For P2 and P3 the corresponding numbers

are 75 and 86. This can easily be verified using standard IBP reduction software, such as
FIRE6 [45] and Kira [46, 47]. The top-sector integrals are shown in figure 2.

2.1 Canonical basis and differential equations

In order to express all integrals given by eqs. (2.3–2.5), the easiest way is to define a basis
that satisfies a canonical differential equation. By basis we mean a combination of Feynman
Integrals with coefficients depending on the set of invariants and the dimensionality of
space-time d = 4 − 2ε. Let us assume that such a basis is known, then the DE is written
in general as

d~g = ε
∑
a

d log (Wa) M̃a~g (2.6)

where ~g represents a vector containing all elements of the canonical basis, Wa are functions
of the kinematics and M̃a are matrices independent of the kinematical invariants, whose
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matrix elements are pure rational numbers. Notice that eq. (2.6) is a multi-variable equa-
tion and in the case under consideration the differentiation is understood with respect to
the six-dimensional array of independent kinematical invariants, {q2

1, s12, s23, s34, s45, s15}.
Since Wa are in general algebraic functions of the kinematical invariants a straightforward
integration of eq. (2.6) in terms of generalized poly-logarithms is not an easy task.

In the SDE approach though, eq. (2.6) takes the much simpler form

d~g

dx
= ε

∑
b

1
x− lb

Mb~g (2.7)

where Mb are again rational matrices independent of the kinematics, and the so-called let-
ters, lb, are independent of x, depending only on the five invariants, {S12, S23, S34, S45, S51}.
Notice that the number of letters in x is generally smaller than the number of letters in
eq. (2.6). Since the eq. (2.7) is a Fuchsian system of ordinary differential equations, it is
straightforwardly integrated in terms of Goncharov poly-logarithms, G (l1, l2, . . . ;x).

Over the last years much effort has been devoted to construct the canonical basis, or
at least an educated guess of it, and then verify the form of eq. (2.6) through standard
differentiation and IBP reduction. We refer to section 4 of reference [44] for a thorough
discussion of relevant work in the literature. In principle the knowledge of the canonical
basis is enough within the SDE approach to derive the form of the corresponding canonical
differential equation, eq. (2.7), by explicitly differentiating with respect to x and using
IBP identities to express the resulting combinations of Feynman integrals in terms of basis
elements. In fact, as we will show in section 2.2, since the matrices entering in eq. (2.7) are
independent of the kinematics, one can use solutions of IBP identities derived by assigning
integer values to the kinematics, except x. Using nowadays packages such as FIRE6 and
Kira-2.0 the above-mentioned IBP-reduction becomes a computationally trivial exercise.
Notice that there is no need to use rational reconstruction methods, as far as the derivation
of eq. (2.7) is concerned.

2.2 The Simplified Differential Equations

Knowing from reference [44], the explicit form of the matrices M̃a and of the letters Wa in
terms of the variables p1s, s12, s23, s34, s45, s15 (p1s ≡ q2

1), in eq. (2.6), we simply derive the
data needed in eq. (2.7), based on the following identity,

∑
a

d log (Wa)
dx

M̃a ≡
∑
b

1
x− lb

Mb (2.8)

making use of eq. (2.2). For P2 and P3 families eq. (2.8) is applicable after eliminating
a special basis element whose leading singularity is proportional to a non-rationalizable
square root in terms of x. The corresponding integral is shown in figure 3 and it is the
same for the two families. Its expression in terms of poly-logarithmic functions is already
known from the double-box families with two off-shell legs.2 Since our task is to evaluate all

2The basis element is numbered as 46 in the P2 family and 53 in the P3 family and is given in terms of
the double-box P23 family variables [48], whose expression in terms of the pentabox kinematics is given in
the supplementary material anc/P2/Letters and/or anc/P3/Letters.
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p123 − xp12

p4

xp1

−p1234

xp2

Figure 3. The two-loop diagram representing the decoupling basis element.

basis elements up to O(ε4) and since the basis element expansion of the above integral starts
at O(ε4), it effectively decouples from the differential equation eq. (2.7). Nevertheless, for
the sake of completeness, notice that by parametrizing the momenta in terms of a new
variable y,

q1 → p′123 − yp′12, q2 → yp′1, q3 → p′4, q4 → −p′1234 (2.9)

resulting into

p1s = (1− y)(S′45 − S′12y), s12 = S′45 − (S′12 + S′23)y, s23 =
(
S′34 − S′12(1− y)

)
y,

s34 = S′45, s45 = −(S′12 − S′34 + S′51)y, s15 = S′45 + S′23y (2.10)

we can effectively rationalize the square roots related to the special basis element. By using
then both variables, eq. (2.8) can be generalized in the form

d~g = ε

[∑
b

d log (x− lb)Mb +
∑
c

d log
(
y − l̄c

)
M̄c + d log (W58) M̃58

]
~g. (2.11)

This is achieved because all letters Wa in eq. (2.6), except W58, are linear functions only
of x or y.

The full list of letters lb and matrices Mb, eq. (2.7), for the P1 family, are given in the
supplementary material provided as anc/P1/Letters, anc/P1/Matrices and in the same
notation for P2 and P3 families. Moreover, the explicit expressions of the letters for all
families is given in the appendix A.

3 Boundary conditions and analytic expressions

The solution of eq. (2.7) up to order O
(
ε4
)
can be written as follows:

g = ε0b(0)
0 + ε

(∑
GaMab(0)

0 + b(1)
0

)
+ ε2

(∑
GabMaMbb

(0)
0 +

∑
GaMab(1)

0 + b(2)
0

)
+ ε3

(∑
GabcMaMbMcb(0)

0 +
∑
GabMaMbb

(1)
0 +

∑
GaMab(2)

0 + b(3)
0

)
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+ ε4
(∑

GabcdMaMbMcMdb
(0)
0 +

∑
GabcMaMbMcb(1)

0

+
∑
GabMaMbb

(2)
0 +

∑
GaMab(3)

0 + b(4)
0

)
(3.1)

Gab... := G(la, lb, . . . ;x)

where g andM represent ~g andM appearing in eq. (2.7) and b(i)
0 are the boundary values of

the basis elements in the limit x→ 0 (see eq. (3.6) of reference [39]) at order εi, i = 0 . . . 4.
In the above equation G(la, lb, . . . ;x) stands for Goncharov polylogarithms. Since all the
data of the above equation, namely the letters la, lb, . . . and the matrices Ma,Mb, . . . are
already given, the only remaining task is the computation of the boundary values, b(i)

0 , in
terms of poly-logarithmic functions.

To derive the x → 0 limit of basis elements we first exploit the canonical differential
equation in x, eq. (2.6), which in the limit takes the form

d~g

dx
= ε

1
x
M0~g +O(x0) (3.2)

with the solution (b :=
∑4
i=0 ε

ib(i)
0 )

g0 = Seε log(x)DS−1b (3.3)

and the matrices S and D are obtained through Jordan decomposition of the M0 matrix,
M0 = SDS−1. We call the matrix R0 = Seε log(x)DS−1, the resummed matrix at x = 0.
Since the biggest Jordan block of it has dimension two, it can be written in the form

R0 =
∑
i

xniε (R0i + ε log (x) R0i0) (3.4)

with R0i and R0i0 matrices of rational numbers and the exponents ni are the eigenvalues
of the matrix D (equivalently M0).

On the other hand through IBP reduction the elements of the canonical basis can be
related to a set of Master Integrals,

g = TG. (3.5)

The list of Feynman Integrals G chosen as Master Integrals in the IBP reduction as
well as the expression of the basis elements in terms of Feynman Integrals for all fam-
ilies is given in the corresponding supplementary material, anc/P1...P3/Masters and
anc/P1...P3/Basis.

We have used the expansion by regions techniques [49] in order to write each Master
Integral in the form of a sum over region-integrals,

Gi =
x→0

∑
j

xbj+ajεG
(j)
i (3.6)

with aj and bj being integers, by making use of the FIESTA4 [50] public code. Combining
eqs. (3.3) and (3.5) we get

g0 := R0b = lim
x→0

TG|O(x0+ajε) (3.7)
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where, since the dependence of the left-hand side on x is only through eq. (3.4), in the
right-hand side, except for the terms of the form xajε arising from eq. (3.6), we expand
around x = 0, keeping only terms of order x0. Notice also, that the left-hand side of the
equation contains the boundary values of the basis elements that are pure functions of
the underlying kinematics ~S := {S12, S23, S34, S45, S51} whereas in the right hand side the
matrix T is an algebraic function of ~S. The consistency of eq. (3.7) implies that the right-
hand side should also be a pure function of ~S. Therefore, in order to determine the matrix
T entering in eq. (3.7), we can employ solutions of IBP identities using numerical, actually
integer values for ~S, keeping x and d in a symbolic form. This results to a significant
reduction in complexity and CPU time, taking into account that there are several basis
elements in g, that are given in terms of Baikov polynomials [44], µ11, µ12, µ22, which when
expressed in terms of inverse propagators, contain Feynman Integrals with up to fourth
powers of irreducible inverse propagators.

It turns out that eq. (3.7) is a powerful framework allowing to determine all boundary
constants b. First of all in the case that the left-hand side contains a logarithmic term
in x, a set of linear relations between elements of the array b are obtained by setting the
coefficient of xajε log (x) terms to zero. Secondly, powers of xajε that appear only in the
left-hand side, also produce relations among elements of b, by setting their coefficients to
zero. These two sets of relations account for the determination of a significant part of the
components of the boundary array. The last set of equations requires the determination
of some regions of Master Integrals G(j)

i in the right-hand side of eq. (3.7). Expressions of
the integrands of these region-integrals G(j)

i , in terms of Feynman parameters are obtained
using SDExpandAsy in FIESTA4 [50]. Their calculation is straightforwardly achieved, either
by direct integration in Feynman-parameter space and then by using HypExp [51, 52] to
expand the resulting 2F1 hypergeometric functions, or in a very few cases, by Mellin-Barnes
techniques using the MB [53, 54], MBSums [55] and XSummer [56] packages.3 The above de-
scribed procedure leads to fully analytic expressions of the region-integrals G(j)

i in terms of
~S. Their general structure is given in terms of logarithmic and poly-logarithmic functions
of ~S, as well as rational factors depending on ~S. When implementing G(j)

i in the right-hand
side of eq. (3.7), their rational factors are evaluated on the same numerical values for ~S
as in the determination of the matrix T, described in the previous paragraph. We have of
course verified that the results are indeed independent of the choice of the specific numeri-
cal assignment for the variables in ~S. All the boundary values b, are analytically expressed
in terms of poly-logarithmic functions, namely logarithms and Goncharov poly-logarithms
depending on the reduced kinematical variables ~S, and are manifestly pure functions. Al-
though the above described method is general and straightforward, in practice many of the
components of b have been obtained by exploiting the known representations of the ele-
ments of the canonical basis as given in the double-box families [48, 57]. Boundary terms
b and basis elements g, expressed in terms of poly-logarithmic functions can be found
in the supplementary material anc/P1...P3/Boundaries and anc/P1...P3/Results, re-
spectively.

3The in-house Mathematica package Gsuite, that automatically process the MBSums output through
XSummer, written by A. Kardos, is used.
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Family W=1 W=2 W=3 W=4
P1 (g72) 17 (14) 116 (95) 690 (551) 2740 (2066)
P2 (g73) 25 (14) 170 (140) 1330 (1061) 4950 (3734)
P3 (g84) 22 (12) 132 (90) 1196 (692) 4566 (2488)

Table 1. Numbers of GPs entering in the solution, as explained in the text.

4 Numerical results and validation

In order to numerically evaluate the solution given in eq. (3.1), Goncharov poly-logarithms
up to weight 4 need to be computed. To understand the complexity of the expressions
at hand, we present in table 1, the number of poly-logarithmic functions entering in the
solution. In parenthesis we give the corresponding number for the non-zero top-sector basis
elements. The weight W=1 . . . 4 is identified as the number of letters la in GP G(la, . . . ;x).

The computation of GPs is performed using their implementation in GiNaC [58]. This
implementation is capable to evaluate the GPs at an arbitrary precision. The computa-
tional cost to numerically evaluate a GP function, depends of course on the number of
significant digits required as well as on their weight and finally on their structure, namely
how many of its letters, eq. (3.1), satisfy la ∈ [0, x]. We refer to reference [59] for more
details.

For the following Euclidean point

S12 → −2, S23 → −3, S34 → −5, S45 → −7, S51 → −11, x→ 1
4 (4.1)

all GP functions with real letters are real, namely no letter is in [0, x], and moreover the
boundary terms are by construction all real. The result is given in table 2 with timings,
running the GiNaC Interactive Shell ginsh, given by 1.9, 3.3, and 2 seconds for P1, P2 and
P3 respectively and for a precision of 32 significant digits. As can be seen from table 1,
the number of W = 4 GPs of the top-sector element is more than 50% of the total number
of W = 4 GPs in each family. Taking into account that the vast majority of CPU time
is spent in the evaluation of W = 4 GPs, the CPU time to compute the full list of basis
elements in a family, is of the same order of magnitude as the computation of its top-sector
element.

In order to obtain numerical results for scattering kinematics, we need to properly
analytically continue the GPs and logarithms involved in our solution, eq. (3.1). The easiest
way is to determine for each physical point under consideration, the real parameters δij and
δx so that the substitution, Sij → Sij + iδijη, x→ x+ iδxη, η → 0, of the variables used in
our solution, properly accounts for the analytic continuation. As detailed in references [39,
48], δij and δx should satisfy analyticity constraints stemming (a) from the second graph
polynomial F of the top-sector Feynman integral and (b) from the representation of the
one-scale integrals in terms of the variables x and Sij .

First notice that in our case, when the kinematic variables p1s and sij , acquire an
infinitesimal imaginary part [60], namely sij → sij + iη, p1s → p1s + iη, with η → 0, the
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P1 g72

ε0: 3/2
ε1: −2.2514604753379400332169314784961
ε2: −17.910593443812320786572184851867
ε3: −26.429770706459534336624681550003
ε4: 21.437938934510558345847354772412

P2 g73

ε1: 2.8124788185742741402751457351382
ε2: 5.4813042746593704203645729908938
ε3: 11.590234540689191439870956817546
ε4: −5.9962816226829136730734255754596

P3 g84

ε0: 1/2
ε1: 3.2780415861887284967738281876762
ε2: 0.11455863130537720411162743574627
ε3: −16.979642659429606120982671925458
ε4: −48.101985355625914648042310964575

Table 2. Numerical results for the non-zero top sector element of each family with 32 significant
digits.

sign of the imaginary part of the second graph polynomial F is consistent with the i0
prescription of the Feynman propagator. We solve eq. (2.2) in terms of S̄ij := Sij + iδijη

and x̄ := x+iδxη, using as input s̄ij := sij+iη and p̄1s := p1s+iη and we find two solutions
for S̄ij and x̄. The numerical value of η is chosen to match the required precision of the
results. We then check if the obtained solutions satisfy the constraints stemming from the
one-scale integrals. These integrals are proportional to (−sij)nε, (−p1s)nε, n = −1,−2, and
their expressions in terms Sij and x used to obtain the analytic solution in eq. (3.1), are
given as follows:

(−s34)−ε = (−S51)−εx−ε

(−s45)−ε = (−S12)−εx−2ε

(−s15)−ε = (−S45)−ε
(

1− S45 − S23
S45

x

)−ε

(−p1s)−ε = (1− x)−ε(−S45)−ε
(

1− S12
S45

x

)−ε

(−s12)−ε = x−ε(S12 − S34)−ε
(

1− S12
S12 − S34

x

)−ε
. (4.2)

In practice any solution that satisfies the above equations, with sij → s̄ij , p1s → p̄1s and
Sij → S̄ij , x→ x̄, can be used for the numerical evaluation of the basis elements. We have
found that, for all physical points used in the numerical evaluation of the basis elements
below, at least one of the two solutions of eq. (2.2) is consistent with eq. (4.2). Finally,
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P1 g72
29.802763651793108812023893217593
+i 273.86627846266515113913295225572

mzz I3
29.802763651793108812023893217593
+i 273.86627846266515113913295225572

P2 g73
44.162165744735300867233118554183
−i 46.218746133850339969944403077557

zmz I3
44.162165744735300867233118554183
−i 46.218746133850339969944403077557

P3 g84
11.908529680841593329567378444341
−i 143.83838235097336513553728991658

zzz I3
11.908529680841593329567378444341
−i 143.83838235097336513553728991658

Table 3. Numerical results for the non-zero top sector element of each family at weight 4 with 32
significant digits. The notation Ii is used in accordance with table 2 of [44].

when Goncharov poly-logarithmic functions G(la, lb, . . . ;x), with 0 < la, lb, . . . < x, need to
be evaluated, we have to determine the infinitesimal part of the letters la and x. This is
easily achieved through the explicit expression of the letters in terms of the variables Sij ,
given in appendix A and the solution Sij → Sij + iδijη, x→ x+ iδxη, as discussed above.

In table 3 we present results for all non-zero top sector elements at W = 4, for the
first physical point provided in reference [44], namely

s12 → −
22
5 , s15 →

249
50 , s23 →

241
25 , s34 → −

377
100 , s45 →

13
50 , p1s →

137
50 . (4.3)

In this case no letter lies in the interval [0, x]. The timings, running the GiNaC Interac-
tive Shell ginsh, are 5.95 (2.33), 11.98 (4.94) and 8.49 (3.32) seconds for P1, P2 and P3
respectively, for Ndigits = 32 (16).

For the other physical points, beyond the first one, the number of letters in [0, x] is
not anymore zero. Since the numerical evaluation relies on the algorithm described in
reference [59], the running time used by GiNaC to compute a Goncharov poly-logarithmic
function, G(la, lb, . . . ;x), with 0 < la, lb, . . . < x, is significantly increasing with the number
of letters in [0, x]. As a consequence the CPU time to compute the top-sector basis elements
at W = 4 is also increasing, up to two orders of magnitude, with the last physical point
being the worst case, as for this point the number of letters in [0, x] amounts to 19 out
of a total of 24 letters involved in the non-zero top-sector basis elements. It is therefore
worthwhile to thoroughly investigate the structure of the analytic result, with the aim
to provide alternative representations in terms of Goncharov poly-logarithmic functions
that are manifestly real-valued and thus much faster to compute. Notice that, from the
structure of the analytic representation studied in this paper (see for instance table 1),
the computational time is entirely determined by the W = 4 functions. Therefore, as
experience shows [61–64], the use of one-dimensional integral representations at W = 4,
may lead to a significant reduction in CPU time. We intend to devote a forthcoming
publication to address in detail all these issues.
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We have also compared our results for all families, all basis elements and all physical
points with those of reference [44] and found perfect agreement to the precision used,
(Ndigits = 16, 32). We also checked our results, not only at the level of basis elements but
also at the level of Master Integrals, against FIESTA4 [50] and found agreement within the
numerical integration errors provided by it.

5 Conclusions and outlook

In this paper we have presented analytic expressions in terms of poly-logarithmic functions,
Goncharov Polylogarithms, of all planar two-loop five-point integrals with a massive ex-
ternal leg. This has been achieved by using the Simplified Differential Equations approach
and the data for the canonical basis provided in reference [44]. Moreover, the necessary
boundary values of all basis elements have been computed, based mainly on the form of
the canonical differential equation, eq. (2.7) and, in few cases, on the expansion by regions
approach. The ability to straightforwardly compute the boundary values at x = 0 and to
even more straightforwardly express the solution in terms of Goncharov Polylogarithms, is
based on the unique property of the SDE approach that the scattering kinematics is effec-
tively simplified and rationalized with respect to x, in noticeable contradistinction with the
standard differential equation approach, where such an analytic realisation of the solution
is prohibitively difficult.

Obviously, the next step, is to extend the work of this paper in the case of the remaining
five non-planar families, shown in figure 1. Since on top of the planar penta-box families
presented in this paper, we have already computed the pure-function solutions in SDE
approach, for all double-box families, planar and non-planar, with up to two external
massive legs, we expect that the construction of the canonical basis of the few remaining
non-planar Master Integrals will be plausible in the near future. Having the corresponding
equation, eq. (2.7), for the non-planar families, it should be straightforward to extend the
work of this paper and to complete the full list of two-loop five-point Feynman Integrals with
one massive external leg. We remind that within the SDE approach, having the analytic
representations of two-loop five-point Master Integrals with one massive external leg in
terms of Goncharov poly-logarithmic functions, allows also to straightforwardly obtain the
result for massless external legs in terms of Goncharov poly-logarithmic functions, by taking
the limit x = 1 [39, 64] and making use of the resummed matrix corresponding to lb = 1
term in eq. (2.7). In summary, when this next step is completed, a library of all two-loop
Master Integrals with internal massless particles and up to five (four) external legs, among
which one (two) massive legs will be provided: this will constitute a significant milestone
towards the knowledge of the full basis of two-loop Feynman Integrals.

We have also shown how to obtain numerical results for all kinematic configurations,
including Euclidean and physical regions. With regard to the expected progress in the
calculation of 2 → 3 scattering process [18, 19, 61], it would be desirable to adapt our
results in different kinematic regions, using for instance fibration-basis techniques [65, 66].
We postpone the analysis of the effectiveness of the numerical computation to a forthcoming
publication.
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A The alphabet in x

The alphabet for the three planar families considered in this paper consists of 32 letters in
total, namely

l1 → 0, l2 → 1, l3 →
S12+S23
S12

, l4 → 1−S34
S12

, l5 →
S45
S12

, l6 → −
S45

S23−S45
,

l7 →
S45−S23
S12

, l8 →
S45

S34+S45
, l9 → −

S51
S12

, l10 →
S12−S34+S51

S12
,

l11 →
S45

−S23+S45+S51
, l12 →

√
∆1+S12S23−S23S34+S34S45−S12S51−S45S51

2S12S23+2S12S34−2S12S51
,

l13 →
√

∆1+S12S23−S23S34−2S12S45+S34S45−S12S51−S45S51
2S12S23−2S12S45−2S12S51

,

l14 →
−
√

∆1−S23S34+S34S45−S45S51−S12 (S51−S23)
2S12 (S23+S34−S51) ,

l15 →
−
√

∆1−S23S34+S34S45−S45S51−S12 (−S23+2S45+S51)
2S12 (S23−S45−S51) , l16 →

S12S45−
√

∆2
S12S34+S12S45

,

l17 →
√

∆2+S12S45
S12S34+S12S45

, l18 →
√

∆3+S12S23−S23S34−S12S45+S34S45−S12S51−S45S51
2S12S23−2S12S45−2S12S51

,

l19 →
−
√

∆3−S23S34+S34S45−S45S51−S12 (−S23+S45+S51)
2S12 (S23−S45−S51) , l20 →

S45
S12−S34

,

l21 → −
S45
S51

, l22 →
−
√

∆1−S12S23+S23S34−S34S45+S12S51+S45S51
2S12S51

,

l23 →
√

∆1+S23S34−S34S45+S45S51+S12 (S51−S23)
2S12S51

,

l24 →
−
√

∆4+S23S34−S34S45+S45S51+S12 (−S23+S45+S51)
2S12S51

,

l25 →
√

∆4+S23S34−S34S45+S45S51+S12 (−S23+S45+S51)
2S12S51

,
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l26 →
−
√

∆1+S23S34−S34S45+S45S51+S12 (−S23+2S45+S51)
2S12 (S12−S34+S51) ,

l27 →
√

∆1+S23S34−S34S45+S45S51+S12 (−S23+2S45+S51)
2S12 (S12−S34+S51) ,

l28 →
√

∆5+S12S45
S12 (S45−S23) , l29 →

√
∆5−S12S45

S12 (S23−S45) , l30 →
(S23−S45)S45

S12S23+(S23−S45)S45
,

l31 →
−2S3

45+2S23S
2
45−S34S

2
45−S51S

2
45+S23S34S45−S12 (S51−S23)S45−

√
∆6

2 (S12S23 (S34+S45)+(S23−S45)S45 (S34+S45)−S12S45S51) ,

l32 →
−2S3

45+2S23S
2
45−S34S

2
45−S51S

2
45+S23S34S45+S12 (S23−S51)S45+

√
∆6

2 (S12S23 (S34+S45)+(S23−S45)S45 (S34+S45)−S12S45S51) (A.1)

with

∆1 = S2
12 (S23 − S51) 2 + (S23S34 + S45 (S51 − S34)) 2

+ 2S12
(
S45S51S23 + S34 (S45 + S51)S23 − S2

23S34 + S45 (S34 − S51)S51
)
, (A.2)

∆2 = S12S34S45 (−S12 + S34 + S45) , (A.3)
∆3 = S2

12 (−S23 + S45 + S51) 2 + (S23S34 + S45 (S51 − S34)) 2

− 2S12 (S23 − S45 − S51) (S23S34 − S45 (S34 + S51)) , (A.4)

∆4 =
(
S2

23 − 2 (S45 + S51)S23 + (S45 − S51) 2
)
S2

12 + (S23S34 + S45 (S51 − S34)) 2

− 2
(
S34S

2
23 + S45S51S23 − S34 (2S45 + S51)S23 + S45 (S34 − S51) (S45 − S51)

)
S12,

(A.5)

∆5 = S12S23 (S12 + S23 − S45)S45, (A.6)
∆6 = S2

45∆1 . (A.7)

Each family is characterised by a subset of the full set of letters. In P1 the following
19 letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19} , (A.8)

in P2 the following 25 letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l18, l19, l20, l21, l22, l23, l24, l25, l26, l27} ,
(A.9)

and finally in P3 the following 25 letters appear,

{l1, l2, l3, l4, l5, l6, l7, l8, l10, l11, l13, l15, l20, l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32} .
(A.10)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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