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1 Introduction

Recent developments have uncovered the central role played by soft theorems and asymp-
totic symmetries [1–10] in analyzing the vacuua of gauge and gravity theories, while probing
the Infra-red structure of scattering amplitudes [11–22] in these theories. In the seminal
work [23, 24], it was demonstrated that for asymptotically flat spacetimes if one recedes
from sources in null directions, the symmetry algebra is not just the Poincaré. Rather,
the asymptotic symmetry algebra, known as BMS algebra, contains the finite-dimensional
Poincaré group as its subgroup and has an additional infinite number of generators known
as supertranslations (angle dependent translations). Another important result in [23] was
to establish that the mass loss due to gravitational radiation is a nonlinear effect of general
relativity and the emission of gravitational waves from an isolated system is accompanied
by a mass loss from the system.

In general relativity the classical vacuum is highly degenerate. Different vacua, which
spontaneously break BMS symmetry, are related to each other by ‘supertranslations’. In
the quantum picture, these vacua differ by addition of a soft gravitons. In the soft (zero
frequency) limit the scattering amplitude involving hard particles and soft particles can
be recast as a (soft) factor multiplied with the scattering amplitude of only hard particles.
This is the celebrated Soft theorem by Weinberg [25, 26], which relates an amplitude

– 1 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
8

with soft photons or/and gravitons to amplitudes without any soft particle, in a quantum
theory of photons and gravitons in asymptotically flat space times. Soft (photon) graviton
theorem can be recast as the Ward identities for (large U(1) gauge transformations for
QED [27–30]) BMS transformations for gravity [31–34] in the asymptotic limit, i.e. when
we take the radial distance to infinity or equivalently consider early and late retarded time.
The soft factor is universal in the leading order in frequency (of soft particles) expansion.
This implies that the internal structure of the objects involved in a scattering as well
as the details of their interactions are irrelevant in the large wavelength or equivalently
zero frequency limit. The zero frequency limit was initially considered in [35], where the
energy spectrum (dE/dω) was shown to be independent of frequency ω if the asymptotic
trajectories have constant velocity, at least one of them being nonzero. This implies an
enhancement of symmetries in the asymptotic limit at low frequencies.

An interesting development in this field of research has come in last two years with
works by Sen et al. [36–39]. First in [37] they showed that in larger than four spacetime
dimensions, the soft factors determine the low frequency radiative part of the fields that
are produced during a classical scattering in electromagnetic and gauge theories. Moreover
in four dimensions, although the S-matrix is IR divergent, the radiative part of the fields
provides an unambiguous definition of soft factor in an appropriate classical limit. Thus
they framed an alternate way to find the soft factor for gauge and gravity theories in
asymptotically flat spacetimes. The soft expansion of the radiative field defines “Classical
Soft” theorems. Sen et al. independently proved these theorems by a classical analysis
in [36] and [39]. Both the photon and graviton soft factors for asymptotically flat spacetime
can be used to determine the memory effect and a tail term to it arising from scattering
processes involving several outgoing light particles and no incoming light particles [40–42].
Although their works are primarily valid for classical scattering computations in theories
in asymptotically flat spacetimes, but the idea can be extended to other curved spaces as
well, that does not behave as flat at large distances. This is the key idea of this present
work, where we address the issue of soft factor in theories in asymptotically AdS spaces by
studying classical radiation (bremsstrahlung) [43–46] in a AdS Schwarzschild background.

Particle trajectories in AdS spacetime behave like particle in a box as the null rays get
bounced back from time like boundary infinite number of times. Thus, for a quantum field
theory defined in an asymptotically AdS space, the usual notion of “in” and “out” states
does not exist. This is the prime obstruction in defining the usual scattering amplitudes
in such theories.1 As a result, unlike asymptotically flat spacetimes, a soft theorem or its
analogue is not presently known for quantum field theories defined in an asymptotically
AdS spacetime.2 Therefore using the formulation of classical soft theorem we can identify
the analogue of soft factors for classical scattering in AdS backgrounds. For technical
simplification, we consider the value of cosmological constant to be small and treat it as a
perturbation parameter for our computations. Thus our result provide us corrections to the
known results of Classical Soft Theorem in asymptotically flat Schwarzschild case, to the

1For scaterring in AdS we refer to [47–50].
2A related work can be found in [51].
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linear order in cosmological constant. For our purpose, we consider scattering of a probe
of mass m by a scatterer of mass M (the black hole) due to gravitational interaction in the
asymptotically AdS space, where M � m. We further assume that the distance of closest
approach between the probe and the scatterer, i.e. the impact parameter, is large compared
to the Schwarzschild radius of the scatterer. All our results are valid to the linear order in
the ratio of the Schwarzschild radius and the impact parameter. Finally we study the “soft
limit” of the gravitational radiation coming out of the above scattering process. Since we
are working in asymptotically AdS spacetime, we need to be careful about the consideration
of soft limit. For gravitational radiation in asymptotically flat theories, soft limit implies
vanishing of the four momentum of the radiation, and hence vanishing of its frequency.
But a radiation mode inside the AdS spacetime have the minimum frequency inversely
proportional to the size of the spacetime. Thus consideration of a limit of strictly vanishing
frequency (of radiations) is not possible in asymptotically AdS spaces. However we may
consider the limit where frequency of radiation and cosmological constant simultaneously
tend to zero, keeping there ratio finite. Physically it implies that we consider the radiation
to limit to a strictly soft one as the space is limiting to a flat space. We show that the
radiation can leak from the spacelike infinity because of the polynomial potential that arises
due to the small cosmological constant.

The paper is organized as follows. In section 2 and section 3 we study properties of
four dimensional AdS Schwarzschild metric and write it in the isotropic coordinates that is
useful for further computations of radiation. Our computations are valid upto linear order
in black hole mass parameter M and square of inverse AdS radius 1

l2 . In section 4 we set
up the scattering problem due to a probe mass m in the AdS Schwarzschild background.
To find the radiation profile, we need to solve Einstein’s equations. In section 5 we set up
the technical details to achieve the same. In section 6, we provide the solution to classical
radiation and express the same as function of its frequency and position by performing a
Fourier transform in the time coordinate. We then carry out the Laurent series expansion
in the frequency of soft radiation for the classical radiative field in the Fourier space in
section 7. This section contains the prime result of the present paper. Here we derive the
modification to the Classical soft theorem due to the AdS potential. We finally conclude
the paper in section 8. The two appendices contain some computational details.

2 AdS-Schwarzschild metric

In this section we study perturbations of a four dimensional theory of gravity with negative
cosmological constant Λ, induced by a point mass moving in an unbound trajectory. The
gravitational action for this case is given by

S =
∫
d4x
√
−g(R− 2Λ). (2.1)

The equations of motion for the metric tensor is,

Rµν −
1
2Rgµν + Λgµν = 0. (2.2)
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Considering the solutions of these equations (2.2) for a static spherically symmetric space-
time with mass M and a negative cosmological constant Λ = − 3

l2 we can write the metric
as [52],

ds2 = −f(r)dt2 + dr2

f(r) + r2(dθ2 + sin2 θdφ2), (2.3)

where the lapse function f(r) in global coordinates is

f(r) = 1− 2GM
r
− Λr

2

3 = 1− 2GM
r

+ r2

l2
(2.4)

The range of the coordinates involved in the metric are

−∞ ≤ t ≤ ∞; r ≥ 0; 0 ≤ θ ≤ π; 0 ≤ φ ≤ 2π. (2.5)

We consider mostly plus convention for the metric. The lapse function vanishes at the
horizon values of ‘r’ which are the roots of r3 + l2r − 2Ml2 = 0 (in G = 1 unit). For
negative cosmological constant, the metric function has only one real positive root [52].
Thus the radius of horizon is,

rh = 2√
3
l sinh

[1
3 sinh−1

(
3
√

3M
l

)]
. (2.6)

Expanding this in terms of ‘M ’ with 1/l2 �M2/9 we obtain

rh ≈ 2M − 8M3

l2
+ . . . (2.7)

Asymptotically the metric (2.3) reduces to the general AdS metric

ds2 = −
(

1 + r2

l2

)
dt2 + dr2(

1 + r2

l2

) + r2(dθ2 + sin2 θdφ2). (2.8)

As l2 ≥ 0, 1 + r2

l2 has no real roots. Therefore this metric supports no cosmological
horizon. A massless particle, e.g. a photon, can reach the spacelike boundary of the above
spacetime in finite time. While massive particles, moving along geodesics, can never get to
the boundary. Thus it is possible to send a beam of light to infinity, and have it come back
in a finite amount of time [53]. If we consider a radial (dθ = dφ = 0) null ray (ds2 = 0)
from the origin to spatial infinity, the time taken to reach the spatial infinity is

t =
∫ R

0

dr

1 + r2

l2

= l arctan(R/l), (2.9)

where R denotes the position of spatial infinity. We have given the Penrose diagram for
this space above in figure 1. From (2.9) we notice that, when R → ∞; t → lπ

2 . Thus
for small l, the time taken is small. It is necessary to impose special boundary conditions
at the spatial infinity, r = ∞, to make sure that the fields reach there. The common
constraint to impose is an energy conservation such that the energy does not leak out of
the universe. The energy conservation leads to the reflective boundary condition at spatial
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Figure 1. Penrose diagram for AdS-Schwarzschild Metric. The structure at spatial infinity is
different here than Schwarzschild black hole in flat space. The wiggly lines represent the black hole
singularity at r = 0. The probe scattering occurs at region (I).

infinity for fields at the AdS boundary. This condition implies a non-vanishing self-force
unlike in deSitter space, where the self-force vanishes. Alternately this happens because
AdS is conformal not to Minkowski space, but to Minkowski space with special boundary
conditions. However in our calculation we consider large l limit. For large l and R� l, the
time taken to reach the spatial infinity is comparable to R. Thus reflective behaviour of the
boundary does not come into play to this order. We elaborate more on this in section 7.

3 Isotropic coordinates

In this section we introduce the isotropic coordinates for the metric (2.3). Isotropic co-
ordinate system is useful in computing perturbations. Since the metric (2.3) in isotropic
coordinates has its spacelike slices conformal to the Euclidean one, the resulting radiative
components of gravitational perturbations are also isotropic in all spatial directions. We
truncate the metric components to order O(1/l2) during the derivation of isotropic coordi-
nates. Throughout this paper, we consider r2/l2 � 1 limit. The resulting metric describes
spatial slices of AdS only up to this order. Hence all calculations will be carried out up to
this order. During the computation of gravitational perturbation we also assume the probe
scattering limit. This limit considers the point particle to have a large impact parameter
from the central black hole i.e. M/r � 1. These two assumptions together allow us to
discard the terms proportional to M2/l2, Mr/l2 and other higher order terms throughout
the calculation. Therefore we always consider terms up to O(M) and O(1/l2).

To proceed we rewrite (2.3) as

ds̃2 = −
(

1− 2GM
r

+ r2

l2

)
dt2 +B2(ρ)(dρ2 + ρ2dΩ2). (3.1)
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The spatial part and angular part of (3.1) are related to the same of (2.3) as follows,

B2(ρ)dρ2 = dr2

1− 2GM
r + r2

l2

; B2(ρ)ρ2 = r2. (3.2)

These two equations lead to the relation between Schwarzschild coordinates and isotropic
coordinates up to O(M) and O(1/l2) as,

dρ

ρ
= ln

r −GM + r

√
1− 2GM

r

− r2

4l2 + · · ·

⇒ ρ = r

(
1− GM

r
− r2

4l2

)
. (3.3)

The above relation implies that the Schwarzschild coordinate ‘r’ is related to the isotropic
coordinate ‘ρ’ as,

r ∼ ρ
(

1 + GM

ρ
+ ρ2

4l2

)
, (3.4)

and in isotropic coordinates (2.3) becomes,

ds2 = g00dt
2 + gijdx

idxj , (3.5)

where,

g00 ≈ −
(

1 + 2φ+ ρ2

l2

)
, gij ≈ δij

(
1− 2φ+ ρ2

2l2

)
. (3.6)

Here φ = −GM
ρ is the gravitational potential due to the black hole mass M and we have

considered the limit ρ2/l2 � 1. Similarly, the inverse metric components are given by,

g00 ≈ −
(

1− 2φ− ρ2

l2

)
, gij ≈ δij

(
1 + 2φ− ρ2

2l2

)
, (3.7)

and the square root of the determinant of the metric is
√
−g = 1− 2φ+ 5ρ2

4l2 .
We have given the expressions for non-vanishing connection, Riemann tensor, Ricci

tensor and Ricci scalar derived using the metric (3.6) in the appendix A.

4 Probe scattering in AdS Schwarzschild background

In this section, we study the effect of a probe mass on the AdS Schwarzschild background,
that we have given in the last section. To achieve this, we linearly perturb the background
spacetime by introducing a point particle of mass m with a stress tensor Tµν(P ):

Tµν(P ) = m

∫
δ(x, z(s))dz

µ

ds

dzν

ds
ds. (4.1)

Here δ(x, z(s)) corresponds to the covariant delta function normalized as∫ √
−g δ(x, z(s))ds = 1. (4.2)

– 6 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
8

This induces a perturbation of the metric as gµν → gµν + hµν . Under this perturbation we
take the variation of (2.2) to linear order in hµν as

∇ρ∇ν h̄µρ +∇ρ∇µh̄νρ − h̄µν;α
α − gµν∇ρ∇αh̄αρ − (R− 2Λ)h̄µν − Λgµν h̄+ gµνR

αβh̄αβ

= 16πGδTµν . (4.3)

Here δTµν = Tµν(P ) and h̄µν is the trace reversed metric perturbation defined as

h̄µν = hµν −
1
2gµνh (4.4)

with h being the trace of perturbation. Simplification of (4.3) can be done by introducing
a gauge fixing vector function f in the following way,

∇αh̄αβ = fβ . (4.5)

Using the identity

∇ρ∇ν h̄µρ = ∇ν∇ρh̄µρ +Rσµν
ρh̄σρ +Rσν h̄µσ, (4.6)

(4.3) boils down to,

h̄µν;α
α − 2Rσµνρh̄σρ − 2Rσ(µh̄ν)σ − gµνRαβhαβ +

(
R+ 6

l2

)
h̄µν −

3
l2
gµν h̄

− 2(∇(µfν)) + gµν∇αfα = −16πGδTµν . (4.7)

We first compute the spatial components h̄ij of the radiative gravitational perturbation.
Once h̄ij is known, by the gauge condition (4.5), one can then easily compute h̄00 and h̄0i.
Finally we choose an explicit gauge fixing condition on fβ as,

fβ = −2
(
φk −

ρ2
k

4l2

)
h̄kβ . (4.8)

This choice simplifies the gauge terms of (4.7) in further computations. Putting µ = i,
ν = j in (4.7) we evaluate each term as,

− (fi,j + fj,i + δijf0,0 − δijfk,k)

= 2
(
φkj −

ρ2
kj

4l2

)
h̄ki + 2

(
φk −

ρ2
k

4l2

)
h̄ki,j + 2

(
φki −

ρ2
ki

4l2

)
h̄kj + 2

(
φk −

ρ2
k

4l2

)
h̄kj,i

+ 2δij

(
φk −

ρ2
k

4l2

)
h̄k0,0 − 2δij

(
φl −

ρ2
l

4l2

)
h̄kl,k − 2δij

(
φlk −

ρ2
lk

4l2

)
h̄lk.

Therefore manipulating terms in (4.7) we finally get the following equation,

�

((
1 + 2φ− ρ2

2l2

)
h̄ij

)
+ 4

[
φh̄ij,00 + φih̄j0,0 + φj h̄i0,0 + 1

2

(
φij −

δij
2 φkk

)
(h̄00 + h̄ll)

]
+ 1

2l2
[
ρ2h̄ij,00 + ρ2

i h̄j0,0 + ρ2
j h̄i0,0 + ρ2

ij(2h̄00 − h̄ll) + 3
2δijρ

2
klh̄kl −

1
2δijρ

2
kkh̄ll

+3
2(ρ2

kih̄kj + ρ2
kj h̄ki)− ρ2

kkh̄ij + 3
2ρ

2
kh̄ij,k

]
= −16πGδTij , (4.9)
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where δTij follows from (4.1),

δTij = gikgjmδT
km = m

(
1− 4φ+ ρ2

l2

)∫
δ4(x, z(s))dz

i

ds

dzj

ds
ds (4.10)

and we define � = ηµν∂µ∂ν = −∂2
0 + ∂2

i . Here, we have expressed (4.9) as the differential
equation involving the flat spacetime D’Alembertian operator and other additional terms
involving φ, ρ2/l2 and their derivatives. This helps us to solve the equation perturbatively in
zeroth order using the Green’s function corresponding to the flat spacetime D’Alembertian
operator. We eventually find the solution upto O(M) and O(1/l2) plugging the zeroth
order solution in the source terms of (4.9).

5 Scalar Green’s function in Anti-deSitter space

The prime technical aspect of this paper is to first find a solution of (4.9). As it turns
out, this is much easier to achieve using Synge’s worldline formalism. We refer the readers
to [54] for a detailed analysis of the same. In this formalism we express the solution for
the perturbation in terms of a well known quantity known as Synge’s world function, that
we introduce in this section. Although our goal is to find solution of equation (4.9), we
first proceed with a simpler case, namely the scalar box equation. In its integral form, the
equation takes the following form,

ψ;α
α(x) = −

∫
δ(x, z(s))f(s)ds . (5.1)

The form of f(s) depends on the sources appearing in the equation and ‘;’ denotes covari-
ant derivative with respect to any background geometry. Comparing the above equation
with (4.7), we do not have a nontrivial tensor structure and the terms proportional to
curvature tensors and gauge fixing function are absent in this case.

The covariant delta function δ(x, z(s)) is related to the flat spacetime delta function
δ4 (x− z(s)) via

δ(x, z(s))
√
−g = δ4 (x− z(s)) = δ(t− z0(s))δ(3)(~x− ~z(s)) . (5.2)

In flat spacetime, (5.1) becomes �ψ(x) = −J(x). The solution of ψ(x) is,

ψ(x) =
∫
G(x, y)J(y)d4y =

∫
G(x, y) δ4(y, z(s))f(s)ds d4y

=
∫
G(x, z(s))f(s)ds, (5.3)

where J is the source and f(s) is strength of the source. The flat Green’s function G

satisfies,
�G (x, z) = ηµν∂µ∂νG (x, z) = −δ4 (x− z) . (5.4)

As is well known,the flat space Green function has 3 possible solutions:

the retarded one: GR(x, z) = 1
4π|R|δ

(
t− z0 − |~R|

)
, (5.5)

the advanced one: GA(x, z) = 1
4π|~R|

δ
(
t− z0 + |~R|

)
(5.6)
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and a sum over retarded and advanced Green functions

G(x, z) =GR(x, z) +GA(x, z), (5.7)

where ~R = ~r− ~z. One can easily rewrite G(x, z) in terms of Synge’s world function Ω0 as,

G (x, z) = 1
4πδ (−Ω0 (x, z)) , (5.8)

where the world function for flat spacetime is defined as [54],

Ω0 (x, z) = 1
2ηµν (xµ − zµ) (xν − zν) = 1

2

(
−
(
t− z0

)2
+ (~r − ~z)2

)
. (5.9)

Ω0, which is a covariant quantity measures half of the square of the proper time between
two spacetime points. However G(x, z) contains contributions from the advanced Green’s
function as well as the retarded one. Therefore to maintain causality, we can ensure that
the equation

�ψ(x) = −
∞∫
−∞

δ4 (x− z(s)) f(s)ds (5.10)

gets only contribution from the retarded Green function solution by considering the upper
limit of the integral at a finite value s0,

ψ(x) = 1
4π

s0∫
−∞

δ (−Ω0 (x, z)) f(s)ds. (5.11)

Here zµ(s) is the parametric equation of the path followed by the source. In evaluat-
ing (5.11), we need to choose s0 such that zµ(s0) lies outside the light cone centred at xµ.
This assures that the contribution to the scalar profile ψ is only coming from the retarded
part of the Green’s function. One important aspect of expressing the Green’s function in
terms of Synge’s world function Ω0 is that it is covariant by construction and hence can be
used for curved spacetime as well. Thus, analogous to Ω0 (x, z) in flat spacetime, we define
a world function Ω (x, z) on curved spacetime as

Ω(x, z) = 1
2(u1 − u0)

∫ u1

u0
gαβU

αUβ du, (5.12)

where x (observer) and z (source) are coordinates of two points of spacetime joined by an
unique geodesic ξα with affine parameter ‘u’ and Uα = dξα

du is the tangent to the geodesic.
Gravitational radiation follows this path.

We take following ansatz as a solution of (5.1) in terms of Ω (x, z):

ψ(0)(x) = 1
4π

s0∫
−∞

δ (−Ω (x, z)) f(s)ds. (5.13)

When we put back ψ(0)(x) from (5.13) into (5.1), it gives both, the source term and
extra terms proportional to Riemann tensor of the background metric. To accommodate
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these additional terms proportional to Riemann tensor we need to find a modified solution
valid up to first order in both φ and 1

l2 . To do this we correct the ansatz ψ(0)(x) to
ψ(1)(x) = ψ(0)(x) + δψ(x). In general, δψ is the contribution of back-scattering due to the
black hole potential.

To proceed we first calculate modified Synge’s world function Ω for our chosen back-
ground. Let ξµ(u) be the parametric solution of an unique geodesic between the points
x(t, ~x) and z(z0, ~z). To calculate the Green’s function in Anti-deSitter spacetime we find
out the world function Ω using its another equivalent covariant definition as [54],

Ω = −1
2(∆S)2, (5.14)

where
∆S =

∫
geodesic path

ds =
∫ t

z0

dξ0(
dξ0

ds

) . (5.15)

To compute dξ0

ds we use the geodesic equation for the time coordinate,

d2ξ0

ds2 + 2 Γ0
0k

(
dξk

ds

)(
dξ0

ds

)
= 0 (5.16)

Next to find
(
dξ0

ds

)
we require to express Γ0

0k as a total derivative,

d2ξ0

ds2 + 2 φ̄,k

(
dξk

ds

)(
dξ0

ds

)
= 0 (5.17)

where
φ̄ = φ+ ρ2

2l2 ; φ = −M
ρ
. (5.18)

This gives the solution for
(
dξ0

ds

)
as,

(
dξ0

ds

)
= Ae−2φ̄ = A

(
1− 2φ̄

)
= A

(
1− 2φ− ρ2

l2

)
, (5.19)

where ‘A’ is the integration constant. Therefore we can get the expression for ∆S as

∆S =
∫ t

z0

1
A

(
1 + 2φ+ ρ2

l2

)
dξ0. (5.20)

The constant ‘A’ can be fixed by using the following property for timelike curves

gµν
dξµ

ds

dξν

ds
= −1. (5.21)

Using the metric expressions (5.21) gives

−
(

1 + 2φ+ ρ2

l2

)(
dξ0

ds

)2

+ δij

(
1− 2φ+ ρ2

2l2

)(
dξi

ds

)(
dξj

ds

)
= −1 (5.22)
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Further denoting vi = dξi

dξ0 we can rewrite the above expression as,(
1+2φ+ ρ2

l2

)
−
(

1−2φ+ ρ2

2l2

)
v2 =

(
ds

dξ0

)2
= 1
A2 e

4φ̄ = 1
A2

(
1+4φ+ 2ρ2

l2

)
(5.23)

To extract ‘A’ from the above expression, we again go back to the flat space limit. In
φ→ 0 and ρ→∞ i.e. l→∞ limit where ρ2/l2 � 1 we define,

1− v2
A = 1

A2 . (5.24)

Here vA is the asymptotic velocity of the probe mass in flat spacetime. Keeping terms up
to linear order in ‘φ’ and O(1/l2) we get from (5.23),

1− v2 = 1− v2
A − 4φ− 2ρ2

l2
(5.25)

which finally gives,

v = vA + 2φ+ ρ2

l2
. (5.26)

The condition that the path goes through (t, ~x) and (z0, ~z) ensures∫ x

z
dξi = R =

∫ t

z0
v(ξ0) dξ0 =

∫ t

z0

(
vA + 2φ+ ρ2

l2

)
dξ0 (5.27)

where R = |~x − ~z|. To carry out the integration we choose the following parametrization
for ξµ

ξα = ξα1 + s (ξα2 − ξα1 ) (5.28)

where ξ0 corresponds time and ξi corresponds spatial coordinates. Using this parametriza-
tion, the integration now limits from 0 to 1. The integration involving the second and third
terms of the r.h.s. of (5.27) are,

∫ t

z0

(
−2M

ρ

)
dξ0 = −2M (t− z0)

R
log

(
~x. ~R+ |~x||~R|
~z. ~R+ |~z||~R|

)
∫ t

z0

(
ρ2

l2

)
dξ0 = 1

l2
(t− z0)~x.~z (5.29)

where we have used the fact that ρ2 = ξiξi. After carrying out the whole integration,
from (5.27) we get

R = (t− z0)
(
vA + 1

l2
~x.~z − 2M

R
log

(
~x. ~R+ |~x||~R|
~z. ~R+ |~z||~R|

))
. (5.30)

Inverting the above relation, we get the asymptotic velocity vA as,

vA = R

(t− z0) −
1
l2
~x.~z + 2M

R
log

(
~x. ~R+ |~x||~R|
~z. ~R+ |~z||~R|

)
. (5.31)
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Finally we put this in the following integral

∆S =
∫ t

z0
(1− v2

A)1/2
(

1 + 2φ+ ρ2

l2

)
dξ0 (5.32)

and evaluate the expression for (∆S)2 as

(∆S)2 =
[
(t− z0)2 −R2 + R2

l2
2~x.~z − 4MRΓ

](
1− 4M

R
Γ + 2

l2
~x.~z

)

=
[
(t− z0)2 −

((
1− ~x.~z

l2

)
(R+ 2MΓ)

)2](
1− 4M

R
Γ + 2

l2
~x.~z

)
. (5.33)

Here we denote

Γ (~x, ~z) = ln
(
|~x||~R|+ ~x. ~R

|~z||~R|+ ~z. ~R

)
. (5.34)

Evaluating δ
(

1
2(∆S)2

)
, we can write the expression of ψ(0)(x) from (5.13),

ψ(0)(x) = 1
4π

∫ s0

−∞

δ
(
(t− z0)−

(
1− ~x.~z

l2

)
(R+ 2MΓ)

)
|~R|

f(s)ds

= 1
4π

∫ s0

−∞

δ
(
(t− z0)−R+ R

l2~x.~z − 2MΓ
)

|~R|
f(s)ds. (5.35)

ψ0(x) is not a complete solution of (5.1) in presence of spacetime curvature. We identify
the additional corrections due to curvature using the following property of derivative of the
World function [44, 54]

Ω;α
α = 4 + 1

u1 − u0

∫ u1

u0
(u− u0)2RαβU

αUβdu+O(R2)

= 4 + F (x, z) +O(R2), (5.36)

where we define F (x, z) as

F (x, z) = 1
u1 − u0

u1∫
u0

(u− u0)2RµνU
µUνdu . (5.37)

Using (5.13) and (5.36) one can then find [54],

ψ
(0)

;α
α = −

∞∫
−∞

δ4 (x− z(s)) f(s)ds+ 1
4π

s0∫
−∞

δ′ (−Ω)F (x, z(s))f(s)ds+O
(
R2
)
, (5.38)

where
δ′ (−Ω) = dδ (−Ω)

ds

ds

d (−Ω) . (5.39)

Comparing the above expression with the initial one in (5.1) we get,

δψ
(0)

;α
α = − 1

4π

s0∫
−∞

δ′ (−Ω)F (x, z(s))f(s)ds. (5.40)
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Thus the complete solution valid up to O (R) order is given as

ψ(1)(x) =ψ(0)(x)+δψ(0)(x)

=ψ(0)(x)+ 1
16π2

∫ √
−g(y)δ (−Ω((x,y))d4y

s0∫
−∞

δ′ (−Ω(y,z(s)))F (y,z(s))f(s)ds.

(5.41)

Note that while ψ(0) involve both curvature independent and linear in curvature terms,
δψ(0)(x) only involves curvature dependent terms. The above solution of ψ(1)(x) satisfies

ψ
(1)

;α
α = −

∫
δ(x, z(s))f(s)ds+O

(
R2
)
. (5.42)

In evaluating (5.41) the explicit expression for ‘F’ as defined in (5.37) is required. We
compute it by contracting the Einstein equation for radiation with UαUβ . Thus we get3

RαβU
αUβ = 8πGTαβUαUβ . (5.43)

We recall the fact that we are considering the black hole as a point particle of mass ‘M ’.
Thus the stress energy tensor on curved background in (5.43) can be expressed as,

Tµν(x) = M

∫
ds UµUνδ(4)(x− z(s)) (5.44)

Using the above relations we get the correction term due to back scattering as,

δψ(0)(x) = GM

2π ∂t

∞∫
0

dv

∞∫
−∞

ds
δ
(
t− z0 − |~z| − v − ρ(v)

)
ρ(v) (|~z|+ v) f(s) , (5.45)

where as before ~R = ~x− ~z and

ρ(v) =
√
~x2 + v2 + 2v~x.~z

|~z|
. (5.46)

Thus, we get a complete solution for the scalar box equation in AdS-Schwarzschile
background with arbitrary source function. But the equation (4.9) that we need to solve
contains extra terms proportional to the M and 1

l2 . To manipulate these terms, we define
new “Green’s functions” as follows. Let us first write the solution ψ(1) in frequency space,
by performing a Fourier transform in the time coordinate as

ψ̃(1) (ω, ~x) =
∫
dteiωtψ(1) (t, ~x) . (5.47)

3As for null rays
gαβU

αUβ = 0
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Explicit evaluation of the Fourier transform using relations (5.35) and (5.45) gives,

ψ̃(0) = 1
4π

∞∫
−∞

eiω(z0+|~R|)

|~R|
f(s)ds+ iωM

2π

∞∫
−∞

eiω(z0+|~R|)Γ
|~R|

f(s)ds

− iω

4π
1
l2

∞∫
−∞

eiω(z0+|~R|)(~x.~z)f(s)ds (5.48)

δψ̃(0) = − iωM2π

∞∫
0

dv

∞∫
−∞

ds
eiω(z0+v+|~z|+ρ(v))

(v + |~z|) ρ(v) f(s) , (5.49)

where for (5.48) we have expanded the exponential terms up to linear order in perturbation
parameters M and 1/l2. We further split out ψ̃(0) as ψ̃(0) = ψ̃

(0)
0 + ψ̃

(0)
1 + ψ̃

(0)
2 , where ψ̃(0)

0
manifestly represents the zeroth order solution, while ψ̃(0)

1 is an additional contribution
due to M correction and ψ̃(0)

2 is an additional contribution due to (1/l2) correction to the
solution. Thus we identify

ψ̃
(0)
0 (ω, ~x) = 1

4π

∞∫
−∞

eiω(z0+|~R|)

|~R|
f(s)ds , (5.50)

ψ̃
(0)
1 (ω, ~x) = iωM

2π

∞∫
−∞

eiω(z0+|~R|)Γ
|~R|

f(s)ds (5.51)

ψ̃
(0)
2 (ω, ~x) = − iω4π

1
l2

∞∫
−∞

eiω(z0+|~R|)(~x.~z)f(s)ds (5.52)

(5.42) can then be expanded as,

�ψ(1)+4φ∂2
t ψ

(1)− ρ2

4l2∂
2
t ψ

(1)+ 3
4l2 ρ

2
k∂kψ

(1)+ 3ρ2

4l2 ∂
2
kψ

(1) =−
∫
δ4 (x−z(s))f(s)ds+O

(
R2
)
.

(5.53)
Since we are looking at the expression perturbatively, in terms that are proportional to φ
and 1/l2 in (5.53), we replace ψ(1) by ψ(0) as

�ψ(1) + 4φ∂2
t ψ

(0) − ρ2

4l2∂
2
t ψ

(0) + 3
4l2 ρ

2
k∂kψ

(0) + 3ρ2

4l2 ∂
2
kψ

(0)

= −
∫
δ4 (x− z(s)) f(s)ds+O

(
R2
)
. (5.54)

Performing the Fourier transformation of the above equation we get

�̃ψ̃(1) − 4ω2φψ̃(0) + ρ2

4l2ω
2ψ̃(0) + 3

4l2 ρ
2
k∂kψ̃

(0) + 3ρ2

4l2 ∂
2
kψ̃

(0)

= −
∫
eiωz

0
δ3(~x− ~z)f(s)ds+O

(
R2
)
, (5.55)
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where �̃ =
(
ω2 + ∂2

i

)
. Collecting terms with same coefficient as the independent pertur-

bation parameters we get the following equations,

zeroth order : �̃ψ̃(0)
0 = −

∫
eiωz

0
δ3(~x− ~z)f(s)ds (5.56)

leading order in φ : �̃ψ̃(0)
1 + �̃δψ̃(0) − 4φω2ψ̃(0) = 0 (5.57)

leading order in 1
l2

: �̃ψ̃(0)
2 + ρ2

4l2ω
2ψ̃(0) + 3

4l2 ρ
2
k∂kψ̃

(0) + 3
4l2 ρ

2∂2
kψ̃

(0) = 0. (5.58)

Plugging ψ̃(0)
1 , δψ̃(0) in (5.57), we find the following equality

− �̃GM (ω, ~x, ~z) =
(
ω2 + ∂2

i

)
GM (ω, ~x, ~z) = φ (~x) e

iω|~R|

|~R|
, (5.59)

where we define

GM (ω, ~x, ~z) = − iGM2ω

eiω|~R|Γ (~x, ~z)
|~R|

−
∞∫
0

dv
eiω(v+|~z|+ρ(v))

(v + |~z|) ρ(v)

 . (5.60)

Similarly plugging ψ̃(0)
2 from (5.52) in (5.58), we find the following equality

− �̃Gl (ω, ~x, ~z) = ρ2 (~x) e
iω|~R|

|~R|
+ 3
ω2∂k

(
ρ2∂k

(
eiωR

R

))
, (5.61)

where we define
Gl (ω, ~x, ~z) = − 4i

ω
eiω|

~R| (~x.~z) . (5.62)

(5.59) and (5.61) enable us to express φ, its derivatives and ρ2 and its derivatives in the
equation of motion (4.9) in terms of �̃GM and �̃Gl respectively. Since ~R = ~x − ~z, the
derivative ∇i = ∂

∂xi
+ ∂

∂zi
vanishes when it acts on any function of ~R but not on φ and ρ.

Hence we get relations as

−∇i�̃GM (ω, ~x, ~z) = φi
eiω|

~R|

|~R|
, −∇i∇k�̃GM (ω, ~x, ~z) = φik

eiω|
~R|

|~R|
, (5.63)

and

−∇i�̃Gl (ω, ~x, ~z) = ρ2
i

eiω|
~R|

|~R|
, −∇i∇k�̃Gl (ω, ~x, ~z) = ρ2

ik

eiω|
~R|

|~R|
. (5.64)

(5.63) and (5.64) will be used extensively to rewrite the equation of motion (4.9) in terms
of derivatives acting on GM and Gl. Thus, in this section we have developed the necessary
technical tools required to deal with the case of our interest (4.9). In the next section we
present its solution.
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6 Solution of the perturbed field equations

We now look for a solution of (4.9) for h̄ij . As it turns out, finding a solution in the
frequency space is simpler. We solve the equation perturbatively to first order in parameters
M and 1/l2. The source strength f(s) takes the form,

f(s) = 16πGm
(

1− 2φ− ρ2

4l2

)
dzi

ds

dzj

ds
. (6.1)

Similar to the scalar case we will choose our trial solution for h̄ij . At zeroth order of M
and 1/l2, the equation (4.9) becomes,

�h̄ij = −16πGm
∫
δ4(x, z(s))dz

i

ds

dzj

ds
ds. (6.2)

Here h̄ij is the spatial component of trace reversed metric perturbation introduced in (4.4),
m is the probe particle mass and zi refer to the spatial coordinate of the position of probe
mass. The Fourier transform of the solution of (6.2) in frequency space takes the form

h̄ij = 4Gm
∫
dz0dz

0

ds
vivj

eiω(z0+|~R|)

|~R|
, (6.3)

where h̄ij is the Fourier transform of h̄ij , ω is its frequency and vi = dzi

dz0 . The gauge fixing
equation (4.5) and (4.8) following a Fourier transformation yields

h̄km,m = −iωh̄k0, h̄k0,k = −iωh̄00. (6.4)

Using these relations and equation (6.3), we get h̄i0 and h̄i0 at zeroth order as,

h̄i0 = −4Gm
∫
dz0dz

0

ds
vi
eiω(z0+|~R|)

|~R|

h̄00 = 4Gm
∫
dz0dz

0

ds

eiω(z0+|~R|)

|~R|
. (6.5)

Finally Fourier transforming the equation (4.9) we get,

�̃

((
1+2φ− ρ2

2l2

)
h̄ij

)
−4
[
ω2φh̄ij+iωφih̄j0+iωφj h̄i0−

1
2

(
φij−

δij
2 φkk

)
(h̄00+h̄ll)

]
− 1

2l2
[
ω2ρ2h̄ij+iωρ2

i h̄j0+iωρ2
j h̄i0−ρ2

ij(2h̄00−h̄ll)−
3
2δijρ

2
klh̄kl+

1
2δijρ

2
kkh̄ll−

3
2(ρ2

kih̄kj+ρ2
kj h̄ki)

−ρ2
kkh̄ij−

3
2ρ

2
kh̄ij,k

]
=−16πGm

∫ 1(
1+2φ+ ρ2

4l2
)eiωz0δ3(~x−~z(s))dz

i

ds

dzj

ds
ds (6.6)
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where �̃ =
(
ω2 + ∂2

i

)
. Thus plugging the expressions of the zeroth order perturbations

from (6.4) and (6.5) in source terms of (6.6) we get the solution for h̄ij as,

h̄ij (ω, ~x) = 4Gm(
1 + 2φ− ρ2

2l2
)

(~x)

∫
eiω(z0+|~R|)

|~R|
vivj(

1 + 2φ+ ρ2

4l2
)

(~z)

dz0

ds
dz0

−
∫
dz0dz

0

ds
eiωz

0
∫
d3~r ′ δ(3) (~r ′ − ~z){

16Gm
[
ω2vivj − iω (vi∇j + vj∇i)−

1
2
(
1 + ~v2

)(
∇i∇j −

1
2δij∇

2
)]}

GM
(
ω, ~x, ~r′

)
−
∫
dz0dz

0

ds
eiωz

0
∫
d3~r ′ δ(3) (~r ′ − ~z){

2Gm
l2

[
ω2vivj − iω (vi∇j + vj∇i)−

(
2− ~v2

)
∇i∇j −

3
2δijvkvm∇k∇m −

1
2δijv

2∇2

−3
2 (vkvj∇k∇i + vkvi∇k∇j) + vivj∇2 + 3

8 iω(vi∇j + vj∇i)
]}

Gl
(
ω, ~x, ~r′

)
(6.7)

The above expression is the solution of gravitational wave front up to first order in pertur-
bation parameters φ and 1/l2 and is one of the important results of this paper. Physically
h̄ij (ω, ~x) measures the radiation, upto order O(φ) and O(1/l2), of frequency ω at a spatial
point ~x induced by the probe particle of mass m on AdS-Schwarzschild spacetime.

For the next part of the paper our aim is to consider the soft limit expansion in
frequency of the above gravitational perturbation. We present the definition for soft limit
in the next section. For this purpose, we follow a similar prescription as proposed in [37].
To compare our results to them in appropriate limit, we also follow similar notations as
in [37] where the observer is assumed to be at ~x, the trajectory of probe particle is denoted
by ~r(t), 8πG = 1 and ẽij = h̄ij/2. In this notation (6.7) can be rewritten as,

ẽij (ω, ~x) = m

4π
1(

1 + 2φ(~x)− x2

2l2
) ∫ eiω(t+|~R|)

|~R|
vivj(

1 + 2φ(~r(t)) + r2

4l2
) dt
ds
dt

−
∫
dt
dt

ds
eiωt

∫
d3~r ′ δ(3) (~r ′ − ~r){

m

π

[
ω2vivj − iω (vi∇j + vj∇i)−

1
2
(
1 + ~v2

)(
∇i∇j −

1
2δij∇

2
)]}

GM
(
ω, ~x, ~r ′

)
−
∫
dt
dt

ds
eiωt

∫
d3~r ′ δ(3) (~r ′ − ~r){

m

8πl2
[
ω2vivj − iω (vi∇j + vj∇i)−

(
2− ~v2

)
∇i∇j −

3
2δijvkvm∇k∇m −

1
2δijv

2∇2

−3
2 (vkvj∇k∇i + vkvi∇k∇j) + vivj∇2 + 3

8 iω(vi∇j + vj∇i)
]}

Gl
(
ω, ~x,~r ′

)
(6.8)

– 17 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
8

where ∇i = ∂
∂xi

+ ∂
∂r′i

. In the Asymptotic limit where ~x� ~r, we can write,

|~R| = |~x− ~r| = R− ~r.n̂, where R = | ~x |, n̂ = ~x

|~x|
(6.9)

In this limit the Green’s functions take the following forms,

GM
(
ω, ~x,~r ′

)
= i

M

16πω
eiω(R−n̂.~r ′)

R

ln( |~r ′|+ n̂.~r ′

R

)
+

∞∫
|~r ′|+n̂.~r ′

du
eiωu

u

 , (6.10)

where u = v + |~r ′|+ n̂.~r ′ + vn̂.r̂ ′ and

Gl
(
ω, ~x,~r ′

)
= −4i

ω

eiω(R−n̂.~r ′)

R

(
R2 n̂.~r ′

)
. (6.11)

For convenience we write ẽij as,

ẽij = ẽ
(1)
ij + ẽ

(2)
ij + ẽ

(3)
ij + ẽ

(4)
ij + +ẽ(5)

ij + ẽ
(6)
ij + ẽ

(7)
ij .. (6.12)

Each ‘ẽ’ s will correspond to different power of frequency ω in the final result. We denote
the term independent of the Green’s functions as ẽ(1)

ij ,

ẽ
(1)
ij (ω,~x) = m eiωR

4πR
1(

1− x2

2l2
) ∫ dt(

1+2Φ(~r(t))+ r2

4l2
) dt
ds
vivj e

iω(t−n̂.~r(t))+boundary terms ,

(6.13)
where Φ(~r) is the gravitational potential due to teh probe mass M0,

Φ(~r) = − M0
8π|~r| . (6.14)

Next we present the ẽ(i)’s which arises due to the contribution from Schwarzschild part
similar to the results of [37],

ẽ
(2)
ij (ω, ~x) = i

M0m

32π2ω

eiωR

R

∫
dt
dt

ds
(1 + ~v2)

(
∇i∇j −

1
2δij ∇k∇k

){
ln |~r

′|+ n̂.~r ′

R
eiω(t−n̂.~r ′)

+
∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r ′+u)

}∣∣∣∣
~r ′=~r(t)

(6.15)

ẽ
(3)
ij (ω, ~x) = −i M0m

16π2 ω
eiωR

R

∫
dt
dt

ds
vi vj

{
ln |~r

′|+ n̂.~r ′

R
eiω(t−n̂.~r ′)

+
∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r ′+u)

}
(6.16)

ẽ
(4)
ij (ω, ~x) = −M0m

16π2
eiωR

R

∫
dt
dt

ds
(vi∇j + vj∇i)

{
ln |~r

′|+ n̂.~r ′

R
eiω(t−n̂.~r ′)

+
∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r ′+u)

}∣∣∣∣
~r ′=~r(t)

. (6.17)
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The contributions from the small cosmological constant are given by the remaining ẽ’s as,

ẽ
(5)
ij (ω, ~x) = i

m

2πl2ω

∫
dt
dt

ds

[
−
(
2− ~v2

)
∇i∇j −

3
2δijvkvm∇k∇m −

1
2δijv

2∇k∇k

−3
2 (vkvj∇k∇i + vkvi∇k∇j) + vivj∇k∇k

] (
R eiω(R+t−n̂.~r ′) n̂.~r ′

) ∣∣∣∣
~r ′=~r(t)

,

(6.18)

ẽ
(6)
ij (ω, ~x) = i

m

2πl2ω
∫
dt
dt

ds
vivj

(
R eiω(R+t−n̂.~r ′) n̂.~r ′

)
, (6.19)

ẽ
(7)
ij (ω, ~x) = − m

2πl2
∫
dt
dt

ds

5
8(vi∇j + vj∇i)

(
R eiω(R+t−n̂.~r ′) n̂.~r ′

) ∣∣∣∣
~r ′=~r(t)

. (6.20)

In the next section we consider soft expansion of the perturbations defined above in its
frequency ω. We do not discuss the expansion for ẽ(2)

ij to ẽ(4)
ij as it was already discussed

in detail in ([37]).

7 Soft expansion of radiation in asymptotically AdS space

In [37], the authors computed an interesting classical limit of the multiple soft graviton
theorem, that arises while considering scattering amplitudes in a theory of gravity in asymp-
totically flat spacetimes. To find the classical limit all operators in the soft expansion are
replaced by their corresponding classical analogue. In a classical scattering, a large number
of soft gravitons emerge and an important assumption is that the total energy carried by
the soft radiation is small compared to the energy carried by the scatterers themselves.
This is ensured by demanding a large impact parameter. While the Soft theorem is a
quantum feature of a theory, in the classical limit, the soft factor gets related to the power
spectrum of low frequency classical radiation that emerges during a scattering process. In
asymptotically flat backgrounds, on performing a Laurent expansion in the frequency ω of
soft radiations, the classical radiative field takes the following form,

εαβ ẽαβ(ω, ~x) = N ′ Sgr(ε, k) , where

R ≡ |~x|, N ′ ≡ − i

4π
eiωR

R
, k ≡ −ω(1, n̂), n̂ = ~x

|~x|
. (7.1)

Here εαβ is an arbitrary rank two polarization tensor of the graviton and Sgr is the gravi-
tational soft factor [37]. In its soft expansion in frequency ω, the soft factor Sgr has a term
proportional to ω−1 in the leading order in frequency. The subleading term is proportional
to lnω−1.We refer the authors to [36–39] for a detailed derivation of Sgr. The above equa-
tion (7.1) gives an alternate definition for the soft factor in terms of classical gravitational
radiation and thus can also be computed by studying the radiation profile.

For asymptotically flat backgrounds, calculation of soft factor requires consideration
of large |t| and suitable parametrization of ~r(t) where r(t) is the position of the scattered
mass at some time t. For large values of t (both positive and negative), it should follow
the geodesics of the background and thus the functional form can be explicitly written.
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Parameterizing ~r(t) for large |t| in four spacetime dimensions as in [37], we write

~r(t) = ~β±t− C± ~β± ln |t|+ finite terms, ~v = ~β±

(
1− C±

t

)
. (7.2)

Here we keep terms of the order of O(1/t). The ln |t| terms arises due to the presence of
long range interaction force in 4 spacetime dimensions. Following the parametrization (7.2)
thereafter one can use suitable integrals deduced in [37] and find the soft factors following
the relation (7.1).

Consideration of soft limit is tricky for asymptotic AdS spacetime. There is no notion
of null infinity in asymptotic AdS spacetimes. Gravitons are bounced off an infinite number
of times on spatial infinity, which is a time-like hypersurface. The frequency of the graviton
can never strictly go to zero, as there is a mass gap. Thus, we need to suitably define a
“soft limit” in this case. We take physical insight to do so and consider a double scaling
limit. We consider that the frequency of the graviton in AdS space goes to zero while the
radius of the AdS space goes to infinity, i.e. the AdS space limits to a flat space. Henceforth
we define the soft limit as two simultaneous limits, ω → 0 and l→∞, keeping ωl fixed.

Next to understand how the long range gravitational force behave for AdS case in four
spacetime dimensions and we consider Gauss’s law in AdS spcetime [57] for this purpose.
Let us perform a coordinate transformation on asymptotic static AdS metric to global
coordinates to get

ds̃2 = −
(

1 + r2

l2

)2

dt2 + dr2 + r2
(

1 + r2

l2

)
dΩ2. (7.3)

We consider a constant time surface, such as the surface t = 0 in this background. We
have a Mass M sitting at the centre of the black hole r=0. Gauss’s law implies that the
total amount of flux through any sphere must be a constant. The potential due to mass is

V = M

r
√

1 + r2

l2

. (7.4)

‘r’ follows from the metric as,

dr =
√
−g00
grr

dt =
(

1 + r2

l2

)
dt. (7.5)

Integrating (7.5) and considering the large l limit we get,

r ∼ βl tan
(
t

l

)
⇒ r ∼ βt+ βt3

3l2 for large l . (7.6)

We now replace r in terms of t from the above relation in the expression of potential V
in (7.4) and we get

V ∼ 1
βt
− 1
l2

(
t

3β + tβ

2

)
. (7.7)
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Therefore integrating (7.7)4 we get the additional contribution in r due to the long range
attractive force caused by other particles involved in the scattering, as proportional to

r ∼ c1 ln t− c2
l2
t2, . (7.8)

In (7.8) the first term is same as for asymptotically flat backgrounds and the second term
is the effect of the cosmological constant. Our calculations are valid only up to the order of
1
l2 and when r2

l2 � 1. As the perturbations are already at liner order in 1
l2 , the contribution

from cosmological constant in r (second term in (7.8)) does not affect our calculation. We
assume ωl → γ which is a large finite number (as r2

l2 � 1) in our soft limit. Thus we
rewrite the final expressions of perturbations by pulling out a factor of 1

ω2l2 and study the
dependence of the remaining terms on ω in ω → 0 limit.

To evaluate the soft expansion of ẽ(1)
ij , ẽ(5)

ij , ẽ(6)
ij and ẽ(7)

ij we need to find the asymptotic
expression for dt

ds . It is given as,

dt

ds
= (−gµνvµvν)−1/2 =


(

1− M0
4π|~r(t)| + r2

l2

)
−
(

1− M0
4π|~r(t)| + r2

2l2

)−1

~v(t)2


−1/2

' 1√
1− ~v(t)2

{
1 + M0

8π|~r(t)|
1 + ~v(t)2

1− ~v(t)2 −
r2

4l2
2− ~v(t)2

1− ~v(t)2

}
for large|~r(t)| . (7.9)

We consider the expansion of ẽ(1)
ij in details below. For that we write eiω(t−n̂.~r(t)) as

eiω(t−n̂.~r(t)) = 1
iω

1
∂t(t− n̂.~r(t))

d

dt
eiω(t−n̂.~r(t)) = 1

iω

1
(1− n̂.~v(t))

d

dt
eiω(t−n̂.~r(t)) (7.10)

Thereafter carrying out the integration by parts we get

ẽ
(1)
ij (ω,~x) =− m

4πR
1(

1− x2

2l2
)eiωR 1

iω

∫
dteiω(t−n̂.~r(t)) d

dt

[
1

1−n̂.~v(t)
1

1+2Φ(~r(t))+ r2

4l2

dt

ds
vivj

]

=− m

4πR
1(

1− x2

2l2
)eiωR 1

iω

∫
dteiω(t−n̂.~r(t)) d

dt

[
1

1−n̂.~v(t)
1

1−M0/(4π|~r(t)|)+ r2

4l2

dt

ds
vivj

]
(7.11)

Plugging the expression of dt/ds from (7.9) we get,

ẽ
(1)
ij (ω,~x) =

− m

4πR
1(

1− x2

2l2
)eiωR 1

iω

∫
dteiω(t−n̂.~r(t)) d

dt

[
1

1−n̂.~v(t)
1√

1−~v(t)2

{
1+ M0

8π|~r(t)|
3−~v(t)2

1−~v(t)2

}
vivj

]

+ m

16πl2Re
iωR 1

iω

∫
dteiω(t−n̂.~r(t)) d

dt

[
1

1−n̂.~v(t)
1√

1−~v(t)2

{
r2 3−2~v(t)2

1−~v(t)2

}
vivj

]
(7.12)

We denote the first line in the r.h.s. of the relation (7.12) by X1 and the second line by
X2. We find that part of X2 integral contributes in the soft factor and it is arising due

4Force= d2r
dt2 = − dV

dr
.
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to the presence of cosmological constant. As t→ ±∞, X1 is the same contribution as the
Schwarzschild case of [37] multiplied by 1(

1− x2
2l2

) factor. We manipulate part of X1 using

the expressions of ~v(t) given in (7.2) as,

1
1− n̂.~v(t)

1√
1− ~v(t)2

{
1 + M0

8π|~r(t)|
3− ~v(t)2

1− ~v(t)2

}
vivj

= 1
1− n̂.~β±

1√
1− ~β2

±

β± i β± j

[
1− 1

t

{
C±

1
1− n̂.~β±

∓ M0

8π |~β±|
3− ~β2

±

1− ~β2
±

+ C±
1

1− ~β2
±

}]
.

(7.13)

Plugging back (7.13) into the expression of X1 we compare it with the following known
integral I1 [37],

I1 ≡
1
ω

∫ ∞
−∞

dt e−i ω g(t)f ′(t) =
[ 1
ω

(f+ − f−) + i(a+k+ − a−k−) lnω−1
]

+ finite terms,

(7.14)

where comparing with (7.12)

f± = i(
1− x2

2l2
) m

4π Re
iωR 1

1− n̂.~β±
1√

1− ~β2
±

β±iβ±j ,

k± = − i(
1− x2

2l2
) m

4π Re
iωR 1

1− n̂.~β±
1√

1− ~β2
±

β±iβ±j

{
C±

1
1− n̂.~β±

∓ M0

8π |~β±|
3− ~β2

±

1− ~β2
±

+ C±
1

1− ~β2
±

}
,

a± = −(1− n̂.~β±) . (7.15)

Evaluating the integral and keeping terms up to O(M) and O(1/l2) we get the expression
for X1 as,

X1 = iω−1 m

4πRe
iωR

 1
1− n̂.~β+

1√
1− ~β2

+

β+i β+j−
1

1− n̂.~β−
1√

1− ~β2
−

β−i β−j


− m

4πRe
iωR lnω−1

 1√
1− ~β2

+

β+iβ+j

{
C+

1
1− n̂.~β+

− M0

8π |~β+|
3− ~β2

+

1− ~β2
+

+C+
1

1− ~β2
+

}

− 1√
1− ~β2

−

β−i β−j

{
C−

1
1− n̂.~β−

+ M0

8π | ~β−|
3− ~β2

−

1− ~β2
−

+C−
1

1− ~β 2
−

}
+ i

x2

2l2 ω
−1 m

4πRe
iωR

 1
1− n̂.~β+

1√
1− ~β2

+

β+i β+j−
1

1− n̂.~β−
1√

1− ~β2
−

β−i β−j


+X l

1. (7.16)
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The first three lines of (7.16) represents the results that arises due to the Schwarzschild
background as discussed in [37]. The new term X l

1 in (7.16) results due to the cosmological
constant and is given as,

X l
1 = i

x2

2ω2l2
m

4π Re
iωR

ω 1
1− n̂.~β+

1√
1− ~β2

+

β+i β+j − ω
1

1− n̂.~β−
1√

1− ~β2
−

β−i β−j


− x2

2ω2l2
m

4π Re
iωR

ω2 lnω−1

 1√
1− ~β2

+

β+iβ+j

{
C+

1
1− n̂.~β+

+ C+
1

1− ~β2
+

}

− 1√
1− ~β2

−

β−i β−j

{
C−

1
1− n̂.~β−

+ C−
1

1− ~β 2
−

} . (7.17)

Since ωl in constant, one can easily notice that the terms in (7.17) are finite in ω → 0 limit
and hence will not contribute to the soft factor. Next we evaluate X2 from (7.12). By
putting the expressions of ~r and ~v from (7.2), the total derivative term in the integrand of
X2 evaluates to,

1
1− n̂.~β

β±iβ±j
1√

1− ~β2
±

[
2A1t+A2 ln t+A2 +A3 +A4

1
t

+ d

dt

(
A5 +A6

1
t

)]
, (7.18)

where

A1 =
~β2
±(3−2~β2

±)
(1−~β2

±)
, A2 =−2C±~β2

±
(3−5~β2

±+2~β4
±)

(1−~β2
±)2

,

A3 =
C±~β

2
±

(1−~β2
±)2
{−3(2+α)+5(1+α)~β2

±−2(1+α)~β4
±},

A4 =− 1(
1−~β2

±

)2
~β2
±C

2
±

(
4(α+1)~β4

±−10(α+1)~β2
±+6(α+2)

)
,

A5 =− 1
2(1−~β2

±)3
C2
±
~β2
±

[
−6(1+α)2+~β2

±(−9+2α(11+8α))−14α~β2
±(1+α)+4α~β6

±(1+α)
]

=− 1
2(1−~β2

±)3
C2
±
~β2
±

[
−6(1+α)2−9~β2

±+8α~β2
±+2α2~β2

±+4α~β6
±(1+α)

]
,

A6 =− 1
2(1−~β2

±)4
C3
±β

2
±

[
2α3(−1+~β2

±)3(−3+2~β2
±)+5~β2

±(4+3~β2
±)+3α(2+~β2

±−3~β4
±)

+2α2(−1+~β2
±)2(6−5~β2

±+2~β4
±)
]
, (7.19)

and

α = n̂.~β±

1− n̂.~β±
. (7.20)

Let us first look into the part of (7.18) proportional to d
dt

[
A5 +A6

1
t

]
, which is the constant

– 23 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
8

piece and inversely proportional to t and denote as I1. Comparing with (7.14) we can write

I1 = 1
l2

[ 1
ω

(f (1)
+ − f (1)

− ) + i(a+k
(1)
+ − a−k

(1)
− ) lnω−1

]
= 1
ω2l2

[
ω(f (1)

+ − f (1)
− ) + i(a+k

(1)
+ − a−k

(1)
− )ω2 lnω−1

]
(7.21)

where

f
(1)
± = −i m

16πRe
iωR 1

1− n̂.~β±
β±iβ±j

1√
1− ~β2

±

A5

k
(1)
± = −i m

16πRe
iωR 1

1− n̂.~β±
β±iβ±j

1√
1− ~β2

±

A6,

a± = −(1− n̂.~β±) . (7.22)

We again observe that in (7.21) the terms are finite in ω → 0 limit and therefore do not
contribute to the soft factor. Next we denote the remaining parts of (7.21) as I2 that is
proportional to [

2A1t+A2 ln t+A2 +A3 +A4
1
t

]
.

Following (7.10), we manipulate the above terms as,

I2 = m

16πl2Re
iωR 1

ω2

∫
dt eiω(t−n̂.~r(t)) 1

1− n̂.~β
β±iβ±j

1√
1− ~β2

±

d

dt

[ 1
1− n̂.~v(t)

(
2A1t+A2 ln t+A2 +A3 +A4

1
t

)]
(7.23)

An integration by parts results in,

I2 = m

16πl2Re
iωR 1

ω2

∫
dteiω(t−n̂.~r(t)) β±iβ±j

(1−n̂.~β)2
1√

1−~β2
±

d

dt

[
2A1t−2αC±A1+

(A2+A3)+A2 ln(t)+ 1
t

(
2α2C2

±A1−αC±(A2+A3)+A4
)
−α
t
C±A2 ln(t)

]
(7.24)

Integration for the terms of I2 which are constant and O(t−1) can be easily done using the
integral (7.14). We denote these terms as I1

2 in the following and study whether they have
any contribution to the soft factor.

I1
2 = m

16πl2Re
iωR 1

ω2

∫
dt eiω(t−n̂.~r(t)) β±iβ±j

(1− n̂.~β)2
1√

1− ~β2
±

d

dt

[
−2αC±A1 + (A2 +A3) + 1

t

(
2α2C2

±A1 − αC±(A2 +A3) +A4
)]

= 1
ω2l2

[
(f (2)

+ − f (2)
− ) + i(a+k

(2)
+ − a−k

(2)
− )ω lnω−1

]
, (7.25)
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where

f
(2)
± = m

16πRe
iωR β±iβ±j

(1− n̂.~β)2
1√

1− ~β2
±

[−2αC±A1 + (A2 +A3)]

k
(2)
± = m

16πRe
iωR β±iβ±j

(1− n̂.~β)2
1√

1− ~β2
±

(
2α2C2

±A1 − αC±(A2 +A3) +A4
)

(7.26)

The terms in (7.25) are finite in ω → 0 limit and hence do not contribute to the soft
factor.Finally we manipulate the remaining terms in (7.24). Denoting these as I2

2 we get,

I2
2 = m

16πl2Re
iωR 1

ω2

∫
dt eiω(t−n̂.~r(t)) β±iβ±j

(1− n̂.~β)2
1√

1− ~β2
±

d

dt
[2A1t+A2 ln(t)]

= m

16πl2Re
iωR 1

ω2

∫
dt eiω(t−n̂.~r(t)) β±iβ±j

(1− n̂.~β)2
1√

1− ~β2
±

[
2A1 + A2

t

]
. (7.27)

Carrying out the similar by parts treatment stated earlier we get,

I2
2 = i

m

16πl2Re
iωR 1

ω3

∫
dt eiω(t−n̂.~r(t)) β±iβ±j

(1− n̂.~β)3
1√

1− ~β2
±

d

dt

[
2A1 + 1

t
(A2 − 2A1C±α)

]

= 1
ω2l2

[ 1
ω

(f (3)
+ − f (3)

− ) + i(a+k
(3)
+ − a−k

(3)
− ) lnω−1

]
, (7.28)

where

f
(3)
± = i

m

8πRe
iωR β±iβ±j

(1− n̂.~β±)3
1√

1− ~β2
±

A1

k
(3)
± = i

m

16πRe
iωR β±iβ±j

(1− n̂.~β±)3
1√

1− ~β2
±

(A2 − 2A1C±α) . (7.29)

In (7.28) both terms in the parenthesis diverges in ω → 0 limit and are the main contri-
bution to the soft factor arising due to the consideration of the AdS background. In the
appendix we will discuss how ẽ

(5)
ij , ẽ(6)

ij and ẽ(7)
ij are finite in ω → 0 limit keeping ωl fixed

and therefore they do not contribute in the soft factor.
Our final task is to compute the soft factor using the previous results. To do so we

will first contract all the perturbations ẽij with the polarization tensor εij and use the rela-
tion (7.1) to predict the soft factor. The invariance of soft factor under the transformation
εµν → εµν + ξµkν + ξνkµ for arbitrary ξα and our gauge choice allows us to choose the
polarization tensor as

ε0ν = 0, εii = 0; kiε
ij = 0. (7.30)

The resulting soft factor have two parts. One of them arises due to the consideration of
Schwarzschild background and the other part involves the contribution from the cosmolog-
ical constant. The former part is already discussed in detail in [37] which can be obtained
from the first three lines of (7.16) and from the combination of ẽ(2)

ij and ẽ(3)
ij . (7.28) pro-

duces the latter part. Finally we can write the complete soft factor as S̃gr = S̃Mgr + S̃lgr,
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where,

S̃Mgr = −mω−1 εij

 1
1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j


− im lnω−1 εij

 1√
1− ~β2

+

β+iβ+j

{
C+

1
1− n̂.~β+

− M0

8π |~β+|3
3~β2

+ − 1
1− ~β2

+
+ C+

1
1− ~β2

+

}

− 1√
1− ~β2

−

β−iβ−j

{
C−

1
1− n̂.~β−

+ M0

8π |~β−|3
3~β2
− − 1

1− ~β2
−

+ C−
1

1− ~β2
−

} (7.31)

and

S̃lgr =

− m

2γ2 ω
−1 εij

 1
(1−n̂.~β)3

β+iβ+j
1√

1−~β2
+

~β2
+(3−2~β2

+)
(1−~β2

+)
− 1

(1−n̂.~β)3
β−iβ−j

1√
1−~β2

−

~β2
−(3−2~β2

−)
(1−~β2

−)


−i m4γ2 lnω−1 εij

 β+iβ+j

(1−n̂.~β+)2

1√
1−~β2

+

2C+~β
2
+

(1−~β2
+)2

(3−5~β2
++2~β4

+)

+ β+iβ+j

(1−n̂.~β+)3

1√
1−~β2

+

2C+n̂.~β+

1−~β2
+

~β2
+(3−2~β2

+)− β−iβ−j

(1−n̂.~β−)2

1√
1−~β2

−

2C−~β2
−

(1−~β2
−)2

(3−5~β2
−+2~β4

−)

− β−iβ−j

(1−n̂.~β−)3

1√
1−~β2

−

2C−n̂.~β−
1−~β2

−

~β2
−(3−2~β2

−)

 (7.32)

The term S̃lgr proportional to 1
γ2 are the contributions of the cosmological constant to the

soft factor. (7.32) can be more simplified to,

S̃lgr =

− m

2γ2 ω
−1 εij

 1
(1−n̂.~β)3

β+iβ+j
~β2

+(3−2~β2
+)

(1−~β2
+)

3
2
− 1

(1−n̂.~β)3
β−iβ−j

~β2
−(3−2~β2

−)

(1−~β
3
2
−)


−i m2γ2 lnω−1 εij

C+
β+iβ+j

(1−n̂.~β+)3

~β2
+(3−2~β2

+)(
1−~β2

+

) 3
2
−C−

β−iβ−j

(1−n̂.~β−)3

~β2
−(3−2~β2

−)(
1−~β2

−

) 3
2

 (7.33)

We will fix C± from the energy conservation. The total energy of the particle is given by,

E = m|g00|
dt

ds
= m

(
1− M0

4πr + r2

l2

)(1− M0
4πr + r2

l2

)
−
(

1− M0
4πr + r2

2l2

)−1

~v2

−1/2

(7.34)
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Conservation of energy gives,

(
1− M0

4πr + r2

l2

)(1− M0
4πr + r2

l2

)
−
(

1− M0
4πr + r2

2l2

)−1

~v2

−1/2

=

(
1 + r2

l2

)(1 + r2

l2

)
−
(

1 + r2

2l2

)−1
~β2

−1/2

. (7.35)

Carrying out the expansion of (7.35) up to O(M) and O(1/l2), and then comparing with
the second equation of (7.2) we get,

C± = ∓
M0(1− 3~β2

±)
8π|~β±|3

. (7.36)

Thus C± do not get any contribution from the cosmological constant. Plugging C± in the
soft factor contribution from the Schwarzschild part S̃Mgr (7.31) we rightly reproduce the
well known result of “Classical Soft Theorem” in asymptotically flat spacetime,

S̃gr|Sch = −mω−1 εij

 1
1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j


− im lnω−1 εij

 1√
1− ~β2

+

β+iβ+j

{
C+

1
1− n̂.~β+

}
− 1√

1− ~β2
−

β−iβ−j

{
C−

1
1− n̂.~β−

} .
(7.37)

Equation (7.33) is the main result of this paper. It gives first order corrections to
Classical Soft theorem due to presence of a small cosmological constant.

8 Conclusions and future directions

In this paper we have studied the Classical Soft Theorem for asymptotically AdS spacetime
in four spacetime dimensions. Our results can be trivially extended to higher spacetime
dimensions. We computed the radiation profile produced in a classical scattering process in
AdS Schwarzschild background in a probe scattering approximation. Our analysis assumes
the cosmological constant Λ = − 3

l2 as a perturbation parameter over asymptotically flat
gravity and all results are valid to leading order in 1

l2 . The reason for treating Λ per-
turbatively in our analysis is the following: in the classical scattering computations that
we have performed, one prime consideration is that the scattering takes place within a
neighbourhood of finite radius (say a) from the chosen origin. The detector, that traces
the gravitational wavefront produced in the scattering process, is placed at a far away
point ~x : R = |~x| and we work in large R limit. The system can go through any possible
interactions within the region of radius a and out side this region it is only gravitational
interaction that plays the dominant role. In an asymptotically AdS spacetime, this assump-
tion does not hold true in general. Since AdS4 comes with a spatial boundary, in order
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to solve the Einstein’s equations in this background, we must also specify the boundary
conditions for the associated fields. The most used boundary condition that is imposed
is a reflective boundary condition. As a result the reflected waves bounce back from the
boundary, they interact again non-trivially and they contribute to net perturbation. Thus,
we would not be able to define a region of radius a to contain all possible interactions and
make the system interact only gravitationally out side of it.

To avoid this issue we have studied AdS4 in isotropic coordinates (3.1) and thus it
comes with an unique problem. Since, the coordinate system, only perturbatively (in Λ)
covers the spacetime, the spatial boundary of AdS4 is not a part of this co-ordinate system.
Thus we can, in principle, demand that the perturbations die sufficiently fast at large spatial
distances for this co-ordinate system (eij → 0 as r, l→∞ : r2

l2 � 1). We have assumed the
boundary condition similar to [58], where causal AdS spacetime was thought of as embedded
in the Einstein static universe. The non-trivial boundary condition at spatial boundary
of our underlying AdS4 spacetime are evident in equations (5.62) and (6.15)–(6.20). The
profile does not involve Theta functions, as in usual with reflective boundary conditions.
This boundary condition ensures that in our calculations we only need to take into account
the bulk-to-bulk Green’s function to compute the radiation profile at the point of interest.
We do not consider the contributions from waves reflected from the boundary to it. In
terms of usual global coordinates, the long range force in AdS produces an extra effect (as
compared to the flat case) to the particle trajectory as given in (7.8), but in perturbative
computation it does not play any role. In other words, the reflective boundary conditions
become important to higher order in perturbative computations. It will be nice to perform
a classical radiation computation to the next order in Λ or possibly a non-perturbative
computation to capture this effect, but it looks technically difficult at this point.

We end this paper with some interesting open questions:

• In [59] Compere et al. have presented a boundary condition for AdS4, which gives rise
to a non-trivial asymptotic symmetry group at the boundary, namely Λ−BMS4. It
would be interesting to see, whether our boundary condition on fields is consistent
with theirs and if even in AdS4, a relation between boundary symmetry group and
soft radiation can be found.

• In [31], it was argued that, for asymptotically flat spaces, the observational conse-
quences of BMS symmetry are embodied in the soft factorization of graviton scat-
tering amplitudes as Weinberg soft graviton theorem is essentially a rewriting of the
formula for gravitational memory [55]. Memory effect is characterised by the dif-
ference between the proper displacement between the observers before and after a
gravitational waves passes by their locations. As was discussed in the original pa-
per by Strominger et al. [55], this relation requires a particular class of gravitational
waves that Braginsky and Thorne refers to as “Bursts with Memory”. A simple par-
ticle scattering calculation may not produce these effects at all. In fact, in a recent
paper [60] such a calculation was done in AdS background and no observable mem-
ory effect was found after the passage of gravitational waves. Only the region with
a non-zero gravitational field showed to have a observable displacement of geodesics.
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On the contrary, since we have studied radiation in a AdS space where the cosmo-
logical constant is small, it is possible connect our work with the flat space results
of Strominger et al. This computation is equally applicable for our universe which
has a small dS potential and hence may turn out to be extremely important from
observational perspective. We hope to report on this in near future.

• In [39], the authors derived the classical soft photon theorem from first principle.
They further generalised the soft graviton theorem by allowing electromagnetic in-
teractions among the incoming and the outgoing particles. It will be nice to see
how these results get modified in presence of a small cosmological constant in the
background.
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A Connection, Riemann, Ricci terms

The non-vanishing connection terms are

Γ0
0i = φi + 1

2l2 ρ
2
i ; Γi00 = φi + 1

2l2 ρ
2
i

Γijk = (−δijφk − δikφj + δjkφi) + 1
4l2

(
δijρ

2
k + δikρ

2
j − δjkρ2

i

)
(A.1)

where φi = ∂iφ and ρ2
i = ∂iρ

2 and terms are retained till O(1/l2).
The Riemann, Ricci tensor and Ricci scalar are as follows

R0
ij0 = φij + 1

2l2 ρ
2
ij

Rkijm = (−δkmφij +δimφkj +δkjφim−δijφkm)+ 1
4l2

(
δkmρ

2
ij−δimρ2

kj−δkjρ2
im+δijρ

2
km

)
R00 = φii+

1
2l2 ρ

2
ii Rij = δijφkk−

1
4l2

(
δijρ

2
kk+3ρ2

ij

)
R= 2φii−

2
l2
ρ2
ii (A.2)

B Analysis of soft expansion for ẽ
(5)
ij , ẽ

(6)
ij and ẽ

(7)
ij

To study the soft expansion of ẽ(5)
ij we have to first evaluate the action of ∇i = ∂

∂xi
+ ∂

∂r′i

on Gl of (6.11). Using

∂iGl =
(
iωn̂i + n̂i

R

)
Gl, ∂′iGl = iωn̂iGl −

4i
ω
eiω(R−n̂.~r′)Rn̂i (B.1)
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we can write

∇iGl = −4i
ω
eiω(R−n̂.~r ′)Rn̂i

∇i∇jGl = −8i
ω
eiω(R−n̂.~r ′)n̂in̂j , ∇2

kGl = −8i
ω
eiω(R−n̂.~r ′) (B.2)

Most of the term from this part of ẽ(5)
ij vanishes while contracting with polarization tensor

εij since εijn̂j = εijkj/|~k| = 0. The only term we need to look at carefully is

T5 = − m

8πl2
∫
dt
dt

ds
eiωtvivj∇k∇kGl

∣∣∣∣
~r ′=~r(t)

,

= i
m

πl2ω

∫
dt
dt

ds
eiωtvivj e

iω(R−n̂.~r ) (B.3)

Following (7.10) and doing an integration by parts one can get,

T5 = − m

πl2ω2

∫
dt
d

dt

[
1√

1− ~v(t)2
1

1− n̂.~v vivj

]
eiω(R+t−n̂.~r) (B.4)

Putting the expressions of v s one can simplify (B.4) as,

= − m

πl2ω2

∫
dt

1√
1− ~β±(t)2

1
1− n̂.~β±

βiβj
d

dt
[1−#1/t] eiω(R+t−n̂.~r) (B.5)

The integration in (B.5) using (7.14) will give ω independent term and O(ω lnω−1) terms
with the 1

ω2l2 factor in the front. Hence they are finite in ω → 0 limit keeping ωl fixed and
therefore do not contribute to the soft factor.

Next we will look into the soft expansion of ẽ(6)
ij . It do not involve any derivative on Gl.

ẽ
(6)
ij (ω,~x) =− m

2π l2Re
iωR

∫
dteiω(t−n̂.~r(t)) d

dt

[
dt

ds
vivjn̂.~r

′(t) 1
1−n̂.~v(t)

]

=− m

2π l2Re
iωR

∫
dteiω(t−n̂.~r(t)) d

dt
[a1t−a2 ln t]

βi±β
j
±

1−n̂.~β±
(n̂.~β±) 1√

1−β2
±

(B.6)

where,

a1 = 1 (B.7)
a2 = −c±β± (B.8)
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Doing the following manipulation

ẽ
(6)
ij (ω,~x) = m

2π l2Re
iωR

∫
dteiω(t−n̂.~r(t)) d

dt
[a1 t+a2 ln t−1]

βi±β
j
±

1−n̂.~β±
(n̂.~β±) 1√

1−β2
±

=− m

2π l2Re
iωR

∫
dt

1
iω
eiω(t−n̂.~r(t)) d

dt

[
a1 + 1

t
(−a2−a1cα)

]
βi±β

j
±

(1−n̂.~β±)2
(n̂.~β±)

= im

2π l2Re
iωR βi±β

j
±

(1−n̂.~β±)2
n̂.~β±√
1−β2

±{ 1
ω

(a1+−a1−)+i lnω−1{a1−(a2−+ca1−α−)−a1+(a2++ca1+α+)}
}

= im

2πω2l2
R

βi±β
j
±

(1−n̂.~β±)2
n̂.~β±√
1−β2

±

eiωR
{
ω(a1+−a1−)+iω2 lnω−1

{a1−(a2−+ca1−α−)−a1+(a2++ca1+α+)}
}

(B.9)

we can see that in (B.9) all terms are finite in ω → 0 limit.
Doing the same analysis for ẽ(7)

ij we get

ẽ
(7)
ij (ω, ~x) = −iω 5m

64πl2
∫
dt
dt

ds
eiωt(vi∇j + vj∇i)Gl

= 5m
16πl2

∫
dt
dt

ds
eiω(R+t−n̂.~r)(vin̂j + vjn̂i) (B.10)

The contribution to the integral from (B.10) vanishes after ẽ(7)
ij is contracted with the

polarization tensor εij , as εijn̂j = εijkj/|~k| = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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