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Abstract: Gravitational waves (GWs) from strong first-order phase transitions (SFOPTs)
in the early Universe are a prime target for upcoming GW experiments. In this paper, I con-
struct novel peak-integrated sensitivity curves (PISCs) for these experiments, which faith-
fully represent their projected sensitivities to the GW signal from a cosmological SFOPT
by explicitly taking into account the expected shape of the signal. Designed to be a handy
tool for phenomenologists and model builders, PISCs allow for a quick and systematic
comparison of theoretical predictions with experimental sensitivities, as I illustrate by a
large range of examples. PISCs also offer several advantages over the conventional power-
law-integrated sensitivity curves (PLISCs); in particular, they directly encode information
on the expected signal-to-noise ratio for the GW signal from a SFOPT. I provide semi-
analytical fit functions for the exact numerical PISCs of LISA, DECIGO, and BBO. In
an appendix, I moreover present a detailed review of the strain noise power spectra of
a large number of GW experiments. The numerical results for all PISCs, PLISCs, and
strain noise power spectra presented in this paper can be downloaded from the Zenodo
online repository [1]. In a companion paper [2], the concept of PISCs is used to perform an
in-depth study of the GW signal from the cosmological phase transition in the real-scalar-
singlet extension of the standard model. The PISCs presented in this paper will need to
be updated whenever new theoretical results on the expected shape of the signal become
available. The PISC approach is therefore suited to be used as a bookkeeping tool to keep
track of the theoretical progress in the field.
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1 Introduction

Since the celebrated first direct detection of gravitational waves (GWs) in September
2015 [3], the Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) [4,
5] and the Advanced Virgo (aVirgo) experiment [6] have observed a multitude of GW
events [7, 8]. One of the signals recorded during the first two aLIGO/ aVirgo observing
runs [9] originated from the coalescence of a binary neutron star [10], while all other sig-
nals were due to mergers of binary black holes [3, 7, 11–14]. First results from the third
observing run are reported on in ref. [8]. After the breakthrough discovery of these tran-
sient astrophysical sources, one of the next key objectives in GW astronomy is going to be
the detection of a stochastic GW background (SGWB) from cosmological sources [15, 16].
A wide range of violent phenomena in the early Universe can give rise to a primordial
SGWB [17, 18], among which cosmological phase transitions [19, 20] are a preeminent
example. Strong first-order phase transitions (SFOPTs) occur in numerous extensions of
the standard model (SM) of particle physics and can potentially lead to a strong GW sig-
nal [21]. Many scenarios especially predict a GW signal that is peaked at frequencies in the
milli-Hertz range. This makes GWs from a SFOPT a prime target for future satellite-borne
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interferometers in space, such as the Laser Interferometer Space Antenna (LISA) [22, 23],
which is scheduled for launch in the 2030’s. Consequently, many authors have recently
studied the prospects of probing the dynamics of a SFOPT in scenarios beyond the stan-
dard model (BSM) with LISA [24, 25] and other upcoming GW experiments (see, e.g., the
incomplete list of BSM models in refs. [26–82]).

The GW signal from a SFOPT is conventionally expressed in terms of a GW energy
density spectrum Ωsignal (f) as a function of GW frequency f , while the instantaneous
sensitivity of a GW experiment is quantified in terms of a noise spectrum Ωnoise (f) [see
eq. (A.24) for the precise definition of these two quantities]. With these two spectra at
one’s disposal, one is able to assess the chances that the predicted signal is going to be
experimentally detected. In practice, this is typically done by adopting one or both of the
following two strategies:

• Strategy #1: compute the associated signal-to-noise ratio (SNR) % by integrat-
ing over the experiment’s total observing time tobs and accessible frequency range
[fmin, fmax] [15, 83, 84],

% =
[
ndet tobs

∫ fmax

fmin
df

(Ωsignal (f)
Ωnoise (f)

)2]1/2

, (1.1)

where ndet distinguishes between experiments that aim at detecting the SGWB by
means of an auto-correlation (ndet = 1) or a cross-correlation (ndet = 2) measurement.
Then, if % turns out to be larger than some threshold value, % > %thr, one concludes
that the GW experiment under consideration will be able to detect the predicted
GW signal.

• Strategy #2: construct the power-law-integrated sensitivity curve (PLISC)
ΩPLIS (f) [85] based on the noise spectrum Ωnoise (f) (and some %thr) and compare
it to the signal spectrum Ωsignal (f). Then, if the signal and the PLISC intersect,
such that Ωsignal (f) > ΩPLIS (f) for some f , one typically also concludes that the
experiment will be able to detect the signal.

Both strategies have several advantages and disadvantages. The SNR approach, e.g.,
has a clearly defined statistical interpretation and is applicable for an arbitrarily shaped
signal Ωsignal. On the other hand, the SNR % no longer contains any spectral information
because of the integral over the frequency range [fmin, fmax] in eq. (1.1). This is somewhat
unfortunate. Ideally, one would like to indicate whether a certain signal is going to be
experimentally detected or not directly in a plot of the signal spectrum Ωsignal. In fact, this
has been one of the main motivations behind the idea of constructing PLISCs. However,
as % is no longer a function of f , there is no canonical way of including information on %

in a plot of Ωsignal. As a consequence, many authors resort to graphical representations
of % as a function of the underlying model parameters {pi} that determine the shape
of the signal, % = % ({pi}). This typically results in plots of (a subspace of) the model
parameter space that contain information on % in the form of contour lines or a color
code. While such information may be very useful for a number of reasons, it can easily
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happen that one ends up with plots that show % only as a function of quantities that are
not directly accessible by experiments. This may be regarded as a disadvantage of the
SNR approach, as one may prefer to indicate an experiment’s sensitivity reach in terms
of physical observables rather than in terms of auxiliary model parameters. Often times,
one also looses information because one is forced to restrict oneself to lower-dimensional
hypersurfaces (typically two-dimensional slices) in the higher-dimensional model parameter
space. Finally, one may argue that another disadvantage consists in the fact that the SNR
approach requires a larger computational effort. While the PLISC approach is essentially
a graphical one, computing the SNR % always involves the extra step of carrying out the
frequency integration in eq. (1.1). This is part of the reason why many authors in the
literature actually content themselves with a graphical analysis in terms of PLISCs and
refrain from performing a proper SNR analysis.

The PLISC approach, by contrast, manages to convey a useful and graphical impression
of an experiment’s sensitivity directly in terms of plots of the GW spectrum. However,
it is important to note that, by construction, PLISCs do not encode information on the
expected SNR as soon as the spectrum deviates from a pure power law. Therefore, in
realistic situations where the signal is expected to have a richer structure than just a
simple power law, PLISCs should rather be regarded as a qualitative visualization than a
quantitative statistical tool.

The aim of the present paper is to remedy the shortcomings of strategies #1 and #2
for the particular case of GWs from a SFOPT in the early Universe. The main observation
in this case is that the shape of the signal is model-independent to first approximation,
such that it is actually not necessary to perform the frequency integral in eq. (1.1) over
and over again. Instead, it is possible to compute it once and for all, whereupon the
numerical result may be used for the signal in any BSM model that one is interested in.
In realistic scenarios, the GW signal from a SFOPT receives contributions from several
different physical sources (see section 2). However, for illustration, let us suppose for a
moment that there is just one physical source of GWs. In this case, the signal spectrum
can be schematically written as

Ωsignal (f) = Ωpeak
signal ({pi}) S (f, fpeak) , (1.2)

where Ωpeak
signal ({pi}) denotes the peak strength of the signal at the peak frequency fpeak, and

where the shape function S describes the frequency dependence of the signal in the vicinity
of the peak frequency. Here, the shape function S is assumed to be model-independent,
whereas the peak amplitude Ωpeak

signal captures the detailed dependence on the underlying
model parameters {pi}. For a signal of this form, it is then possible to rewrite eq. (1.1)
as follows,

% =
Ωpeak

signal ({pi})
ΩPIS (fpeak) , (1.3)

where ΩPIS (fpeak) denotes what we shall refer to as the peak-integrated sensitivity (PIS),

ΩPIS (fpeak) =
[
ndet tobs

∫ fmax

fmin
df

(S (f, fpeak)
Ωnoise (f)

)2]−1/2

. (1.4)
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For any given experiment, the integral in eq. (1.4) only needs to be computed once. As soon
as this has been done, one can construct a peak-integrated sensitivity curve (PISC) by plot-
ting ΩPIS as a function of the frequency fpeak. In this plot, the original (one-dimensional)
spectrum Ωsignal then reduces to a single (zero-dimensional) point

(
fpeak,Ωpeak

signal
)
.

Thus far, the standard procedure for phenomenologists and model builders interested
in studying the GW signal from a SFOPT typically involved three steps. First, one had
to consult the latest theoretical literature on the functional forms of the peak amplitude
Ωpeak

signal and the shape function S. Then, in a second step, one had to consult the experi-
mental literature on the shape of the noise spectrum Ωnoise for a given experiment. And
finally, one had to tie both ends together and perform the last step, namely, the frequency
integration in eq. (1.1), by hand. The PISC approach now closes the gap between the
input from the theory side and the input from the experimental side by rendering the final
frequency integration obsolete. In fact, we argue that it unifies the advantages of the two
standard strategies #1 and #2 that we outlined above, while at the same time avoiding
their disadvantages:

1. As soon as the PISC has been constructed for a particular experiment, it is no longer
necessary to perform a frequency integration on a parameter-point-by-parameter-
point basis. Instead, one can simply work out a fit function for the exact numerical
PISC (see section 3.7), which enables one to write down a quasianalytical expression
for the SNR in eq. (1.3). This property turns PISCs into a handy and ready-to-use
tool for the phenomenological exploration of BSM models that predict GWs from
a SFOPT.

2. The PISC approach works for an arbitrary signal shape S. Unlike the PLISC ap-
proach, it is not restricted to signals that are (reasonably well) described by a pure
power law.

3. At the same time, it results in a useful visual representation of an experiment’s sen-
sitivity in terms of physical observables (as opposed to auxiliary model parameters),
namely, the peak frequency fpeak and the peak amplitude Ωpeak

signal of the GW spectrum.

4. According to the PISC approach, signal spectra are projected onto individual points
in the fpeak –Ωpeak

signal plane. This can be used to generate scatter plots that allow one
to identify what one may call a model’s signal region. Plotting this signal region
in combination with a PISC then indicates to what extent the model is going to be
probed experimentally. This aspect is elaborated on in more detail in the compan-
ion paper [2].

5. If new theoretical results should require a revision of the spectral shape S, it suffices
to update the experimental PISCs, while the model-specific signal regions remain
unaffected. Similarly, new insights into the dependence of fpeak and Ωpeak

signal on the
underlying SFOPT parameters only cause the signal regions to shift, but leave the
experimental PISCs unchanged. This facilitates the update of sensitivity plots com-
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paring the predictions of many models at the same time (see also section 3.6 and
ref. [86]).

6. The fact that PISC plots correspond to projections onto the fpeak –Ωpeak
signal plane dis-

tinguishes them from the usual plots of the SNR % on two-dimensional slices through
the higher-dimensional parameter space that one often encounters. In the PISC
approach, it is not necessary to keep a subset of model parameters fixed at spe-
cific values.

7. Most importantly, the PISC approach retains the full information on the SNR. For a
data point

(
fpeak,Ωpeak

signal
)
, the expected SNR simply corresponds to the vertical sep-

aration between this point and the PISC of interest. This facilitates the implemen-
tation and comparison of different SNR thresholds %thr. All the relevant information
is encoded on the y-axis of our plots; no additional color code or contour lines are
needed. In addition, our plots allow for an easy comparison of the PISCs and hence
expected SNRs for different experiments. Such a comparison would not be feasible
in plots using a color code for the SNR and significantly more complicated in SNR
contour plots.

Before we turn to a more detailed presentation of the PISC approach, it is worth
pointing out some similarities to alternative treatments in the literature. Refs. [56, 66],
e.g., also present scatter plots of possible peak frequencies and peak amplitudes in specific
BSM models. These predictions are, however, combined with the usual sensitivity curves,
such that the final plots do not contain any information on the expected SNR. Moreover,
ref. [87] studies the sensitivity of future GW satellite experiments based on a Fisher matrix
analysis that quantifies the precision with which one will be able to reconstruct observables
such as fpeak and Ωpeak

signal from real data. Studies of this kind will be an important part of the
data analysis once a SGWB signal has been detected. We, however, note that, compared
to ref. [87], the aim of the present paper is a slightly different one. Instead of performing
a δχ2 analysis, we actually go one step back and focus on the maximal SNR % at which
GWs from cosmological phase transitions can be detected in upcoming experiments. In
this sense, we hope that the novel concept of PISCs will first and foremost prove to be a
helpful tool for the systematic exploration and comparison of the GW phenomenology in
different BSM models.

The rest of the paper is organized as follows. In section 2, we will first review the
generation of GWs during a SFOPT in the early Universe and collect all expressions that
are necessary to compute the signal spectrum Ωsignal. In section 3, we will then introduce
the concept of PISCs (see section 3.1) and highlight a few possible applications. This will
include the detailed discussion of a benchmark point (BP) in a particular SM extension
(see section 3.2), the comparison of the GW signals predicted by different BSM models
(see section 3.3), a few remarks on how to relax the assumptions underlying the con-
struction of PISCs (see section 3.4), a comment on runaway phase transitions in vacuum
(see section 3.5), a discussion of how new theoretical results can be used to update our
PISC plots (see section 3.6), and finally the presentation of semianalytical fit functions for
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the exact numerical PISCs of three specific experiments: LISA, the Deci-Hertz Interfer-
ometer Gravitational-Wave Observatory (DECIGO) [88–91], and the Big-Bang Observer
(BBO) [92–94] (see section 3.7). Section 4 contains our conclusions as well as an outlook
on how to extend and generalize our approach in the future.

In appendix A, we provide a comprehensive review of the strain noise power spec-
tra of several current and future GW experiments. We specifically consider the following
ground-based and space-based interferometer experiments: aLIGO, aVirgo, the Kamioka
Gravitational-Wave Detector (KAGRA) [95–99], Cosmic Explorer (CE) [100, 101], Ein-
stein Telescope (ET) [102–105], DECIGO, BBO, and LISA. Furthermore, we also consider
the following pulsar timing array (PTA) experiments [106]: the North American Nano-
Hertz Observatory for Gravitational Waves (NANOGrav) [107–110], the Parkes Pulsar
Timing Array (PPTA) [111, 112], the European Pulsar Timing Array (EPTA) [113–115],
the International Pulsar Timing Array (IPTA) [116–119], and the Square Kilometre Array
(SKA) [120–122]. The purpose of appendix A is to make our presentation self-contained
and to facilitate the generalization of our results in section 3 to other experiments and po-
tentially also other types of signals. In addition, it may serve as a useful resource beyond
the actual scope of this paper.

2 Gravitational-wave signal from a cosmological phase transition

In quantum field theory, a first-order phase transition is characterized by a scalar field φ

(or a set of scalar fields φi) experiencing a discontinuous change in its vacuum expectation
value, 〈φ〉false → 〈φ〉true. In the context of early-Universe cosmology, such a transition
manifests itself in the nucleation of bubbles filled by the true vacuum configuration 〈φ〉true
in the ambient plasma, where the scalar field still resides in its false vacuum configuration
〈φ〉false. The expanding and colliding scalar-field bubbles as well as their interaction with
the thermal plasma then result in the production of a primordial SGWB via three different
mechanisms:

• (b) collisions of expanding bubble walls [123–128],

• (s) compressional modes (i.e., sound waves) in the bulk plasma [129–132], and

• (t) vortical motion (i.e., magnetohydrodynamic turbulence) in the bulk plasma [133–
138].

In general, the total GW signal from a cosmological phase transition approximately follows
from the linear superposition of the signals stemming from these three individual sources,

ΩSFOPT (f) ' Ωb (f) + Ωs (f) + Ωt (f) . (2.1)

In this section, we shall give a brief overview of these three signal contributions, following
the review reports by the LISA Cosmology Working Group in refs. [24, 25], which represent
standard references on this subject. For more recent work on the dynamics of cosmological
phase transitions and the shape of the resulting GW signal, we refer to refs. [139–155].
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We begin by pointing out that, among refs. [24, 25], only ref. [24] presents semiana-
lytical expressions for all three GW sources, Ωb, Ωs, and Ωt. The discussion in ref. [25]
is more conservative in the sense that it solely accounts for the signal from sound waves,
which is in many cases much stronger than the signal from bubble collisions and in general
much better understood from a theoretical perspective than the signal from turbulence.
Ref. [25] also distinguishes between two different expressions for Ωs, depending on whether
the time of shock formation in the bulk plasma after the phase transition is longer or
shorter than the Hubble time. Meanwhile, it assumes the same spectral shape function
for the signal from sound waves as the analysis in ref. [24]. In view of this situation, we
decide to consistently base our analysis on the expressions for Ωb, Ωs, and Ωt in ref. [24].
There are two main reasons for this decision: First of all, we intend to demonstrate how
to apply our new PISC method in case there is more than just one contribution to the
total signal. The point is that we expect to see significant progress on the theory side in
the coming years, which will eventually prompt one to go again beyond the conservative
approach of ref. [25]. Our analysis thus sets the stage for this moment when the under-
standing of all three sources has improved and more reliable expressions for Ωb, Ωs, and
Ωt have been attained. A second reason is that the focus of our analysis is primarily on
the construction of new experimental sensitivity curves; we do not have anything new to
say on the theoretical aspects of the expected GW signal. For this reason, we refrain from
participating in the ongoing debate on the correct treatment of shock formation and the
corresponding energy transfer from sound waves to turbulence. An attractive feature of our
new sensitivity curves is that their construction is for the most part anyway independent
of these open questions on the theory side. As anticipated in eq. (1.4), our PISCs will only
require knowledge of the experimental noise spectra and spectral shape functions, but will
be independent of the exact theoretical predictions for the peak amplitudes entering the
GW spectrum. Therefore, as ref. [24] and ref. [25] use the same spectral shape function for
the signal from sound waves, our sensitivity curves are actually not affected by the different
treatment of sound waves in ref. [25]. For our purposes, the only noticeable consequence
consists in the fact that the analysis in ref. [25] causes some of the benchmark points to
slightly shift in our PISC plots compared to the analysis in ref. [24]. We will comment on
these shifts in more detail in section 3.6, where we illustrate how an improved theoretical
understanding of the peak amplitudes can be used to update our PISC plots without the
need to revise any of the experimental sensitivity curves. At the same time, we stress
that, otherwise, any future update of the spectral shape functions will require an update of
the experimental PISCs. In fact, we expect that regular updates of our PISC plots would
provide a useful means to track the theoretical progress in the field.

The three contributions Ωb, Ωs, and Ωt can be parametrized in a model-independent
way in terms of a set of characteristic SFOPT parameters, α, β/H∗, T∗, vw, κb, κs, and κt,

h2Ωb (f) = h2Ωpeak
b (α, β/H∗, T∗, vw, κb)Sb (f, fb) , (2.2)

h2Ωs (f) = h2Ωpeak
s (α, β/H∗, T∗, vw, κs) Ss (f, fs) ,

h2Ωt (f) = h2Ωpeak
t (α, β/H∗, T∗, vw, κt) St (f, ft, h∗) .
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Let us now go through the different quantities in this equation one by one. The dimension-
less energy density parameters Ωi = ρi/ρc on the left-hand side (l.h.s.) of eq. (2.2) measure
the fractions of the total (critical) energy density ρc = 3H2

0M
2
Pl that are contained in GWs

of a particular physical origin, i ∈ {b, s, t}. Here, H0 is the Hubble parameter in the present
Universe, and MPl ' 2.44 × 1018 GeV denotes the reduced Planck mass. In the following,
we will typically multiply all energy density parameters Ω by the square of the dimension-
less Hubble parameter h, which is defined via the relation H0 = 100h km/s/Mpc. In this
way, we make sure that quantities of the form h2Ω are not affected by the experimental
uncertainty in the Hubble parameter H0. The SFOPT parameter α in eq. (2.2) is propor-
tional to the change in the trace of the energy-momentum tensor, ∆Tµµ , across the phase
transition [25],1

α = 1
ρ∗r

[
(ρv|false − ρv|true)−

T

4

(
∂ρv
∂T

∣∣∣∣
false
− ∂ρv

∂T

∣∣∣∣
true

)]
T=T∗

(2.3)

Here, ρv and ∂ρv/∂T are the temperature-dependent effective potential (i.e., free-energy
density) in the scalar sector and its derivative with respect to temperature T , respectively,
while ρr denotes the energy density of relativistic radiation. The subscripts “false” and
“true” indicate that these quantities are evaluated in the false and the true vacuum config-
uration in field space, respectively. The temperature T∗ is the characteristic temperature at
the time of GW production, which roughly equals the temperature at the time of bubble
nucleation, T∗ ' Tn, unless the phase transition occurs in a strongly supercooled state.
In this case, the nucleation temperature can be significantly suppressed compared to the
reheating temperature after the completion of the phase transition, Tn � Trh ' T∗. Thus,
for strongly supercooled phase transitions, all quantities in eq. (2.3) need to be evaluated
at Tn rather than T∗. The SFOPT parameter β/H∗ is the inverse of the duration of the
phase transition in units of the Hubble time H−1

∗ at the time of GW production. Formally,
it is defined in terms of the derivative of the bounce action S that controls the rate of
bubble nucleation,

β

H∗
= T∗

dS

dT

∣∣∣∣
T=T∗

. (2.4)

Again, this definition only holds as long as there is no large hierarchy between the temper-
atures T∗ and Tn. In the case of strong supercooling (i.e., for Tn � T∗), one has to work
instead with β/H∗ = Hn/H∗ Tn dS/dT |T=Tn

. The parameter vw in eq. (2.2) represents the
velocity of the bubble wall in the plasma rest frame. κb, κs, and κt are three efficiency
factors that characterize the fractions of the released vacuum energy that are converted
into the energy of scalar-field gradients, sound waves, and turbulence, respectively. It is
customary to express κs and κt in terms of an efficiency factor κkin that characterizes the

1This definition relates α to the so-called bag parameter ε = (∆u − 3∆p)/4 in the bag equation of
state [156], where ∆u and ∆p denote the changes in the internal-energy density and pressure across the phase
transition, respectively. Assuming zero chemical potential for all relevant particle species (i.e., zero Gibbs
energy / free enthalpy), constant temperature T , and constant volume V , one can show that α = ε/ρr|T =T∗

.
For a more general α parameter, which also accounts for possibility of a varying speed of sound, see
refs. [157, 158].
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energy fraction that is converted into bulk kinetic energy and an additional parameter ε,
i.e., κs = κkin and κt = ε κkin. The precise numerical value of ε is the subject of an ongoing
debate in the literature. While some authors estimate ε to be quite small, ε ' 0.05 · · · 0.10
(see, e.g., refs. [24, 47, 64]), based on the results presented in ref. [132], other authors use
values as large as ε = 1 (see, e.g. ref. [159]). In our analysis, we will set ε = 0.10. For a
more detailed discussion on the efficiency factors κs and κt, see also the recent analysis in
ref. [148].

In order to estimate the efficiency factors κb and κkin, one has to distinguish between
three different types of phase transitions: (i) nonrunaway phase transitions in a plasma
(NP), (ii) runaway phase transitions in a plasma (RP), and (iii) runaway phase transitions
in vacuum (RV). In the first case, the bubble wall velocity saturates at a subluminal value,
and the contribution to the total GW signal from bubble collisions is negligibly small,
κb ' 0. Meanwhile, the efficiency factor κkin is well approximated by the following fit
function [156],

NP: κkin '


α

0.73 + 0.083
√
α+ α

; vw ∼ 1

6.9α v6/5
w

1.36− 0.037
√
α+ α

; vw . 0.1
(2.5)

Here, we will use in practice the large-vw expression for κkin for all velocities vw ≥ vαw, where

vαw =
[

1.36− 0.037
√
α+ α

6.9 (0.73 + 0.083
√
α+ α)

]5/6

, (2.6)

and similarly, the small-vw expression for κkin for all velocities vw ≤ vαw. In our numerical
analysis in section 3, we will moreover fix the bubble wall velocity at vw = 0.95 for all
NP phase transitions. This is in accord with the analysis in ref. [24], where the choice
vw = 0.95 simply serves the purpose to increase the strength of the GW signal.

For RP phase transitions, the picture is a slightly different one, as in this case, the
energy deposited into the scalar field is no longer negligible. RP phase transitions occur
for α values α > α∞, where α∞ marks the threshold value at which the walls of the scalar-
field bubbles begin to “run away” at the speed of light, vw = 1. The threshold value α∞ is
model-dependent and follows from the shifts in the bosonic and fermionic masses squared
that are induced by the changing scalar-field background across the phase transition [156],

α∞ '
30

24π2g∗T 2
∗

[ ∑
bosons

gb
(
m2
b

∣∣∣
true
− m2

b

∣∣∣
false

)
− 1

2
∑

fermions
gf
(
m2
f

∣∣∣
true
− m2

f

∣∣∣
false

)]
.

(2.7)

Here, g∗, gb, and gf represent the effective number of relativistic degrees of freedom (DOFs)
in the unbroken phase at the time of bubble nucleation, the internal DOFs of boson species
b, and the internal DOFs of fermion species f , respectively. For a strong first-order elec-
troweak phase transition (SFOEWPT) in a model with SM-like particle content, one finds

α∞ ' 4.9× 10−3
(
φ∗
T∗

)2
, (2.8)
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where φ∗ denotes the scalar field value in the broken phase at the time of bubble nucleation.
For simplicity, we shall estimate α∞ based on eq. (2.8) in the case of all RP phase transitions
that we are going to be interested in. In SFOEWPT scenarios where the SM Higgs field is
only weakly coupled to the new-physics sector, this is typically a reasonable approximation.
The ratio of α∞ and the actual α value of a RP phase transition determines the efficiency
of energy transfer from the vacuum to the scalar field and to the bulk plasma, respectively,

RP: κb = 1− α∞
α

, κkin = α∞
α

κ∞ , κtherm = (1− κ∞) α∞
α

, (2.9)

where κtherm accounts for the fraction of vacuum energy that is converted to thermal energy
(which does not source the production of GWs) and where the parameter κ∞ is given by

κ∞ = α∞
0.73 + 0.083√α∞ + α∞

. (2.10)

The expression for κb in eq. (2.9) has recently been updated in ref. [160] based on the new
all-orders calculation in ref. [161]. We will come back to this point in section 3.6.

The case of a RV phase transition, finally, corresponds to the limit of very large α,
such that the energy transferred to the plasma becomes negligible. In this case, the only
remaining free parameters are β/H∗ and T∗. All other parameters are fixed at character-
istic values,

RV: α→∞ , vw = 1 , κb = 1 , κkin = 0 . (2.11)

Having introduced the parameters α, β/H∗, T∗, vw, κb, κs, and κt, we are now able to
spell out how the different contributions to the GW signal in eq. (2.2) can be parametrized
in terms of these quantities. We begin by writing down the three peak amplitudes [24],

h2Ωpeak
b ' 1.67× 10−5

(
vw
β/H∗

)2 ( 100
g∗ (T∗)

)1/3 ( κb α

1 + α

)2 ( 0.11 vw
0.42 + v2

w

)
, (2.12)

h2Ωpeak
s ' 2.65× 10−6

(
vw
β/H∗

) ( 100
g∗ (T∗)

)1/3 ( κs α

1 + α

)2
,

h2Ωpeak
t ' 3.35× 10−4

(
vw
β/H∗

) ( 100
g∗ (T∗)

)1/3 ( κt α

1 + α

)3/2
.

Here, we emphasize that the effective number of relativistic DOFs, g∗, needs to be evaluated
as a function of T∗. In our numerical analysis in section 3, we will approximate g∗ by its
SM value, making use of the numerical data tabulated in ref. [162] in order to correctly
describe its temperature dependence. The spectral shape functions Sb, Ss, and St are given
as [24]

Sb =
(
f

fb

)2.8 [ 3.8
1 + 2.8 (f/fb)3.8

]
, (2.13)

Ss =
(
f

fs

)3 [
7

4 + 3 (f/fs)2

]7/2

,

St =
(
f

ft

)3 [ 1
1 + (f/ft)

]11/3 1
1 + 8π f/h∗

.
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Note that Sb and Ss are normalized to unity at the respective peak frequencies, whereas
the value of St at f = ft depends on what we shall refer to as the Hubble frequency h∗,

Sb (f = fb) = 1 , Ss (f = fs) = 1 , St (f = ft) = 1
211/3 (1 + 8π ft/h∗)

. (2.14)

This normalization is merely a matter of convention. Alternatively, one could simply rescale
both h2Ωpeak

t and St by a factor 211/3 (1 + 8π ft/h∗), such that St (f = ft) = 1. The Hubble
frequency h∗ corresponds to the particular wavenumber k∗ that equals the Hubble rate H∗
at the time of GW production. Its redshifted, present-day value is solely controlled by T∗,

h∗ = a∗
a0
H∗ = 1.6× 10−2 mHz

(
g∗ (T∗)

100

)1/6 ( T∗
100GeV

)
. (2.15)

Finally, we state the three peak frequencies [24], which completes our discussion of eq. (2.2),

fb = 1.6× 10−2 mHz
(
g∗ (T∗)

100

)1/6 ( T∗
100GeV

)(
β/H∗
vw

)( 0.62 vw
1.8− 0.1 vw + v2

w

)
, (2.16)

fs = 1.9× 10−2 mHz
(
g∗ (T∗)

100

)1/6 ( T∗
100GeV

)(
β/H∗
vw

)
,

ft = 2.7× 10−2 mHz
(
g∗ (T∗)

100

)1/6 ( T∗
100GeV

)(
β/H∗
vw

)
.

3 Peak-integrated sensitivity curves

3.1 Definition

Our idea of peak-integrated sensitivity curves (PISCs) is based on the following observation:
For a GW signal from a SFOPT and within the approximations outlined in section 2, the
frequency integration in eq. (1.1) becomes independent of any model details. Therefore, by
combining the expressions in eqs. (1.1), (2.1), and (2.2), the SNR can always be written as

% =
√
tobs
1 yr

(
%2

b + %2
s + %2

t + %2
b/s + %2

b/t + %2
s/t

)
, (3.1)

with the partial SNRs %i/j on the right-hand side (r.h.s.) of this relation being defined as

%i/j =
Ωpeak

i/j

Ωi/j
PIS

, %i/i ≡ %i , i, j ∈ {b, s, t} . (3.2)

Here, the numerator is defined as the geometric mean of the corresponding peak amplitudes,

Ωpeak
i/j =

√
Ωpeak

i Ωpeak
j , Ωpeak

i/i ≡ Ωpeak
i , (3.3)

while the denominator represents what we will refer to as the peak-integrated sensitiv-
ity (PIS),

Ωi/j
PIS =

[
(2− δij)ndet 1 yr

∫ fmax

fmin
df
Si (f)Sj (f)
Ω2

noise (f)

]−1/2

, Ωi/i
PIS ≡ Ωi

PIS , (3.4)
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We normalize Ωi/j
PIS to an observing time of one average year in the Gregorian calendar,

1 yr = 3.1556952× 107 Hz−1 , (3.5)

such that the actual observing time tobs appears as a simple rescaling factor in eq. (3.1).2

A remarkable property of the six sensitivities Ωi/j
PIS is that they can be explicitly com-

puted without ever referring to a particular BSM model. In particular, they can be fully
parametrized in terms of the peak frequencies fb, fs, ft and the Hubble frequency h∗
without ever specifying the values of the SFOPT parameters α, β/H∗, T∗, vw, κb, κs,
and κt,

Ωb
PIS = Ωb

PIS (fb) , Ωs
PIS = Ωs

PIS (fs) , Ωt
PIS = Ωt

PIS (ft, h∗) , (3.6)

Ωb/s
PIS = Ωb/s

PIS (fb, fs) , Ωb/t
PIS = Ωb/t

PIS (fb, ft, h∗) , Ωs/t
PIS = Ωs/t

PIS (fs, ft, h∗) .

This renders them a handy and model-independent tool for discussing the sensitivity of
future searches for GWs from a SFOPT. The sensitivities Ωi/j

PIS can especially be used to
construct peak-integrated sensitivity curves (PISCs) and peak-integrated sensitivity bands
(PISBs) by plotting Ωb

PIS as a function of fb, Ωs
PIS as a function of fs, etc. Then, once these

curves and bands are known, one can fit the exact numerical results by semianalytical fit
functions, which allows one to write down quasianalytic expressions for the total SNR as
functions of the SFOPT parameters α, β/H∗, T∗, vw, κb, κs, and κt. In this way, the concept
of PISCs and PISBs closes the gap between the numerical modeling of SFOPTs on the
theory side and the instrumental properties of future GW searches on the experimental side.

In the remainder of this paper, we will now discuss the idea of PISCs and PISBs
in more detail and highlight a few possible applications. In doing so, we will focus on
the sensitivities of three proposed space-borne GW interferometers: LISA, DECIGO, and
BBO. Among these three experiments, LISA is the most mature one, which was approved
by the European Space Agency as its third large-class (L3) mission in 2017. According
to the L3 mission concept, LISA will consist of three identical spacecraft in an equilat-
eral triangular formation separated by 2.5 million km and connected by six active laser
links [22]. In this configuration, LISA will be able to search for a SGWB signal by per-
forming an auto-correlation measurement [163], which means that we have to set ndet = 1
in eq. (3.4). The design concepts of DECIGO and BBO envision, by contrast, a hexagonal
configuration of two triangular detectors (i.e., a “Star-of-David”-like configuration). Each
of these two experiments will hence effectively represent a two-detector network, which will
enable DECIGO and BBO to search for a SGWB signal by performing a cross-correlation
measurement. This implies ndet = 2 in eq. (3.4).

3.2 Benchmark point in the scalar-singlet extension

First, let us illustrate the philosophy behind our PISC method by means of a single bench-
mark point in a particular SFOPT scenario. To this end, we shall consider the simplest

2Alternatively, this rescaling factor could also be absorbed in the definition of Ωi/j
PIS, making this quantity

explicitly tobs-dependent. In the following, we will, however, stick to our conventions in eqs. (3.1) to (3.4).
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example of a BSM model giving rise to GWs from a SFOEWPT, namely, the real-scalar-
singlet extension of the standard model (xSM). This model, also known as the (scalar)
Higgs portal scenario, features an extra gauge singlet in the scalar sector, which couples to
the SM Higgs boson and which may or may not be charged under a Z2 symmetry. More
details on the xSM as well as a more complete list of references are contained in the com-
panion paper [2], where we apply our PISC method to investigate the GW phenomenology
of this model. In ref. [2], we include all renormalizable operators in the scalar potential
that are allowed by gauge invariance, i.e., we do not require the scalar singlet to be charged
under a Z2 symmetry. However, for the purposes of the following discussion, it will suffice
to restrict ourselves to the Z2-symmetric formulation of the xSM, which can also result
in a SFOEWPT [164]. The xSM benchmark point that we are going to be interested in
corresponds to benchmark point B in section 4.2.2 of ref. [24]. It is characterized by the
following SFOPT parameter values,

T∗ = 65.2GeV , α = 0.12 , β

H∗
= 29.96 , φ∗

T∗
= 3.70 , (3.7)

and describes a RP phase transition, such that all three GW sources during the phase
transition (bubble collisions, sound waves, and turbulence) contribute to the total signal.3

In the next section, where we will compare different SFOPT scenarios to each other, we
will refer to this point as benchmark point #14 (see table 1). The numerical values in
eq. (3.7) are all we need to evaluate the expressions for Ωb, Ωs, and Ωt in section 2 and
plot the total GW signal as well as its individual contributions as functions of frequency f
(see figure 1).

In view of figure 1, several comments are in order. In the upper panel of figure 1,
we show the strain noise spectra Ωnoise of all current and future GW experiments that
we consider in this paper. These strain noise spectra, which we review in more detail in
appendix A, are the starting point for constructing both power-law- and peak-integrated
sensitivity curves. As for the second-generation ground-based interferometers (aLIGO,
aVirgo, and KAGRA), we consider three different detector networks that can be formed
by these experiments:

• Hanford-Livingston (HL): aLIGO Hanford + Livingston Observatories (aLHO +
aLLO);

• Hanford-Livingston-Virgo (HLV): aLHO + aLLO + aVirgo;

• Hanford-Livingston-Virgo-KAGRA (HLVK): aLHO + aLLO + aVirgo + KAGRA.
3According to the new results in refs. [160, 161], the GW signal from bubble collisions is actually strongly

suppressed in the xSM (see also refs. [141, 148]). We nevertheless stick to the benchmark point in eq. (3.7)
and its interpretation as a RP phase transition. On the one hand, this facilitates the direct comparison
between our results and the sensitivity plots in ref. [24]. On the other hand, it is expected that similar values
of the SFOPT parameters T∗, α, β/H∗, and φ∗/T∗ can be easily obtained for a RP phase transition in a
hidden scalar sector that does not couple to the SM (see, e.g., ref. [45]). In this sense, “xSM” is understood
to refer to such a hidden-sector equivalent of the actual xSM in the following (see also our discussion in
section 3.6).
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Figure 1. Top: strain noise spectra. Bottom: PLISCs and GW signal for BP #14. See text.
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For the HL and HLVK networks, we indicate the respective design noise spectra [165, 166],
while for the HLV network, we also indicate, in addition to the design noise spectrum, a
noise spectrum representative for observing run 2 (O2) [167–169]. This is also reflected
in our use of color in figure 1. Projected noise spectra based on sensitivity estimates are
represented by simple lines, whereas noise spectra based on existing data are highlighted
by a color shading.

In the lower panel of figure 1, we show the power-law-integrated sensitivities ΩPLIS that
can be constructed from the strain noise spectra Ωnoise according to the algorithm outlined
in appendix A [see eq. (A.29) for the precise definition of ΩPLIS]. All PLISCs in figure 1
are normalized to an SNR threshold %thr = 1; for all future interferometers, we set the
observing time to tobs = 1 yr; and for all future PTA experiments, we use tobs = 20 yr. These
values are not necessarily realistic (see, e.g., the discussion and references in appendix B
of ref. [45]). Our main motivation for setting %thr and tobs to these values rather is to
guarantee an equal normalization of our power-law- and peak-integrated sensitivity curves.
For the purposes of the present paper, this is a reasonable strategy, which allows for a more
direct comparison of our PLISC and PISC plots. In addition to the experimental PLISCs,
the lower panel of figure 1 also displays the GW signal ΩSFOPT for the xSM benchmark
point as well as its three individual contributions, Ωb, Ωs, and Ωt [see eqs. (2.1) and (2.2)].
The bar diagram in this plot indicates that this signal is within the sensitivity reach of
LISA, DECIGO, and BBO. Carrying out the frequency integral in eq. (1.1) for all three
experiments, we obtain

%LISA ' 16 , %DECIGO ' 110 , %BBO ' 290 . (3.8)

The PLISCs in figure 1 convey a useful impression of the different sensitivities of
ongoing and planned GW experiments. The PLISCs for LISA, DECIGO, and BBO leave
in particular no doubt that these three experiments would have (very) good chances to
detect the GW signal from the SFOPT in our xSM benchmark scenario. This is the
important, qualitative message of the PLISC plot in figure 1. Its quantitative information
content, on the other hand, is somewhat limited. Just by inspecting the GW signal and
experimental PLISCs in figure 1, it is, e.g., impossible to precisely infer the expected SNRs
in eq. (3.8). To see this, recall that the numerical results in eq. (3.8) follow from the
frequency integral over the strain noise spectra in the upper panel of figure 1 [see eq. (1.1)].
It is therefore notoriously difficult to include information on the expected SNR in the lower
panel of figure 1. Strictly speaking, the only type of signal for which a PLISC plot lends
itself to a statistical interpretation is a pure power law; hence the name. In this case, the
factor by which the signal curve needs to be rescaled (i.e., the amount by which it needs
to be vertically shifted) in order to align it with an equally sloped tangent of a PLISC can
be interpreted as the corresponding SNR (see appendix A).4 However, for a GW signal
from a SFOPT, the assumption of a pure power law is maximally violated in the most
relevant part of the spectrum, i.e., close to the dominating peak(s) in the spectrum. This

4This interpretation relies on the fact that our PLISCs are normalized to an SNR threshold %thr = 1.
Also note that our normalization agrees with the one chosen by Romano and Thrane in their original
work [85].
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is also nicely illustrated by the signal in the xSM benchmark scenario, which features a
double-peak structure at f ∼ fb, fs and thus clearly deviates from a pure power law in the
frequency range where the signal strength is the largest.

In general, one should therefore take PLISC plots such as the one in figure 1 with
a grain of salt. They typically represent a helpful qualitative visualization; however, for
signals that notably deviate from a power law, they no longer contain useful information on
the SNR. This observation is one of the main motivations behind our new PISC method.
We argue that, as soon as more information on the expected shape of the signal is available,
this information should also be made use of in the construction of sensitivity curves. This
is exactly the situation in which we find ourselves in the context of GWs from a SFOPT,
where the spectral shape of the signal is controlled by Sb, Ss, and St in eq. (2.13). Given
the large and increasing interest in this type of signal, we therefore deem it justified to
construct new sensitivity curves—PISCs—that incorporate knowledge of the expected
signal shape.

In figure 2, we present the PISCs for LISA, DECIGO, and BBO [see eq. (3.4)] in combi-
nation with the predictions for the peak frequencies and peak amplitudes in the xSM bench-
mark scenario. For each PISC that depends on more than just one frequency, we fix the re-
maining frequencies at their respective benchmark values. In each of the six plots in figure 2,
we also indicate the respective partial SNRs in the format log10

(
%LISA

i/j , %DECIGO
i/j , %BBO

i/j
)
[see

eq. (3.2)]. These partial SNRs illustrate a characteristic feature of our PISC plots: They
retain the full information on the SNR, encoding it on the y-axis. That is, in each of the
six plots, the vertical separations between the benchmark point and the PISCs directly
correspond to the respective partial SNRs. The total SNRs in eq. (3.8) then follow from
adding these partial SNRs in quadrature [see eq. (3.1)]. The fact that our method splits the
total SNR into six different contributions also enables one to easily combine and compare
these contributions. From figure 2, we can, e.g., read off that LISA will be most sensitive
to the b/s-channel, i.e., the overlap of the two signals from bubble collisions and sound
waves, while DECIGO and BBO will be most sensitive to the b-channel, i.e., the signal
from bubble collisions only, without any inference from other sources. At the same time, all
three experiments will be least sensitive to the t-channel, i.e., the signal from turbulence.
Similar qualitative conclusions can also be drawn from figure 1, just by looking at the
relation of the signal curve and the three sensitivity curves for LISA, DECIGO, and BBO;
however, the advantage of our PISC plots in figure 2 is that they make these conclusions
quantitatively more precise. Thanks to the partial SNRs in figure 2, it now possible to
assess precisely by how much a signal is dominated by a certain contribution or to what
extent an experiment will be sensitive to the six individual signal channels. Likewise, it is
straightforward to restrict oneself to a particular channel in our approach, while neglecting
all others. Suppose, e.g., we were only interested in the signal from sound waves because we
wanted to compare our analysis with the one in ref. [25]. In this case, the full information
on the projected sensitivities of LISA, DECIGO, and BBO to the GW signal from a phase
transition would be encoded in the middle left panel of figure 2, i.e., the plot of the three
Ωs

PIS curves as functions of fs. We argue that essentially all sensitivity plots presented in
ref. [25] can be mapped onto this single PISC plot.
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Figure 2. PISCs for LISA, DECIGO, and BBO together with the predictions of BP #14. See text.

– 17 –



J
H
E
P
0
1
(
2
0
2
1
)
0
9
7

It is also interesting to compare our PISC plots to the usual scatter or contour plots
of the total SNR as a function of a subset of model parameters, % = % ({pi}), that one
frequently encounters in the literature (see also section 6 in ref. [2]).5 Such SNR plots
typically show the dependence of the SNR on auxiliary SFOPT parameters, such as α,
β/H∗, T∗, etc., on two-dimensional hypersurfaces in parameter space. In principle, one
may produce arbitrarily many SNR plots because of the arbitrarily many possibilities to
slice the higher-dimensional parameter space, and still, one would fail to really capture
the entire available information. In our case, the model parameter space is, by contrast,
projected onto only six frequency – amplitude planes without any loss of information. In
consequence, we do not need to keep any SFOPT parameters fixed at specific values. In
refs. [24, 25], most sensitivity plots assume, e.g., a specific phase transition temperature,
such as T∗ = 50GeV or T∗ = 100GeV. In the case of our PISC plots, this is not necessary.
All benchmark points are simply projected onto the same six planes, irrespective of their
associated T∗ value. The sensitivity curves in these planes (i.e., our PISCs) are moreover
completely independent of the SFOPT parameters. By construction, they only depend on
the experimental noise spectra and spectral shape functions in eq. (2.13). In this sense, they
represent truly experimental quantities that can be studied without worrying much about
questions related to theory and model building.6 This property goes hand in hand with the
fact that our PISCs are formulated in terms of physical observables that are experimentally
accessible and that will likely play an important role in the experimental data analysis.
SNR scatter and contour plots, on the other hand, do not disentangle experimental from
theoretical uncertainties, as they are subject to all uncertainties entering the computation
of the SNR. Still they provide useful information from a model builder’s perspective. In
the end, SNR and PISC plots are complementary to each other, with their combination
being the most powerful approach.

3.3 Comparison of different BSM models

Another advantage of our PISC plots is that they set the stage for a systematic comparison
of the GW phenomenology in different BSM models. To illustrate this point, we shall
revisit the full set of BSM models and benchmark points investigated in ref. [24] in this
section, recasting their respective predictions in terms of our new PISC method. An
equivalent analysis for all models and benchmark points studied in ref. [25] can be found
in ref. [86]. The present work and ref. [86] therefore cover together the full set of results
in refs. [24, 25], illustrating how the sensitivity plots in these two papers can be translated
into our PISC language. Comparing the present paper with ref. [24] and ref. [86] with
ref. [25] thus highlights how improvements in modeling the GW signal are reflected in the
different types of sensitivity plots, i.e., PISC and SNR scatter plots, respectively (see also

5This class of plots includes the SNR plots that can be generated by the online tool PTPlot [ptplot.org].
6Of course, this may change in the future when more refined computations of the spectral shape functions

should require one to incorporate a dependence on the SFOPT parameters in one way or another. In this
case, one will be able to indicate the range of possible spectral shapes, or the uncertainty in the spectral
shapes, by sensitivity bands just like the PISBs in figure 4 (see also figure 1 in ref. [86] for an illustration of
this point).
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Model Type BP T∗ [GeV] α β/H∗ φ∗/T∗

2H
D
M

N
P

#01 51.64 0.111 663 4.53
#02 61.25 0.070 1383 3.69
#03 68.71 0.046 2446 3.15

N
M
SS

M

N
P

#04 76.4 0.143 6.0 3.12
#05 82.5 0.105 33.2 2.83
#06 94.7 0.066 105.9 2.40
#07 112.3 0.037 277 1.89

R
P

#08 76.4 0.143 6.0 3.12
#09 82.5 0.105 33.2 2.83
#10 94.7 0.066 105.9 2.40
#11 112.3 0.037 277 1.89

xS
M

R
P

#12 56.4 0.20 6.42 4.32
#13 59.6 0.17 12.54 4.07
#14 65.2 0.12 29.96 3.70
#15 70.6 0.09 47.35 3.39

SM
EF

T N
P #16 26 2.3 5 9.5

#17 63 0.13 160 4

R
P #18 26 2.3 5 9.5

#19 63 0.13 160 4

D
M

N
P

#20 10 0.1 10 —
#21 10 0.5 100 —
#22 50 0.1 10 —
#23 50 0.5 100 —
#24 100 0.1 10 —
#25 100 0.5 100 —
#26 1000 0.1 10 —
#27 1000 0.5 100 —

RV

#28 10 — 100 —
#29 100 — 100 —
#30 1000 — 100 —
#31 10000 — 100 —

D
ila

to
n

RV

#32 100 — 3 —
#33 100 — 15 —

Table 1. BSM models and benchmark points used in our model comparison in section 3.3. See text.
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Figure 3. PLISCs and GW signals for all benchmark points listed in table 1.

section 3.6). In addition to the xSM, ref. [24] also considers SFOPTs in: (i) the two-
Higgs-doublet model (2HDM) [170, 171], (ii) the next-to-minimal supersymmetric standard
model (NMSSM) [172], (iii) the standard model effective field theory (SMEFT) [173],7 (iv)
a strongly coupled hidden sector giving rise to composite dark matter (DM) [174, 175], and
an approximately conformal dilaton model in the context of warped extra dimensions [176,
177]. A detailed discussion of these models and SFOPT scenarios can be found in refs. [24,
25], which we shall not reproduce here. For our purposes, the entire relevant data describing
these models is contained in table 1, where we list the values of T∗, α, β/H∗, and φ∗/T∗ for
all benchmark points that we shall include in our analysis. For each phase transition, we
also indicate whether we expect it to be of NP, RP, or RV type (see section 2). Here, note
that, for the NMSSM and SMEFT, we consider both NP and RP phase transitions, which
explains why the corresponding benchmark points are duplicated in table 1. As for the
DM and dilaton models, more quantitative analyses of the phase transition dynamics are
still pending. The corresponding benchmark points in table 1 therefore represent educated
guesses rather than precise numerical predictions.

Based on the data in table 1, we are able to repeat our analysis in the previous section
for all 33 benchmark points that we are interested in. First of all, we plot again the
total GW signal and its three individual contributions as functions of frequency for all

7Here, “SMEFT” refers to an extension of the SM Higgs potential by an additional dimension-six
operator.
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33 benchmark points. This results in the busy plot in figure 3, which highlights another
limitation of the standard PLISC approach. PLISC plots such as those in figures 1 and 3
are not well suited for comparing a large number of spectra to each other. This is also
part of the reason why most PLISC plots in the literature only show a handful of spectra.
As soon as one intends to study O (10) or more spectra at the same time, the PLISC
approach becomes highly impractical. One may argue that a possible way out of this
problem might consist in restricting oneself to just plotting points of the form

(
fi,Ωpeak

i
)
.

In this case, our busy collection of signal curves would reduce to a simple scatter plot
that could be compared more easily to the various PLISCs in figure 3. Indeed, this is a
strategy that one sometimes encounters in the literature. We, however, argue that such
an approach corresponds to comparing apples and oranges. PLISCs do represent useful
sensitivity curves; but there is no reason to believe that they are also automatically the
best choice for indicating experimental sensitivities to an ensemble of peak frequencies and
peak amplitudes, a purpose they are not specifically designed for. In the case of GWs from
a cosmological phase transition, PLISC plots simply no longer encode information on the
expected SNR (see our discussion in section 3.2), irrespective of whether one decides to
combine them with a busy collection of signal curves or a

(
fi,Ωpeak

i
)
scatter plot.

Our PISC method amounts, by contrast, to comparing apples and apples. That is,
our PISCs are constructed in exactly such a way that they represent the optimal sensi-
tivity curves to be used in scatter plots of peak frequencies and peak amplitudes. This is
illustrated in figure 4, where we now combine our PISCs for LISA, DECIGO, and BBO
with the predictions of the benchmark points listed in table 1. In contrast to figure 3, the
plots in figure 4 are much easier to read, while at the same time, they still encode the full
SNR information on the y-axis. A slight difference between figure 2 and figure 4, though,
is that we are now no longer able to draw sensitivity curves for all six signal channels; for
all channels involving the signal from turbulence, we have to draw sensitivity bands. The
reason for this is the dependence of the shape function St on the Hubble frequency h∗ [see
eq. (2.13)], whose value is independent of the parameter combination β/H∗/vw, unlike the
values of fb, fs, and ft [see eqs. (2.15) and (2.16)]. In figure 4, the different parameter de-
pendence of h∗ and the three peak frequencies is accounted for by the width of the PISBs,
which reflects the variation of the ratio h∗/ft in our data set. We also point out that, as a
consequence of this finite width, it is not clear whether benchmark points inside PISBs do
or do not have a partial SNR larger than one. To remedy this shortcoming, we distinguish
between “empty” and “filled” points in figure 4, which respectively correspond to partial
SNRs for LISA, %LISA

i/j , smaller or larger than one.
As in the previous section, let us also compare our results to the standard approach

of SNR scatter and contour plots. In contrast to these standard plots, our PISC plots in
figure 4 do not require contour lines or a color code to indicate the expected SNR. This
provides us with the freedom to use a color code for distinguishing between the predictions
of different models. Similarly, the fact that we do not rely on SNR contour lines in figure 4
allows us to plot and compare the PISCs and PISBs of three future experiments at the
same time. We argue that such a simultaneous comparison of different models and different
experiments would be significantly more difficult if one were to work with SNR plots only.
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Figure 4. PISCs for LISA, DECIGO, and BBO together with the predictions of all BPs. See text.
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Finally, we stress once more that it would be trivial to restrict oneself to individual signal
channels in our analysis. For instance, if one were interested in the signal from sound waves
only, the entire relevant information would be readily contained in the middle left panel of
figure 4.

3.4 Relaxing some of the underlying assumptions

The sensitivity curves and bands in figures 2 and 4 are constructed in such a way that they
have a natural interpretation in terms of the expected SNR. Consider, e.g., a benchmark
point that is separated from the PISC in the i/j-channel by a multiplicative factor ∆y
along the y-axis. Thanks to the definitions and conventions adopted in section 3.1, this
benchmark point predicts a partial SNR of exactly %i/j = ∆y. Benchmark points that
directly lie on a PISC correspondingly predict %i/j = 1. Each of our PISCs is therefore
canonically normalized to a unit threshold value for the corresponding partial SNR. Simi-
larly, all of our PISCs and PISBs are normalized to an observing time of tobs = 1 yr, which
we simply choose for convenience. Our PISBs rely in addition on the explicit expressions
for the Hubble and peak frequencies in eqs. (2.15) and (2.16). In this section, we shall now
demonstrate how our plots can be generalized if one is interested in relaxing some of these
assumptions, i.e., if one is interested in a different normalization or a different relation
among the Hubble and peak frequencies.

In a first step, let us generalize eqs. (3.1), (3.2), and (3.4) to arbitrary %thr and tobs,

% =
√
%2

b + %2
s + %2

t + %2
b/s + %2

b/t + %2
s/t , (3.9)

%i/j = %thr
Ωpeak

i/j

Ωi/j
PIS (%thr, tobs)

,

Ωi/j
PIS (%thr, tobs) = %thr

[
(2− δij)ndet tobs

∫ fmax

fmin
df
Si (f)Sj (f)
Ω2

noise (f)

]−1/2

,

where %thr now denotes the partial SNR threshold for a single channel. The generalized
peak-integrated sensitivity in the i/j-channel can thus be interpreted as the minimal peak
amplitude that is necessary to reach, after an observing time tobs, a partial SNR of %thr
in this channel. A hypothetical scenario predicting peak amplitudes that just reach the
respective threshold sensitivities in all six channels would therefore predict a total SNR of
% =

√
6 %thr. As evident from eq. (3.9), the generalized sensitivities scale as follows with

%thr and tobs,

Ωi/j
PIS (%thr, tobs) ∝

%thr√
tobs

, (3.10)

which is the same dependence as in the case of the usual power-law-integrated sensitivities
[see eq. (A.29)]. We illustrate this scaling behavior in figure 5, we where plot the generalized
PISC for LISA in the b-channel for different values of %thr and tobs. The main message
of this plot is twofold: First of all, it demonstrates that our method allows for an easy
implementation of different SNR thresholds. Once the base PISCs for %thr = 1 have been
constructed, the sensitivity curves for larger or smaller SNR thresholds can be obtained by
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Figure 5. PISC for LISA in the b-channel for different values of %thr and tobs. See eq. (3.9).

simply shifting these base curves up or down, i.e., by rescaling them by a factor %thr. This
needs to be compared to the situation in the case of SNR scatter and contour plots, which
typically do not exhibit a universal relation between shifts in the expected SNR, ∆%, and
shifts in one of the coordinate directions, ∆x or ∆y. The second message of figure 5 is
that our PISC plots are reminiscent of plots that one often encounters in other fields of
experimental physics, such as, e.g., the standard sensitivity plots for DM direct-detection
experiments or the Brazil-band plots that were often shown by the experiments at the Large
Hadron Collider prior to the discovery of the SM Higgs boson. What we mean by this is
that our PISC plots show, in a manner intuitive for particle physicists, how future GW
experiments will approach from above and cut into the signal regions of specific SFOPT
scenarios. As in the case of the DM and Higgs plots, a better sensitivity reach of an
experiment corresponds to a PISC extending to lower values along the y-axis in our plots.
Thanks to the scaling with the observing time tobs in eq. (3.10), the expected experimental
progress over the years can in particular be pictured as pushing our PISCs further and
further down in the vertical direction. Again, the situation in the case of SNR scatter and
contour plots is quite different, as these plots typically do not exhibit any simple scaling
relation with respect to the observing time tobs.

Next, let us briefly discuss an alternative presentation of the sensitivity bands in fig-
ure 4. To this end, suppose that future progress will lead to a better theoretical under-
standing of the peak frequencies fb, fs, ft, in particular, to the realization that ft is in fact
not simply proportional to h∗ times one power of the parameter combination β/H∗/vw. In
this case, it will be helpful to have a proper understanding of the full dependence of Ωt

PIS
on both frequencies, ft and h∗ [see eq. (3.6)]. Therefore, instead of constructing sensitiv-
ity bands as in figure 4, one may as well work with contour plots of Ωt

PIS in the ft –h∗
plane (see figure 6). Similar contour plots can also be drawn for the sensitivities in the
b/t- and s/t-channels. The advantage of this alternative presentation is that the Hubble
frequency h∗ now no longer corresponds to a hidden parameter. In figure 4, it is unclear by
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Figure 6. PISCs for LISA, DECIGO, and BBO in the t-channel as functions of ft and h∗. See text.

construction with which curves in a PISB one should respectively compare the individual
benchmark points. The plots in figure 6 offer a trivial solution to this problem, as they
explicitly feature h∗ on the y-axis. The disadvantage of this method, however, is that it
requires contour lines to indicate the experimental sensitivity. In this sense, the partial
SNR is now encoded in the z-direction, which means that one looses some of the attractive
properties of our PISC plots. In figure 6, we use, e.g., empty and filled symbols to indi-
cate which benchmark points predict a partial SNR smaller or larger than one. However,
beyond that, the plots in figure 6 contain no further information on the expected SNR.
In particular, it is unclear how far the individual points are separated from the threshold
sensitivity at their respective locations in the ft –h∗ plane.

3.5 Runaway phase transitions in vacuum

The only free parameters in the case of a RV phase transition are β/H∗ and T∗ (see
section 2). All other SFOPT parameters are fixed at the values listed in eq. (2.11). At
the same time, the only relevant source of GWs during a RV phase transition are bubble
collisions. For this type of phase transition, there is hence a one-to-one correspondence
between β/H∗ and T∗ on the one hand and the peak frequency and peak amplitude in
the b-channel on the other hand. This relation is shown in figure 7, where we overlay
the PISC plot for the signal from bubble collisions with contours of constant β/H∗ and
T∗. As can be read off from this plot, LISA will be sensitive to β/H∗ values as large as
β/H∗ ∼ 104 if T∗ is close to 10GeV, while DECIGO and BBO will be able to probe RV
phase transitions up to β/H∗ ∼ 105 for temperatures T∗ in the same range. Our results
for LISA in figure 7 are consistent with figure 6 in ref. [24], which shows LISA’s sensitivity
to the signal from bubble collisions in the β/H∗ –T∗ plane. The main difference between
figure 7 and figure 6 in ref. [24], however, is that our PISC plot encodes the full SNR
information on the y-axis. Despite the fact that both plots are related by nothing but a
simple parameter transformation, this is a distinct advantage of our figure 7.

The plot in figure 7 represents a simple example that demonstrates how information
on the underlying SFOPT parameters can be included in PISC plots. Further, more so-
phisticated examples can be found in the companion paper [2], where we use our PISC
method for a comprehensive analysis of the GW signal in the xSM. In ref. [2], we espe-
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Figure 7. Contours of constant β/H∗ and T∗ in the case of a runaway phase transition in vacuum.

cially show how PISC plots can be used to investigate the dependence of the signal on the
SFOPT parameters as well as on model parameters such as particle masses or coupling
constants. In addition, we use our PISC plots as a starting point for constructing distri-
bution functions (i.e., histograms) in the space of peak frequencies and peak amplitudes.
These distribution functions provide a useful tool to characterize the GW phenomenology
of the xSM, in particular, when combined with data on the underlying model parameters.
In future work, it would be interesting to repeat our analysis in ref. [2] for a broad class of
BSM models. Such a global analysis, including PISC plots and histograms such as those
in ref. [2], would allow for a comprehensive model comparison at both the qualitative and
quantitative level.

3.6 New signal predictions after theory updates

In this paper, we apply our PISC approach to all models and benchmark points in ref. [24],
which allows us to demonstrate how to use our method if the total GW signal receives three
individual contributions, Ωb, Ωs, and Ωt (see the discussion in section 2). An equivalent
analysis for the models and benchmark points in ref. [25], which only considers the GW
signal from sound waves, can be found in ref. [86]. In this section, we shall now demonstrate
how the different modeling of the signal in refs. [24, 25] is reflected in our PISC plots. As we
shall see, this highlights another advantage of our method: Any update in the theoretical
description of the signal that does not affect the spectral shape functions in eq. (2.13)
leaves our sensitivity curves invariant. An improved theoretical understanding of the peak
amplitudes and peak frequencies merely shifts the individual benchmark points in our
plots.8 This needs to be compared to the SNR scatter plots in refs. [24, 25] as well as
to the plots generated by the online tool PTPlot, which crucially depend on the precise

8In the context of a particular model, this feature could, e.g., be exploited to discuss the “trajectories”
of individual benchmark points in our PISC plots that reflect their evolution in consequence of a theory
update.
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modeling of the GW source. At the same time, we emphasize once more that any future
update of the spectral shape functions in eq. (2.13) will require an update of the PISCs
presented in this paper.

An important difference between refs. [24, 25] is that ref. [25] discards the GW signal
from bubble collisions (as well as the GW signal from turbulence, which still requires a
better theoretical understanding). The reason for this is the realization [141, 148, 160, 161]
that the efficiency factor κb can be significantly suppressed compared to earlier estimates
[see eq. (2.9)]. As pointed out in ref. [141], soft particle emission by particles passing
through the bubble walls (so-called transition radiation or splitting processes) leads to an
additional pressure acting on the bubble walls in proportion to the wall Lorentz factor
∆Psplit ∝ γn. While the next-to-leading-order calculation in ref. [141] found a scaling
exponent n = 1, the all-orders resummation in ref. [161] recently demonstrated that, in
reality, n = 2.9 Based on this result, ref. [160] obtained the following updated expression
for the efficiency factor κb,

κb =
(

1− α∞
α

)
×

1− 1/3 (γ̃∗/γeq)2 ; γ̃∗ < γeq

2/3 γeq/γ̃∗ ; γ̃∗ > γeq
, (3.11)

where γeq denotes the Lorentz factor that is reached when all forces acting on the bubble
walls have equilibrated, so that the walls no longer accelerate, and γ̃∗ is the Lorentz factor
that the bubble walls would reach by the time of collision if there was no friction whatsoever,

γeq =
(

∆V −∆P
Psplit/γ2

)1/2

, γ̃∗ = 2R∗
3R0

. (3.12)

Here, ∆V is the change in the effective potential across the phase transition, ∆P stands
for the leading-order friction term, and R0 and R∗ denote the average bubble radius at
the time of nucleation and collision, respectively. In many models, one finds that—unless
the phase transition is strongly supercooled or transition radiation significantly suppressed
(e.g., because the symmetry-breaking field does not couple to gauge bosons)— γeq is typi-
cally much smaller than γ̃∗. This means that many phase transitions that were originally
believed to be of the RP type are actually NP phase transitions, where the bubble walls
reach a terminal velocity, γ∗ = min {γ̃∗, γeq} = γeq, and the efficiency factor κb is strongly
suppressed, κb � 1.

The improved understanding of κb affects benchmark points #08 to #15, #18, and
#19. In principle, it would be desirable to reconsider all of these points, making use of
the updated expression in eq. (3.11). However, this is complicated by the fact that γ̃∗
depends on the initial bubble radius R0, which requires knowledge of the initial profile and
Euclidean action of the symmetry-breaking scalar field at the time of nucleation [148]. In
the companion paper [2], we perform such an analysis for the xSM, which confirms that
κb � 1 across the entire parameter space. Therefore, instead of explicitly computing R0
and reevaluating κb for points #08 to #15, #18, and #19, we simply conclude that all

9Related analyses recently appeared in refs. [178, 179].
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Figure 8. Update of the benchmark points in ref. [24] according to refs. [34, 160, 161]. See text.

RP phase transitions in table 1 should either be ignored or replaced by an equivalent NP
phase transition.

A second difference between refs. [24, 25] is that ref. [25] accounts for the formation of
shocks at some time τsh after the phase transition. If this happens within a Hubble time,
H∗τsh < 1, the GW signal from sound waves picks up an extra suppression factor [34, 180],10

Ωpeak
s → min {1, H∗τsh} × Ωpeak

s , (3.13)

where H∗τsh can be computed in terms of the enthalpy-weighted root-mean-square of the
plasma velocity, Ūf , which follows from the kinetic-energy fraction of the bulk plasma, K,

H∗τsh = (8π)1/3 vw
β/H∗

1
Ūf

, Ūf =
(3

4 K
)1/2

, K = κs α

1 + α
. (3.14)

In figure 8, we summarize how the different treatment of κb and Ωpeak
s in ref. [25]

compared to ref. [24] affects our PISC plot in the s-channel. In this figure, we no longer
show the predictions of the RP phase transitions in the NMSSM and SMEFT; we replace
the RP phase transitions in the xSM by equivalent NP phase transitions; and we rescale
all peak amplitudes by the suppression factor in eq. (3.13). These three steps remove and
shift some of our benchmark points. However, for the purposes of this paper, the main
message of figure 8 is that the three PISCs simply remain the same as in the middle left
panel of figure 2, despite the comprehensive theory update. Of course, an update of the
spectral shape functions would require a revision of the sensitivity curves. A more extensive
version of figure 8, including almost 4000 benchmark points for ten different particle physics
models, can be found in ref. [86]. Both plots will continue to serve as useful resources in
the future when new theoretical predictions for fs and Ωpeak

s should become available (see,
e.g., refs. [157, 158]).

10For a generalization of this factor that also accounts for the expansion of the background, see ref. [181].
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Figure 9. Numerical results and fit functions for the PISCs in the b-, s-, and t-channel.

3.7 Semianalytical fit functions

In the previous sections, we studied 18 different sensitivities: We considered three different
experiments (LISA, DECIGO, and BBO), and for each experiment, we constructed PISCs
in six different channels (b, s, t, b/s, b/t, s/t). We shall now conclude our analysis by
providing semianalytical fit functions for all of these 18 sensitivities. In doing so, let us
assume that all sensitivities can be reasonably well approximated by power series of the
following form,

Ωi/j
PIS (fb, fs, ft, h∗) '

∑
a,b,c,d

c(a,b,c,d) f
a
b f

b
s f

c
t h

d
∗ , (3.15)

for an appropriate set of 4-tuples (a, b, c, d) ∈ R4. Based on this ansatz, we are then able to
fit our numerical data and determine the coefficients c(a,b,c,d) for each of our 18 sensitivities.
Below, we present our results for LISA, DECIGO, and BBO using the following notation,

xb = fb
1mHz , xs = fs

1mHz , xt = ft
1mHz , xb/s = fb

fs
, xb/t = fb

ft
, xt/h = ft

h∗
.

(3.16)

Our fit functions are constructed such that they reproduce our numerical results to high
precision across the entire range of relevant frequencies. This is, e.g., illustrated in figure 9,
where we compare our numerical results and fit functions in the b-, s-, and t-channels to
each other. In the other three channels, our fit functions are of an equally high quality.

LISA:

h2Ωb
PIS

10−14 ' 2.63× 100 x−1
b + 3.26× 10−1 x1

b + 3.29× 10−3 x2
b + 4.67× 10−3 x2.8

b , (3.17)

h2Ωs
PIS

10−14 ' 3.58× 10−3 x−4
s + 3.26× 10−1 x−3

s + 1.20× 100 x−2
s + 2.48× 100 x−1

s (3.18)

+ 2.85× 10−1 x1
s + 1.81× 10−2 x2

s + 1.50× 10−3 x3
s ,

h2Ωt
PIS

10−12 ' 1.07× 100 x0.98
t/h x

−5/3
t + 1.96× 100 x1.04

t/h x−1
t + 3.50× 100 x0.96

t/h x0
t (3.19)

+ 4.77× 10−1 x1.03
t/h x1

t + 3.32× 10−2 x0.96
t/h x2

t + 1.05× 10−4 x0.05
t/h x3

t ,
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h2Ωb/s
PIS

10−14 ' 3.79× 10−1 x−0.48
b/s x−2.5

s + 1.27× 10−1 x−0.62
b/s x−2

s + 1.82× 100 x−0.48
b/s x−1

s (3.20)

+ 1.39× 10−1 x−0.51
b/s x0

s + 1.02× 10−1 x−0.51
b/s x1

s + 3.77× 10−3 x0.58
b/s x

2
s

+ 1.87× 10−3 x1.40
b/s x

2.9
s ,

h2Ωb/t
PIS

10−13 ' 1.18× 100 x−0.57
b/t x0.45

t/h x
−4/3
t + 5.27× 10−1 x−0.27

b/t x0.62
t/h x−1

t (3.21)

+ 1.32× 100 x−0.59
b/t x0.46

t/h x0
t + 4.26× 10−2 x1.20

b/t x
0.55
t/h x2

t

+ 3.68× 10−4 x1.47
b/t x

0.23
t/h x2.9

t ,

h2Ωs/t
PIS

10−13 ' 3.19× 10−1 x0.50
t/h x

−17/6
t + 2.06× 100 x0.50

t/h x−2
t + 3.25× 100 x0.51

t/h x−1
t (3.22)

+ 7.77× 10−1 x0.39
t/h x0

t + 1.61× 10−1 x0.56
t/h x1

t + 1.74× 10−2 x0.34
t/h x2

t

+ 9.58× 10−4 x0.63
t/h x2.5

t + 1.76× 10−4 x−0.13
t/h x3

t .

DECIGO:
h2Ωb

PIS
10−15 ' 2.06× 100 x−1

b + 7.61× 10−3 x0
b + 4.58× 10−5 x1

b + 2.19× 10−7 x2
b (3.23)

+ 6.35× 10−10 x2.8
b ,

h2Ωs
PIS

10−14 ' 3.82× 10−1 x−4
s + 2.26× 100 x−1.5

s + 1.10× 10−3 x0
s + 2.56× 10−6 x1

s (3.24)

+ 2.91× 10−8 x2
s + 7.54× 10−12 x3

s ,

h2Ωt
PIS

10−13 ' 5.31× 100 x1.00
t/h x

−5/3
t + 3.34× 100 x1.00

t/h x−1
t + 3.75× 10−2 x0.99

t/h x0
t (3.25)

+ 2.16× 10−4 x1.01
t/h x1

t + 1.92× 10−7 x0.96
t/h x2

t + 9.33× 10−12 x0.07
t/h x3

t ,

h2Ωb/s
PIS

10−15 ' 6.27× 100 x−0.49
b/s x−2.5

s + 6.17× 100 x−0.53
b/s x−1.5

s + 1.29× 100 x−0.44
b/s x−1

s (3.26)

+ 2.07× 10−3 x−0.66
b/s x0

s + 2.18× 10−5 x−0.63
b/s x1

s + 1.76× 10−7 x0.85
b/s x

2
s

+ 1.23× 10−10 x1.24
b/s x

2.9
s ,

h2Ωb/t
PIS

10−14 ' 2.75× 100 x−0.51
b/t x0.49

t/h x
−4/3
t + 6.57× 10−1 x−0.46

b/t x0.53
t/h x−1

t (3.27)

+ 2.45× 10−2 x−0.52
b/t x0.49

t/h x0
t + 2.65× 10−7 x1.10

b/t x
0.49
t/h x2

t

+ 6.04× 10−11 x1.84
b/t x

0.38
t/h x2.9

t ,

h2Ωs/t
PIS

10−13 ' 1.01× 100 x0.50
t/h x

−17/6
t + 2.56× 100 x0.50

t/h x−1.5
t + 1.55× 10−1 x0.49

t/h x−1
t (3.28)

+ 7.02× 10−4 x0.50
t/h x0

t + 8.09× 10−6 x0.50
t/h x1

t + 6.91× 10−9 x0.49
t/h x2

t

+ 1.32× 10−10 x0.51
t/h x2.5

t + 3.56× 10−13 x0.13
t/h x3

t .

BBO:
h2Ωb

PIS
10−16 ' 8.24× 100 x−1

b + 1.61× 10−2 x0
b + 1.98× 10−4 x1

b + 4.24× 10−9 x2
b (3.29)

+ 2.06× 10−9 x2.8
b ,
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h2Ωs
PIS

10−14 ' 1.77× 10−1 x−4
s + 1.06× 100 x−1.5

s + 1.35× 10−4 x0
s + 2.23× 10−6 x1

s (3.30)

+ 1.29× 10−9 x2
s + 2.99× 10−12 x3

s ,

h2Ωt
PIS

10−13 ' 2.44× 100 x1.00
t/h x

−5/3
t + 1.41× 100 x1.00

t/h x−1
t + 1.00× 10−2 x1.00

t/h x0
t (3.31)

+ 5.06× 10−5 x1.00
t/h x1

t + 3.19× 10−8 x0.98
t/h x2

t + 1.37× 10−12 x0.31
t/h x3

t ,

h2Ωb/s
PIS

10−15 ' 2.94× 100 x−0.49
b/s x−2.5

s + 3.07× 100 x−0.51
b/s x−1.5

s (3.32)

+ 4.98× 10−1 x−0.47
b/s x−1

s + 2.62× 10−4 x−0.64
b/s x0

s

+ 8.53× 10−6 x−0.50
b/s x1

s + 6.33× 10−11 x1.44
b/s x

2.9
s ,

h2Ωb/t
PIS

10−14 ' 1.20× 100 x−0.51
b/t x0.49

t/h x
−4/3
t + 2.72× 10−1 x−0.45

b/t x0.53
t/h x−1

t (3.33)

+ 7.18× 10−3 x−0.53
b/t x0.49

t/h x0
t + 4.28× 10−8 x1.12

b/t x
0.50
t/h x2

t

+ 1.39× 10−11 x1.73
b/t x

0.38
t/h x2.9

t ,

h2Ωs/t
PIS

10−13 ' 4.67× 10−1 x0.50
t/h x

−17/6
t + 1.21× 100 x0.50

t/h x−1.5
t + 6.27× 10−2 x0.49

t/h x−1
t (3.34)

+ 1.53× 10−4 x0.50
t/h x0

t + 2.07× 10−6 x0.50
t/h x1

t + 5.91× 10−10 x0.40
t/h x2

t

+ 2.71× 10−11 x0.55
t/h x2.5

t + 2.90× 10−13 x−0.29
t/h x3

t .

The above fit functions allow us to write down a quasianalytic expression for the SNR,

% =

 tobs
1 yr

∑
i/j

 Ωpeak
i/j

Ωi/j
PIS (fb, fs, ft, h∗)

2


1/2

(3.35)

for LISA, DECIGO, and BBO, respectively. In this sense, the concept of PISCs in combi-
nation with the fit functions presented in this section amount to a quasianalytic solution to
the problem of computing the SNR for the GW signal from a cosmological phase transition.
As evident from eq. (3.35), this analytic solution only depends on the SFOPT parameters
α, β/H∗, T∗, vw, κb, κs, and κt; the frequency dependence of the signal as well as the exper-
imental noise spectra are already take care of by our fit functions. Our result in eq. (3.35)
therefore renders any further numerical step (i.e., integration) in the computation of %
obsolete. With the results in this section at hand, the SNR can be evaluated analytically.
This is in particular also true if one is only interested in the signal from a single source.
Suppose, e.g., we were only interested in LISA’s sensitivity to the signal from sound waves.
In this case, the full information on the expected SNR will be contained in the following
expression,

%LISA
s =

(
tobs
1 yr

)1/2 Ωpeak
s

c−4 x
−4
s + c−3 x

−3
s + c−2 x

−2
s + c−1 x

−1
s + c1 x1

s + c2 x2
s + c3 x3

s
, (3.36)

where the numerical values of the coefficients c−4, c−3, etc. can be read off from eq. (3.18).
This is an important result of our analysis. We stress that it is independent of the explicit
form of Ωpeak

s , such that it can be compared to the results in both ref. [24] and ref. [25].
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4 Conclusions and outlook

For a DM direct-detection experiment, it is typically straightforward to answer the follow-
ing two questions: (i) “What is the experiment’s sensitivity to the DM cross section σDM
as a function of the DM mass mDM?” (ii) “To what extend will the experiment explore
the parameter regions preferred by specific DM scenarios?” This situation in the field of
DM experiments needs to be compared to searches for GWs from a SFOPT in the early
Universe. In this case, one can likewise ask: (i) “What is an experiment’s sensitivity to
the GW signal ΩSFOPT as a function of the GW frequency f ?” (ii) “To what extend will
it explore the parameter regions preferred by specific SFOPT scenarios?” In contrast to
DM searches, there are at present no commonly accepted answers to these questions in the
GW community. Existing approaches, such as PLISC and SNR plots, certainly do convey
a useful impression of the sensitivities of current and future experiments, but still suffer
from a number of shortcomings. Graphical analyses based on PLISCs no longer contain
information on the expected SNR and are only meaningful as long as the expected signal
does not deviate too much from a pure power law. SNR plots, on the other hand, present
the reach of GW experiments in terms of auxiliary parameters instead of observable quan-
tities, are often times restricted to two-dimensional slices through the higher-dimensional
parameter space, and require additional elements such as a color code or contour lines to
indicate the expected SNR. In this sense, neither of these approaches is truly on par with
the sensitivity curves for DM experiments. This observation is the basis for our PISC
proposal. Suppose, e.g., one asked: “What is LISA’s projected sensitivity to GWs from
sound waves?” We argue that the best possible answer to this question would be LISA’s
Ωs

PIS curve as a function of fs [see figure 8 as well as eqs. (3.18) and (3.36)].
The PISCs constructed in this paper exhibit twelve characteristic features (see also

section 6 of ref. [2]). They (i) retain the full information on the SNR, encoding it on
the y-axis of the PISC plots; (ii) do not require extra graphical elements such as a color
code or contour lines to indicate the expected SNR; (iii) do not require one to slice the
parameter space into hypersurfaces; (iv) only depend on the experimental noise spectra
and spectral shape functions in eq. (2.13), which renders them insensitive to the theoret-
ical uncertainties in calculating the peak amplitudes in eq. (2.12); (v) can be generalized
to arbitrary shape functions S; (vi) indicate sensitivities in terms of observables that will
play an important role in the experimental data analysis rather than auxiliary quantities;
(vii) directly illustrate how GW experiments will approach from above and cut into the
signal regions of specific models; (viii) set the stage for the systematic analysis of under-
lying model-parameter dependences (see the example study in ref. [2]); (ix) allow for an
easy comparison of the projected sensitivities of different experiments; (x) allow one to
combine and compare different signal contributions at one’s convenience; and (xi) close
the gap between experiment and theory by eliminating the model-independent and redun-
dant frequency integration in eq. (1.1). It is also easy to (xii) approximate our PISCs by
fit functions, such that the SNR can be written as a function of the SFOPT parameters
only. In this sense, our PISC method provides a quasianalytical solution to the problem
of computing the SNR for the GW signal from a SFOPT. At the same time, we stress the
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important caveat that the PISCs presented in this paper are always only as good as our
knowledge of the spectral shape functions in eq. (2.13). Each update of these functions
will require an update of our sensitivity curves. This opens up the possibility to use PISC
plots as a bookkeeping tool to keep track of the theoretical progress in the field. Similarly,
the sensitivity curves constructed in this paper can be generalized to sensitivity bands
indicating the theoretical uncertainty in the expected shape of the GW spectrum [86].

There are several natural directions in which our analysis in this paper could be ex-
tended. An obvious extension would, e.g., consist in applying our method to further ex-
periments. To facilitate such an analysis, we review the strain noise spectra of a number
of interferometer and PTA experiments in appendix A. Beyond that, our method could
also be extended to experiments that we do not consider in appendix A, such as, e.g.,
AEDGE [182], AIGSO [183, 184], AION [185], AMIGO [186], Taiji [187], TianGO [188],
TianQin [189, 190], etc. Furthermore, it would be desirable to repeat our xSM analysis
in the companion paper [2] for as many BSM models as possible. The ultimate goal of
such an effort would be a comprehensive database providing the necessary means for a sys-
tematic and quantitative model comparison. Similarly as in the case of DM experiments,
such a database would allow one to construct the signal regions for various models and to
illustrate, by means of our PISC plots, how these signal regions are going to be probed by
future experiments. The plots in figure 4 provide a glimpse of how such a simultaneous
comparison of different models and different experiments could eventually look like. How-
ever, to be able to make stronger and more quantitative statements, it will be necessary
to consider a significantly larger number of benchmark points for each model. In ref. [2],
e.g., we study roughly 6000 points, which is necessary to fully chart and trace out the
signal region of the xSM in our PISC plots. Finally, we point out that our PISC method
could also be extended to any SGWB signal whose spectral shape is described by a clearly
defined shape function S. In this case, one would be able to construct shape-integrated
sensitivity curves (SISCs) in analogy to our PISCs. We leave a more detailed discussion of
this possibility for future work. Instead, we conclude by stressing that the novel concept of
peak-integrated sensitivity curves bears the potential to develop into a new useful standard
tool for model builders, phenomenologists, and experimentalists that are interested in the
GW signal from a phase transition in the early Universe.
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A Review: noise spectra of interferometer and pulsar timing experi-
ments

The construction of both power-law- and peak-integrated sensitivity curves requires knowl-
edge of the experimental strain noise power spectra. In this appendix, we shall therefore
review the strain noise spectra of LISA, DECIGO, and BBO, and in addition, several
other interferometer and PTA experiments. Specifically, we are going to consider: aLIGO,
aVirgo, KAGRA, CE, ET, LISA, DECIGO, BBO, NANOGrav, PPTA, EPTA, IPTA, and
SKA. As for the second-generation ground-based interferometers (aLIGO, aVirgo, and KA-
GRA), we will derive the effective strain noise spectra of three different detector networks:
HL, HLV, and HLVK (see section 3.2). Our analysis in this appendix is supposed to fa-
cilitate the generalization of our PISC method to experiments beyond LISA, DECIGO,
and BBO. In addition, we hope that it will serve as a useful resource for a broader range
of applications.

In section A.1, we will first introduce the necessary formalism and fix our conventions.
In section A.2, we will then present all relevant transfer functions (i.e., signal response
and overlap reduction functions), before turning to the individual detector noise spectra in
section A.3. In section A.4, we will finally put everything together and construct the strain
noise spectra. For an overview of all quantities playing a role in the following discussion,
see table 2.

A.1 Formalism

We are interested in experimental searches for a stochastic, Gaussian, stationary, isotropic,
and unpolarized GW background. A detailed review of the formalism to describe such
searches can be found in ref. [191]. In the following, we will adopt the conventions of
ref. [191], but restrict ourselves to a briefer exposition and customize our notation. Most
SGWB searches aim at measuring a nonzero cross-correlation signal in the outputs of two
detectors whose intrinsic noise spectra are uncorrelated [15, 83, 84]. Let us now outline
the main quantities entering the description of such a measurement and derive the ex-
pected SNR.

The raw data dI of a single detector I amounts to a time series output of the form

dI (t) = sI (t) + nI (t) , (A.1)

which receives a signal contribution sI and a noise contribution nI . Here, the signal
contribution represents the detector response to the incoming GWs, which depends on both
the properties of the GWs and the geometry of the detector. In the following, large parts
of our discussion will refer to the frequency domain, where dI , sI , and nI are replaced
by their Fourier transforms d̃I , s̃I , and ñI . In our convention, these Fourier modes are
defined via

FI (t) =
∫ ∞
−∞

df F̃I (f) e2πift , F ∈ {d, s, n} . (A.2)

Both the signal and the noise modes are assumed to correspond to Gaussian random
variables. Without loss of generality, we can set the expectation values of all modes to
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Quantity Definition
hij GW in position space (tensor perturbation of the spacetime metric)
hp

n GW mode in Fourier space describing a sinusoidal plane wave
Ssignal GW strain power spectrum
Ωsignal GW energy density spectrum
Ωgw GW energy density integrated over all frequencies and normalized to ρc

dI Time series data recorded by detector I
d̃I Fourier transform of dI (data mode in Fourier space)
SIJ Filtered cross-correlation signal of a pair of detectors IJ
QIJ Optimal filter function for a pair of detectors IJ
Q̃IJ Fourier transform of QIJ (optimal filter function in Fourier space)
sI Signal response of detector I (signal contribution to the time series data)
s̃I Fourier transform of sI (signal mode in Fourier space)
CIJ Covariance matrix for the signal responses in a detector network
C̃IJ Signal response cross power spectrum of a pair of detectors IJ
nI Noise of detector I (noise contribution to the time series data)
ñI Fourier transform of nI (noise mode in Fourier space)
DI

noise Detector noise auto power spectrum of detector I
SI

noise Strain noise auto power spectrum of detector I
Seff

noise Effective strain noise power spectrum of a detector network
Ωnoise Seff

noise expressed in terms of a GW energy density spectrum
Rij

I Impulse response of detector I
Rp

n,I Response function of detector I (absolute value defines antenna pattern)
RI Signal response function (detector transfer function) of detector I
ΓIJ Overlap reduction function of a pair of detectors IJ
γIJ Normalized overlap reduction function of a pair of detectors IJ

Table 2. Overview of different quantities playing a role in this appendix.

zero,
〈
F̃I
〉

= 0. The entire available information on the statistical properties of both the
signal and the noise is thus contained in quadratic expectation values of the form

〈
F̃I F̃

∗
J

〉
,

where J = I or J 6= I. For a single detector I, 〈ñI ñ∗I〉 defines, e.g., the detector noise auto
power spectrum DI

noise,〈
ñI
(
f
)
ñ∗I
(
f ′
)〉

= 1
2 δ

(1) (f − f ′) DI
noise (f) . (A.3)

Here, the factor 1/2 reflects the fact that, in our convention, all power spectra are defined to
be single-sided. The variance of the detector noise, σ2

I , can therefore be written as follows,

σ2
I =

〈
n2
I

〉
−
〈
nI

〉2
=
〈
n2
I

〉
=
∫ ∞

0
df DI

noise (f) , (A.4)

with DI
noise being integrated over the frequency range [0,+∞) rather than (−∞,+∞).
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Next, let us consider a network of detectors, I, J = 1, 2, · · · , and derive a similar integral
representation for its response to the signal. In this case, we now have to compute the
covariance matrix CIJ = 〈sIsJ〉 − 〈sI〉 〈sJ〉 = 〈sIsJ〉 instead of just a single variance. The
two-point correlation function 〈sIsJ〉 accounts again for both the properties of the SGWB
and the geometry of the detector network. The incoming GWs are described by tensor
perturbations of the spacetime metric gµν . In transverse-traceless gauge, we can write

gµν (t,x) dxµdxν = −dt2 + (δij + hij (t,x)) dxidxj , (A.5)

where the tensor perturbations hij can be decomposed into plane waves as follows,

hij (t,x) =
∑

p=+,×

∫ ∞
−∞

df

∫
d2n hpn (f) (epn)ij e

2πif(t−nx) . (A.6)

Here, hpn (f) denotes the amplitude of a sinusoidal plane GW with frequency f , polarization
p, and propagation direction n, while (epn)ij is the corresponding polarization tensor,

(epn)ij = (epn)ji , (epn)ii = 0 , ni (epn)ij = 0 , (epn)ij (ep′n )∗ij = 2 δpp′ . (A.7)

Analogous to eq. (A.3), the quadratic expectation value of the Fourier modes hpn reads

〈
hpn
(
f
)
hp
′∗

n′
(
f ′
) 〉

= 1
16π δ

pp′ δ(2) (n− n′
)
δ(1) (f − f ′)Ssignal (f) , (A.8)

where the Kronecker delta and Dirac delta functions account for the fact that we assume
the SGWB to be unpolarized, isotropic, and stationary. The nontrivial information on the
r.h.s. of eq. (A.8) is encoded in the GW strain power spectrum Ssignal, which describes
the total strain power of the SGWB summed over both polarization states, p = +,×,
and integrated over the entire sky as a function of frequency. Analogous to eq. (A.4),
the strain power spectrum can be used to write down an integral representation of the
strain variance,11

σ2
h =

〈
hijh

∗
ij

〉
−
〈
hij

〉〈
h∗ij

〉
=
〈
hijh

∗
ij

〉
= 2

∫ ∞
0

df Ssignal (f) . (A.9)

The signal response sI of detector I follows from convoluting the tensor perturbation
hij with the detector’s impulse response RijI . In the frequency domain, this results in

s̃I (f) =
∑

p=+,×

∫
d2nRpn,I (f)hpn (f) , (A.10)

11The factor of 2 on the r.h.s. of this relation follows from the normalization of the polarization tensors
in eq. (A.7) and is therefore nothing but a matter of convention. It would be straightforward to avoid this
factor by performing the rescaling: 1/

√
2 (ep

n)ij → (ep
n)ij ,

√
2hp

n → hp
n, and 2Ssignal → Ssignal. In passing,

we also mention that this factor of 2 is sometimes ascribed to the fact that the metric perturbations hij

receive contributions from two different polarizations (see, e.g., refs. [15, 17]). However, this statement is
slightly misleading since the strain power spectrum is already summed over both polarization states [191].
That is, if we wrote Ssignal = S+

signal + S×signal, the contributions for both polarizations would still feature a
factor of 2.
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where the response function Rpn,I (f) represents the signal response of detector I to (i.e.,
the convolution of its impulse response with) a sinusoidal plane GW with frequency f ,
polarization p, and propagation direction n. The graph of

∣∣Rpn,I ∣∣ as a function of n describes
the antenna pattern of the detector for GWs with frequency f and polarization p. More
details on the impulse response and the response function can be found in ref. [191]. For
our purposes, the important message from eq. (A.10) is that it allows us to write the
quadratic expectation value of the signal modes s̃I in a similar way as the expectation
value in eq. (A.3),

〈
s̃I
(
f
)
s̃∗J
(
f ′
)〉

= 1
2 δ

(1) (f − f ′) C̃IJ (f) = 1
2 δ

(1) (f − f ′) ΓIJ (f) Ssignal (f) , (A.11)

where we introduced the so-called overlap reduction function ΓIJ of the detector pair IJ ,

ΓIJ (f) = 1
2
∑

p=+,×

∫
d2n
4π Rpn,I (f)Rp∗n,J (f) . (A.12)

As evident from eq. (A.11), the overlap reduction function acts as the transfer function
between the GW strain power spectrum and the signal response cross power spectrum of
the IJ detector pair, C̃IJ = ΓIJ Ssignal. In line with our assumption of an isotropic and
unpolarized SGWB, ΓIJ is defined as the sky- and polarization-averaged product of the
response functions for the detectors I and J . In the special case of a single detector, J = I,
it reduces in particular to the sky- and polarization-averaged square of the antenna pattern,

RI (f) = ΓII (f) = 1
2
∑

p=+,×

∫
d2n
4π

∣∣∣Rpn,I (f)
∣∣∣2 , (A.13)

which is also known as the detector transfer function or simply signal response function
RI . The function RI relates the GW strain power spectrum Ssignal to the signal response
auto power spectrum DI

signal and can be used to define the strain noise auto power spec-
trum SInoise,

DI
signal = RI Ssignal , DI

noise = RI SInoise . (A.14)

Often times, one also works with the normalized overlap reduction function

γIJ (f) = 5
sin2 δ

ΓIJ (f) , (A.15)

which is normalized to γIJ (f = 0) = 1 for a pair of identical, co-located, and co-aligned
interferometers with an opening angle δ between the two arms. Below, we will be interested
in the cases δ = π/2 (aLIGO, aVirgo, KAGRA, CE) and δ = π/3 (ET, LISA, DECIGO,
BBO), for which the conversion factor between γIJ and ΓIJ amounts to 1/5 and 3/20, re-
spectively. The relation in eq. (A.11) finally allows us to write down the covariance matrix,

CIJ = 〈sIsJ〉 − 〈sI〉 〈sJ〉 = 〈sIsJ〉 =
∫ ∞

0
df C̃IJ (f) =

∫ ∞
0

df ΓIJ (f) Ssignal (f) . (A.16)

Again, we only integrate over positive frequencies because all power spectra are single-sided.
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We are now all set to derive the expected SNR for a cross-correlation measurement of
the SGWB. The basic idea is to apply a filter function QIJ to the cross-correlation signal
SIJ that can be constructed from the data streams of the two detectors I and J ,

SIJ =
∫ +tobs/2

−tobs/2
dt

∫ +tobs/2

−tobs/2
dt′ dI

(
t
)
QIJ

(
t− t′

)
dJ
(
t′
)
, (A.17)

and to choose (i.e., match) this filter function so as to maximize the corresponding SNR,

%IJ =
〈
SIJ

〉√〈
S2
IJ

〉
−
〈
SIJ

〉2 . (A.18)

The solution of this optimization problem has been worked out in refs. [83, 84]; here, we
will only state the final result. In Fourier space, the optimal filter function Q̃IJ turns out
to be

Q̃IJ (f) = N ΓIJ (f) Ssignal (f)
DI

noise (f)DI
noise (f)

, (A.19)

where N is an irrelevant normalization constant that cancels in the expression for the SNR
in eq. (A.18). Based on this result, the optimal SNR ends up acquiring the following form,

%IJ =
(
ndet tobs

∫ fmax

fmin
df

Γ2
IJ (f)S2

signal (f)
DI

noise (f)DJ
noise (f)

)1/2

, (A.20)

where ndet = 2 counts the number of detectors involved in the cross-correlation mea-
surement and the frequency interval [fmin, fmax] defines the bandwidth of the IJ detec-
tor pair. This result is valid in the weak-signal regime, which assumes that the inte-
grand of the frequency integral in eq. (A.20) is smaller than unity for all frequencies,
Γ2
IJS

2
signal � DI

noiseD
J
noise.

In view of eq. (A.20), several comments are in order. First of all, note that both the
optimal filter and the optimal SNR depend on the strain power spectrum of the signal,
Ssignal. In principle, one would therefore need to know the exact shape of the signal that
one intends to measure if one really wanted to identify a cross-correlation signal SIJ whose
SNR matches the one in eq. (A.20). This is of course impossible, which is why, in practice,
one has to resort to a library of template spectra. Among these template spectra, the
best approximation of the true signal will then result in the SNR value closest to the
optimal SNR. A second comment is that eq. (A.20) remains in fact valid if we consider an
idealized auto-correlation measurement in a single detector rather than a cross-correlation
measurement using a pair of detectors. In the case of LISA, one will, e.g., be able to
monitor the detector noise in real time. For an auto-correlation measurement, the optimal
SNR after perfect noise subtraction is then again given by eq. (A.20), however, with ndet
set to ndet = 1 (see ref. [85] and references therein). A third comment finally is that
it is straightforward forward to generalize eq. (A.20) to an entire network of detectors,
I, J = 1, 2, · · · . In this case, one simply has to compute the partial SNRs for all possible
pairs of detectors and add them in quadrature,

% =
(∑
J>I

%2
IJ

)1/2

=
(
ndet tobs

∫ fmax

fmin
df
∑
J>I

Γ2
IJ (f)S2

signal (f)
DI

noise (f)DJ
noise (f)

)1/2

. (A.21)
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Given this expression for %, it is convenient to define an effective strain noise
power spectrum

Seff
noise (f) =

(∑
J>I

Γ2
IJ (f)

DI
noise (f)DJ

noise (f)

)−1/2

, (A.22)

which generalizes the idea of the strain noise power spectrum SInoise to a detector network.
With this definition, the SNR can now be written as follows,

% =

ndet tobs

∫ fmax

fmin
df

(
Ssignal (f)
Seff

noise (f)

)2
1/2

. (A.23)

Finally, both the strain power spectrum of the signal, Ssignal, and the noise power spectrum
of the detector network, Seff

noise, can be expressed in terms of GW energy density spectra,

Ωsignal (f) = 2π2

3H2
0
f3Ssignal (f) , Ωnoise (f) = 2π2

3H2
0
f3Seff

noise (f) . (A.24)

Here, the GW energy density spectrum Ωsignal is defined as the energy density contained in
GWs per logarithmic frequency interval and normalized to the critical energy density ρc,

Ωgw = ρgw
ρc

= 1
ρc

∫ ∞
0

d ln f dρgw
d ln f = 1

ρc

∫ ∞
0

d ln f Ωsignal (f) . (A.25)

Making use of eq. (A.24), we obtain our final result for the optimal SNR [see eq. (1.1)],

% =
[
ndet tobs

∫ fmax

fmin
df

(Ωsignal (f)
Ωnoise (f)

)2]1/2

. (A.26)

Eq. (A.26) is the starting point for the construction of both power-law- and peak-
integrated sensitivity curves. The construction of PISCs is discussed in detail in the main
text (see section 3); here, we shall now review the construction of PLISCs. The main
assumption behind the PLISC approach is that the signal can be described by a pure
power law in the relevant frequency range. For an arbitrary reference frequency fref , we
may thus write

Ωsignal (f) = Ωp

(
f

fref

)p
. (A.27)

For each power p, one can now determine the corresponding value of the amplitude Ωp

that results in a specific value of the SNR, typically, %thr = 1. The solutions for Ωp are of
the form

Ωp = Ω(p)
PLIS (%thr, tobs) = %thr

[
ndet tobs

∫ fmax

fmin
df

( (f/fref)p

Ωnoise (f)

)2]−1/2

. (A.28)

Plugging these Ωp values back into eq. (A.27), one finds a set of power-law curves whose
envelope (typically in a log-log plot of the frequency – amplitude plane) defines the PLISC,

ΩPLIS (f) = max
p

{
Ω(p)

PLIS (%thr, tobs)
(
f

fref

)p}
. (A.29)
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Figure 10. Signal response function for an equal-arm Michelson interferometer.

Note that fref cancels in this definition, which renders ΩPLIS insensitive to the exact choice
of this auxiliary quantity. The interpretation of the power-law-integrated sensitivity (PLIS)
is as follows: Any power-law signal that intersects the PLISC, such that Ωsignal (f) >

ΩPLIS (f) for at least some frequency f , results in an SNR above threshold; all curves
tangential to the PLISC result in an SNR of exactly %thr; and all curves that always stay
below the PLISC have subthreshold SNR. The factor by which the signal curve needs to
be rescaled in order to align it with a tangent of the PLISC can thus be interpreted as the
expected SNR.

It is also interesting to compare the power-law-integrated sensitivity in eq. (A.28) to
the peak-integrated sensitivity in eq. (3.9). Obviously, we can reproduce the expression
in eq. (A.28) by setting i = j and Si = Sj = (f/fref)p in eq. (3.9), i.e., if we assume a
spectral shape function that is described by a pure power law. In the case of GWs from a
cosmological phase transition, for which better estimates of the spectral shape exist, this
is certainly not the best choice. Among other things, this is an important motivation for
our PISC method.

A.2 Transfer functions

Signal response function for a single detector: let us now turn to the transfer
functions (i.e., signal response and overlap reduction functions) of specific experiments.12

We begin by computing the signal response function RI for a single equal-arm Michelson
interferometer. A closed analytic expression for RI does unfortunately not exist; however,
an explicit integral representation can be found in ref. [195],

RI (f) = 1
4u2

[(
1 + cos2 u

)(1
3 −

2
u2

)
+ sin2 u+ 4

u3 sin u cosu− 1
4π I (u, δ)

]
, (A.30)

12For recent work on transfer functions for GW experiments, see refs. [192–194]. These papers also discuss
the response to vector and scalar GW polarization states, which only occur in models of modified gravity.
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I (u, δ) =
∫ 2π

0
dε

∫ π

0
dθ sin θ

(
1− 2 sin2 δ sin2 ε

1− cos2 θ′

)
[(cosu− cosuθ) (cosu− cosuθ′)

× cos θ cos θ′ + (sin u− cos θ sin uθ)
(
sin u− cos θ′ sin uθ′

)]
,

where δ denotes again the interferometer’s opening angle and uθ, uθ′ , and θ′ are defined as

uθ = u cos θ , uθ′ = u cos θ′ , cos θ′ = cos δ cos θ + cos ε sin δ sin θ . (A.31)

u = π f/ffsr = f/f∗ in eq. (A.30) measures the GW frequency f in units of the inter-
ferometer’s free spectral range (FSR), ffsr = clight/ (2Larm), where clight denotes the speed
of light and Larm is the length of the interferometer arms. Instead of the FSR frequency
ffsr, one sometimes also encounters f∗ = ffsr/π, which is referred to as the transfer fre-
quency [196]. Below, we will be interested in CE’s and LISA’s signal response functions.
Given their current design concepts, we find the following transfer frequencies for these two
interferometers,

CE: δ = π

2 , LCE
arm = 4.0× 104 m , fCE

∗ ' 1193Hz , (A.32)

LISA: δ = π

3 , LLISA
arm = 2.5× 109 m , fLISA

∗ ' 19.09Hz .

The integral function I (u, δ) in eq. (A.30) does not admit a closed analytic form
and needs to be evaluated numerically. In figure 10, we present our numerical results
for both δ = π/2 and δ = π/3. As expected, the signal response function approaches
a constant value in the small-frequency limit for both opening angles, RI → 1/5 sin2 δ

[see the discussion below eq. (A.15)]. At larger frequencies, RI is subject to sinusoidal
modulations with period ffsr = πf∗, while its overall amplitude drops off like 1/f2. Ignoring
the oscillations at high frequencies, RI can be well approximated by rational fit functions
for both CE and LISA,

RCE (f) ' 1/5
1 + 0.67 (f/fCE

∗ )2 , RLISA (f) ' 2× 3/20
1 + 0.54 (f/fLISA

∗ )2 . (A.33)

Here, we multiplied RLISA by an extra factor of 2 to account for the fact that LISA’s six
active laser links will allow one to construct two independent data streams at low frequen-
cies that can be used for an auto-correlation measurement [196]. This factor is sometimes
missed in the literature. CE, on the other hand, envisions an L-shaped interferometer sim-
ilar to aLIGO, in which case only one data channel will be available for an auto-correlation
measurement.

Overlap reduction functions for detector pairs in a detector network: a cross-
correlation measurement using a detector network requires knowledge of the overlap re-
duction functions ΓIJ for all detector pairs that can be formed within the network. For L-
shaped ground-based interferometers, it is possible to derive an analytic expression for ΓIJ ,
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HL HV LV HK LK VK
β [deg] 27.2 79.6 76.8 72.4 99.2 86.6
∆ [deg] 62.2 55.1 83.1 25.6 68.1 5.6
δ [deg] 45.3 61.1 26.7 89.1 42.4 28.9

Table 3. Geometrical data describing the angular separation and relative orientation of the six
detector pairs that can be formed within the HLVK detector network (see refs. [197, 198] for details).

or alternatively, the normalized overlap reduction function γIJ [see eq. (A.15)] [197, 198],

γIJ (f) =− 1
8

[
3 j0 (ū)− 45

7 j2 (ū) + 169
112 j4 (ū)

]
cos (4∆) (A.34)

+ 1
8

[
4 j0 (ū)− 40

7 j2 (ū)− 108
112 j4 (ū)

]
cos (4∆) cos β

− 1
8

[
j0 (ū) + 5

7 j2 (ū) + 3
112 j4 (ū)

] [
cos (4∆) cos (2β)− 8 cos (4δ) cos4

(
β

2

)]
,

where jn (n = 0, 2, 4) represents the spherical Bessel function of the first kind of order n.
The frequency dependence in eq. (A.34) is encoded in ū = f/f̄∗, where f̄∗ is now defined as

f̄∗ = clight
2π d⊕ sin (β/2) . (A.35)

In this expression, d⊕ ' 12 742 km denotes the mean diameter of the earth, and β is the
angle between the detectors I and J in geocentric coordinates. Similarly, ∆ and δ quantify
the orientation of the two detectors relative to the great circle on which they both lie.
For more details on the definitions of β, ∆, and δ, see ref. [197], in particular, figure 5
in this work. Eq. (A.34) can be used to compute the overlap reduction functions for all
six detector pairs that can be formed in the four-detector network consisting of aLHO,
aLLO, aVirgo, and KAGRA: aLHO-aLLO (HL), aLHO-aVirgo (HV), aLLO-aVirgo (LV),
aLHO-KAGRA (HK), aLLO-KAGRA (LK), and aVirgo-KAGRA (VK). The values of the
geometrical angles β, ∆, and δ for these six detector pairs are listed in refs. [197, 198] (see
table 3). The resulting normalized overlap reduction functions are shown in the left panel
of figure 11.

For all other detector pairs that we are interested in (i.e., for experiments that are
not based on the cross-correlation of L-shaped ground-based interferometers), we compile
explicit numerical results for the respective overlap reduction functions from the literature:

• ET will consist of three V-shaped ground-based Michelson interferometers with open-
ing angle δ = π/3 in a triangular configuration, i.e., rotated with respect to each
other by an angle ω = 2π/3. Consequently, ET will allow one to perform cross-
correlation measurements in a network of three identical and co-located (but not
co-aligned) detectors. The overlap reduction function for a pair of ET detectors can
be found in ref. [199]. We extract the function graph from figure 8 of ref. [199]
and rescale it by a factor sin2 β = 3/4, in order to adjust its overall normalization,
γIJ → cos (2ω) = −1/2 in the small-frequency limit.13 The normalized overlap re-
duction function thus obtained is shown in the right panel of figure 11.

13In ref. [199], the normalized overlap reduction function is proportional to sin2 β, whereas in our conven-
tion, this factor is explicitly factored out, such that it only appears in ΓIJ = 1/5 sin2 β γIJ [see eq. (A.15)].
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Figure 11. Overlap reduction functions for pairs of L-shaped (left) and triangular (right) detectors.

• DECIGO is envisioned to consist of two satellite-borne triangular Fabry-Pérot (FP)
interferometers with opening angle δ = π/3 in a hexagonal configuration (i.e., ω =
π). The overlap reduction function for this pair of detectors has been computed in
ref. [200] (see also appendix B of ref. [201]). In our analysis, we shall use the numerical
results obtained in ref. [200], which were kindly provided to us by Sachiko Kuroyanagi
(see the right panel of figure 11). As expected, the normalized overlap reduction
approaches unity in the small-frequency limit. Similarly as in the case of LISA, we
assume that DECIGO will allow one to construct two independent data streams.
At small frequencies, DECIGO’s overlap reduction function therefore approaches the
same value as LISA’s signal response function, ΓIJ → 2/5 sin2 β = 3/10. This value
is a good approximation up to frequencies of O (100) Hz, which is due to the fact
that DECIGO’s relatively short arm length, LDECIGO

arm = 1000 km, results in a large
characteristic frequency, fDECIGO

∗ = clight/
(
2πLDECIGO

arm
)
' 47.71Hz. The laser travel

distance in DECIGO’s FP cavity is by contrast much larger than LDECIGO
arm , which

renders DECIGO most sensitive in the deci-Hertz range; hence DECIGO’s name. In
many cases, it thus suffices to simply assume a constant overlap reduction function,
ΓIJ ' 3/10.

• BBO is planned to have a similar geometry as DECIGO (i.e., two satellite-borne
triangular interferometers with δ = π/3 and ω = π). It is, however, supposed to
have a larger arm length, LBBO

arm = 50 000 km, and utilize Michelson instead of FP
interferometers. The overlap reduction function of the two BBO units has been
calculated in ref. [85], and the corresponding numerical results are available from
ref. [202]. We plot the normalized overlap reduction function in the right panel of
figure 11. Following ref. [85], we assume a single data channel, such that γIJ → 1
and ΓIJ → 1/5 sin2 β = 3/20 in the small-frequency limit.
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Overlap reduction functions for pulsar pairs in a pulsar timing array. The
overlap reduction function for two pulsars I and J in a PTA is of the form [203, 204],

ΓIJ (f) = RI (f) ζIJ (ψ) , (A.36)

with RI being the response function for a single pulsar (i.e., J = I) and ζIJ denoting the
Hellings-Downs factor [205] for two pulsars that are separated by an angle ψ in the sky,

RI (f) = 1
12π2f2 , ζIJ (ψ) = 1

2

[
δIJ + 1 + cψ

(
3 ln cψ −

1
2

)]
. (A.37)

Here, we introduced cψ = (1− cosψ) /2 and made sure that ζIJ is properly normalized,
i.e., ζII = 1 for a single pulsar. Note that ΓIJ and RI are now no longer dimensionless
as in the case of the interferometer experiments. Both quantities are expressed in units of
Hz−2, which is line with the fact that the timing noise of a pulsar has dimension Hz−3 (see
section A.3).

For future experiments, the pulsar distribution in the sky is still unknown. In order to
estimate their sensitivity, it is therefore reasonable to replace ζIJ by an expectation value
that reflects the expected distribution of pulsars in the PTA. A common choice, e.g., is to
replace ζIJ by its root-mean-square (RMS) expectation value assuming a flat prior on cosψ,

ζ̄rms =
[1

2

∫ 1

−1
d cosψ ζ2

IJ (ψ)
]1/2

= 1
4
√

3
' 0.144 , (A.38)

whereas a flat prior on the distribution of pulsars in three-dimensional position space yields

ζrms ' 0.147 . (A.39)

This is the value that we shall employ in our analysis. In order to estimate the sensitivities
of IPTA and SKA, we will thus work with the following overlap reduction function,

ΓIJ (f) = ζrms
12π2f2 . (A.40)

A.3 Detector noise power spectra

In addition to the transfer functions discussed in the previous section, we also require the in-
trinsic noise spectra DI

noise for each detector. The noise spectra of aLIGO, aVirgo, KAGRA,
and CE can be downloaded from LIGO’s Document Control Center (DCC) [dcc.ligo.org].
In table 4, we list the DCC documents that give access to the respective data files. Note
that, for aLIGO and aVirgo, we also consider sensitivities representative for O2 in addi-
tion to their envisioned design sensitivities. The noise spectrum of ET can be downloaded
from ref. [206] (see also DCC document P1600143 [207]). In our analysis, we shall employ
the ET-D-sum noise curve. Moreover, as regards the noise spectra of the future space-
based interferometers and PTA experiments, we will make use of the following analytical
estimates:
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Design sensitivity Representative sensitivity for observing run 2
aLIGO T1800044 [165] G1801950 [167] (aLHO), G1801952 [168] (aLLO)
aVirgo P1200087 [166] P1800374 [169]
KAGRA P1200087 [166] —
CE P1600143 [207] —

Table 4. Documents on dcc.ligo.org that allow one to download the numerical data for the detector
noise spectra of aLIGO, aVirgo, KAGRA, and CE according to their design and O2 sensitivities.

LISA: following ref. [196], we write LISA’s noise spectrum as a sum of two contributions,

DLISA
noise (f) = 1

(LLISA
arm )2

[
DLISA

oms (f) + 2
(2πf)4

(
1 + cos2

(
f

fLISA
∗

))
DLISA

acc (f)
]
, (A.41)

where LISA’s arm length LLISA
arm and characteristic frequency fLISA

∗ are given in eq. (A.32)
and where DLISA

oms and DLISA
acc account for the noise in the optical metrology system (OMS)

(i.e., position noise) and the acceleration noise of a single test mass, respectively,

DLISA
oms (f) '

(
1.5× 10−11 m

)2
[
1 +

(2mHz
f

)4
]
Hz−1 , (A.42)

DLISA
acc (f) '

(
3× 10−15 ms−2

)2
[
1 +

(0.4mHz
f

)2
] [

1 +
(

f

8mHz

)4]
Hz−1 .

DECIGO: according to ref. [200], DECIGO’s noise spectrum receives three contribu-
tions,

DDECIGO
noise (f) = DDECIGO

shot (f) +DDECIGO
rad (f) +DDECIGO

acc (f) , (A.43)

which respectively quantify shot noise, radiation pressure noise, and acceleration noise,

DDECIGO
shot (f) = ~clightπλ

Peff

( 1
4FLDECIGO

arm

)2
[
1 +

(
f

fDECIGO
∗

)2]
, (A.44)

DDECIGO
rad (f) = ~P

clightπλ

( 16F
MLDECIGO

arm

)2 ( 1
2πf

)4
[
1 +

(
f

fDECIGO
∗

)2]−1

,

DDECIGO
acc (f) = ~P

clightπλ

( 16F
3MLDECIGO

arm

)2 ( 1
2πf

)4
.

In our analysis, we shall assume the following values for DECIGO’s characteristic exper-
imental variables [90]: arm length LDECIGO

arm = 1000 km, laser output power P = 10W,
laser wavelength λ = 532 nm, mirror mass M = 100 kg, and mirror radius R = 0.5m.
These values determine the finesse F of the FP cavity as well as the effective laser output
power Peff ,

F = π (rE rF )1/2

1− rE rF
' 10.18 , Peff =

(
rE t

2
F

1− rE rF

)2

P ' 6.68W , (A.45)
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Figure 12. Detector noise power spectra of present and upcoming interferometer experiments.

where the quantities rE , rF , and tF are given as follows (see ref. [200] for details),

rE = rEmrG , rF = rFmrG , tF =
(
r2
G − r2

Fm

)1/2
, (A.46)

rG = 1− exp
(
− 2πR2

λLDECIGO
arm

)
, r2

Em = 0.9999 , r2
Fm = 0.67 .

BBO: following ref. [85], we assume a BBO noise spectrum of the form

DBBO
noise (f) = 4

(LBBO
arm )2

[
DBBO

oms (f) + 1
(2πf)4 D

BBO
acc (f)

]
, (A.47)

where LBBO
arm = 50 000 km and which is similar to LISA’s noise spectrum in the sense that

it also receives contributions from both position and acceleration noise, DBBO
oms and DBBO

acc ,

DBBO
oms (f) '

(
1.4× 10−17 m

)2
Hz−1 , DBBO

acc (f) '
(
3× 10−17 ms−2

)2
Hz−1 . (A.48)

PTA: for the future PTA experiments IPTA and SKA, we respectively assume a network
of N pulsars in which each pulsar is monitored with a white timing noise of the form [85]

DPTA
noise (f) = 2Tσ2

t . (A.49)

Here, 1/T is the cadence of the timing observations and σt denotes the RMS error of the
timing residuals. We shall assume a future IPTA data set based on N = 20, T = 2weeks,
and σt = 100 ns, which goes beyond the timing precision achieved in the first IPTA data
release [118]. As for SKA, we are even more optimistic, assuming an ambitious PTA with
N = 50, T = 1week, and σt = 30 ns. These values are inspired by the assumptions made
in refs. [121, 208]. We thus obtain the following timing noise spectra for IPTA and SKA,

DIPTA
noise (f) ' 2.4× 10−8 Hz−3 , DSKA

noise (f) ' 1.1× 10−9 Hz−3 . (A.50)
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In figure 12, we plot the noise spectra of all present and future interferometer experiments
that we consider this paper. The timing noise of PTA experiments, which has dimen-
sion Hz−3 instead of Hz−1 and which is frequency-independent in the idealized case, is
not shown.

A.4 Strain noise power spectra

Based on the transfer functions and detector noise spectra introduced in sections A.2
and A.3, we are now able to compute the (effective) strain noise power spectra of all auto-
and cross-correlation searches for a SGWB signal that we are interested in [see eqs. (A.14)
and (A.22)].

HL network: the strain noise spectrum of a cross-correlation measurement using the
aLIGO detectors in Hanford and Livingston at design sensitivity, DaLHO

noise = DaLLO
noise =

DaLIGO
noise , reads

Seff,HL
noise (f) =

(
Γ2

HL (f)
DaLHO

noise (f)DaLLO
noise (f)

)−1/2

=
∣∣∣∣∣DaLIGO

noise (f)
ΓHL (f)

∣∣∣∣∣ . (A.51)

HLV network: adding the aVirgo detector to this network results in

Seff,HLV
noise (f) =

(
Γ2

HL (f)
DaLHO

noise (f)DaLLO
noise (f)

+ Γ2
HV (f)

DaLHO
noise (f)DaVirgo

noise (f)
+ Γ2

LV (f)
DaLLO

noise (f)DaVirgo
noise (f)

)−1/2

.

(A.52)

Here, when considering the effective strain noise of this network at design sensitivity, we
can again set DaLHO

noise = DaLLO
noise = DaLIGO

noise . However, when evaluating Seff
noise for the repre-

sentative O2 noise spectra (see table 4), we have to explicitly distinguish between DaLHO
noise

and DaLLO
noise .

HLVK network: finally, adding KAGRA to the network yields an effective strain noise

Seff,HLVK
noise (f) =

( Γ2
HL (f)

DaLHO
noise (f)DaLLO

noise (f)
+ Γ2

HV (f)
DaLHO

noise (f)DaVirgo
noise (f)

(A.53)

+ Γ2
LV (f)

DaLLO
noise (f)DaVirgo

noise (f)
+ Γ2

HK (f)
DaLHO

noise (f)DKAGRA
noise (f)

+ Γ2
LK (f)

DaLLO
noise (f)DKAGRA

noise (f)
+ Γ2

VK (f)
DaVirgo

noise (f)DKAGRA
noise (f)

)−1/2
,

which we will only evaluate at design sensitivity, such that DaLHO
noise = DaLLO

noise = DaLIGO
noise .

For more information on the HLV and HLVK networks, see also refs. [209, 210].

CE: the strain noise for an auto-correlation measurement solely using the CE detec-
tor reads

SCE
noise (f) = DCE

noise (f)
RCE (f) . (A.54)
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ET: by contrast, a cross-correlation measurement using the three-detector ET net-
work yields

Seff,ET
noise (f) = 1√

3

∣∣∣∣∣DET
noise (f)

ΓET (f)

∣∣∣∣∣ , (A.55)

assuming the same instrumental noise for all three detectors. ET’s three-detector configu-
ration thus results in an enhancement of ΓET by a factor of

√
3 (see also refs. [199, 211]).

LISA: following refs. [24, 25, 85], we consider an idealized auto-correlation search
based on

SLISA
noise (f) = DLISA

noise (f)
RLISA (f) . (A.56)

That is, we assume a perfect subtraction of instrumental noise thanks to real-time noise
monitoring, and we neglect astrophysical foregrounds such as confusion noise from un-
resolved galactic and extragalactic white-dwarf binaries. This foreground signal can be
distinguished from the cosmological SGWB based on its spectral shape. Moreover, it be-
comes increasingly less important over time, as more and more individual white-dwarf
binaries are explicitly resolved in the course of the mission (see refs. [196, 212] for details).
Nonetheless, it would certainly be interesting to refine our analysis in this paper by in-
cluding the confusion noise from white-dwarf binaries. We leave this task for future work.
For further studies on LISA’s ability to measure a SGWB signal and identify its spectral
shape, see also refs. [213–215].

DECIGO, BBO: the strain noise of a DECIGO/BBO cross-correlation measure-
ment reads

Seff,I
noise (f) =

∣∣∣∣∣DI
noise (f)
ΓI (f)

∣∣∣∣∣ , I = DECIGO, BBO . (A.57)

NANOGrav, PPTA, EPTA: the effective noise spectra of NANOGrav, PPTA, and
EPTA can be found in figure 3 of ref. [108], figure 2 of ref. [112], and figure 13 of ref. [114],
respectively. These figures indicate the current sensitivity reach of the three experiments
in terms of the characteristic strain amplitude hc, which is related to the strain power Sh
via hc = (fSh)1/2. The main idea behind the quantity hc is that it represents the typical
amplitude of GWs on a logarithmic frequency scale. To see this, consider a GW signal
described by a strain power spectrum Ssignal and make the replacement Ssignal → h2

c/f in
the strain variance in eq. (A.9),

σ2
h =

〈
hijh

∗
ij

〉
=
∫ ∞

0
d ln f

d
〈
hijh

∗
ij

〉
d ln f = 2

∫ ∞
0

d ln f h2
c (f) . (A.58)

This relation between GW strain power and characteristic amplitude allows us to con-
vert the characteristic strain noise amplitudes in refs. [108, 112, 114] to effective strain
noise spectra,

Seff,I
noise =

(
hI

c (f)
)2

f
, I = NANOGrav, PPTA, EPTA . (A.59)
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In section 3.2, we use these effective strain noise spectra to draw PLISCs for
NANOGrav, PPTA, and EPTA (see figure 1), assuming the following total observing
times [108, 112, 114],

tNANOGrav
obs = 11.42 yr , tPPTA

obs = 10.82 yr , tEPTA
obs = 17.66 yr . (A.60)

Refs. [108, 112, 114] also directly present upper limits on the strength of a power-law
SGWB signal as a function of the spectral index p. We explicitly check that these limits
are consistent with the amplitudes Ωp in eq. (A.28), which we require for the construction
of the PLISCs.

IPTA, SKA: we estimate the effective strain noise spectra of the future PTA experi-
ments IPTA and SKA based on the transfer function in eq. (A.40) and the timing noise in
eq. (A.49),

Seff,PTA
noise = DPTA

noise (f)
RPTA (f)

(∑
J>I

ζ2
IJ

)−1/2

=
[ 2
N (N − 1)

]1/2 DPTA
noise (f)

ζrmsRPTA (f) , (A.61)

where DPTA
noise (f) = 2Tσ2

t and RPTA (f) = 1/
(
12π2f2) and where we assumed the same

Hellings-Downs factor for all pulsar pairs, ζIJ = ζrms [see eq. (A.39)]. In section 3.2, we use
the estimate in eq. (A.61) to draw the PLISCs for IPTA and SKA, assuming an effective
observing time of teff

obs = 20 yr. Here, teff
obs accounts for the fact that the scaling behavior

of the SNR with tobs changes for large values of tobs [216]. We define teff
obs such that the

SNR in the weak-signal regime after an effective observing time teff
obs [see eq. (1.1)] equals

the true SNR in the intermediate- or strong-signal regime after an actual observing time
tobs. A more detailed discussion of the respective tobs values for IPTA and SKA is left for
future work.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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