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1 Introduction

U-duality is a key ingredient to understand whole structure of M-theory and string the-
ories [1]. The duality exhibits its remarkable features in lower dimensions. For example,
M-theory compactified on TD shows the U-duality group ED(D) in the (11−D)-dimensional
space-time. BPS states in lower dimensions, which originate from the higher-dimensional
branes that wrap TD, are classified by the U-duality group [2, 3]. In addition to the con-
ventional branes such as the D-branes and the NS5-branes and so on, there appear yet
unfamiliar objects in the U-duality multiplets, known as the exotic branes [2–6]. Detailed
classifications of exotic branes are found, for example, in [7, 8].
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The exotic branes are characterized by their highly non-perturbative nature in string
theory. For example, they have tensions proportional to g−αs with α ≥ 2 which contrast
to those of the D-branes given by the order g−1

s . Here gs is the string coupling constant.
Among other things, exotic branes appearing in the T-duality orbit of five-branes in type
II theories have been intensively studied [5, 6, 9–13]. There are five-branes denoted as
5k2 [3] related by T-duality transformations. The “2” in the lowerscript represents that
the tensions of the five-branes are proportional to g−2

s while k = 0, 1, 2, 3, 4 stands for the
number of the isometries in the transverse directions in ten dimensions. For example, k = 0
and k = 1 correspond to the NS5-brane and the Kaluza-Klein (KK)-monopole. The k = 2
case is an example of the exotic brane conventionally refered as Q-brane [14]. The geometry
of the 52

2-brane is patched together not by the diffeomorphism or gauge transformations
but by T-duality transformations. In this sense, the background of the 52

2-brane is known
as a globally non-geometric space or a T-fold [15]. Although it is a codimension two brane
and its existence as a stand alone object suffers from a subtle issue, one can explicitly
write down the 52

2-brane solution in the ordinary supergravity [5, 6]. On the other hand,
the k = 3 brane has less obvious geometric meaning. One can not perform a T-duality
transformation in the 52

2-brane since any further isometries are forbidden there. However,
from the viewpoint of the U-duality multiplet in lower dimensions, the 53

2-brane should be
allowed in higher dimensions. Nevertheless, it is less obvious whether that is a solution to
supergravity or not.

Double field theory (DFT) [16], based on the doubled formalism developed in [17–19],
is an effective gravity theory that has manifest T-duality in string theory. Due to the
O(D,D) covariance, one can treat the T-duality orbit of the branes without difficulty in
DFT. The action of DFT is given by a generalized Ricci scalar and it reduces to the
action of supergravity with the imposition of the strong constraint. Indeed, supergravity
solutions such as the F-strings, the waves, the NS5-branes, the KK-monopoles and even
the globally non-geometric objects, are found to be solutions to DFT [20, 21]. This is
conceivable since DFT is, in a sense, a reformulation of supergravity. However, the most
remarkable difference between the ordinary supergravity theories and DFT is the isome-
tries for T-duality transformations. Contrary to supergravities, DFT does not necessarily
require isometries to perform the T-duality transformation. Therefore, one can perform
the formal (non-isometric) T-duality transformation to obtain geometries that are not so-
lutions to supergravity. The 53

2-brane is one of such kind of solution in DFT [22, 23].
Due to the absence of the isometries, the 53

2-brane geometry contains the dual coordinate
x̃-dependence. This x̃-dependence is no longer removed even by the T-duality transfor-
mation and it is an essential nature of the new geometry. This kind of brane is known as
an R-brane or the locally non-geometric object [14, 24, 25]. The geometry of the R-brane
necessarily depends on the winding coordinate x̃. Therefore it loses the ordinary geometric
meaning based on the point particle. We can continue this procedure further. The com-
pactification on T 4 allows us to find the space-filling 54

2-brane with the non-trivial winding
coordinate dependence.

The other place that appears the winding coordinate dependence of geometries is the
worldsheet instanton effects. This is first proposed in [26] where the dual side of the
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localized (unsmeared) NS5-brane is analyzed. In [27], it is shown that the isometry in
the H-monopole (the NS5-brane smeared along the transverse direction) is broken by the
string worldsheet instanton effects. In the dual KK-monopole side, the worldsheet instanton
effects induce the dual coordinate dependence in the Taub-NUT geometry [28, 29]. The
modified geometry is known as the localized KK-monopole [21]. The same is true even for
the globally non-geometric 52

2-brane [30–32]. The geometry is modified and characterized
by the winding coordinate. We call it the localized Q5-brane. They are also classified into
the locally non-geometric objects. A remarkable fact is that the localized KK-monopole
and the localized Q5-brane are shown to be solutions to DFT [23]. The geometry with the
winding corrections are necessary to understand a stringy nature of space-time and it is
also discussed in other places [33, 34].

The purpose of this paper is to study the worldvolume effective theories of the locally
non-geometric five-branes. Among other things, we focus on the R5-brane (53

2-brane),
the space-filling 54

2-brane, the localized KK-monopole, Q5-brane and also the localized
R5-brane, space-filling branes. For the globally non-geometric objects, the world-volume
effective actions of the Dirac-Born-Infeld (DBI) type are obtained through the duality
covariantization or formal T-duality transformations of known branes [35–40]. We here de-
rive the effective theories of the locally non-geometric five-branes by the direct calculations
within the formalism of DFT. We will explicitly determine the precise bosonic zero-modes
of the five-branes and show that they are Nambu-Goldstone modes associated with the
broken gauge symmetries in DFT. These zero-modes appear in the world-volume effec-
tive theories of the five-branes. We will show that these zero-modes are organized into the
bosonic parts of the six-dimensional N = (1, 1) vector and the N = (2, 0) tensor multiplets.

The organization of this paper is as follows. In the next section, we briefly introduce
five-brane solutions in DFT. In section 3, we determine the translational zero-modes in
the doubled space. In section 4, we determine the tensor zero-modes associated with the
spontaneous breaking of the RR gauge symmetries in DFT. We will show that these
zero-modes are organized into the desired six-dimensional supermultiplets. In section 5,
we focus on the world-volume effective theories of the locally non-geometric five-branes.
Section 6 is conclusion and discussions. Appendix A devoted to a quick introduction to
DFT. Appendix B contains the detailed calculations on the zero-modes.

2 Locally non-geometric branes in double field theory

In this section, we give a brief introduction to locally non-geometric branes, especially
focusing on five-branes in DFT [23]. We consider a T-duality orbit of five-branes in type
II string theories and exhibit the locally non-geometric objects in DFT.

The dynamical fields in DFT of type II string theories are given by the generalized
metric HMN , the generalized dilaton d and the O(D,D) spinor χ.1 The DFT action is

1Unless otherwise stated, we consider D = 10 in the following.
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given by [41–43]:

SDFT(S, d, χ) =
∫

d2DX

(
e−2dR(H, d) + 1

4(/∂χ)†S(/∂χ)
)
. (2.1)

The generalized Ricci scalar R is defined by

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+ 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂MHKL∂KHNL, (2.2)

where the indices M,N, . . . run over the 2D dimensions. The inverse of the generalized
metric HMN is introduced by HMPHPN = δMN with its defining O(D,D) property
HMN = ηMP ηNQHPQ. Here ηMN and its inverse ηMN are O(D,D) invariant metric
given by

ηMN =
(

0 δµν
δµ
ν 0

)
, ηMN =

(
0 δµ

ν

δµν 0

)
. (2.3)

The coordinate of the 2D-dimensional doubled space is decomposed as XM = (x̃µ, xµ),
(µ = 0, . . . , D − 1) where xµ are the Fourier conjugate of the KK modes (the geometric
coordinates) while x̃µ are the Fourier conjugate of the winding modes (the winding coordi-
nates). The O(D,D) spinor χ is assumed to satisfy the self-duality constraint /∂χ = −K/∂χ.
Here /∂ = ΓM∂M and ΓM are the 2D-dimensional gamma matrices. The operator K = C−1S
is defined by the charge conjugation matrix C and the spinor representation of the gener-
alized metric S = S† ∈ Spin−(D,D). See appendix A and [43] for the precise definitions.

The action (2.1) makes the O(D,D) T-duality be manifest and it is invariant under
the following gauge transformations:

δξHMN = L̂ξHMN = ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP ,

δξd = L̂ξd = ξM∂Md−
1
2∂Mξ

M ,

δξχ = L̂ξχ = ξM∂Mχ+ 1
2∂NξMΓNΓMχ,

δλχ = /∂λ, (2.4)

where L̂ξ is the generalized Lie derivative and ξM , λ are parameters of a doubled vector
and an O(D,D) spinor. The gauge invariance of the DFT action (2.1) is guaranteed by
the so-called strong constraint ∂M ∗ ∂M∗ = 0. Here ∗ stands for any dynamical fields and
the gauge parameters in DFT.

It is convenient to parametrize the DFT fields in terms of the ordinary supergravity
fields:

HMN =
(

gµν −gµρBρν
Bµρg

ρν gµν −BµρgρσBσν

)
, e−2d =

√
−ge−2Φ, (2.5)
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where gµν , Bµν ,Φ are identified with the space-time metric, the NSNS B-field and the
dilaton in type II supergravities. Meanwhile, the O(D,D) spinor is expanded as

χ =
D∑
p=0

1
p!Cµ1···µpψ

µ1 · · ·ψµp |0〉, (2.6)

where Cµ1···µp are identified with the RR p-forms.2

The equations of motion in DFT are given by

RMN + e2dEMN = 0, R = 0, /∂(K/∂χ) = 0. (2.7)

Here the generalized Ricci tensor RMN and the energy-momentum tensor EMN are de-
fined by

RMN = PMN
KLKKL, EMN = − 1

16H
(M /∂χΓN)P /∂χ. (2.8)

The projection operator P and the tensor K are given by the following expressions:

PMN
KL = 1

2
[
δM

(KδN
L)−HMP η

P (KηNQHL)Q
]
, (2.9)

KMN = 1
8∂MH

KL∂NHKL−
1
4(∂L−2∂Ld)HKL∂KHMN+2∂M∂Nd

− 1
2∂(MHKL∂LHN)K+ 1

2(∂L−2∂Ld)
[
HKL∂(MHN)K+ηKP ηLQHP (M∂KHN)Q

]
.

(2.10)

We use the convention of the (anti)symmetrization with the weight factor such as
A(MBN) = (AMBN +ANBM )/2.

Now we introduce the five-brane solutions in DFT. We consider the ansatz of the
localized DFT monopole [21]:

HMN =


ηmn 0 0 0

0 H−1δab 0 −H−1bab
0 0 ηmn 0
0 H−1ba

b 0 Hδab

 , d = const.− 1
2 logH, χ = 0. (2.11)

We introduce a new decomposition of the doubled coordinate:

XM = (x̄m, ȳ a; xm, y a), (2.12)

where xm (m = 0, 1, . . . , 5), y a (a = 6, . . . , 9) are the worldvolume and the transverse
coordinates and x̄m, ȳ a are their duals. We here stress that we never give the physical
meaning of the coordinates (xm, y a, x̄m, ȳ a) at this stage. Namely, the roles of the geometric
and the winding coordinates are fixed through the following O(D,D) assignment:

XM = ΩM
NXN , Ω ∈ O(D,D). (2.13)

2We follow the convention of the RR p-forms employed in [42, 43].
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One should be careful about the distinction between XM = (x̃µ, xµ) and XM in (2.12).
Likewise, the generalized metric (2.5) parametrized in the space-time metric g and the
NSNS B-field are read off by the ansatz (2.11) through the corresponding O(D,D) assign-
ment:

HMN = HKLΩK
MΩL

N , Ω ∈ O(D,D). (2.14)

For the function H appearing in the ansatz (2.11), we assume that it is a function
of the transverse coordinate y a. Together with a trivial condition ∂̄a∗ = 0 to the strong
constraint, one can show that the ansatz (2.11) satisfies the equations motion (2.7) when
the following conditions are satisfied [23]:

3∂[abbc] = εabcd ∂
dH(y ), �H = 0. (2.15)

Here bab is an antisymmetric tensor depending on y a, εabcd is the Levi-Civita symbol, and
� = δab ∂

∂y a
∂
∂y b is the flat Laplacian defined by y a. Therefore H is a harmonic function

in the y -space. The equations (2.15) correspond to the BPS condition for the NS5-brane
in ordinary supergravity. We stress that the condition (2.15) allows for five-branes of any
codimensions, namely, H is a harmonic function in 0 to 4 dimensions.

In the following, we will fix specific T-duality frames by giving the O(D,D) matrices
Ω explicitly and write down the five-brane solutions in each frame.

NS5-brane (50
2). When the O(D,D) matrix is given by Ω = 1, the role of the geometric

coordinates is assigned to xµ = (xm, y a). The role of the winding coordinates is assigned
to x̃µ = (x̄m, ȳ a). According to the relation (2.14), the metric, the B-field and the dilaton
are read off

ds2 = ηmndxmdxn +Hδabdy ady b,

B = 1
2babdy a ∧ dy b,

e2Φ = H. (2.16)

This is nothing but the NS5-brane solution in type II supergravities. It is obvious that
the world-volume of the NS5-brane extends to the x 0, · · · , x 5 directions. The harmonic
function H(r) is defined in the transverse directions y 6, · · · , y 9 and is given by

H(r) = c1 + c2
r2 , r2 = δaby ay b. (2.17)

Here c1, c2 are appropriate constants. Note that the explicit form of bab is determined
through the BPS condition (2.15).

KK-monopole (51
2). The KK-monopole is obtained by the T-duality transformation

of the NS5-brane along a transverse direction. Remember that in order to perform the
genuine T-duality transformations, we introduce isometries along the transverse directions.
To do so, we smear the harmonic function along the y 9-direction in the NS5-brane. Then
H becomes

H(r) = c1 + c2
r
, r2 = δijy iy j , (2.18)

where c1, c2 are again appropriate constants.
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We now give another O(D,D) matrix Ω = h9, where hk is a factorized T-duality
transformation along the y k-direction given by

hk =
(

1− ek ek
ek 1− ek

)
, (ek)µν = δµkδνk. (2.19)

Then the assignment of the coordinates are xµ = (xm, y i, ȳ 9), (i = 6, 7, 8) and x̃µ =
(x̄m, ȳ i, y 9). The BPS equation (2.15) is solved by a Dirac monopole Bi9 = Ai = bi9 in the
(y 6, y 7, y 8)-plane. The other components of the B-field are all zero. Then we write down
the explicit solution as

ds2 = ηmn dxmdxn +H−1(dȳ 9 +Aidy i)2 +Hδij dy idy j ,
B = 0,

e2Φ = const. (2.20)

This is nothing but the KK-monopole of codimension three in type II supergravities. The
transverse direction is characterized by the Taub-NUT space whose isometry direction is
given by ȳ 9. The solution (2.20) is apparently geometric.

Q5-brane (52
2). The so-called exotic Q5-brane or 52

2-brane is obtained by performing
the T-duality transformation along the other direction in the KK-monopole. We now
give yet another O(D,D) matrix Ω = h8 · h9. Then the geometric coordinates are xµ =
(xm, yα, ȳ 8, ȳ 9) (α = 6, 7) while the winding ones are x̃µ = (x̄m, ȳα, y 8, y 9). The new
isometry direction is given by ȳ 8. The harmonic function becomes

H = c1 + c2 log µ
r
, r2 = δαβyαy β , (2.21)

where c1, c2 are constants and µ is a parameter that characterizes the effective description
of defect branes as a stand alone object [11, 44]. Then the resulting solution is given by

ds2 = ηmn dxmdxn +Hδαβ dyαdy β + H

H2 +A2
8

[
dȳ 2

9 + dȳ 2
8
]
,

B = − A8
H2 +A2

8
dȳ 8 ∧ dȳ 9,

e2Φ = H

H2 +A2
8
. (2.22)

Here

A8 = −c2 arctan
(

y 7

y 6

)
(2.23)

is the smeared Dirac monopole in a specific gauge. The solution (2.22) has a non-trivial
O(2, 2) monodromy around the brane core and the geometry is not patched together by
the diffeomorphism or the B-field gauge transformation. Therefore the solution is not
geometric in the usual sense and it is called a globally non-geometric background or a
T-fold [15]. However, it is obvious that the solution (2.22) is written in the geometric
coordinate and is indeed a solution to supergravity [5, 6].
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R5-brane (53
2). We now try to make further T-duality transformation along another

transverse direction. To this end, we give Ω = h7 · h8 · h9. Then xµ = (xm, y 6, ȳ m̂), (m̂ =
7, 8, 9) is the geometric and x̃µ = (x̄m, ȳ 6, y m̂) are the winding coordinates. The harmonic
function becomes

H = c1 + c2|y 6|. (2.24)

Here c1, c2 are constants again. Then the solution reads

ds2 = ηmn dxmdxn +H(dy 6)2 +H−1dȳ 2
7 + H

H2 +A2
8

[
dȳ 2

8 + dȳ 2
9
]
,

B = − A8
H2 +A2

8
dȳ 8 ∧ dȳ 9,

e2Φ = 1
H2 +A2

8
, (2.25)

where the smeared Dirac monopole becomes

A8 = c2(sgn y 6)y 7. (2.26)

Due to the BPS condition (2.15), the B-field should depend on y 7. A remarkable feature
is that the solution depends on y 7 which is the winding coordinate. The solution (2.25)
is known as the R5-brane [14]. Since it is impossible to represent the solution only by the
geometric coordinates but it should include the dual winding coordinates x̃7 = y 7, this is
called a locally non-geometric solution. We stress that this is not a solution to conventional
supergravity anymore but must be in string theory. However, it is discussed that locally
non-geometric branes of domain wall type are solutions to deformed supergravities [7].

SF5-brane (54
2). Finally, we consider a space-filling (SF) 5-brane [7, 23]. This is obtained

by performing the T-duality transformation along the final transverse direction. Given
Ω = h6 · h7 · h8 · h9, the geometric coordinates are xµ = (xm, ȳ a) (a = 6, 7, 8, 9) while the
winding ones are x̃µ = (x̄m, y a). The solution becomes

ds2 = ηmn dxmdxn +H−1δab dȳ adȳ b −
H−1

H2 +A2
8

[
A2

8 dȳ 2
8 +A2

8 dȳ 2
9
]
,

B = − A8
H2 +A2

8
dȳ 8 ∧ dȳ 9,

e2Φ = H−1

H2 +A2
8
. (2.27)

Here the harmonic function and the gauge field are given by

H = c1 + c2|y 6|, A8 = c2
2 (sgn y 6)y 7. (2.28)

We stress that y 6, y 7 are the winding coordinates and the solution (2.27) loses the nature
of the conventional geometry. This again shows the locally non-geometric property. We
note that if we introduce the complete isometries along the four transverse directions by
the smearing, the geometry of the space-filling brane becomes trivial, namely, H and A8
are constants and no non-trivial structure would be left.
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3 Translational zero-modes in doubled space

In this section, we determine the translational zero-modes of the five-branes in the doubled
space. As for the ordinary branes in supergravity, the five-brane solutions discussed in
the previous section break the translational symmetries along the transverse directions
to the brane world-volume. We remark that for the five-branes in the previous section,
the transverse directions are realized by the 2 × 4 = 8 dimensional doubled space. The
broken symmetries of the solutions give rise to the Nambu-Goldstone modes in DFT. The
translational symmetry in the doubled space is represented by the generalized Lie derivative
which is a part of the gauge symmetry in (2.4). Once a solution (H(0)

MN , d
(0), χ(0)) to DFT

is found, we consider a fluctuation of fields around the solution:

H(0)
MN → H

(0)
MN + δHMN , d(0) → d(0) + δd, χ(0) → χ(0) + δχ (3.1)

where the variation δ is generated by broken symmetries. We then substitute the fluctua-
tions (3.1) into the equations of motion (2.7) and determine the zero-modes of the solution.

Given the fluctuations (3.1) around the five-brane solution (2.11), the variations of the
equations of motion generated by the generalized Lie derivative L̂ξ become

δRMN = 0, δR = 0. (3.2)

Note that since the O(D,D) spinor χ all vanishes in the ansatz (2.11) and it never breaks
the translational symmetry, the energy-momentum tensor EMN does not contribute to the
equations (3.2). In order to evaluate the variations in (3.2), we decompose the generalized
Ricci scalar and tensor into the component form by using the following parametrization of
the ansatz (2.11):

HMN =
(

gµν −gµρBρν
Bµρgρν gµν − BµρgρσBσν

)
, gµν =

(
ηmn 0

0 H(x )δab

)
, Bµν =

(
0 0
0 bab(x )

)
,

d = Φ− 1
4 log |g|, Φ = const. + 1

2 logH(x ), (3.3)

where g, B are D×D symmetric and skew-symmetric matrices and Φ is a scalar function.
One should again keep in mind that their roles are not fixed at this stage. These matrices
and scalar are identified with the space-time metric gµν , the B-field Bµν and the dilation
Φ through the O(D,D) assignment (2.13) and (2.14). It is worthwhile to note that, with
the imposition of the strong constraint, the generalized Lie derivative L̂ξ by ξM = (ε̄µ, εµ)
on the generalized metric and the dilaton (3.3) results in the linear combination of the
ordinary Lie derivative Lε and the gauge transformation δε̄ in their components. Namely,
we have

δHMN = L̂ξHMN
∂̄µ∗=0−−−−→

{
δgµν = Lεgµν
δBµν = LεBµν + 2∂[µε̄ν]

δd = L̂ξd
∂̄µ∗=0−−−−→ δΦ = LεΦ. (3.4)
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Before writing down the explicit variations of the components, we note the fact that
the precise Nambu-Goldstone modes in a curved space are given by the constant moduli,
which will be promoted to the world-volume fields, supplemented by appropriate weight
factors [45]. Following the analysis in the DFT wave solution [20], we first try the ansatz
for the gauge parameters ξM = (ε̄µ, εµ) given by

εa = Hsφa0, ε̄a = Hsφ̄0a, (a = 6, 7, 8, 9), (3.5)

where φa0, φ̄0a are the constant moduli parameters, H is the harmonic function in the
solution (2.15) and s is a constant. However, one easily finds that the naive ansatz (3.5)
allows only constant φa0, φ̄0a and it is not suitable for the world-volume fields. Instead, we
mimic the ansatz discussed in the analysis on the M5-brane [45]:

εa = Hsφa0, ε̄a = −Hsφb0bba. (3.6)

The constant s will be determined later. We will see that (3.6) is the correct ansatz in due
course. Then the explicit variation of the relevant components are given by

δgab = Lεgab = Hs
[
2sφ0(a∂b)H + δabφ

c
0∂cH

]
,

δBab = LεBab + 2∂[aε̄b] = Hsφc0Habc = Hsφc0εabcd∂
dH,

δΦ = LεΦ = Hsφa0∂aΦ = 1
2H

s−1φa0∂aH (3.7)

where Hµνρ = 3∂[µBνρ] and we have used the BPS condition (2.15) in the evaluation of δBab.
Finally, fields that characterize the world-volume effective theory of a brane are defined

by promoting the constant moduli to functions on the world-volume:

φa0 → φa(x ), (3.8)

where x is the coordinate of the brane world-volume. We call these fields the fluctuation
zero-modes of the five-branes. In the following, we evaluate the equations (3.2) for the vari-
ations (3.7) with the fields (3.8) and determine the kinematics that governs the fluctuation
zero-modes.

3.1 Zero-modes equation δRMN = 0

We first evaluate the variation of the generalized Ricci tensor. It is convenient to rewrite
the components of the generalized Ricci tensor as

Rµν = 1
2(g eq.)µν − (Bg−1)(µ|

β(B eq.)|ν)β −
1
2(Bg−1)µα(Bg−1)νβ(g eq.)αβ ,

Rµν = −1
2gνβ(B eq.)µβ −

1
2(Bg−1)µαgνβ(g eq.)αβ ,

Rµν = −1
2gµαgνβ(g eq.)αβ , (3.9)
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where we have defined the following expressions:

(g eq.)µν = Rµν −
1
4HµρσHν

ρσ + 2∇µ∇νΦ,

(B eq.)µν = 1
2∇

αHαµν − Hαµν∇αΦ,

(Bg−1)µν = Bµρgρν , (3.10)

where Rµν and ∇µ are the Ricci tensor and the covariant derivative defined by gµν . The
derivation of the expressions (3.9) is found in appendix B. Then, the variations of the
generalized Ricci tensor become

δRµν = 1
2δ(g eq.)µν − (Bg−1)(µ|

ρδ(B eq.)|ν)ρ −
1
2(Bg−1)µρ(Bg−1)νσδ(g eq.)ρσ,

δRµν = −1
2gνρδ(B eq.)µρ −

1
2gνρ(Bg−1)µσδ(g eq.)ρσ,

δRµν = −1
2gµρgνσδ(g eq.)ρσ. (3.11)

Therefore, we find that the equations for the zero-modes are given by

δ(g eq.)µν = 0, δ(B eq.)µν = 0. (3.12)

Variation δ(g eq.). We first analyze the variation δ(g eq.)µν . This is explicitly given by

δ(g eq.)µν = δRµν −
1
4δ(HµρσHν

ρσ) + 2δ(∇µ∇νΦ). (3.13)

In the following, we write down the equation (3.13) by decomposing the indices into the
world-volume and the transverse directions. Using the variations (3.7), the non-zero vari-
ations of the Christoffel symbol defined by gµν for the localized DFT monopole (2.11) are
found to be

δΓmab = −1
2H

s
[
2s(∂mφ(a)∂b)H + δab(∂mφd)∂dH

]
,

δΓcmb = 1
2H

s−1
[
s
(
(∂mφc)∂bH + (∂mφb)∂cH

)
+ δcb(∂mφd)∂dH

]
,

δΓcab = 1
2
[
2(s− 1)Hs−2

(
sφc∂aH∂bH + δc(a|φ

d∂dH∂|b)H
)

+ sHs−2
(
δabφ

c(∂H)2 − 2φ(a∂b)H∂
cH
)

+Hs−2δabφ
d∂dH∂

cH +Hs−1
(
2sφc∂a∂bH + 2δc(a|φ

d∂d∂|b)H − δabφd∂d∂cH
)]
,

(3.14)

where m,n, . . . = 0, 1, . . . , 5 and a, b, . . . = 6, . . . , 9 are the world-volume and the transverse
directions, respectively. Then, we find the variations of the Ricci tensor are given by

δRmn = −(s+ 2)Hs−1(∂m∂nφc)∂cH,

δRmb = −1
2H

s−2
[
(s2 + s− 3)(∂mφc)∂cH∂bH − s(s+ 1)(∂mφb)(∂H)2

]
− 1

2H
s−1
[
(s+ 3)(∂mφc)∂c∂bH − s(∂mφb)�H

]
,
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δRab = −1
2H

s
[
2s(∂m∂mφ(a)∂b)H + δab(∂m∂mφc)∂cH

]
+ 1

2
[
Hs−2δabφ

c∂cH�H − 2sHs−2φ(a∂b)H�H −Hs−1δabφ
c∂c�H

]
+ 3(s− 1)Hs−3φc∂cH∂aH∂bH −Hs−1φc∂c∂a∂bH

+Hs−2
[
φc∂cH∂a∂bH − (2s− 3)φc∂c∂(aH∂b)H

]
(3.15)

Here we have defined (∂H)2 = δab∂aH∂bH. We next evaluate the variation

δ(H 2
3 )µν = δ(HµρσHν

ρσ)
= gρτgσκ(δHµρσ)Hντκ + gρτgσκHµρσ(δHντκ) + 2(δgρτ )gσκHµρσHντκ. (3.16)

Since we have only the following non-zero components for the localized DFT monopole,

δHmab = Hs(∂mφc)εabcd∂dH,

δHabc = sHs−1φd
(
εabde∂cH + εbcde∂aH + εcade∂bH

)
∂eH

+Hsφd
(
εabde∂

e∂cH + εbcde∂
e∂aH + εcade∂

e∂bH
)
, (3.17)

the non-zero components of the variations are found to be

δ(H 2
3 )ma = 2Hs−2

(
(∂mφa)(∂H)2 − (∂mφc)∂cH∂aH

)
,

δ(H 2
3 )ab = 4Hs−3

(
sφ(a∂b)H(∂H)2 − δabφc∂cH(∂H)2 − (s− 1)φc∂cH∂aH∂bH

)
+ 4Hs−2

(
δabφ

c∂c∂dH∂
dH − φc∂c∂(aH∂b)H + φ(a∂b)H�H − δabφc∂cH�H

)
.

(3.18)

Finally, we evaluate the variation

δ(∇µ∇νΦ) = ∂µ∂ν(δΦ)− (δΓρµν)∂ρΦ− Γρµν∂ρ(δΦ). (3.19)

By using (3.7) and (3.14), we find the non-zero components of the above variation are

δ(∇m∇nΦ) = 1
2H

s−1(∂m∂nφc)∂cH,

δ(∇m∇aΦ) = 1
4
[
Hs−2

(
(s− 3)(∂mφc)∂cH∂aH − s(∂mφa)(∂H)2

)
+ 2Hs−1(∂mφc)∂c∂aH

]
,

δ(∇a∇bΦ) = 1
2
(
Hs−2δabφ

c∂c∂dH∂
dH + 2(s− 2)Hs−2φc∂c∂(aH∂b)H −Hs−2φc∂cH∂a∂bH

− 4(s− 1)Hs−3φc∂cH∂aH∂bH −Hs−3δabφ
c∂cH(∂H)2

+ sHs−3φ(a∂b)H(∂H)2 +Hs−1φc∂c∂a∂bH
)
. (3.20)

Collecting all together, we find that the equation of the zero-modes δ(g eq.)µν = 0 results
in the following form:

0 = δ(g eq.)mn =−(s+1)Hs−1(∂m∂nφc)∂cH,
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0 = δ(g eq.)ma = 1
2(s+1)(s−1)Hs−2

(
(∂mφa)(∂H)2−(∂mφc)∂cH∂aH

)
− 1

2H
s−1
[
(s+1)(∂mφc)∂c∂aH−s(∂mφa)�H

]
,

0 = δ(g eq.)ab =−1
2H

s
[
2s(∂m∂mφ(a)∂b)H+δab(∂m∂mφc)∂cH

]
+ 1

2
[
3Hs−2δabφ

c∂cH�H−2(s+1)Hs−2φ(a∂b)H�H−Hs−1δabφ
c∂c�H

]
.

(3.21)

Since H is a harmonic function �H = 0, we find s = −1 and the scalar fields φa satisfy
the Klein-Gordon equation ∂m∂mφa = 0 in the six-dimensional world-volume.

Variation δ(B eq.). We next evaluate the variation

δ(B eq.)µν = 1
2δ(∇

αHαµν)− δ(Hαµν∇αΦ). (3.22)

One easily finds that δ(B eq.)mn = δ(B eq.)ma = 0 for the localized DFT monopole. There-
fore only non-zero component in this variation is

δ(B eq.)ab = 1
2H

sεabcd(∂m∂mφc)∂dH + 1
2H

s−1φcεabcd∂
d�H

+ (s− 2)Hs−2φc
(
εab[c|e∂

e∂|d]H + ε[a|cde∂
e∂|b]H

)
∂dH. (3.23)

By using the condition �H = 0 and the relation

ε[abc|e∂
e∂|d]H = 1

2
(
ε[a|cde∂

e∂|b]H + εab[c|e∂
e∂|d]H

)
= 0, (3.24)

which originates from the Bianchi identity ∂[aHbcd] = 0, we have the zero-modes equation,

0 = δ(B eq.)ab = 1
2H

sεabcd(∂m∂mφc)∂dH. (3.25)

This is again satisfied by the Klein-Gordon scalar fields φa.

3.2 Zero-modes equation δR = 0

We next evaluate the variation δR = 0. The generalized Ricci scalar in the parametriza-
tion (3.3) is given by

R = 1
4gµν∂µgρσ∂νgρσ −

1
2gµν∂νgρσ∂σgµρ −

1
12HµνρHµνρ

+ 4gµν∂µ∂νd− ∂µ∂νgµν − 4gµν∂µd ∂νd + 4∂µgµν∂νd. (3.26)

It is convenient to rewrite the generalized Ricci scalar in terms of the well-known geometric
quantities. A tedious rearrangement leads to the following expression

R = R + 4(∇µ∇µΦ− (∇Φ)2)− 1
12HµνρHµνρ, (3.27)
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where we have used the relation ∂µd = ∂µΦ − 1
2Γρµρ and R is the ordinary Ricci scalar

defined by

R = gµνRµν = gµν
(
∂ρΓρµν − ΓσρµΓρνσ − ∂µΓρνρ + ΓσρσΓρµν

)
. (3.28)

Having an insight that (3.27) is the same form with the equation of motion for the dilaton
Φ in the NSNS sector in supergravity, it is further convenient to rewrite the generalized
Ricci scalar as

R = gµν(g eq.)µν + 2∇µ∇µΦ− 4(∇Φ)2 + 1
6HµνρHµνρ. (3.29)

Then, the variation of the generalized Ricci scalar is given by

δR = (δgµν)(g eq.)µν + gµνδ(g eq.)µν

+ 2δ(gµν∇µ∇νΦ)− 4δ(gµν∇µΦ∇νΦ) + 1
6δ(g

µνgρσgτκHµρτHνσκ). (3.30)

With the help of the results in the previous paragraph, each term is evaluated as

(δgµν)(g eq.)µν = 0,
gµνδ(g eq.)µν = −(2s+ 3)Hs−1(∂m∂mφc)∂cH,

2δ(gµν∇µ∇νΦ) = Hs−1(∂m∂mφc)∂cH,
−4δ(gµν∇µΦ∇νΦ) = 3Hs−4φc∂cH(∂H)2 − 2Hs−3φc∂c∂aH∂

aH,

1
6δ(g

µνgρσgτκHµρτHνσκ) = −3Hs−4φc∂cH(∂H)2 + 2Hs−3φc∂c∂aH∂
aH. (3.31)

Collecting all together, we obtain the equation for the translational zero-modes,

0 = δR = −2(s+ 1)Hs−1(∂m∂mφc)∂cH. (3.32)

From this expression, we again find that φa are scalar fields satisfying the Klein-Gordon
equation in the world-volume and s = −1. This is consistent with the results obtained in
the analysis of δRMN = 0.

In summary, we have the translational zero-modes given by

εa = H−1φa(x), ε̄a = −H−1φb(x)bba, (3.33)

where the scalar fields φa satisfies the Klein-Gordon equation in the six-dimensional brane
world-volume. These zero-modes are Nambu-Goldstone modes associated with the spon-
taneous breaking of the translational symmetry along the transverse doubled space to
five-branes.

4 Tensor zero-modes of five-branes

In the previous section, we determined the zero-modes associated with the spontaneous
breaking of the translational symmetry in the doubled space. In this section, we determine
the tensor zero-modes associated with the spontaneous breaking of the gauge symmetry in
the RR sector.
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4.1 Zero-modes in the RR sector

The localized DFTmonopole (2.11) breaks the gauge symmetry of the RR potential in (2.4):

δλχ = /∂λ, (4.1)

where λ is an O(D,D) spinor parameter. We examine a fluctuation δλχ which is given by
the gauge transformation (4.1) in the localized DFT monopole solution. In order that, we
employ the ansatz of the Nambu-Goldstone modes

λ = e
1
2 babψ

aψbHt(y )λ̄, (4.2)

where the p-form parameters in the constant O(D,D) spinor λ̄ extend along the world-
volume directions. The overall exponential factor guarantees that Ht(y )λ̄ is the genuine
zero-mode which is invariant under the NSNS B-field gauge transformation [43]. Here
H(y ) is the harmonic function defined in the localized DFT monopole solution and t is a
real number which will be determined later.

Since the localized DFT monopole solution (2.11) is given within the solution to the
strong constraint, we assume ∂̄µ = 0 in the following. Then the fluctuation (4.2) becomes

δλχ = e
1
2 bψψ

[1
2H

t∂cbabψ
ab + tHt−1∂cH

]
ψcλ̄. (4.3)

Here we have used the fact that b has only the transverse components in the solution.
We have also introduced the notation bψψ = babψ

aψb. In the following, we also use the
notation such as ψµνρ··· = ψµψνψρ · · · .

We next promote the constant parameter to the field in the world-volume:

λ̄→ λ(x ). (4.4)

The component expansion of the O(D,D) spinor is given by

λ(x ) =
D∑
p=1

1
(p− 1)!λm1···mp−1(x )ψm1···mp−1 |0〉. (4.5)

Now we substitute the fluctuation into the equation of motion. The only relevant equation
of motion for the RR zero-modes is

/∂
(
K/∂δλχ

)
= 0. (4.6)

Here K = C−1SH. Substituting the fluctuation into the equation of motion and performing
tedious calculations, we find (detailed calculations are found in appendix B),[

(t2 − 1)Ht−1∂aH∂aH

]∑
p

F ln1···np−1ψln1···np−1 |0〉

−
[

1
2H

t−1∂cbefψ
efc + tHt∂cHψ

c

]∑
p

p ∂mF
mn1···np−1ψn1···np−1 |0〉 = 0, (4.7)
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where we have defined

Fm1m2···mp = p!∂[m1λm2···mp]. (4.8)

Therefore, we conclude that the zero-mode equation is satisfied when t = ±1 and

∂mF
mn1···np−1 = 0. (4.9)

The condition (4.9) is nothing but the Maxwell equation of the p-forms λ in the six-
dimensional world-volume.

4.2 Normalizability

In order to determine the value of t, we next examine the normalizability of the RR zero-
modes. To this end, we evaluate the effective action of the RR zero-modes. This is obtained
in the RR sector of the DFT action (2.1). We introduce the fluctuation δλχ given by the
gauge transformation (4.3), with the promoted gauge parameter (4.4) in the action. Then
the relevant term in the action becomes

SDFT,RR = 1
4

∫
dDx̃

∫
dDx (/∂δλχ)†SH /∂δλχ, (4.10)

where SH is the O(D,D) spinor representation of the generalized metric for the localized
DFT monopole solution (2.11). Once again, calculations give the following result (details
are found in appendix B),

(/∂δλχ)†SH (/∂δλχ) =− 1
4H

2t−1∂cbef∂c′be′f ′
∑
p

fnm1···mp−1

×
∑
q

fn′m′1···m′q−1
ηn
′l′ηm

′
1n
′
1 · · ·ηm

′
q−1n

′
q−1

×〈0|ψmp−1···m1ψcfeψ
e′f ′c′ψl

′n′1···n
′
q−1 |0〉

−t2H2t−1∂cH∂c′H
∑
p

fnm1···mp−1

∑
q

fn′m′1···m′q−1
ηn
′l′ηm

′
1n
′
1 · · ·ηm

′
q−1n

′
q−1

×〈0|ψmp−1···m1ψcψ
c′ψl

′n′1···n
′
q−1 |0〉. (4.11)

The doubled volume factor is decomposed into the world-volume and the transverse direc-
tions

∫
dDx̃dDx =

∫
wv.d6x̃d6x

∫
trans.d4x̃d4x. Here “wv.” and “trans.” mean the world-volume

and the transverse spaces, respectively. The volume factors
∫

wv.d6x̃ and
∫

trans.d4x̃ give fi-
nite values for the compactified torus. In order to obtain the world-volume theory, we now
integrate out the transverse directions that survives the strong constraint:∫

trans.
d4x (/∂δλχ)†SH (/∂δλχ) (4.12)

We evaluate the integrals of the first and the second terms in (4.11). The first term gives∫ ∞
0
r3dr H2t−1∂[abbc]∂[dbef ]〈0|ψabcψdef |0〉

∼
∫ ∞

0
r3dr H2t−1∂gH∂hHεabcgεdefh δa

[dδb
eδc

f ]

∼
∫ ∞

0
r3dr H2t−1∂aH∂aH. (4.13)
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Here we have omitted the irrelevant overall factors. For the localized DFT monopole of
the codimension four, we find H = c1 + c2r

−2 and the relevant integral is given by∫ ∞
0

dr r−3
(
c1 + c2r

−2
)2t−1

. (4.14)

This is finite only when t = −1. For t = 1, the integral diverges at r = 0. Similarly, the
second term in (4.11) also gives the integral (4.14), giving a finite result only when t = −1.

For the DFT monopole of the codimension three, we have H = c1 + c2r
−1 and the

relevant integral becomes ∫ ∞
0

dr r−2
(
c1 + c2r

−1
)2t−1

. (4.15)

This again gives a finite result only when t = −1. For the five-brane of codimension two,
we have

H = c1 − c2 ln r, (4.16)

where we have assumed c1, c2 > 0. The integral becomes

It =
∫ ∞

0
dr r−1 (c1 − c2 ln r)2t−1 . (4.17)

This diverges both for t = ±1. However, this is an artificial phenomenon originating from
the fact that the codimension two brane is ill-defined as a stand alone object. Indeed, if
we introduce a cutoff at r = M , this gives a finite result only when t = −1:

It=−1 = 1
2c2(c1 − c2 lnM)2 . (4.18)

For the DFT monopole of the codimension one, we have,

H = c1 + c2|x|, (4.19)

where we have assumed that c1, c2 > 0. The relevant integral becomes∫ ∞
−∞

dx (c1 + c2|x|)2t−1. (4.20)

This is finite only when t = −1. Therefore, we conclude that t = −1 is the correct value of
the normalizable zero-modes.

The same analysis is also applied in the NSNS sector. By using the explicit variations
of the fields

δgab = H−1
(
δabφ

c∂cH − 2φ(a∂b)H
)
, δBab = H−1φcεabcd∂

dH, δΦ = 1
2H
−2φa∂aH,

(4.21)

we find that the variation of the DFT action results in

δ2SDFT,NSNS = 2
∫

d2DXH−3∂aH∂bH(φa�φb). (4.22)
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Then the relevant integral results in∫
trans.

d4xH−3∂aH∂bH = π2c2
2c2

1
δab, (4.23)

giving a finite value for the harmonic function H = c1 + c2r
−2. This implies that the scalar

part of the effective action of the five-brane is given by the desired form:

S ∼
∫

wv.
d6xφa�φa. (4.24)

For the five-branes of lower codimensions, the calculations are the same with the ones in
the RR sector.

4.3 Self-duality constraint

Finally, we analyze the self-duality constraint of the O(D,D) spinor χ. Since we use the
democratic formulation of the RR sector, we need to impose the self-duality constraint in
order to rewrite the higher rank forms by the lower ones. The self-duality constraint is
expressed as

/∂χ = −K/∂χ. (4.25)

We derive the corresponding constraints for the fluctuations. By substituting the shift
χ→ χ0 + δχ = 0 + δλχ into the self-duality constraint, we have the following relation (the
detailed calculations are found in appendix B)

6∑
p=0

1
(6− p)!εnm1···mp−1k1···k6−pηk1l1 · · · ηk6−pl6−pFnm1···mp−1ψ

l1···l6−p = −t
6∑
p=0

Fl1···lpψ
l1···lp ,

6∑
p=0

1
(6− p)!εnm1···mp−1k1···k6−pηk1l1 · · · ηk6−pl6−pFnm1···mp−1ψ

l1···l6−p = −1
t

6∑
p=0

Fl1···lpψ
l1···lp .

(4.26)

We find that these conditions are consistent when t = −1 which precisely coincides with
the result in the previous section. For t = −1, these conditions are rewritten as

Fm1···m6−p = (−)
(6−p)(6−p−1)

2

(6− p)! εm1···m6−p
n1···npFn1···np . (4.27)

Here ε is the Levi-Civita symbol in six dimensions. The indices are raised and lowered by
the six-dimensional Lorentz metric ηmn. We denote the condition (4.27) as

F (p−6) = ± ∗6 F (p). (4.28)

This is nothing but the self-duality relation for the zero-modes in six dimensions. Now we
write down the condition (4.28) explicitly in cases of type IIA and IIB supergravities.
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Type IIA case. For the type IIA case, the relevant RR potentials are

C(1), C(3), C(5), C(7), C(9). (4.29)

The corresponding gauge transformations are given by

δC(1) = dλ(0), δC(3) = dλ(2), δC(5) = dλ(4), δC(7) = dλ(6), δC(9) = dλ(8). (4.30)

Since the zero-modes associated with the RR gauge transformations are defined in the
six-dimensional world-volume, we have λ(8) = dλ(6) = 0. Therefore, the non-zero field
strengths for the zero-modes are given by

F (1), F (3), F (5). (4.31)

Here F (p+1) = dλ(p) and the exterior derivative is defined in the six-dimensional world-
volume. The self-duality relations (4.28) are therefore

F (1) = − ∗6 F (5), F (3) = − ∗6 F (3), F (5) = − ∗6 F (1). (4.32)

The first and the last ones state that the degrees of freedom by λ(4) are given by λ(0).
The second one implies that the 2-form λ(2) is anti-self-dual (ASD). Therefore, the net
zero-modes are given by

λ(0) (scalar), λ(2) (ASD 2-form). (4.33)

These together with the fluctuation zero-modes φa, (a = 6, 7, 8, 9) precisely give the bosonic
components of the six-dimensional N = (2, 0) tensor multiplet.

Type IIB case. For the type IIA case, the relevant RR potentials are given by

C(0), C(2), C(4), C(6), C(8), C(10). (4.34)

The corresponding gauge transformations are

δC(0) = 0, δC(2) = dλ(1), δC(4) = dλ(3),

δC(6) = dλ(5), δC(8) = dλ(7), δC(10) = dλ(9).
(4.35)

The RR 0-form is gauge invariant. Since λ(p) are defined in the six-dimensional world-
volume, we have λ(7) = λ(9) = 0. Therefore the field strengths of the zero-modes are
given by

F (2), F (4), F (6). (4.36)

The self-duality relations (4.28) read

F (2) = ∗6F (4), F (4) = ∗6F (2), F (6) = 0. (4.37)

The first and the second ones state that the degrees of freedoms of λ(3) are given by λ(1).
The last one implies λ(5) is non-dynamical in the five-brane world-volume. Therefore the
net zero-mode is

λ(1) (vector). (4.38)

This together with the fluctuation zero-modes φa, (a = 6, 7, 8, 9) precisely give the bosonic
components of the six-dimensional N = (1, 1) vector multiplet.
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6d supermultiplets Five-branes
N = (2, 0) tensor IIA NS5, Q5, SF5 IIB KKM, R5
N = (1, 1) vector IIA KKM, R5 IIB NS5, Q5, SF5

Table 1. The five-branes in type II theories and the corresponding supermultiplets in the world-
volumes. The KKM and SF5 stand for the KK-monopole and the space-filling five-brane.

5 Effective theories of locally non-geometric five-branes

In this section, we examine the world-volume effective theories of the five-branes in type
II string theories. In particular, we focus on the effective theories of locally non-geometric
five-branes. In the previous sections, we have determined the zero-modes of the five-branes.
There are the four fluctuation zero-modes φa (a = 6, 7, 8, 9) and the tensor zero-modes in
the RR sector. There are two classes of the tensor zero-modes, namely, the 1-form λ(1) and
a pair of the scalar and the anti-self-dual 2-form (λ(0), λ(2)) depending on the possible RR
potentials in type IIA and IIB supergravities. They satisfy the desired field equations in the
world-volumes and are organized into the bosonic sectors of the six-dimensional N = (1, 1)
vector and the N = (2, 0) tensor multiplets. These multiplets and the corresponding
five-branes are summarized in table 1.

We now examine the physical meaning of these zero-modes in each brane. Before that,
we note that there are two kinds of locally non-geometric objects in string theory. One is
the R-brane type that appear in table 1, the other is the localized KK-monopole type [21].
We first consider the R-brane type and then introduce the localized KK-monopole type.

5.1 R-brane type

The locally non-geometric objects of the R-brane type appear in the T-duality orbit in-
cluding the ordinary geometric branes. In the following, we survey the effective theories of
five-branes by starting from the familiar NS5-brane and applying the T-duality transfor-
mations.

NS5-brane and KK-monopole. For the type IIA NS5-brane, the world-volume the-
ory is characterized by the six-dimensional N = (2, 0) tensor multiplet. The 0- and 2-form
fields in the tensor multiplet correspond to the zero-modes associated with the gauge trans-
formations of the RR 1- and 3-forms. Among other things, the 0-form field in the type IIA
NS5-brane world-volume is interpreted as the fluctuation along the M-circle. For the type
IIB NS5-brane, the world-volume theory is governed by the six-dimensional N = (1, 1) vec-
tor multiplet. The 1-form in the vector multiplet corresponds to the zero-mode associated
with the gauge transformation of the RR 2-form.

For the zero-modes that come from the generalized Lie derivative, they are decomposed
into those by the diffeomorphism δ = Lζ and the B-field gauge transformation δB = dΛ
whose parameters are given by

ζa = εa = H−1φa(x), Λa = ε̄a = −H−1φb(x)bba. (5.1)
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From this expression, the four scalar zero-modes φa in both of the NS5-branes are inter-
preted as the geometric fluctuations of branes in the transverse directions. Compared with
the D-branes [45], one notices that the modes φa necessarily present in the B-field gauge
transformation in the NS5-branes.

For the KK-monopoles, the transverse directions are given by the Taub-NUT space
which accommodates one isometry direction. The T-duality transformation of the RR po-
tentials increases or decreases their ranks. We are interested in the RR potentials whose
indices extend to the world-volume directions of the five-branes. The T-duality transfor-
mation of the RR p-form along the y 9-direction results in the (p+ 1)-form whose increased
index is given by a = 9. Correspondingly, the zero-modes of the NS5-branes associated
with the gauge transformations of the RR potentials become those with the increased index
given by the isometry direction (a = 9). Therefore, the 0- and the 2-form zero-modes in
the world-volume of the IIB KK-monopole stem from the gauge transformations of the RR
2- and 4-forms whose gauge parameters contain the index a = 9. The same is true for the
type IIA KK-monopole.

One of the four geometric zero-modes in the NS5-brane is T-dualized and it turns out
to be zero-modes associated with the gauge transformation of the NSNS B-field. Explicitly,
this is given by the parameters

Λa = (Λi,Λ9) = (ε̄i, ε9) = (H−1φ9Ai, H
−1φ9), (i = 6, 7, 8). (5.2)

Then we find that the corresponding gauge transformation becomes

δB = dΛ = φ9η, (5.3)

where we have introduced the basis η defined by

η = H−1dA+ dH−1 ∧ (dȳ 9 +A). (5.4)

One finds that this basis satisfies the self-duality condition in the transverse four-
dimensional Taub-NUT space

η = ∗4η. (5.5)

This is consistent with the known results [46, 47]. These zero-modes are summarized in
table 2.

Q5-brane. For the Q5-brane, there are two isometry directions to the transverse space.
Only the two fluctuation zero-modes correspond to the geometric modes in the transverse
directions. Two of the four fluctuation zero-modes in the NS5-brane are T-dualized giving
rise to the two independent B-field gauge transformations. These are explicitly given by

δB = φ8dH−1 ∧ dȳ 8 + φ9dH−1 ∧ dȳ 9. (5.6)

This is a generalization of the B-field gauge zero-mode (5.3) in the Taub-NUT space. Con-
versely, the modes of the B-field gauge transformation in the isometric direction enters into
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φ6, φ7, φ8 φ9 0-form 2-form
IIA NS5 geometric geometric δC(1) = dλ(0) : λ(0) δC(3) = dλ(2) : λ(2)

mn

IIB KKM geometric self-dual δB δC(2) = dλ(1) : λ(1)
9 δC(4) = dλ(3) : λ(3)

mn9

1-form

IIB NS5 geometric geometric δC(2) = dλ(1) : λ(1)
m

IIA KKM geometric self-dual δB δC(3) = dλ(2) : λ(2)
m9

Table 2. Physical interpretations of the zero-modes in the six-dimensional N = (2, 0) tensor and
the N = (1, 1) vector multiplets. The cases of the NS5-brane and the KK-monopole. The index
structures of the gauge parameters are specified explicitly.

the corresponding diffeomorphism by the T-duality. This is a remnant of the mixing of
the diffeomorphism and gauge parameters (5.1). Since the zero-modes of branes are deter-
mined by the local geometry, even though the Q-brane shows the globally non-geometric
nature, they are still understandable in the sense of the ordinary space-time picture. In the
effective action of the Q5-brane, the two geometric modes along the isometry directions
disappear in the pull-backs of the background fields while the two modes in (5.6) show up
as extra scalar fields [35, 36, 39]. This is consistent with our result.

As in the cases of the KK-monopoles, the tensor zero-modes appear from the higher
ranks of the RR potentials whose indices extend along the isometry directions.

R5- and space-filling 5-branes. The above picture of the zero-modes becomes obscure
when we try to understand locally non-geometric objects like the R-branes. For the R5-
brane, the solution loses the conventional geometric meaning since it inevitably involves
the winding coordinates. There are two isometry directions in the R5-brane solution,
namely, the ȳ 8- and ȳ 9-directions in (2.25). Corresponding to these directions, there are
two independent zero-modes associated with the B-field gauge transformations. Since
the R5-brane is a domain wall type object in the conventional space-time, there is one
geometric fluctuation mode along the y 6-direction. The last mode is given by the DFT
gauge parameter ξ7 = Λ7 = H−1φ7. Since this parameter gives the translational symmetry
along the transverse direction to the R5-brane, it is natural to interpret it as the fluctuation
in the winding space rather than the B-field gauge transformation. Since the R-brane
dynamics is governed by the fluctuations along the winding space, it should play a role
of a probe for winding space. This feature apparently distinguishes the R-brane from the
conventional extended objects in string theory.

The same is true even for the space-filling branes. The solutions are localized in the
winding space and spontaneously break the translational symmetry along these directions.
Therefore, the two scalar fields on the space-filling brane (2.27) represent the fluctuations
along the two winding directions. The other two are zero-modes associated with the B-field
gauge transformations. If the two winding directions are smeared, the solution becomes a
flat space. In this case, all the four fluctuation zero-modes correspond to the zero-modes
by the B-field gauge transformations.
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φ6 φ7 φ8 φ9 0-form 2-form

IIA Q5 geometric geometric δB δB δC(3) = dλ(2) : λ(2)
89 δC(5) = dλ(4) : λ(4)

mn89

IIB R5 geometric winding δB δB δC(4) = dλ(3) : λ(3)
789 δC(6) = dλ(5) : λ(5)

mn789

IIA SF5 winding winding δB δB δC(5) = dλ(4) : λ(4)
6789 δC(7) = dλ(6) : λ(6)

mn6789

1-form

IIB Q5 geometric geometric δB δB δC(4) = dλ(3) : λ(3)
m89

IIA R5 geometric winding δB δB δC(5) = dλ(4) : λ(4)
m789

IIB SF5 winding winding δB δB δC(6) = dλ(5) : λ(5)
m6789

Table 3. Physical interpretation of the zero-modes in the six-dimensional N = (2, 0) tensor and
the N = (1, 1) vector multiplets. For the cases of the non-geometric Q5-, R5 and SF5-branes. The
index structure of the gauge parameters are specified explicitly.

NS5 KKM Q5 R5 SF5

diffeomorphism ζa H−1φa


H−1φ6

H−1φ7

H−1φ8

0




H−1φ6

H−1φ7

H−1φ9A8
0




H−1φ6

0
H−1φ9A8

0




0
0

H−1φ9A8
0



gauge parameter Λa H−1babφ
b


H−1φ9A6
H−1φ9A7
H−1φ9A8
H−1φ9




0
0

H−1φ8

H−1φ9




0
H−1φ7

H−1φ8

H−1φ9



H−1φ6

H−1φ7

H−1φ8

H−1φ9


Table 4. The diffeomorphism and the B-field gauge parameters in each T-duality frame.

All the zero-modes of the non-geometric branes are summarized in table 3. The cor-
responding gauge parameters in DFT are summarized in table 4.

5.2 Localized KK-monopole type

Another type of the locally non-geometric object is the so-called localized KK-monopole
solution. This is first proposed as a genuine T-duality counterpart of the NS5-brane [26].
Remember that when one relates the NS5-brane and the KK-monopole by the T-duality
transformation, one needs to introduce the isometry along the transverse direction to the
brane. This is achieved by performing the smearing in the NS5-brane solution and the
resulting geometry is known as the H-monopole of codimension three. The isometry in the
H-monopole corresponds to that of the Taub-NUT space in the T-dualized KK-monopole
side. On the other hand, it was shown that the isometry in the H-monopole is broken by
the string worldsheet instanton effects [27]. The original NS5-brane geometry is recovered
by summing up all the instanton effects which are interpreted as the KK-modes in the
geometry. The same phenomenon occurs in the KK-monopole side. The isometry of the
Taub-NUT space is again broken by the worldsheet instanton effects [28] and the geom-
etry is modified due to the T-dual of the KK-modes, namely, the string winding modes.
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NS5 KKw1 Q5w2 R5w3 SF5w4

diffeomorphism ζa H−1φa


H−1φ6

H−1φ7

H−1φ8

H−1b9bφ
b




H−1φ6

H−1φ7

H−1b8bφ
b

H−1b9bφ
b




H−1φ6

H−1b7bφ
b

H−1b8bφ
b

H−1b9bφ
b



H−1b6bφ

b

H−1b7bφ
b

H−1b8bφ
b

H−1b9bφ
b



gauge parameter Λa H−1babφ
b


H−1b6bφ

b

H−1b7bφ
b

H−1b8bφ
b

H−1φ9



H−1b6bφ

b

H−1b7bφ
b

H−1φ8

H−1φ9



H−1b6bφ

b

H−1φ7

H−1φ8

H−1φ9



H−1φ6

H−1φ7

H−1φ8

H−1φ9


Table 5. The diffeomorphism and the B-field gauge parameters in the localized five-branes.

As a result, the modified geometry of the KK-monopole is characterized by the winding
coordinate x̃ and it ceases to be a solution to supergravity. This is known as the localized
KK-monopole solution. Although it is not a solution to supergravity, it is in fact a solution
to DFT [21]. This result carries over to the Q5-brane. The worldsheet instanton effects
break the isometries in the Q5-brane geometry and they introduce the winding coordinate
dependence to the Q5-brane geometry [30, 31]. The modified Q5-brane is no longer a solu-
tion to supergravity but it should be a solution to DFT. We call this the localized Q5-brane.
Indeed, these localized solutions are obtained by the formal T-duality transformations of
the NS5-brane geometry without isometries. One notices that all the five-brane solutions
discussed in section 2 are written down by applying the formal T-duality transformations
to the NS5-brane irrespective of their codimensions. Once a T-duality transformation is
applied, one transverse geometric coordinate (that corresponds to the Fourier conjugate of
the KK-modes) is switched to the winding coordinate corresponding to the Fourier con-
jugate of the winding modes. We therefore obtain the localized KK-monopole (KKw1:
KK-monopole with one winding coordinate dependence), the localized Q5-brane (Q5w2:
Q5-brane with two winding coordinate dependence), the localized R5-brane (R5w3) and
the localized SF5-brane (SF5w4). They are apparently locally non-geometric objects and
are indeed the solutions to DFT [23].

It is obvious that our calculations determining the zero-modes are irrelevant to the
explicit form of the harmonic function H. Only we required is that it satisfies the Laplace
equation �H = 0 in the transverse directions. Therefore all the analysis discussed above
are also applied to the localized solutions. The effective theories of these localized five-
branes are governed by the six-dimensional N = (2, 0) tensor and the N = (1, 1) vector
multiplets. The corresponding gauge parameters in DFT are summarized in table 5. Again,
a natural interpretation is that the modes given by H−1φa are fluctuations along the
winding directions rather than the B-field gauge transformations.

6 Conclusion and discussions

In this paper, we studied the world-volume effective theories of the five-branes in type II
string theories within the formalism of double field theory (DFT). These include the NS5-
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brane, the KK-monopole, the Q5-, R5-branes and the space-filling brane. They appear in
the T-duality orbits including the familiar NS5-branes. Among other things, the R5- and
the space-filling branes are kinds of the locally non-geometric objects. Although they are
no longer solutions to conventional supergravity, they are solutions to DFT.

We first determined the precise zero-modes associated with the spontaneous break-
ing of the translational symmetry in the doubled space. This symmetry is a part of the
gauge symmetry in DFT given by the generalized Lie derivative. We showed that there
are four bosonic zero-modes that correspond to the broken shift symmetry along the trans-
verse directions to the five-branes and they satisfy the Klein-Gordon equation in the six-
dimensional world-volume. For the five-branes that are solutions to supergravity, namely,
for the ordinary geometric and the globally non-geometric branes, we demonstrated that
parts of the scalar zero-modes are interpreted as transverse geometric fluctuation of branes.
The remaining zero-modes come from the B-field gauge transformations. Compared with
these supergravity branes, the R5- and the space-filling branes, have fluctuation zero-modes
along the winding directions. Indeed, this interpretation is necessary for the locally non-
geometric objects since their geometries are intrinsically characterized in the winding space.

We next determined the zero-modes associated with the gauge symmetry in the RR
sector. They include the 1-form and the pair of the 0-form and the self-dual 2-form. We
find that these zero-modes are normalizable and they satisfy the Maxwell equations for
p-forms in the world-volume. The four fluctuation scalar modes together with these RR
zero-modes are organized into the bosonic sectors of the six-dimensional N = (1, 1) vector
and the N = (2, 0) tensor multiplets.

We also studied the other type of locally non-geometric objects in string theory. They
are branes of the so-called localized KK-monopole type. When we discuss the genuine
T-dualized object of the localized, the non-smeared NS5-brane (not the H-monopole), it is
inevitable to consider the localized KK-monopole in the winding space. The geometry of
the localized KK-monopole is characterized by the winding coordinate and it is interpreted
as the string worldsheet instanton effects. The notion of the localized KK-monopole is
generalized to those for the Q-, R- and the space-filling branes. Their explicit solutions are
written down in the winding space. These localized objects are not solutions to supergravity
but are shown to be solutions to DFT [23]. We determined the zero-modes of these localized
solutions and find that they are governed by the six-dimensional supermultiplets. Although
the solutions of the locally non-geometric five-branes are given in the winding space, we
note that their dynamics are governed by the conventional field theories described by the
six-dimensional supermultiplets.

We stress that the notion of the locally non-geometric objects in the winding space is
necessary for uncovering the nature of stringy geometries. Indeed, they never give rise in
conventional supergravity which is based on the point particle (or the zero-slope limit of
string) picture of geometries. DFT is one of a useful formalism to capture stringy geometries
with their non-Riemannian structures [48–50]. A mathematically rigorous treatment of the
doubled space would help us to understand the nature of the winding geometries [51–53].

We showed that the effective theories of the five-branes are given by the bosonic sectors
of the six-dimensional N = (2, 0) tensor and the N = (1, 1) vector multiplets. Since the
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supergravity five-branes discussed in this paper are the half BPS objects preserving 16 su-
percharges, we expect that the locally non-geometric five-branes keep also the same super-
charges. It is interesting to determine the fermionic zero-modes associated with the sponta-
neous breaking of supersymmetry in DFT [54, 55]. It is also interesting to study the other
locally non-geometric branes. For example, the U-duality generalization of DFT, known as
exceptional field theory (EFT), involves many kinds of non-geometric objects [56–60]. We
would come back to these issues in future studies.
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A Quick introduction to double field theory

We here introduce the brief summary of DFT. More details are found in [43, 61].

A.1 NSNS sector

Fields and gauge symmetries in the NSNS sector are geometrically unified in DFT. DFT is
defined in the doubled space in which T-duality is realized manifestly. The doubled space
is characterized by the coordinate given by

XM =
(
x̃µ
xµ

)
, (A.1)

where xµ is the Fourier conjugate to the Kaluza-Klein (KK) modes of a string, while x̃µ
is the conjugate to the string winding modes. The NSNS sector of type II supergravities
is organized into an O(D,D) tensor HMN and a scalar d known as the generalized metric
and the generalized dilaton, respectively. We consider D = 10 in the following.

These fields are parametrized as

HMN =
(

gµν −gµρBρν
Bµρg

ρν gµν −BµρgρσBσν

)
, e−2d =

√
−ge−2Φ. (A.2)

The index of the O(D,D) tensor is raised and lowered by the O(D,D) invariant metric

ηMN =
(

0 δµν
δµ
ν 0

)
, ηMN =

(
0 δµ

ν

δµν 0

)
. (A.3)

The action of the NSNS sector in DFT is given by

SDFT,NS =
∫

d2DX e−2dR(H, d), (A.4)
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where the generalized Ricci scalar R is defined by

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+ 1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂MHKL∂KHNL. (A.5)

This action is manifestly invariant under the O(D,D) transformation. All the quantities in
DFT should satisfy the physical condition ηMN∂M∂N∗ = 0. One can show that the DFT
action (A.4) is invariant under the following DFT gauge transformations:

δξHMN = L̂ξHMN = ξP∂PHMN + (∂MξP − ∂P ξM )HPN + (∂NξP − ∂P ξN )HMP ,

δξd = L̂ξd = ξM∂Md−
1
2∂Mξ

M , (A.6)

provided that the strong constraint

ηMN∂M ∗ ∂N∗ = 0 (A.7)

is satisfied. One of the trivial solution to the strong constraint is that the derivative of the
winding coordinates vanishes ∂̃µ∗ = 0. With the imposition of the condition ∂̃µ∗ = 0, the
DFT action is reduced to the NSNS sector of type II supergravity:

SDFT,NS
∂̃µ∗=0−−−−→ SSUGRA,NS =

∫
dDx
√
−ge−2Φ

[
R+ 4(∂Φ)2 − 1

12HµνρH
µνρ
]
. (A.8)

A.2 RR sector

The RR sector of type II supergravities is described by an O(D,D) Majorana spinor in
DFT [42, 43, 62]. We introduce the gamma matrices ΓM satisfying the following Clifford
algebra in 2D dimensions:

{ΓM ,ΓN} = 2ηMN1. (A.9)

The gamma matrices ΓM = (Γµ,Γµ) are represented by

Γµ =
√

2ψµ, Γµ =
√

2ψµ, (A.10)

where ψµ and ψµ are the fermionic creation and annihilation operators satisfying the fol-
lowing relations,

{ψµ, ψν} = δµ
ν , {ψµ, ψν} = 0, {ψµ, ψν} = 0, (ψµ)† = ψµ. (A.11)

The Clifford vacuum |0〉 is defined by

ψµ|0〉 = 0, 〈0|0〉 = 1. (A.12)

A general O(D,D) spinor is expanded by the basis ψµ. We consider a spinor χ whose
component expansion is given by

χ =
D∑
p=0

1
p!Cµ1···µpψ

µ1 · · ·ψµp |0〉. (A.13)

Here the coefficients Cµ1···µp are identified with the RR p-forms.
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There is a group homomorphism ρ : Pin(D,D) → O(D,D) such that h = ρ(S) for
S ∈ Pin(D,D), h ∈ O(D,D). This means we have the following relation

SΓMS−1 = ΓNhNM . (A.14)

Therefore S is a spinor representation of h satisfying hηhT = η. Conversely, for any
h ∈ O(D,D), we have ±S ∈ Pin(D,D).

One notices that a spinor in Pin(D,D) is decomposed into eigenstates χ± associated
with the eigenvalues (−)NF = ±1:

(−)NFχ± = (±1)χ±. (A.15)

Here, NF =
∑
µ ψ

µψµ is the fermion number operator. Then, we have the following
chiral spinors

χ+ =
[ 1

0!C
(0) + 1

2!C
(2)
µ1µ2ψ

µ1ψµ2 + · · ·+ 1
10!C

(10)
µ1···µ10ψ

µ1 · · ·ψµ10

]
|0〉

χ− =
[ 1

1!C
(1)
µ1 ψ

µ1 + 1
3!C

(3)
µ1···µ3ψ

µ1 · · ·ψµ3 + · · ·+ 1
9!C

(9)
µ1···µ9ψ

µ1 · · ·ψµ9

]
|0〉. (A.16)

All the RR potentials in type IIA/IIB theories are incorporated in this formalism. This
is nothing but the democratic formulation of type II supergravity. When we impose the
chirality condition on the spinors, the Pin(D,D) symmetry is broken down to Spin(D,D)
and we have either IIA or IIB theory.

The charge conjugation operator C satisfying CΓMC−1 = (ΓM )† is defined by

C = (ψ1 − ψ1)(ψ2 − ψ2) · · · (ψ10 − ψ10). (A.17)

This also satisfies the relations

CψµC
−1 = ψµ, CψµC−1 = ψµ. (A.18)

A Dirac operator /∂ is defined by

/∂ = 1√
2

ΓM∂M = ψµ∂µ + ψµ∂̃
µ. (A.19)

This is an O(D,D) invariant operator and nilpotent under the strong constraint:

/∂
2 = 1

4{Γ
M ,ΓN}∂M∂N = 1

2η
MN∂M∂N = 0. (A.20)

When we solve the strong constraint by imposing ∂̃µ∗ = 0, the Dirac operator defines the
field strengths of the RR potentials:

/∂χ =
∑
p

1
p!∂µCµ1···µpψ

µψµ1 · · ·ψµp |0〉. (A.21)

A spin representation S = S† ∈ Spin−(10, 10) of the generalized metric H is defined
through the relation,

SΓMS−1 = ΓNHNM . (A.22)
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Here HNM = ηNPHPM and Ht = ρ(S†) = H. Then the DFT action in the RR sector is
given by [42, 43],

SDFT,RR =
∫

d2DX
1
4(/∂χ)†S(/∂χ). (A.23)

Since the RR sector is introduced in the democratic formulation, we impose the following
self-duality constraint to reduce the duplicated degrees of freedom:

/∂χ = −K/∂χ. (A.24)

Here we have introduced K = C−1S. The energy-momentum tensor for the matter sector
is defined by

EMN = − 1
16H

(M
P /∂χΓN)P /∂χ (A.25)

Here χ̄ = χ†C is the Dirac conjugation.

B Detailed calculations

Here we exhibit the detailed calculations that are skipped in the main text.

B.1 Calculations on the generalized Ricci tensor

Remember that the generalized Ricci tensor is given by RMN = PMN
KLKKL, we first

decompose the K tensor. In the following, we solve the strong constraint by the condition
∂̄µ∗ = 0. By substituting the parametrization (3.3) of the generalized metric and dilaton,
we find the following result:

Kµν = 2∂µ∇νΦ− Γσµν∇σΦ + (B(ν|κgκτ )
(
gρσH|µ)τρ∇σΦ

)
+ (Bµτgτα)(Bνκgκβ)

(
Γσαβ∇σΦ

)
− 1

4
(
gρτgσκH(µ|σρH|ν)κτ + 2gρσB(ν|κ(H|µ)τρ + ∂|µ)Bτρ)∂σgτκ

)
− 1

2(B(ν|κgκτ )
(
(gρσ∂σH|µ)τρ + H|µ)τρ∂σgρσ + gρσH|µ)τρΓσ)

+ 2gαβΓσατ∂σB|µ)β − ∂σBτρ∂|µ)gρσ
)

− ∂µΓν + 1
2∂σΓσµν + 1

2ΓσµνΓσ −
1
2g(ν|τΓτρσ∂|µ)gρσ

− (B(ν|κgκτ )
(
B|µ)βΓσατ∂σgαβ

)
− 1

2(Bµτgτα)(Bνκgκβ)
(
∂σΓσαβ + ΓσαβΓσ

)
. (B.1)

Here the ordinary Christoffel symbol for g is defined by Γρµν = 1
2gρσ(∂µgνσ+∂νgµσ−∂σgµν).

Similarly, Kµν is decomposed as

Kµν = 1
2
(
gτνgρσHρµτ∇σΦ

)
+ (Bµτgτα)

(
Γσαβgβν∇σΦ

)
− 1

4
(
gρσ(Hρµτ + ∂µBτρ)∂σgτν + gτν(Hρµτ∂σgρσ + gρσ∂σHρµτ + gρσHρµτΓσ)

+ 2gταΓσαβgβν∂σBµτ − gντ∂µgρσ∂σBτρ
)

− 1
2
(
BµτΓσαβgβν∂σgτα

)
− 1

2(Bµτgτα)
(
Γσαβ∂σgβν + gβν∂σΓσαβ + ΓσαβgβνΓσ

)
. (B.2)
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Finally, Kµν is decomposed as

Kµν = gµτgνκΓστκ∇σΦ− 1
2gµτgνκΓστκΓσ −

1
2
(
2g(µ|τΓστκ∂σg|ν)κ + gµτgνκ∂σΓστκ

)
. (B.3)

By using these expressions and the explicit form of the projector PMN
KL, the generalized

Ricci tensor is written in the following forms:

Rµν = 1
2(g eq.)µν − (Bg−1)(µ|

β(B eq.)|ν)β −
1
2(Bg−1)µα(Bg−1)νβ(g eq.)αβ ,

Rµν = −1
2gνβ(B eq.)µβ −

1
2(Bg−1)µαgνβ(g eq.)αβ ,

Rµν = −1
2gµαgνβ(g eq.)αβ , (B.4)

where we have defined the following expressions:

(g eq.)µν = Rµν −
1
4HµρσHν

ρσ + 2∇µ∇νΦ,

(B eq.)µν = 1
2∇

αHαµν −Hαµν∇αΦ,

(Bg−1)µν = Bµρgρν . (B.5)

B.2 Calculations on the RR zero-modes

With the imposition of the strong constraint and by substituting the ansatz (4.2) with the
promoted field λ into the equation of motion (4.6), we find the fluctuation satisfies

(ψa∂a + ψm∂m)
[
CSH

(
ψb∂b + ψn∂n

)
δλχ

]
= 0, (B.6)

where the indices m,n, . . . = 0, 1, . . . , 5 and a, b, . . . = 6, . . . , 9 run over the world-volume
and the transverse directions. Here H is the generalized metric associated with the localized
DFT monopole (2.11). We first evaluate the derivatives on the fluctuation in the bracket:(

ψb∂b + ψn∂n
)
δλχ = 1

2e
1
2 bψψ∂bbe′f ′ψ

e′f ′
[1

2H
t∂cbefψ

ef + tHt−1∂cH

]
ψbcλ

+ e
1
2 bψψ

[1
2 tH

t−1∂bH∂cbefψ
ef + 1

2H
t∂b∂cbefψ

ef

+t(t− 1)Ht−1∂bH∂cH + tHt−1∂b∂cH

]
ψbcλ

− e
1
2 bψψ

[1
2H

t∂cbefψ
ef + t∂cH

]
ψcψn∂nλ. (B.7)

Since the indices a, b, c, . . . run in the transverse directions to the five-brane, we have
ψe
′f ′efbc = 0 due to the anti-symmetric nature of ψa. Then the first term in the bracket in

the first line vanishes. By the factor ψbc, terms with the indices bc are all anti-symmetrized.
This simplifies the expression (B.7) and we have

(B.7) = 1
2 te

1
2 bψψHt−1∂cH∂bbefψ

efbcλ+ 1
2 te

1
2 bψψHt−1∂bH∂cbefψ

efbcλ

− 1
2e

1
2 bψψHs∂cbef

∑
p

1
(p− 1)!∂nλm1···mp−1ψ

efcψnm1···mp−1 |0〉

− te
1
2 bψψHt−1∂cH

∑
p

1
(p− 1)!∂nλm1···mp−1ψ

cψnm1···mp−1 |0〉. (B.8)
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We next evaluate the term

SH
(
ψb∂b + ψn∂n

)
δλχ. (B.9)

The spinor representation of the generalized metric is decomposed as

SH = S†BS
−1
g SB, SB = e−

1
2 babψ

ab
, S†B = e

1
2 babψaψb , (B.10)

where Sg = S†g is the spinor representation of gµν . Using this expression we have

(B.9) = −1
2e

1
2 babψabS−1

g

[
1
2H

t∂cbef
∑
p

1
(p− 1)!∂nλm1···mp−1ψ

efcψnm1···mp−1 |0〉
]

− te
1
2 babψabS−1

g

[
Ht−1∂cH

∑
p

1
(p− 1)!∂nλm1···mp−1ψ

cψnm1···mp−1 |0〉
]
. (B.11)

Note that the unconventional index contractions with the annihilation operator ψµ. By
using the formula [43]

S−1
g ψµ1 · · ·ψµp |0〉 = −

√
| det g|gµ1ν1 · · · gµpνpψν1 · · ·ψνp |0〉, (B.12)

and the localized DFT monopole solution (2.11), we find

S−1
g ψefcψnm1···mp−1 |0〉 = −

√
| det g|gee′gff ′gcc′gnlgm1n1 · · · gmp−1np−1ψe

′f ′c′ψln1···np−1 |0〉

= −
√
H4H−1δee

′
H−1δff

′
H−1δcc

′
ηnlηm1n1 · · · ηmp−1np−1ψe

′f ′c′ψln1···np−1 |0〉
= −H−1ηnlηm1n1 · · · ηmp−1np−1ψefcψln1···np−1 |0〉. (B.13)

Likewise, we have

S−1
g ψcψnm1···mp−1 |0〉 = −Hηlnηm1n1 · · · ηmp−1np−1ψcψln1···np−1 |0〉. (B.14)

Then,

(B.11)= 1
2e

1
2 babψabHt−1∂cbef

∑
p

1
(p−1)!∂nλm1···mp−1η

nlηm1n1 · · ·ηmp−1np−1ψefcψln1···np−1 |0〉

+te
1
2 babψabHt∂cH

∑
p

1
(p−1)!∂nλm1···mp−1η

nlηm1n1 · · ·ηmp−1np−1ψcψln1···np−1 |0〉

= 1
2e

1
2 babψabHt−1∂cbef

∑
p

f ln1···np−1ψefcψln1···np−1 |0〉

+te
1
2 babψabHt∂cH

∑
p

f ln1···np−1ψcψln1···np−1 |0〉. (B.15)

Here we have defined

f ln1···np−1 = 1
(p− 1)!∂nλm1···mp−1η

nlηm1n1 · · · ηmp−1np−1 . (B.16)

Finally, we evaluate the quantity

(ψa∂a + ψm∂m)
[
CSH

(
ψb∂b + ψn∂n

)
δλχ

]
. (B.17)
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The charge conjugation operator C satisfies ψµC = Cψµ. Then, we have

(B.17) = C (ψa∂a + ψm∂m)
[

1
2e

1
2 babψabHt−1∂cbef

∑
p

f ln1···np−1ψefcψln1···np−1 |0〉

+te
1
2 babψabHt∂cH

∑
p

f ln1···np−1ψcψln1···np−1 |0〉
]
. (B.18)

Since all the annihilation operators are anti-commute with each other, we have

∂ae
1
2 babψab = 1

2∂abefψefe
1
2 babψab = 1

2e
1
2 babψab∂abefψef , (B.19)

and then we obtain

(B.18) = C
1
2ψa

′

[
e

1
2 babψab

1
2∂a

′be′f ′ψe′f ′∂cbef ·Ht−1 + e
1
2 babψab∂a′∂cbef ·Ht−1

+ e
1
2 babψab∂cbef · (s− 1)Ht−2∂a′H

]∑
p

f ln1···np−1ψefcψln1···np−1 |0〉

+ Ctψa′

[
e

1
2 babψab

1
2∂a

′be′f ′ψe′f ′H
t∂cH + e

1
2 babψab · tHt−1∂a′H∂cH

+ e
1
2 babψabHt∂a′∂cH

]∑
p

f ln1···np−1ψcψln1···np−1 |0〉

+ C
1
2ψm

[
e

1
2 babψabHt−1∂cbef

]∑
p

∂mf
ln1···np−1ψefcψln1···np−1 |0〉

+ Ctψm

[
e

1
2 babψabHt∂cH

]∑
p

∂mf
ln1···np−1ψcψln1···np−1 |0〉. (B.20)

When the number of the creation and the annihilation operators are not balanced, we have
the vanishing contribution like ψaψe′f ′ψc|0〉 = 0. Using this fact, we find

(B.20)= Ce
1
2 babψab

[
1
4∂a

′be′f ′∂cbefH
t−1ψa′e′f ′ψ

efc+ 1
2∂a

′∂cbef ·Ht−1ψa′ψ
efc

+ 1
2(t−1)∂cbefHt−2∂a′Hψa′ψ

efc

+t2Ht−1∂a′H∂cHψa′ψ
c+tHt∂a′∂cHψa′ψ

c

]∑
p

f ln1···np−1ψln1···nn−p |0〉

+Ce
1
2 babψab

[
− 1

2H
t−1∂cbefψ

efc−tHt∂cHψ
c

]∑
p

∂mf
ln1···np−1ψmψ

ln1···np−1 |0〉.

(B.21)

The equation for zero-modes is therefore (B.21) = 0. Since ψa, ψc anti-commutes with
ψm and

ψaψ
c|0〉 = (δac − ψcψa)|0〉 = δa

c|0〉, (B.22)
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we have

tHt∂a∂cHψaψ
c|0〉 = tHt�H|0〉 = 0. (B.23)

Here we have used the fact that H is a harmonic function. On the other hand, by using
{ψa, ψb} = δab iteratively, we find

ψaψ
efc|0〉 = (δaeψfc − δafψec + δa

cψef )|0〉. (B.24)

Then we find
1
2∂a∂cbef ·H

t−1ψaψ
efc|0〉 = 1

2H
t−1 (∂a∂cbab + ∂a∂bbca + �bbc)ψbc|0〉. (B.25)

From the BPS condition for the DFT monopole (2.15), we have the relation,

(�bbc + ∂a∂bbca + ∂a∂cbab) = εabcd∂a∂dH = 0. (B.26)

Similarly, we have

1
2(t− 1)∂cbefHt−2∂aHψaψ

efc|0〉

= 1
2(t− 1)Ht−2∂[cbef ]∂aHψaψ

efc|0〉

= 1
2(t− 1)Ht−2 1

3εcefd∂dH∂aH
(
δa
eψfc − δafψec + δa

cψef
)
|0〉

= 0. (B.27)

We have also

t2Ht−1∂aH∂cψaψ
c|0〉 = t2Ht−1∂aH∂aH|0〉 (B.28)

Finally, by using the relation

ψabcψ
def |0〉 = −

(
δa
dδb

eδc
f − δadδbfδce + δa

eδb
fδc

d − δaeδbdδcf + δa
fδb

dδc
e − δafδbeδcd

)
|0〉

= −3!δa[dδb
eδc

f ]|0〉 (B.29)

we find
1
4H

t−1∂abbc∂dbefψabcψ
def |0〉 = −Ht−1∂aH∂aH|0〉. (B.30)

Therefore, we find that the first and the second lines in (B.21) gives[
−Ht−1∂aH∂aH + t2Ht−1∂aH∂aH

]∑
p

f ln1···np−1ψln1···np−1 |0〉. (B.31)

From the expression in (B.21), this terms should vanish by itself. Therefore, we find,

t = ±1. (B.32)
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On the other hand, by using {ψi, ψj} = δi
j several times, we find

ψmψ
ln1···np−1 |0〉 =

(
δm

lψn1···np−1 − δmn1ψln2···np−1 + · · ·+ (−)p−1δm
np−1ψln1···np−2

)
|0〉

(B.33)

Then we find that the terms in the second bracket in (B.21) vanishes when

∂m1F
m1···mp = 0, (B.34)

where we have defined

Fm1m2···mp = p!∂[m1λm2···mp]. (B.35)

The condition (B.34) is nothing but the Maxwell equation for the p-forms.

B.3 Calculations on the normalizability

We here show the derivation of the equation (4.11). The derivative of the fluctuation
results in

/∂δχ = −1
2e

1
2 babψ

ab
Ht∂cbef

∑
p

fnm1···mp−1ψ
efcψnm1···mp−1 |0〉

− te
1
2 babψ

ab
Ht−1∂cH

∑
p

fnm1···mp−1ψ
cψnm1···mp−1 |0〉. (B.36)

By using the relation (ψµ1 · · ·ψµp |0〉)† = 〈0|ψµp · · ·ψµ1 and the fact (e
1
2 babψ

ab)† = e−
1
2 babψab ,

we obtain

(/∂δχ)† = −1
2H

t∂cbef
∑
p

fnm1···mp−1〈0|ψmp−1···m1nψcfee
− 1

2 babψab

− tHt−1∂cH
∑
p

fnm1···mp−1〈0|ψmp−1···m1nψce
− 1

2 babψab . (B.37)

Further, we have

SH /∂δχ = 1
2e

1
2 babψabHt−1∂cbef

∑
p

fn···mp−1η
nl · · · ηmp−1np−1ψefcψl···np−1 |0〉

+ te
1
2 babψabHt∂cH

∑
p

fn···mp−1η
nl · · · ηmp−1np−1ψcψl···np−1 |0〉. (B.38)

Then we find

(/∂δχ)†SH (/∂δχ) =−1
4H

2t−1∂cbef∂c′be′f ′
∑
p

fnm1···mp−1

∑
q

fn′m′1···m′q−1
ηn
′l′ηm

′
1n
′
1 · · ·ηm

′
q−1n

′
q−1

×〈0|ψmp−1···m1ψcfeψ
e′f ′c′ψl

′n′1···n
′
q−1 |0〉

−t2H2t−1∂cH∂c′H
∑
p

fnm1···mp−1

∑
q

fn′m′1···m′q−1
ηn
′l′ηm

′
1n
′
1 · · ·ηm

′
q−1n

′
q−1

×〈0|ψmp−1···m1ψcψ
c′ψl

′n′1···n
′
q−1 |0〉. (B.39)
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B.4 Calculations on the self-duality constraint

Here we show the derivation of the conditions (4.26). The self-duality constraint of the
O(D,D) spinor fluctuation δλχ is given by

/∂δλχ = CSH (/∂δλχ). (B.40)

By using the relation Cψµ = ψµC, CS−1
g = −SgC, we find

CSH = Ce
1
2 babψabS−1

g e−
1
2 bcdψ

cd = −e
1
2 babψ

ab
SgCe

− 1
2 bcdψ

cd
. (B.41)

Then the equation (B.40) becomes

/∂δλχ = −e
1
2 babψ

ab
SgCe

− 1
2 bcdψ

cd
/∂δλχ. (B.42)

On the other hand, using the calculations in the previous subsection, the left-hand side
in (B.42) becomes

/∂δλχ = −1
6e

1
2 babψ

ab
Ht∂dHεcefd

∑
p

Fnm1···mp−1ψ
cefψnm1···mp−1 |0〉

− te
1
2 babψ

ab
Ht−1∂cH

∑
p

Fnm1···mp−1ψ
cψnm1···mp−1 |0〉. (B.43)

Here we have used ∂[abbc] = 1
3εabcd∂dH and introduced Fµ1µ2···µp = p!∂[µ1λµ2···µp]. The

right-hand side in (B.42) is calculated as

−e
1
2 babψ

ab
SgCe

− 1
2 bcdψ

cd
/∂δλχ = 1

6e
1
2 babψ

ab
Ht∂dHεcefd

6∑
p=1

Fnm1···mp−1SgCψ
cefψnm1···mp−1 |0〉

+ te
1
2 babψ

ab
Ht−1∂cH

6∑
p=1

Fnm1···mp−1SgCψ
cψnm1···mp−1 |0〉.

(B.44)

We now evaluate the first and the second lines in (B.44) separately. For the first line, since
Cψµ = ψµC, we have

SgCψ
cefψnm1···mp−1 |0〉 = Sgψcefψnm1···mp−1C|0〉. (B.45)

Further, since

C|0〉 = (ψ0 + ψ0)(ψ1 + ψ1) · · · (ψ9 + ψ9)|0〉 = ψ012···9|0〉, (B.46)

by decomposing the indices into the world-volume (012345) and the transverse (6789)
directions, we find

(B.45) = Sgψcefψ
6789ψnm1···mp−1ψ

012345|0〉. (B.47)
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Then using the formulae,

ψcefψ
6789|0〉 = 1

(4− 3)!εfechψ
h|0〉,

ψnm1···mp−1ψ
012345|0〉 = 1

(6− p)!εnm1···m6−pk1···k6−pψ
k1···k6−p |0〉, (B.48)

we obtain

(B.47) = 1
(6− p)!εfechεnm1···m6−pk1···k6−pSgψ

hψk1···k6−p |0〉. (B.49)

Finally, by using the formula

Sgψ
µ1···µp |0〉 = − 1√

| det g|
gµ1ν1 · · · gµpνpψ

ν1···νp |0〉 (B.50)

and substituting the explicit solution of the localized DFT monopole, we find

(B.49) = 1
(6− p)!εfechεnm1···m6−pk1···k6−p(−H−2)Hδhdηk1l1 · · · ηk6−pl6−pψ

dψl1···l6−p |0〉.

(B.51)

Likewise, for the second line in (B.44), we have

SgCψ
cψnm1···mp−1 |0〉 = − 1

3!
1

(6− p)!Hεcefhεnm1···mp−1l1···l6−pψ
efhψl1···l6−p |0〉. (B.52)

Therefore,

r.h.s. of (B.42)

= e
1
2 babψ

ab

[
− 1

6
1

(6−p)!H
t−1∂dH

∑
p

εnm1···mp−1k1···k6−pηk1l1 · · ·ηk6−pl6−pFnm1···mp−1ψ
d′ψl1···l6−p |0〉

−t 1
3!

1
(6−p)!H

t∂cHεcefh
∑
p

εnm1···mp−1k1···k6−pηk1l1 · · ·ηk6−pl6−pFnm1···mp−1ψ
efhψl1···lp−1 |0〉

]
(B.53)

On the other hand, we evaluate

l.h.s. of (B.42) = e
1
2 babψ

ab

[
− tHt−1∂cH

∑
p

Fnm1···mp−1ψ
cψnm1···mp−1 |0〉

− 1
6H

t∂dHεcefd
∑
p

Fnm1···mp−1ψ
cefψnm1···mp−1 |0〉

]
(B.54)

Then, by comparing the both sides of (B.42), we obtain the condition
6∑
p=0

1
(6− p)!εnm1···mp−1k1···k6−pηk1l1 · · · ηk6−pl6−pFnm1···mp−1ψ

l1···l6−p = −t
6∑
p=0

Fl1···lpψ
l1···lp ,

6∑
p=0

1
(6− p)!εnm1···mp−1k1···k6−pηk1l1 · · · ηk6−pl6−pFnm1···mp−1ψ

l1···l6−p = −1
t

6∑
p=0

Fl1···lpψ
l1···lp .

(B.55)

They are the conditions (4.26).
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