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1 Introduction

Conformal blocks are theory-independent building blocks of conformal field theories (CFTs)
which capture contributions to conformal correlators from entire conformal families of
representations appearing in the intermediate channels of correlation functions. Via the
AdS/CFT correspondence, they play an important role in the gravitational context as well;
for example they provide a basis for writing down any bulk Witten diagram.

Conformal blocks also play a crucial, central role in the revived conformal bootstrap
program [1–3] (see also the recent review [4] and references therein), which has led to sig-
nificant advances in understanding properties of d-dimensional CFTs as well as holography.
This has resulted in considerable interest in and a spate of new results for conformal blocks.
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However, until recently, much of the focus has been restricted to four-point conformal
blocks [5–10]. A variety of techniques are now available for obtaining four-point global
conformal blocks for arbitrary external and exchanged representations in the intermediate
channels in various forms such as closed-form, integral or series representations. A partial
list of methods includes various recursive techniques, shadow formalism, use of differential
operators, dimensional reduction, integrability methods, and holographic geodesic diagram
techniques [8, 10–52].

The focus on four-point blocks is due in part to the fact that conformal bootstrap is
typically implemented at the level of four-point correlators. This is expected to be sufficient
for constraining the full CFT data as long as one includes crossing-symmetry constraints
from all possible four-point correlators, including those with arbitrary representations at
external legs. This can be non-trivial and computationally very costly to implement. An
alternative to this approach may be an n-point bootstrap program restricted simply to
external scalars [53]. Implementing this approach would necessarily require the knowledge
of higher-point scalar conformal blocks in arbitrary channels.

Recently, bulk unitarity methods [54] have also clarified the role of higher-point tree-
level AdS diagrams in four-point results beyond the planar limit, i. e. in understanding
the properties of higher-loop corrections. Higher-point tree-level AdS diagrams in turn are
easily expressible via a conformal block decomposition or via a spectral representation in
terms of direct channel conformal blocks and leading OPE coefficients. Thus the knowl-
edge of higher-point conformal blocks in arbitrary channels would be particularly useful in
probing holography at higher-loops.

However, obtaining explicit representations for conformal blocks is a notoriously hard
problem, even though in principle the blocks are fixed entirely by conformal symmetry. The
challenges are particularly pronounced in the case of higher-point blocks in d spacetime
dimensions, where until recently hardly any results were available. The d-dimensional
five-point block was obtained using the shadow formalism in ref. [53] (see also refs. [55,
56]). A holographic representation for the five-point block was worked out in ref. [55],
and subsequently extended to the six-point block in the so-called “OPE channel” [57],
as well as to higher-point blocks in the comb channel [58]. Ref. [58] also worked out
an explicit power-series expansion for the n-point comb channel blocks. CFT embedding
space methods [28, 30] have also been fruitful in yielding higher-point blocks [59]; notably
providing a series expansion for the n-point comb channel block [60], and the six-point
block in the OPE channel, referred to as the “snowflake channel” [61].1

While the recent burst of activity and progress in studying higher-point functions and
conformal blocks is encouraging, the situation is far from settled. A particularly troubling
aspect of going to higher-point blocks is that the number of possible inequivalent channels
grows very rapidly with n, thus it seems highly inefficient and impractical to work out the
associated conformal blocks on a case by case basis. What would be desirable is a set of

1See also ref. [62] for an application to two-dimensional six-point global blocks for stress tensor exchanges,
and ref. [63] for obtaining representations of (higher-point) diagrams in two and four spacetime dimensions
in terms of solutions to Lauricella systems for conformal groups SL(2,C) and SL(2,H). Recent progress in
higher-point diagrams has also come via momentum space techniques [64–67].
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Feynman-like rules which could be determined once and for all, that enable writing down
any conformal block in any topology without having to do any computations.

Motivated by these considerations, in this paper we will present a simple, conjec-
tural prescription for writing down an arbitrary d-dimensional n-point scalar conformal
block with scalar exchanges in any given channel. Even though the blocks themselves are
non-perturbative objects, we call them “Feynman rules” because they are reminiscent of
Feynman rules for Mellin amplitudes [68–70]. This conjecture was motivated by carefully
studying the power-series expansions of all known examples of scalar conformal blocks in
the literature, particularly as presented in refs. [53, 55, 57, 58, 60, 61].

As a highly non-trivial check of these rules, we compare the predicted blocks belonging
to an infinite family of blocks previously unknown in the literature against a first-principles
derivation and find exact agreement. These are the n-point conformal blocks in the so-called
“OPE channel” for arbitrary even n. We also test the rules in the case of a seven-point
block in a topology different from the comb channel, which we simply refer to as the “mixed
channel,” and find perfect agreement.

The key idea which enables us to compute these new families of blocks from first
principles was previously utilized in refs. [55, 57, 58] to obtain the holographic duals of
higher-point blocks. To obtain a particular scalar conformal block, we start with a tree-
level Witten diagram in a cubic φ3 effective field theory whose direct channel conformal
block decomposition admits the desired block as its single-trace contribution. We call
such a Witten diagram the “canonical Witten diagram” for the block, and there is a
unique choice for each conformal block. Then the single-trace contribution to the canonical
Witten diagram is given by the desired block times a set of known mean field theory
OPE coefficients. Thus the key step is to obtain the single-trace projection of the Witten
diagram, as this will immediately yield the conformal block.

Here, we appeal to Mellin space technology [71–73], which serves a two-fold purpose.
Firstly, in a large N bulk theory, Mellin amplitudes are meromorphic functions with poles
corresponding precisely to the exchange of single-trace operators; this provides a convenient
route to single-trace projections. Secondly, Mellin amplitudes for all tree-level scalar Witten
diagrams in scalar effective field theories are known (thanks to the Mellin space Feynman
rules [68–70]); this enables us to obtain an explicit single-trace projection of any n-point
canonical Witten diagram. This method of projecting out the multi-trace exchanges to
obtain the conformal block is quite general, efficient and constructive, so it can be used to
work out any particular conformal block. The main, and often only, computationally chal-
lenging step of this procedure will be the actual evaluation of all residual Mellin integrals,
which is required to obtain an explicit power-series expansion for the block. However, in all
examples we attempted we were able to systematically work out all such integrals merely
by repeated, and often inductive, applications of the first Barnes lemma [74].

The outline for the rest of the paper is as follows: in section 2 we propose the Feynman
rules for conformal blocks, and in section 3 we illustrate how to apply them to obtain a
seven-point block in the “mixed channel,” the n-point comb channel block, and the n-point
OPE channel block. In section 4 we revisit all examples from section 3 and using the
Mellin-space single-trace projection technique, we prove the Feynman rules in each case.
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Figure 1. Graphical representation of conformal blocks: any n-point block admits a unique repre-
sentation as an unrooted binary tree with n leaves, and consequently n− 3 internal edges (colored
red to guide the eye) and n − 2 internal nodes/vertices (marked in blue). All edges are labeled
with conformal dimensions; the labels on external edges (edges attached to the leaves of the un-
rooted tree) are shown at the leaves for better presentation. (a): the graph shows an n-point
“comb channel” conformal block (for n ≥ 4) for external scalar operators O1(x1), . . . ,On(xn) with
conformal dimensions ∆1, . . . ,∆n and insertion coordinates x1, . . . , xn respectively, and exchanged
scalar operators Oδ1 , . . . ,Oδn−3 along the internal edges with conformal dimensions ∆δ1 , . . . ,∆δn−3 ,
respectively. (c): the graph shows an n-point block in the “OPE channel,” for even n ≥ 6. One
can obtain the n-point OPE channel topology by starting with an n

2 -point comb channel block and
attaching two external edges at every leaf. (b): the graph shows a 7-point example in a “mixed
channel” which is neither the comb nor the OPE channel.

We end with some discussion and future directions in section 5. Various technical details
and computations are provided in the appendices.

When this work was largely complete, we learned of parallel, independent work to ap-
pear by Fortin, Ma and Skiba [75], which has partial overlap with some results of this paper.

2 Feynman rules for conformal blocks

Given any n-point conformal block, let the dimensions and insertion coordinates of the
external operators be respectively, ∆i and xi for i = 1, . . . , n. Let the dimensions of the
exchanged operators be enumerated ∆δi for i = 1, . . . , n−3. See figure 1 for some examples
of graphical representation of blocks in different channels as unrooted binary trees with n
leaves (and correspondingly n−2 internal vertices and n−3 internal edges), which will play
a central role in the Feynman rules. Different inequivalent channels/topologies correspond
to different OPE structures which can contribute to a conformal correlation function.

The Feynman rules presented here give an expression for the desired conformal block in
the desired channel as an n(n− 3)/2-fold power series in powers of n(n− 3)/2 independent
cross-ratios built out of operator insertion positions xi.2 The set of cross-ratios will be
treated as input data fed into the rules to obtain the conformal block. We will assume
the independent cross-ratios are enumerated by ui for i = 1, . . . , n − 3 and vj for j =
1, . . . ,

(n−2
2
)
, such that under any OPE limit, one or more of only ui-type cross-ratios tend

to zero. On the other hand, under any OPE limit a subset of vj-type cross-ratios tend to
unity, while a subset simplifies to give duplicated vj cross-ratios. Upon repeatedly taking

2We assume sufficiently high d. Otherwise some of the cross-ratios will be dependent, but the prescription
still works. In this case, however, a more efficient power series with fewer overall sums also exists.
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sufficiently many OPE limits, we can arrange for all ui ≈ 0 and all vj ≈ 1. In this limit
the leading contribution to the conformal block is given by

Wn(xi)
∣∣∣ui≈0
vj≈1

∝
n−3∏
i=1

u
∆δi

/2
i + · · · . (2.1)

There is a choice in picking n(n − 3)/2 independent cross-ratios subject to the con-
straint (2.1). The Feynman rules described here, which treat the cross-ratios as input
data, work for any such choice. From here on, we fix a choice.

Away from the limit (2.1), the conformal block admits an expansion of the form

Wn(xi) = W 0
n(xi)

(
n−3∏
i=1

u
∆δi

/2
i

)
g(u, 1− v) , (2.2)

where W 0
n(xi), which will be referred to as the “leg factor,” depends only on position

coordinates xi and external dimensions ∆i and captures the overall scaling behavior of the
conformal block under conformal transformations. The function g(u, 1 − v) is expressed
as a power series in ui and (1 − vj) for all i, j, with the leading behaviour g(u, 1 − v) =
1 +O(ui, 1− vj). This function sums all descendant contributions to the conformal block.
The Feynman rules provide a prescription for writing down this function in terms of “edge
factors”Ei and “vertex factors” Vi associated respectively with each internal edge and
internal vertex of the unique unrooted binary tree representation of the desired conformal
block (see e.g. figure 1):

g(u, 1− v) =
∞∑

ki,jrs=0

(n−3∏
i=1

ukii
ki!

)(n−2
2 )∏

(rs)

(1− vrs)jrs

jrs!

(n−3∏
i=1

Ei

)(
n−2∏
i=1

Vi

) , (2.3)

The position-independent edge and vertex factors depend solely on the external and ex-
changed conformal dimensions, as well as the non-negative integral parameters being
summed over, ki and jrs, where i = 1, . . . , n − 3 and the (rs) index takes

(n−2
2
)
values.

(For convenience we have also re-enumerated the vj cross-ratios as vrs; the precise map-
ping will be explained shortly.) They are determined as follows:

• Label each internal edge with an index i running from 1 to n − 3, such that the
conformal dimension of the exchanged operator running along the edge is twice the
exponent of the cross-ratio ui appearing in (2.1). Associate to each such edge an
integral parameter ki and a factor of

Ei := (∆δi − h+ 1)ki
(∆δi)2ki+`δi

, (2.4)

where ∆δi is the conformal dimension of the exchanged operator running along the
edge, and `δi is an integral parameter associated with the conformal dimension ∆δi

to be determined later. Here (a)b ≡ Γ(a + b)/Γ(a) is the Pochhammer symbol, and
we have defined

h := d/2 . (2.5)
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We refer to the parameters ki as “single-trace parameters,” and the parameters `δi
as “post-Mellin parameters.” The single-trace parameter ki also appears in the series
expansion (2.3) as the exponent of the cross-ratio ui. The post-Mellin parameters are
specified entirely in terms of specific positive linear combinations of the parameters jrs
appearing in (2.3), which we call “Mellin parameters.” The precise relation between
the two will be discussed in section 2.1. In that section, we will also present an
alternate prescription for assigning the appropriate single-trace parameter to each
internal edge.

• Label each internal (i.e. cubic) vertex with an index i running from 1 to n− 2.3 Let
the number of incident internal edges on it be denoted M . It is clear that M can
only be 1, 2, or 3. Let the conformal dimensions attached to the edges be ∆a,∆b,
and ∆c. Consider first a vertex with M = 3 (i.e. with all incident edges internal). To
this vertex, assign a factor of

Vi := (∆ab,c)kab,c+ 1
2 `ab,c

(∆ac,b)kac,b+ 1
2 `ac,b

(∆bc,a)kbc,a+ 1
2 `bc,a

(2.6)

× F (3)
A [∆abc, − h; {−ka,−kb,−kc}; {∆a − h+ 1,∆b − h+ 1,∆c − h+ 1} ; 1, 1, 1]

where F (3)
A is the Lauricella function of three variables, defined in (A.1). Here ka, kb,

and kc are the respective single-trace parameters associated with each internal edge
above, and `a, `b, and `c are the post-Mellin parameters associated with ∆a,∆b and
∆c, respectively. Here and below, we are using the shorthand,

∆i1...im,im+1...in := 1
2
(
∆i1 + · · ·+ ∆im −∆im+1 − · · · −∆in

)
(2.7)

for conformal dimensions ∆i, whereas for single-trace parameters and post-Mellin
parameters we are using

ki1...im,im+1...in := ki1 + · · ·+ kim − kim+1 − · · · − kin
`i1...im,im+1...in := `i1 + · · ·+ `im − `im+1 − · · · − `in . (2.8)

For a vertex withM = 2 (respectively,M = 1), one (respectively, two) of the incident
edges is an external edge. So far, external edges have not been assigned a single-trace
parameter. It is convenient to view an external edge as an edge with its single-trace
parameter set to zero. Then the vertex factor continues to be given by (2.6), but
with the associated single-trace parameter(s) set to zero.

It is worth noting that the Lauricella function F (3)
A in (2.6) with say, ka = 0 reduces

to the Lauricella function of two variables,

F
(2)
A [∆abc, − h; {−kb,−kc}; {∆b − h+ 1,∆c − h+ 1} ; 1, 1] . (2.9)

Likewise if two of the attached edges are external, with say, ka = kb = 0, then the
Lauricella function reduces further to the Lauricella function of one variable,

F
(1)
A [∆abc, − h; {−kc}; {∆c − h+ 1} ; 1] . (2.10)

3This indexing is not to be confused with the indexing of edges described above.
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In appendix A we list some identities relating these Lauricella functions to other
known functions.

Modulo the relation between Mellin and post-Mellin parameters which will be ex-
plained in section 2.1, this concludes the complete set of Feynman rules for writing down
an explicit power series expansion of any scalar n-point conformal block with scalar ex-
changes in any channel.

Readers familiar with series expansions of conformal blocks may feel puzzled by the
apparent cross-ratio-basis independence of the series coefficients appearing in the expan-
sion (2.3). However, the explicit form of the edge and vertex factors does in fact depend
on the choice of basis of cross-ratios; this dependence is encoded in the correct pairing be-
tween the single-trace parameters and cross-ratios as discussed above, as well as the precise
relation between Mellin and post-Mellin parameters, which we discuss next. At the end,
as noted in (2.3), one sums over all single-trace and Mellin parameters.

2.1 Mellin and post-Mellin parameters

Recall that Mellin variables [71, 72] are complex-valued variables γij (1 ≤ i, j ≤ n) which
are symmetric, γij = γji with γii := −∆i, satisfying the following n constraints:

n∑
j=1

γij = 0 (i = 1, . . . , n) . (2.11)

This leads to n(n−3)/2 independent components. These variables play a central role in the
context of Mellin amplitudes of n-point bulk diagrams [68–70, 73], which will be reviewed in
section 4 in the proof of the proposed Feynman rules for conformal blocks. The constraints
above can be solved in terms of auxiliary momentum variables pi (for i = 1, . . . , n) such
that pi · pj := γij (thus individual pi are “on-shell,” i.e. pi · pi = −∆i), when “momentum
conservation,”

∑n
i=1 pi = 0 is imposed. In this auxiliary space, the role of the n(n − 3)/2

independent Mellin variables is played by a choice of n(n− 3)/2 independent Mandelstam
invariants si1...ik defined via

si1...ik := −(pi1 + · · ·+ pik)2 =
ik∑
j=i1

∆j − 2
∑

i1≤r<s≤ik

γrs . (2.12)

In section 4, for working out the Feynman rules, we will be interested in the following
object which we call the “Mellin product,”∏

1≤i<j≤n

1
(x2
ij)γij

, (2.13)

where xi (for i = 1, . . . , n) are boundary coordinates at which operators of conformal
dimension ∆i are inserted. The reason why such an object appears will be clear in section 4
where we obtain the conformal block Feynman rules starting from the Mellin representation
of certain bulk Witten diagrams. This product can be recast in terms of conformal cross-
ratios built out of xi coordinates, as we now describe.

– 7 –
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For any given choice of independent cross-ratios and a given channel, there is a canon-
ical choice of n(n− 3)/2 independent Mellin variables,

{γij : (ij) ∈ Uchannel}
⋃
{γij : (ij) ∈ Vchannel} , (2.14)

which makes the Mellin product expressed in terms of cross-ratios physically intuitive.
The sets Uchannel and Vchannel, of cardinalities n− 3 and

(n−2
2
)
respectively, will be defined

shortly. More precisely, given a particular channel and any choice of conformal cross-
ratios {ui, vrs} consistent with the discussion around (2.1)–(2.2), there exists a choice of
independent Mellin variables γij (2.14) such that the Mellin product can be re-expressed
in terms of a product over powers of the given cross-ratios,4

∏
1≤i<j≤n

1
(x2
ij)γij

=: W 0
n(xi)

(
n−3∏
i=1

u
si/2
i

) ∏
(rs)∈Vchannel

v−γrsrs

 , (2.15)

where W 0
n is the leg-factor for the given choice of cross-ratios in the particular channel.

The set {si} is the set of (n − 3) independent Mandelstam invariants associated with the
(n − 3) internal legs of the binary graph representation of the block. In enumerating the
Mandelstam invariants, we labeled the internal edges with an index i = 1, . . . , n − 3 such
that the Mandelstam invariant for the edge i, given by si, appears in the exponent of the
cross-ratio ui. Accordingly, we can assign the single-trace parameter associated with this
internal edge, appearing in the summand of (2.3), the edge factor (2.4) and the vertex
factors (2.6) to be ki.

In the final product in (2.15), the set of Mellin variables appearing in the exponents
determines precisely the set {γij : (ij) ∈ Vchannel}. This will be taken to be the definition
of Vchannel. The set Uchannel is then defined to be the set of pairs of indices such that {γij :
(ij) ∈ Uchannel} gives the residual n−3 independent Mellin variables. It is worth noting that
dependence in (2.15) on the Mellin variables from this set is encoded in the Mandelstam
invariants si. We will denote Dchannel to be the set such that {γij : (ij) ∈ Dchannel} produces
all dependent Mellin variables. Of course, the union of all these sets gives

Uchannel
⋃
Vchannel

⋃
Dchannel = {(ij) : 1 ≤ i < j ≤ n} . (2.16)

We note that the sets Uchannel,Vchannel, and Dchannel for a fixed topology are not unique
but depend on the choice of input cross-ratios. Even for a fixed set of input cross-ratios,
the choice of sets Uchannel and Dchannel is not unique.

We define the set of Mellin parameters to be the set

Jchannel := {jrs : (rs) ∈ Vchannel} , (2.17)

of cardinality
(n−2

2
)
. Mellin parameters make a direct appearance in the summand of the

Feynman prescription for conformal blocks (2.3), where they appear in the exponents of cer-
tain cross-ratios, as well as in the edge and vertex factors (2.4) and (2.6) via the post-Mellin

4Without loss of generality, we are assuming the given cross-ratios have been enumerated such that the
subscripts match, i.e. ui goes with si and vrs goes with γrs as shown in (2.15).
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parameters `a. To obtain the full conformal block, one sums all Mellin parameters over all
integral values from 0 to ∞. We now give the prescription to compute the post-Mellin pa-
rameters `a associated with the conformal dimensions ∆a in terms of the Mellin parameters.

For an external operator with conformal dimension ∆i = −γii inserted at position xi,
we define the associated post-Mellin parameter to be

`i :=
∑

(rs)∈Vchannel
r=i or s=i

jrs =
∑

jrs∈Jchannel
r=i or s=i

jrs . (2.18)

If the set {(rs) ∈ Vchannel : r = i or s = i} is empty, then `i = 0. Note that this definition
implies that the sum over all post-Mellin parameters associated to external conformal
dimensions evaluates to twice the sum over all Mellin parameters,

n∑
i=1

`i = 2
∑
Jchannel

jrs . (2.19)

For exchanged operators of conformal dimensions ∆δi , the prescription to compute the
post-Mellin parameters proceeds iteratively as follows:

1. First, at all internal vertices of the binary graph with precisely two external edges
and one internal edge incident, add the post-Mellin parameters associated with the
external dimensions, and then drop all terms which are multiples of two (i.e. terms
which are even for all integral values of the Mellin parameters). Assign this non-
negative sum to be the post-Mellin parameter of the internal (exchanged) operator.

∆δ3

∆1 ∆2

: `δ3
2J= `1 + `2 , (2.20)

where the symbol 2J= means equality holds once one drops all terms which are even
for all integral values of Mellin parameters. For example, if `1 = j12 + j13 + j16 and
`2 = j12 + j23 + j24, then `δ3

2J= `1 + `2 implies `δ3 = j13 + j16 + j23 + j24.

2. If all internal post-Mellin parameters have not already been determined, pick any
internal vertex where the post-Mellin parameters of precisely two of the edges are
already known. The post-Mellin parameter of the third edge is given by the sum of
the other two post-Mellin parameters, after dropping terms which are even multiples
of Mellin parameters, exactly as shown in (2.20). For example, if two of the post-
Mellin parameters are known at a vertex with three incident exchanged operators,
then the third is determined as follows:

∆δ3

∆δ1 ∆δ2

: `δ3
2J= `δ1 + `δ2 . (2.21)

– 9 –
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If there are multiple choices of vertices for fixing the unknown post-Mellin parameter
of an internal edge, pick any. The final assignment will be independent of this choice.

3. Repeat step 2 until all internal conformal dimensions have been assigned a post-Mellin
parameter.

Note that this prescription guarantees that all post-Mellin parameters are written as pos-
itive linear combinations of Mellin parameters. Furthermore, at any internal vertex, the
sum of any two of the post-Mellin parameters equals the third post-Mellin parameter up
to terms which are even multiples of Mellin parameters. That is, if `a, `b and `c are the
post-Mellin parameters for conformal dimensions incident at a common vertex, then

`a
2J= `b + `c `b

2J= `c + `a `c
2J= `a + `b . (2.22)

In the next section, we illustrate how to apply these rules to determine the n-point
conformal block in the comb channel, the n-point conformal block in the OPE channel,
and the seven-point block in the mixed channel (all depicted in figure 1). In section 4, we
will reproduce these blocks from first principles which serves as a highly non-trivial check
of the Feynman rules.

3 Examples

In this section, we illustrate how to apply the Feynman rules to three classes of examples:
the n-point conformal block in the comb channel and the OPE channel for arbitrary n,5

and the seven-point mixed channel block (see figure 1 for their definitions). All known d-
dimensional scalar conformal blocks with scalar exchanges in the literature fall into one of
the classes above. This includes the well-known four-point block, and the recently obtained
five-point block [53], n-point comb channel blocks [58, 60] and the six-point OPE channel
block [61]. However, the seven-point example to be discussed next and the n-point OPE
channel examples for n ≥ 8 are new results.

We invite the reader to test their understanding of section 2 by applying the Feynman
rules in the trivial case of the four-point block and rediscover the well-known series ex-
pansion, or the slightly less non-trivial though straightforward case of the five-point block.
These are special cases of the n-point comb channel block which is discussed in section 3.2.

3.1 Seven-point mixed channel block

In this section we work out the seven-point conformal block in the “mixed channel” shown
in figure 1b. We use the following independent cross-ratios as input data:

u1 := x2
12x

2
37

x2
17x

2
23

u2 := x2
23x

2
57

x2
25x

2
37

u3 := x2
45x

2
27

x2
25x

2
47

u4 := x2
67x

2
25

x2
27x

2
56

v13 := x2
13x

2
27

x2
17x

2
23

vi6 := x2
i6x

2
57

x2
i7x

2
56

(1 ≤ i ≤ 4)

vij :=
x2
ijx

2
27x

2
57

x2
i7x

2
j7x

2
25

((ij) ∈ {(14), (15), (24), (34), (35)}) .

(3.1)

5We remind the reader that the OPE channel in this paper is only defined for even n.
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It is easily checked that they satisfy the conditions discussion around (2.1)–(2.2). Explicitly,
keeping track of which cross-ratios vanish and which tend to unity as we take the following
sequence of OPE limits in the given order, we note

x2 → x1 : u1 → 0, v13 → 1, v15 → 1
x2 → x3 : u2 → 0, v35 → 1
x4 → x5 : u3 → 0, v24 → 1, v34 → 1, v14 → 1, v46 → 1
x6 → x7 : u4 → 0, v16 → 1, v26 → 1, v36 → 1 , (3.2)

so that by the end all ui → 0 and all vrs → 1.
A convenient choice of dependent Mellin variables which turns the Mellin prod-

uct (2.13) for the seven-point block in mixed channel into the form (2.15) is

{γij : (ij) ∈ D7,mix} where D7,mix = {(17), (25), (27), (37), (47), (56), (57)} . (3.3)

This choice is not unique and can be obtained by trial and error using the given cross-ratios.
A different choice of set D7,mix will result in a different set U7,mix but it will not affect the
set V7,mix which is determined uniquely in terms of the input cross-ratios. In terms of the
independent Mellin variables, these can be expressed as

γ17 = ∆1 − γ12 − γ13 − γ14 − γ15 − γ16

γ25 = ∆12345,67 − γ12 − γ13 − γ14 − γ15 − γ23 − γ24 − γ34 − γ35 − γ45 + γ67

γ27 = ∆267,1345 + γ13 + γ14 + γ15 − γ26 + γ34 + γ35 + γ45 − γ67

γ37 = ∆3 − γ13 − γ23 − γ34 − γ35 − γ36

γ47 = ∆4 − γ14 − γ24 − γ34 − γ45 − γ46

γ56 = ∆6 − γ16 − γ26 − γ36 − γ46 − γ67

γ57 = ∆57,12346 + γ12 + γ13 + γ14 + γ16 + γ23 + γ24 + γ26 + γ34 + γ36 + γ46 . (3.4)

In terms of these, the Mellin product then takes the form

∏
1≤i<j≤7

1
(x2
ij)γij

=: W 0
7,mix(xi)

( 4∏
i=1

u
si/2
i

) ∏
(rs)∈V7,mix

v−γrsrs

 , (3.5)

where the leg-factor turns can be expressed as

W 0
7,mix =

(
x2

27
x2

12x
2
17

)∆1
2
(

x2
17

x2
12x

2
27

)∆2
2
(

x2
27

x2
23x

2
37

)∆3
2
(

x2
57

x2
45x

2
47

)∆4
2

×
(

x2
47

x2
45x

2
57

)∆5
2
(

x2
57

x2
56x

2
67

)∆6
2
(

x2
56

x2
57x

2
67

)∆7
2

, (3.6)

and the set associated to the Mellin parameters over which the
(5
2
)
-dimensional product

runs in (3.5) is,

V7,mix =
{
(13), (14), (15), (16), (24), (26), (34), (35), (36), (46)

}
. (3.7)
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p1

p2 p3

p4 p5
p6

p7
s1 s2

s3

s4

Figure 2. Auxiliary momenta and Mandelstam variable assignments: graphical representation
of the 7-point conformal block in the mixed channel from figure 1b with auxiliary momenta and
Mandelstam variables shown.

The exponents si in (3.5) are given by

s1 = ∆1 + ∆2 − 2γ12 s2 = ∆1 + ∆2 + ∆3 − 2γ12 − 2γ13 − 2γ23

s3 = ∆4 + ∆5 − 2γ45 s4 = ∆6 + ∆7 − 2γ67 ,
(3.8)

which are indeed the Mandelstam invariants attached to the internal edges of the associated
binary graph, as we now describe. In the auxiliary momentum space, one assigns an
incoming momentum to each external edge of the unrooted binary tree representation of
the conformal block, such that the sum over all momenta is zero (see figure 2). Let pi
be the momentum attached to the external edge labelled with conformal dimension ∆i,
with the on-shell condition p2

i = −∆i and momentum conservation. Then the Mandelstam
invariants associated to each internal leg are

s1 = −(p1 + p2)2 s2 = −(p1 + p2 + p3)2

s3 = −(p4 + p5)2 s4 = −(p6 + p7)2 .
(3.9)

Using (2.12), it is easy to see this gives back (3.8).
With the cross-ratios and the set V7,mixed in place, the only computational task remain-

ing is determining the post-Mellin parameters. Recall that the Mellin parameters form the
set (2.17) and the post-Mellin parameters for the external conformal dimensions/edges are
given by (2.18). Explicitly, for the present choice of cross-ratios, this yields

`1 = j13 + j14 + j15 + j16 `2 = j24 + j26

`3 = j13 + j34 + j35 + j36 `4 = j14 + j24 + j34 + j46

`5 = j15 + j35 `6 = j16 + j26 + j36 + j46 `7 = 0 . (3.10)

Now one can solve for the post-Mellin parameters for the internal edges/exchanged dimen-
sions using the algorithm described around (2.20)–(2.21). For illustrative purposes, we
work it out explicitly for each internal leg below.
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1. First we consider all vertices with precisely two incident external edges and one
incident internal edge:

∆δ1

∆1 ∆2

: `δ1
2J= `1 + `2 ⇒ `δ1 = j13 + j14 + j15 + j16 + j24 + j26

∆δ3

∆4 ∆5

: `δ3
2J= `4 + `5 ⇒ `δ3 = j14 + j15 + j24 + j34 + j35 + j46

∆δ4

∆6 ∆7

: `δ4
2J= `6 + `7 ⇒ `δ4 = j16 + j26 + j36 + j46 . (3.11)

2. Finally, to determine `δ2 , one can choose to look at one of two possible vertices. We
will work it out using both to demonstrate choice-independence. From one choice of
a vertex, we get

∆δ2

∆3 ∆δ1

: `δ2
2J= `3+`δ1 ⇒ `δ2 = j14+j15+j16+j24+j26+j34+j35+j36 . (3.12)

On the other hand, the choosing the following vertex yields,

∆δ2

∆δ3 ∆δ4

: `δ2
2J= `δ3 +`δ4 ⇒ `δ2 = j14+j15+j16+j24+j26+j34+j35+j36 . (3.13)

As promised, the assignments agree.

Now, using (2.4) and (2.6), we can write down the internal edge and vertex factors for
the conformal block. As described in section 2.1, to each internal edge associated with the
Mandelstam invariant si (see figure 2 and equation (3.8)), assign the single-trace parameter
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ki. Then, the (7− 3 = 4) edge factors are

∆δ1

k1 : E1 = (∆δ1 − h+ 1)k1

(∆δ1)2k1+j13+j14+j15+j16+j24+j26

∆δ2

k2 : E2 = (∆δ1 − h+ 1)k2

(∆δ2)2k2+j14+j15+j16+j24+j26+j34+j35+j36

∆δ3

k3 : E3 = (∆δ1 − h+ 1)k3

(∆δ3)2k3+j14+j15+j24+j34+j35+j46

∆δ4

k4 : E4 = (∆δ4 − h+ 1)k4

(∆δ4)2k4+j16+j26+j36+j46

, (3.14)

and the (7− 2 = 5) internal vertices of the unrooted binary tree, listed here:

V1 :
k1

∆δ1

∆1 ∆2

V2 :
k3

∆δ3

∆4 ∆5

V3 :
k4

∆δ4

∆6 ∆7

V4 :
k1 k2

∆3

∆δ1 ∆δ2

V5 :
k4

k2 k3

∆δ4

∆δ2 ∆δ3

,

(3.15)

give the following vertex factors:

V1 = (∆12,δ1)−k1(∆2δ1,1)k1+j24+j26(∆1δ1,2)k1+j13+j14+j15+j16

× F (1)
A [∆12δ1, − h; {−k1}; {∆δ1 − h+ 1} ; 1]

V2 = (∆45,δ3)−k3(∆5δ3,4)k3+j15+j35(∆4δ3,5)k3+j14+j24+j34+j46

× F (1)
A [∆45δ3, − h; {−k3}; {∆δ3 − h+ 1} ; 1]

V3 = (∆67,δ4)−k4(∆7δ4,6)k4(∆6δ4,7)k4+j16+j26+j36+j46

× F (1)
A [∆67δ4, − h; {−k4}; {∆δ4 − h+ 1} ; 1]

V4 = (∆3δ1,δ2)k1−k2+j13(∆3δ2,δ1)k2−k1+j34+j35+j36(∆δ1δ2,3)k1+k2+j14+j15+j16+j24+j26

× F (2)
A [∆3δ1δ2, − h; {−k1,−k2}; {∆δ1 − h+ 1,∆δ2 − h+ 1} ; 1, 1]

V5 = (∆δ3δ4,δ2)k3+k4−k2+j46(∆δ2δ4,δ3)k2+k4−k3+j16+j26+j36

× (∆δ2δ3,δ4)k2+k3−k4+j14+j15+j24+j34+j35 (3.16)

× F (3)
A [∆δ2δ3δ4, − h; {−k2,−k3,−k4}; {∆δ2 − h+ 1,∆δ3 − h+ 1,∆δ4 − h+ 1} ; 1, 1, 1].

The Lauricella functions appearing above can be simplified further into combinations of
Pochhammer symbols and generalized hypergeometric functions (see appendix A). The
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final expression for the conformal block is given by (2.2)–(2.3) with the cross-ratios, edge
and vertex factors as determined above.

In section 4.1 we will reproduce the seven-point mixed-channel conformal block of this
section using holographic techniques which will involve the Mellin amplitude of a particular
seven-point Witten diagram as the starting point.

3.2 n-point comb channel block

In this section we will illustrate how to apply the Feynman rules to reproduce the n-point
comb channel conformal block (see figure 1a) of ref. [58]. The first step involves picking
the cross-ratios; in this section, we choose those from ref. [58],6

ui :=
x2

1(i+1)x
2
(i+2)n

x2
1(i+2)x

2
(i+1)n

1 ≤ i ≤ n−3 , vrs := x2
1nx

2
rs

x2
1sx

2
rn

2 ≤ r < s ≤ n−1 . (3.17)

It turns out, the associated canonical choice of n dependent Mellin variables is given by
the set

{γij : (ij) ∈ Dcomb} where Dcomb :=
{
(jn) : 1 ≤ j ≤ n− 1

} ⋃ {
(1(n− 1))

}
. (3.18)

Explicitly, the dependent variables take the form,7

γ1(n−1) = ∆12...(n−1),n −
n−2∑
j=2

γj(n−1) −
n−2∑
j=2

γ1j −
∑

2≤i<j≤n−2
γij

γ1n = ∆1n,23...(n−1) +
n−2∑
j=2

γj(n−1) +
∑

2≤i<j≤n−2
γij

γin = −
n−1∑
j=1

γij (2 ≤ i ≤ n− 2)

γ(n−1)n = ∆(n−1)n,12...(n−2) +
n−2∑
j=2

γ1j +
∑

2≤i<j≤n−2
γij , (3.19)

which, along with γij = γji, and γii = −∆i for all i, j explicitly solves (2.11) as required.
After substituting in (3.19), the Mellin product, expressed in terms of the cross-

ratios (3.17) becomes

∏
1≤i<j≤n

1
(x2
ij)γij

=: W 0
n,comb(xi)

(
n−3∏
i=1

u
si/2
i

) ∏
2≤r<s≤n−1

v−γrsrs

 , (3.20)

6In ref. [60] the authors obtained an alternate expression for the conformal block based on a different
choice of cross-ratios than the one used in ref. [58]. Nevertheless these different forms are expected to
be equivalent. As noted previously, one of the places the dependence on the choice of cross-ratios shows
up in the series expansion is in the precise post-Mellin parameters appearing in the Pochhammer symbol.
Moreover, in ref. [53] the author used a different set of cross-ratios for the five-point block. The proposed
Feynman rules applied to this choice of cross-ratios readily reproduces the block obtained there.

7For a different choice of basis of cross-ratios, there will accordingly be a different canonical basis of
independent Mellin variables.
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p1

p2 p3 pn−2 pn−1

pn
s1 sn−3

Figure 3. Auxiliary momenta and Mandelstam variable assignments: graphical representation
of n-point conformal blocks in the comb and channel from figure 1a with auxiliary momenta and
Mandelstam variables shown.

where the leg-factor W 0
n,comb is given by

W 0
n,comb(xi) =

(
x2

2n
x2

1nx
2
12

)∆1
2
(

x2
1(n−1)

x2
1nx

2
(n−1)n

)∆n
2 n−1∏

i=2

(
x2

1n
x2

1ix
2
in

)∆i
2

, (3.21)

and the si are expressible as,

si =
i+1∑
j=1

∆j − 2
∑

1≤r<s≤i+1
γrs 1 ≤ i ≤ n− 3 . (3.22)

The set in (3.18) is the canonical choice of dependent Mellin variables precisely because it
leads directly to (3.20).

As desired, the si are the n − 3 Mandelstam invariants associated with the n − 3
internal edges. To see this, pass again to the auxiliary momentum space, and assign an
incoming momentum to each external edge of the unrooted binary tree representation of
the conformal block, such that the sum over all momenta is zero. Let pi be the momentum
attached to the external edge labelled with conformal dimension ∆i, with the on-shell
condition p2

i = −∆i and momentum conservation, with the identification γij := pi · pj .
Then the Mandelstam invariants associated to each internal leg are (see figure 3)

si := −(p1 + · · ·+ pi+1)2 1 ≤ i ≤ n− 3 , (3.23)

which precisely evaluates to (3.22). Additionally, as described in section 2.1, to each internal
edge with Mandelstam invariant si, we also assign the single-trace parameter ki.

Furthermore, from (3.20) we also identify the index set

Vcomb :=
{
(rs) : 2 ≤ r < s ≤ n− 1

}
, (3.24)

which leads directly to the set of Mellin parameters (2.17). This, in turn, allows us to
determine the post-Mellin parameters in terms of Mellin parameters. First, let’s work out
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the post-Mellin parameters associated to external dimensions/external edges (2.18):8

`1 = 0 `n = 0

`k =
k−1∑
r=2

jrk +
n−1∑
s=k+1

jks (2 ≤ k ≤ n− 1) .
(3.26)

Next, applying (2.20) to the internal vertices at either extremes of the comb channel, we
obtain the post-Mellin parameters `δ1 and `δn−3 :

∆δ1

∆1 ∆2

: `δ1
2J= `1 + `2 ⇒ `δ1 = `2 =

n−1∑
s=3

j2s

∆δn−3

∆n−1 ∆n

: `δn−3
2J= `n−1 + `n ⇒ `δn−3 = `n−1 =

n−2∑
r=2

jr(n−1) . (3.27)

Finally to determine the remaining post-Mellin parameters, we use (2.21) on vertices
with two internal edges and one external edge attached. For example, one can start with
the vertex:

∆δ2

∆δ1 ∆3

: `δ2
2J= `δ1 + `3 ⇒ `δ2 =

n−1∑
s=4

j2s +
n−1∑
s=4

j3s , (3.28)

and then proceed one vertex to the right:

∆δ3

∆δ2 ∆4

: `δ3
2J= `δ2 + `4 ⇒ `δ3 =

n−1∑
s=5

j2s +
n−1∑
s=5

j3s +
n−1∑
s=5

j4s , (3.29)

and so on. Proceeding iteratively, we find

`δi =
i+1∑
r=2

n−1∑
s=i+2

jrs (1 ≤ i ≤ n− 3) , (3.30)

where the results from (3.27) have been included in the formula above.
8For example, for n ≥ 8

`2 =
n−1∑
s=3

j2s `3 = j23 +
n−1∑
s=4

j3s `4 =
3∑
r=2

jr4 +
n−1∑
s=5

j4s

`5 =
4∑
r=2

jr5 +
n−1∑
s=6

j5s `6 =
5∑
r=2

jr6 +
n−1∑
s=7

j6s `7 =
6∑
r=2

jr7 +
n−1∑
s=8

j7s .

(3.25)
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This is the full extent of computations needed to write down the n-point comb channel
conformal block. The final step involves substituting the single-trace and post-Mellin
parameters into the edge (2.4) and vertex (2.6) factors, which immediately yields the
explicit conformal block via (2.3).

For the sake of completeness, we provide the explicit edge and vertex factors below.
The (n− 3) edge factors are:

∆δi

ki : Ei = (∆δi − h+ 1)ki
(∆δi)2ki+

∑i+1
r=2

∑n−1
s=i+2 jrs

(1 ≤ i ≤ n− 3) . (3.31)

Similarly, for the vertex factors we simply substitute all the ingredients from above
into (2.6). To facilitate comparison with the result from ref. [58] (as well as the new
derivation in section 4.2) we will simplify the linear combination of post-Mellin parameters
appearing in the vertex factors. Rewriting,

`δi =
i+1∑
r=2

n−1∑
s=i+3

jrs+
i+1∑
r=2

jr(i+2) `δi+1 =
i+1∑
r=2

n−1∑
s=i+3

jrs+
n−1∑
s=i+3

j(i+2)s `i+2 =
i+1∑
r=2

jr(i+2) +
n−1∑
s=i+3

j(i+2)s

for 0 ≤ i ≤ n − 3 where we used the identifications ∆δ0 := ∆1 and ∆δn−2 := ∆n, simple
arithmetic leads to

1
2`(i+2)δi,δi+1 =

i+1∑
r=2

jr(i+2)
1
2`δiδi+1,(i+2) =

i+1∑
r=2

n−1∑
s=i+3

jrs
1
2`(i+2)δi+1,δi =

n−1∑
s=i+3

j(i+2)s

(3.32)
for 0 ≤ i ≤ n− 3. Then the n− 2 internal vertices,

V1 :
k1

∆δ1

∆1 ∆2

Vi+1 :
ki ki+1

∆i+2

∆δi ∆δi+1

Vn−2 :
kn−3

∆δn−3

∆n−1 ∆n

, (3.33)

for 1 ≤ i ≤ n− 4, are associated with the vertex factors

V1 = (∆12,δ1)−k1(∆δ11,2)k1(∆δ12,1)
k1+
∑n−1

s=3 j2s

× F (1)
A [∆12δ1, − h; {−k1}; {∆δ1 − h+ 1} ; 1]

Vi+1 := (∆δiδi+1,i+2)
ki(i+1),+

∑i+1
r=2

∑n−1
s=i+3 jrs

(∆(i+2)δi,δi+1)
ki,i+1+

∑i+1
r=2 jr(i+2)

× (∆(i+2)δi+1,δi)ki+1,i+
∑n−1

s=i+3 j(i+2)s

× F (2)
A

[
∆δiδi+1(i+2), − h; {−ki,−ki+1};

{
∆δi − h+ 1,∆δi+1 − h+ 1

}
; 1, 1

]
Vn−2 = (∆(n−1)n,δn−3)−kn−3(∆δn−3(n−1),n)

kn−3+
∑n−2

r=2 jr(n−1)
(∆δn−3n,n−1)kn−3

× F (1)
A

[
∆(n−1)nδn−3, − h; {−kn−3};

{
∆δn−3 − h+ 1

}
; 1
]
. (3.34)

One can re-express the Lauricella functions of one and two variables above in terms
of Pochhammer symbols and the generalized hypergeometric function 3F2, respectively
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(see (A.2)–(A.3)). Upon doing so, the final conformal block given by substituting the edge
and vertex factors above into (2.2)–(2.3) finds precise agreement with the result of ref. [58].

Furthermore, one can check this reproduces the well-known four-point block upon
setting n = 4. Finally, ref. [53] worked out the n = 5 block for a different set of cross-
ratios. Starting with those cross-ratios as the input data, we checked that the Feynman
rules reproduced precisely the block of ref. [53]. Generally, blocks from different choices
of cross-ratios, though perhaps not manifestly identical, are still equivalent in the shared
domain of convergence. In particular it can be checked that the five-point blocks of ref. [58],
ref. [60] and ref. [53] are equivalent, even though they seem slightly different.

3.3 n-point OPE channel block

In the OPE channel (see figure 1c), we choose to represent the n-point conformal block
(for even n ≥ 6) in terms of the following cross-ratios:9

u1 := x2
12x

2
4n

x2
1nx

2
24

un−3 :=
x2

(n−1)nx
2
2(n−2)

x2
(n−2)(n−1)x

2
2n

u2×j :=
x2

(2j+1)(2j+2)x
2
2n

x2
(2j+1)nx

2
2(2j+2)

(
1≤j≤ n2−2

)
u2×j−1 :=

x2
2(2j)x

2
(2j+2)n

x2
(2j)nx

2
2(2j+2)

(
2≤j≤ n2−2

)

vi(n−1) :=
x2
i(n−1)x

2
(n−2)n

x2
inx

2
(n−2)(n−1)

(1≤ i≤n−3) (3.35)

vij :=
x2
ijx

2
2nx

2
(2t)n

x2
inx

2
jnx

2
2(2t)

(
2≤ t≤ n2−1,with 1≤ i≤2t−2, 2t−1≤j≤2t

)
.

A convenient choice of dependent Mellin variables associated with the choice of cross-
ratios above is given by the following index set

DOPE :=
{
(in)

∣∣ 1 ≤ i ≤ n− 2
}⋃{

((n− 2)(n− 1)), (2(n− 2))
}
. (3.36)

9Note that for certain choices of (ij), the cross-ratio vij in (3.35) identically evaluates to unity, in which
case it is not to be included as an independent cross-ratio. The counting leading to n(n− 3)/2 independent
cross-ratios accounts for such occurrences.
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p1

p2

p3 p4 p5 p6 pn−3 pn−2

s2 sn−4 pn−1

pn
s1 sn−3

s4

s3

Figure 4. Auxiliary momenta and Mandelstam variable assignments: graphical representation of n-
point conformal blocks in the OPE channel from figure 1c with auxiliary momenta and Mandelstam
variables shown.

The dependent Mellin variables take the form

γin = −
n−1∑
j=1

γij (i = 1, 3, 4, 5, 6, . . . , n− 4, n− 3)

γ2n = ∆2(n−1)n,134...(n−2) − γ(n−1)n − γ2(n−1) +
n−2∑
j=3

γ1j +
∑

3≤i<j≤(n−2)
γij

γ(n−2)n = ∆(n−2)n,123...(n−3)(n−1) +
n−3∑
j=1

γj(n−1) +
∑

1≤i<j≤n−3
γij

γ(n−2)(n−1) = −
n∑
j=1

j 6=n−2

γj(n−1)

γ2(n−2) = ∆12...(n−2),(n−1)n + γ(n−1)n −
n−2∑
j=2

γ1j −
n−3∑
j=3

γ2j −
∑

3≤i<j≤n−2
γij . (3.37)

Just like for the comb channel, it is useful to consider the auxiliary momentum space in
the OPE channel. We use the convention for momentum and Mandelstam invariant as-
signments as depicted in figure 4. In this convention, the Mandelstam invariants associated
with the internal legs take the following explicit form in terms of the independent Mellin
variables:

s1 := −(p1 + p2)2 = ∆1 + ∆2 − 2γ12 (3.38)
sn−3 := −(pn−1 + pn)2 = ∆n−1 + ∆n − 2γ(n−1)n

s2j := −(p2j+1 + p2j+2)2 = ∆2j+1 + ∆2j+2 − 2γ(2j+1)(2j+2)

(
1 ≤ j ≤ n

2 − 2
)

s2j−1 := −(p1 + p2 + p3 + · · ·+ p2j)2 =
2j∑
k=1

∆k − 2
∑

1≤r<s≤2j
γrs

(
2 ≤ j ≤ n

2 − 2
)
.

With this in hand, it is straightforward to re-express the Mellin product (2.13) in terms of
conformal cross-ratios (3.35):

∏
1≤i<j≤n

1
(x2
ij)γij

= W 0
n,OPE(xi)

(
n−3∏
i=1

u
si/2
i

) ∏
(rs)∈VOPE

v−γrsrs

 , (3.39)
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where the leg-factor W 0
n,OPE is defined to be

W 0
n,OPE(xi) :=

(
x2

(n−2)n
x2

(n−2)(n−1)x
2
(n−1)n

)∆n−1
2
(

x2
(n−2)(n−1)

x2
(n−2)nx

2
(n−1)n

)∆n
2

×


n
2−1∏
i=1

(
x2

(2i−1)n
x2

(2i−1)(2i)x
2
(2i)n

)∆2i
2
(

x2
(2i)n

x2
(2i−1)(2i)x

2
(2i−1)n

)∆2i−1
2

 , (3.40)

and the (rs) index in the final product in (3.39) runs over the index set

VOPE :=
{
(ab)

∣∣ 1 ≤ a < b ≤ n− 1}r SOPE , (3.41)

where we have defined10

SOPE :=
{

((2j + 1)(2j + 2))
∣∣ 0 ≤ j ≤ n

2 − 2
} ⋃ {

(2(2j))
∣∣ 2 ≤ j ≤ n

2 − 1
}

⋃ {
((n− 2)(n− 1))

}
. (3.42)

It can be easily checked that the subscripts (rs) take |VOPE| =
(n−2

2
)
pairs of values. The

index set VOPE in turn allows us to compute the post-Mellin parameters for the external
conformal dimensions via (2.18) (it may be helpful here to consult figure 7 from section 4.3
for a visual representation of the set VOPE):

`1 =
n−1∑
s=3

j1s `2 =
n
2−1∑
i=1

j2(2i+1) `n = 0

`n−1 =
n−3∑
r=1

jr(n−1) `n−2 = j1(n−2) +
n−4∑
r=3

jr(n−2) `n−3 = j(n−3)(n−1) +
n−4∑
r=1

jr(n−3)

`2i+2 = j1(2i+2) +
n−1∑

s=2i+3
j(2i+2)s +

2i∑
r=3

jr(2i+2)

(
1 ≤ i ≤ n

2 − 3
)

`2i+1 =
n−1∑

s=2i+3
j(2i+1)s +

2i∑
r=1

jr(2i+1)

(
1 ≤ i ≤ n

2 − 3
)
. (3.43)

Now we can use (2.20) and (2.21) to determine the post-Mellin parameters for internal
conformal dimensions iteratively. First, focusing on vertices with two incident external
legs, we can determine the post-Mellin parameters from previously determined data, as

10Explicitly, SOPE =
{

(12), (34), . . . , ((n− 3)(n− 2)), (24), (26), . . . , (2(n− 2)), ((n− 2)(n− 1))
}
.
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shown:

∆δ1

∆1 ∆2

: `δ1
2J= `1 +`2 =

n−1∑
s=3

j1s+
n
2−1∑
i=1

j2(2i+1)

∆δn−3

∆n−1 ∆n

: `δn−3
2J= `n−1 +`n =

n−3∑
r=1

jr(n−1)

∆δn−4

∆n−3∆n−2

: `δn−4
2J= `n−3 +`n−2 = j(n−3)(n−1) +

n−4∑
r=1

jr(n−3) +j1(n−2) +
n−4∑
r=3

jr(n−2)

∆δ2i

∆2i+1∆2i+2

: `δ2i
2J= `2i+1 +`2i+2 =

n−1∑
s=2i+3

j(2i+1)s+
2i∑
r=1

jr(2i+1) +j1(2i+2) +
n−1∑

s=2i+3
j(2i+2)s

+
2i∑
r=3

jr(2i+2) (3.44)

for 1 ≤ i ≤ n
2 − 3. In fact, in all 2J= equalities in (3.44), we can freely drop the 2J as the

post-Mellin parameters on the r.h.s. do not share common Mellin parameters.
The post-Mellin parameters for the remaining internal conformal dimensions satisfy

`δ2i+1
2J= `δ2i−1 + `δ2i , (3.45)

for 1 ≤ i ≤ n
2 − 3, thus they need to be determined iteratively. Working out a few explicit

cases such as `δ3 , `δ5 and `δ7 allows us to conjecture, and subsequently prove by induction
in appendix B.1, the general form

`δ2i+1 =
n−1∑

s=2i+3
j1s +

2i+2∑
r=3

n−1∑
s=2i+3

jrs +
n
2−1∑
z=i+1

j2(2z+1) , (3.46)

for 1 ≤ i ≤ n
2 − 3.

We now have all the ingredients to write down the full conformal block in the OPE
channel. The (n − 3) edge factors are given by (2.4) with the post-Mellin parameters as
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determined above. The (n−2) internal vertices of the binary graph, enumerated as follows

V
(1)

1 :
k1

∆δ1

∆1 ∆2

V (1)
a :

k2a−2

∆δ2a−2

∆2a−1 ∆2a

V
(3)
b :

k2b+1

k2b−1 k2b

∆δ2b+1

∆δ2b−1 ∆δ2b

V
(1)
n/2 :

kn−3

∆δn−3

∆n−1 ∆n

,

(3.47)
for 2 ≤ a ≤ n/2−1 and 1 ≤ b ≤ n/2−2, correspond to the vertex factors (2.6). Explicitly11

V
(1)

1 = (∆12,δ1)−k1(∆δ11,2)
k1+
∑n−1

s=3 j1s
(∆δ12,1)

k1+
∑n

2−1
i=1 j2(2i+1)

× F (1)
A [∆12δ1, − h; {−k1}; {∆δ1 − h+ 1} ; 1]

V (1)
a := (∆(2a−1)(2a),δ2a−2)−k2a−2(∆(2a−1)δ2a−2,2a)k2a−2+

∑n−1
s=2a+1 j(2a−1)s+

∑2a−2
r=1 jr(2a−1)

× (∆(2a)δ2a−2,2a−1)
k2a−2+j1(2a)+

∑n−1
s=2a+1 j(2a)s+

∑2a−2
r=3 jr(2a)

× F (1)
A

[
∆(2a−1)(2a)δ2a−2, − h; {−k2a−2};

{
∆δ2a−2 − h+ 1

}
; 1
]

V
(3)
b := (∆δ2b−1δ2b,δ2b+1)

k(2b−1)(2b),(2b+1)+
∑2b+2

s=2b+1 j1s+
∑2b

r=2 jr(2b+1)+
∑2b

r=3 jr(2b+2)

× (∆δ2b+1δ2b−1,δ2b)k(2b+1)(2b−1),(2b)+
∑n−1

s=2b+3 j1s+
∑2b

r=3

∑n−1
s=2b+3 jrs+

∑n
2−1
z=b+1 j2(2z+1)

× (∆δ2b+1δ2b,δ2b−1)
k(2b+1)(2b),(2b−1)+

∑2b+2
r=2b+1

∑n−1
s=2b+3 jrs

× F (3)
A

[
∆δ2b−1δ2bδ2b+1, − h; {−k2b−1,−k2b,−k2b+1};{
∆δ2b−1 − h+ 1,∆δ2b − h+ 1,∆δ2b+1 − h+ 1

}
; 1, 1, 1

]
V

(1)
n−2 = (∆(n−1)n,δn−3)−kn−3(∆δn−3(n−1),n)

kn−3+
∑n−3

r=1 jr(n−1)
(∆δn−3n,n−1)kn−3

× F (1)
A

[
∆(n−1)nδn−3, − h; {−kn−3};

{
∆δn−3 − h+ 1

}
; 1
]
. (3.48)

where to work out the linear combination of post-Mellin parameters in V (1)
a we used

1
2`(2a−1)(2a),δ2a−2 = 0 1

2`(2a−1)δ2a−2,2a = `2a−1
1
2`(2a)δ2a−2,2a−1 = `2a , (3.49)

for 2 ≤ a ≤ n/2− 1, and in V (3)
b we used

1
2`δ2b−1δ2b,δ2b+1 =

2b+2∑
s=2b+1

j1s +
2b∑
r=2

jr(2b+1) +
2b∑
r=3

jr(2b+2)

1
2`δ2b+1δ2b−1,δ2b =

n−1∑
s=2b+3

j1s +
2b∑
r=3

n−1∑
s=2b+3

jrs +
n
2−1∑
z=b+1

j2(2z+1)

1
2`δ2b+1δ2b,δ2b−1 =

2b+2∑
r=2b+1

n−1∑
s=2b+3

jrs , (3.50)

11To write the vertex factors compactly, we made the additional stipulation that an ill-defined post-Mellin
parameter, j(n−2)(n−1), which appears in the subscript of one of the Pochhammer symbols of V (1)

n/2−1 as a
consequence of our compact rewriting, should be set to zero.
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for 1 ≤ b ≤ n/2− 2, which can both be verified easily. Substituting all the edge and vertex
factors above into (2.2)–(2.3) gives the n-point OPE channel block.

In ref. [61], a power-series expansion was worked out for the special case of the n = 6
block.12 Notably, the same generalized hypergeometric function makes an appearance in
both their paper and the result above. For n = 6, it can be seen from (3.48) that in all
exactly one factor of the Lauricella function F

(3)
A appears in the vertex factors, which is

directly related to the Kampé de Fériet function via (A.4). Precisely the same Kampé de
Fériet function appeared in the result of ref. [61]. The choice of cross-ratios in that paper
differs from the general choice made above in (3.35), so to make a precise comparison, we
can start with the cross-ratios of ref. [61] and apply to them the Feynman rules of section 2.
We confirmed that doing so exactly reproduces the conformal block of ref. [61].

This section generalizes this result to any even n ≥ 6.13 At higher n, precisely (n/2−2)
factors of the Lauricella function of three variables F (3)

A (equivalently (n/2− 2) factors of
the Kampé de Fériet function) will appear in the power series expansion.14

4 From Mellin amplitudes to conformal blocks

In this section we will prove the Feynman prescription for conformal blocks for the examples
considered in the previous section. As outlined in section 1, our starting point will be certain
canonical tree-level Witten diagrams in an effective φ3 scalar field theory in AdS. We will
write down their Mellin amplitudes using the Feynman rules for Mellin amplitude [68–70],
from which we will be able to extract the desired conformal blocks via single-trace projec-
tions. A canonical Witten diagram is a tree-level Witten diagram of the same topology as
the conformal block we are interested in computing, with generic scalar dimensions running
along each edge. Since we will only be interested in the contribution coming from single-
trace exchanges, and not the full amplitude, we would like to project onto the single-trace
part of this Witten diagram. This is convenient to do in large N theories, since the poles
of the meromorphic Mellin amplitude correspond precisely to the exchange of single-trace
primaries. Evaluating the residue at these poles furnishes the required projection.

Concretely, the Mellin amplitude Mn(γij) for an n-point Witten diagram, whose po-
sition space ampitude is denoted An, is defined via a multi-dimensional inverse Mellin
transform,

An = N

 ∏
(rs)∈U

⋃
V

∫
dγrs
2πi

Mn(γij)

 ∏
(ij)∈U

⋃
V
⋃
D

Γ(γij)
(x2
ij)γij

 , (4.1)

where An is an AdS integral over products of bulk-to-bulk and bulk-to-boundary propaga-

12The authors of ref. [61] referred to it as the “snowflake channel,” which is the same as the “OPE
channel” above.

13Recall that the “OPE channel” in this paper is well-defined only for even number of external operators.
14The remaining vertex factors in (3.48) contribute one factor of the Lauricella function F (1)

A each, but
this function can be trivially expressed in terms of Gamma functions or Pochhammer symbols; see (A.2).
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tors which are normalized as follows: in Poincaré coordinates z = (z0, z
i) ∈ R+ × Rd,

Ĝ∆(w, z) =
(
ξ(w, z)

2

)∆

2F1

[∆
2 ,

∆ + 1
2 ; ∆− d

2 + 1; ξ(w, z)2
]

ξ(w, z) = 2w0z0
w2

0 + z2
0 + (wi − zi)2

K̂∆(xi, z) = z∆
0

(z2
0 + (zi − xi)2)∆ . (4.2)

The contours of integration on the r.h.s. of (4.1) run parallel to the imaginary axis for
Re γrs > 0 such that they separate out the semi-infinite sequence of poles running to the left
or to the right. The overall normalization constant N will be fixed shortly. The set U

⋃
V is

the index set of n(n−3)/2 independent Mellin variables γij and the set D is the index set of
the n dependent Mellin variables. We have chosen to decompose the independent variable
index set into a union of two disjoint subsets U and V. The precise prescription for this
choice of sets was explained in section 2.1 and illustrated in section 3. Briefly, this choice will
be dictated by the choice of cross-ratios and the channel (i.e. binary tree topology) for the
precise conformal block we wish to extract from An. To stress this dependence, we will call
the sets Uchan,Vchan andDchan. The choice of cross-ratios and the index sets served as the in-
put in section 3 for writing down the conformal block using the proposed Feynman rules. In
this section, this choice will serve as the input for deriving the block from Mellin amplitudes.

The union of all three sets Uchan,Vchan and Dchan gives the full range of indices (2.16)
associated with the product over Gamma functions and powers of pairwise distances
in (4.1). This product over powers of pairwise distances was called the “Mellin product”;
see (2.13). For a canonical choice of index sets, the Mellin product admits a convenient
rewriting, to be substituted in (4.1), in terms of the chosen cross-ratios as shown in (2.15)
and repeated below: ∏

(ij)∈Uchan
⋃
Vchan

⋃
Dchan

1
(x2
ij)γij

 = W 0
n,chan(xi)

(
n−3∏
i=1

u
si/2
i

) ∏
(rs)∈Vchan

v−γrsrs

 , (4.3)

where si are the Mandelstam invariants associated with the internal legs (and expressible
in terms of Mellin variables drawn from the index sets Uchan and Vchan), while W 0

n,chan(xi)
is the leg-factor which depends solely on external conformal dimensions and position
coordinates. We note that we have indexed the Mandelstam invariants and the cross-ratios
in a manner that allows us to write (4.3) as displayed.

To evaluate the single-trace contribution to An, one needs the Mellin amplitudeM(γij)
for the Witten diagram. For tree-level scalar Witten diagrams, the Mellin amplitude is
readily available via the “Feynman rules for Mellin amplitudes” [68–70]. According to
these rules, in the normalization conventions we are following, the Mellin amplitude of a
scalar n-point tree-level Witten diagram in a φ3 theory is constructed as follows:

• Label the internal lines of the Witten diagram with an index i running from 1 to
n − 3, and to it associate an integer parameter ki (which will double as single-trace
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parameters) and a factor of

EMellin
i := 1

ki!
(∆δi − h+ 1)ki

∆δi
−si
2 + ki

(1 ≤ i ≤ n− 3) , (4.4)

where si is the Mandelstam invariant associated to that leg, and ∆δi is the conformal
dimension of the dual operator running along the line.

• Label each internal vertex of the diagram with an index j running from 1 to n − 2
and assign a factor of

V Mellin
j := 1

2Γ(∆abc,−h) (4.5)

×F (3)
A [∆abc,−h;{−ka,−kb,−kc};{∆a−h+1,∆b−h+1,∆c−h+1} ;1,1,1] ,

where ∆a,∆b and ∆c are the conformal dimensions incident at the vertex, and ka, kb
and kc are the respective integer parameters (or single-trace parameters) associated
with the internal exchanged dimensions. Set the integer parameter to zero if the
conformal dimension associated to it is an external dimension.

Then for the choice of normalization constant,

N := π(n−2)h
(
n−3∏
i=1

1
Γ(∆δi)

)(
n∏
i=1

1
Γ(∆i)

)
, (4.6)

where ∆i are the external conformal dimensions and ∆δi are the internal exchanged di-
mensions, the Mellin amplitude is given by

Mn(γij) =

n−3∏
i=1

∞∑
ki=0

(n−3∏
i=1

EMellin
i

)(
n−2∏
i=1

V Mellin
i

)
. (4.7)

With the Mellin amplitude in hand, we can proceed to evaluate the single-trace pro-
jection of the position space amplitude An,, by performing the contour integrals in (4.1).
The single-trace contribution comes from the poles of the Mellin amplitude. From the
point of view of the Feynman prescription for Mellin amplitudes, these arise from simple
poles occurring in the denominator of the Mellin amplitude edge factors (4.4). In terms of
Mandelstam invariants, these poles occur at

si = ∆δi + 2ki (1 ≤ i ≤ n− 3) , (4.8)

which correspond to putting the internal legs on-shell in the auxiliary momentum space.
These poles should be viewed as lying in the complex γrs planes for (rs) ∈ Uchan, and our
task is to evaluate the residue at these poles.

Before we do so, we point out that precisely the same Lauricella functions as those
in (4.5) appeared in (2.6) in the Feynman rules for conformal blocks. This is expected for
the simple reason that the vertex factors (4.5) are independent of Mellin variables γij , so
they remain unaffected through the following computation of Mellin integrals.
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Turning to evaluating the residue at the “single-trace poles” (4.8) in the “Uchan-plane,”
we obtain the following single-trace projection of the AdS diagram, denoted As.t.

n ,

As.t.
n := NW 0

n,chan(xi)

n−3∏
i=1

∞∑
ki=0


n−3∏
i=1

u
∆δi

2 +ki
i

ki!
(∆δi − h+ 1)ki

(n−2∏
i=1

V Mellin
i

)
(4.9)

×

 ∏
(rs)∈Vchan

∫
dγrs
2πi

 ∏
(ij)∈Vchan

Γ(γij)


 ∏

(ij)∈Uchan
⋃
Dchan

Γ(γij)
∣∣∣
s.t.


 ∏

(rs)∈Vchan

v−γrsrs

,
where Γ(γij)

∣∣∣
s.t.

stands for Gamma functions with arguments from the index sets Uchan

and Dchan evaluated at the poles (4.8).15 Equation (4.9) is proportional to the desired
conformal block. More precisely,

Wn,chan(xi)=
NW 0

n,chan(xi)(∏n−2
i=1 fi

)
n−3∏
i=1

∞∑
ki=0


n−3∏
i=1

u
∆δi

2 +ki
i

ki!
(∆δi−h+1)ki

(n−2∏
i=1

V Mellin
i

)
(4.10)

×

 ∏
(rs)∈Vchan

∫
dγrs
2πi

 ∏
(ij)∈Vchan

Γ(γij)


 ∏

(ij)∈Uchan
⋃
Dchan

Γ(γij)
∣∣∣
s.t.


 ∏

(rs)∈Vchan

v−γrsrs


furnishes a mixed series-integral representation of the desired conformal block, where fi =
C∆ai∆bi

∆ci
are the known (n−2) MFT OPE coefficients, one for each internal vertex of the

binary unrooted tree representing the AdS diagram with scalars of conformal dimensions
∆ai ,∆bi and ∆ci on the incident edges.

To obtain an integral-free representation of the block, one must evaluate the residual(n−2
2
)
-dimensional contour integrals in the second line of (4.10). This will introduce

(n−2
2
)

new summations. Evaluating these integrals in general for an arbitrary n-point conformal
block in an arbitrary channel is not clear to us. Instead, in the remainder of this section,
we will focus on evaluating these integrals explicitly for the three classes of examples from
section 3. We will reproduce the blocks as prescribed by the Feynman rules of section 2,
which serves as a highly non-trivial check of the proposed Feynman rules.

Before specializing to specific examples, we can do further general manipulations. First,
isolating the integral in the second line of (4.10),

I :=

 ∏
(rs)∈Vchan

∫
dγrs
2πi

 ∏
(rs)∈Vchan

Γ(γrs)


 ∏

(ij)∈Uchan
⋃
Dchan

Γ(γij)
∣∣∣
s.t.


 ∏

(rs)∈Vchan

v−γrsrs

,
(4.11)

15We note that the dependent Mellin variables γij with (ij) ∈ Dchan in the Gamma functions are assumed
to have already been expressed in terms of the independent Mellin variables from the sets Uchan and Vchan.
Still, for brevity, we prefer to use the notation in the second line of (4.9). We also emphasize the obvious
fact that the Gamma functions with arguments from the index set Vchan remain unaffected after taking the
single-trace residues.
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we rewrite each factor of v−γrsrs above by introducing an additional contour integral, as
follows.16

v−γrsrs = 1
Γ(γrs)

∫
dγ̃rs
2πi Γ(−γ̃rs)Γ(γ̃rs + γrs)(vrs − 1)γ̃rs , (4.13)

where the γ̃rs contour runs vertically such that it separates the semi-infinite sequence of
poles running to the left and to right of origin. Then we get

I =

 ∏
(rs)∈Vchan

∫
dγ̃rs
2πi

∫
dγrs
2πi Γ(−γ̃rs)Γ(γ̃rs+γrs)(vrs−1)γ̃rs


 ∏

(ij)∈DOPE
⋃
UOPE

Γ(γij)
∣∣∣
s.t.

,
(4.14)

where we switched the order of integrals. The rewriting in (4.13) makes it easier to obtain
a convergent series expansion of the conformal block in powers of (1 − vrs) as desired
(see (2.2)–(2.3)). The overall strategy now will be to repeatedly use the first Barnes
lemma [74],∫ +i∞

−i∞

ds

2πiΓ(a1 +s)Γ(a2 +s)Γ(b1−s)Γ(b2−s) = Γ(a1 +b1)Γ(a1 +b2)Γ(a2 +b1)Γ(a2 +b2)
Γ(a1 +a2 +b1 +b2) ,

(4.15)
to evaluate all γrs integrals, which it turns out will leave us with trivial-to-evaluate γ̃rs
contour integrals.

4.1 Seven-point mixed channel

To obtain the 7-point “mixed-channel” conformal block (topology shown in figure 1b), we
start with the following “canonical” tree-level AdS diagram:

A7,mix :=
∆1

∆2

∆3 ∆4
∆5 ∆6

∆7∆δ1 ∆δ2

∆δ3

∆δ4

. (4.16)

Here we have labeled the external scalar operators with their conformal dimensions but
suppressed the insertion coordinates (e.g. ∆1 should be understood as a scalar operator
of conformal dimension ∆1 inserted at boundary coordinate x1). By design, the operator
insertions and exchanged operator labels in the canonical Witten diagram above match with

16Use the Mellin-Barnes representation,

1
(x+ y)a = 1

Γ(a)

∫
ds

2πiΓ(−s)Γ(s+ a)xsy−a−s (4.12)

with x = vrs − 1, y = 1 and a = γrs. The contour of integration is chosen such that it separates the poles
of Γ(s+ a) from those of Γ(−s); see e.g. the discussion around [53, eq. (B.11)].
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12 13 14 15 16 17
23 24 25 26 27

34 35 36 37
U 45 46 47
V 56 57
D 67

Figure 5. Color-coded matrix displaying the choice of Mellin variable index subsets U7,mix,V7,mix
and D7,mix.

the corresponding binary graph of the 7-point conformal block shown in figure 1b. Finally,
the green disks represent cubic interaction vertices to be integrated over all of AdSd+1.

As previously noted, to express the conformal block, one must start by making a
choice of independent conformal cross-ratios. To reproduce the block obtained via the
Feynman rules of section 2, we will utilize the same choice of cross-ratios as in section 3.1,
which comes with associated index sets for the dependent and (a subset of) independent
Mellin variables, D7,mix and V7,mix respectively (see (3.3) and (3.7)). Using (2.16) we can
determine the remaining independent Mellin variables, associated with the index set U7,mix,

U7,mix = {(12), (23), (45), (67)} . (4.17)

With the help of a color-coded upper-triangular matrix, we can present these sets visually
as shown in figure 5. With these choices in place, the Mellin product admits a rewriting in
terms of the cross-ratios as shown in (3.5), which we substitute into (4.1).

The other ingredient which goes into (4.1) is the Mellin amplitude M7(γij) for the
seven-point AdS diagram above. According to the Feynman rules for Mellin amplitudes,
the Mellin amplitude in this case is given by (4.7) for n = 7 with the edge factors given
in (4.4) and the vertex factors taking the explicit form:

V Mellin
1 = 1

2Γ(∆12δ1,−h)F (1)
A [∆12δ1,−h;{−k1};{∆δ1−h+1} ;1]

V Mellin
2 = 1

2Γ(∆3δ1δ2,−h)F (2)
A [∆3δ1δ2,−h;{−k1,−k2};{∆δ1−h+1,∆δ2−h+1} ;1,1]

V Mellin
3 = 1

2Γ(∆δ2δ3δ4,−h)

×F (3)
A [∆δ2δ3δ4−h;{−k2,−k3,−k4};{∆δ2−h+1,∆δ3−h+1,∆δ4−h+1} ;1,1,1]

V Mellin
4 = 1

2Γ(∆45δ3,−h)F (1)
A [∆45δ3,−h;{−k3};{∆δ3−h+1} ;1]

V Mellin
5 = 1

2Γ(∆67δ4,−h)F (1)
A [∆67δ4,−h;{−k4};{∆δ4−h+1} ;1] . (4.18)

The single-trace projection of the Witten diagram (4.16), described in general terms
in the discussion preceding this example, then leads to (4.9) which is proportional to the
desired conformal block. This projection involves evaluating the residue at the “single-trace
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poles,” occuring at

γ12 = ∆12,δ1 − k1 γ23 = ∆3δ1,δ2 + k1,2 − γ13 γ45 = ∆45,δ3 − k3 γ67 = ∆67,δ4 − k4.

(4.19)
The block itself is given by (4.10) by projecting out the theory dependent OPE coefficients:

f1 = C∆1∆2∆δ1
f2 = C∆3∆δ1∆δ2

f3 = C∆δ2∆δ3∆δ4
f4 = C∆4∆5∆δ3

f5 = C∆6∆7∆δ4
.

(4.20)
The MFT OPE coefficients above take the well known form,

C∆a∆b∆c = πh

2 Γ (∆abc, − h) Γ(∆ab,c)Γ(∆bc,a)Γ(∆ca,b)
Γ(∆a)Γ(∆b)Γ(∆c)

. (4.21)

The precise form of these OPE coefficients will be utilized at the end of the computation.
The non-trivial computation which needs to be done is the contour integral on the

second line of (4.10), or equivalently the integral (4.14). The arguments of Gamma func-
tions in the product

(∏
(ij)∈D7,mixU7,mix Γ(γij)

∣∣∣
s.t.

)
are expressed entirely in terms of Mellin

variables from the index set V7,mix. Four of them were shown in (4.19) which correspond to
the index set U7,mix; the other seven, corresponding to the index set D7,mix take the form

γ17 = ∆1δ1,2 + k1 − γ13 − γ14 − γ15 − γ16

γ25 = ∆δ2δ3,δ4 + k23,4 − γ14 − γ15 − γ24 − γ34 − γ35

γ27 = ∆2δ4,13δ3 + k4,3 + γ13 + γ14 + γ15 − γ26 + γ34 + γ35

γ37 = ∆3δ2,δ1 + k2,1 − γ34 − γ35 − γ36

γ47 = ∆4δ3,5 + k3 − γ14 − γ24 − γ34 − γ46

γ56 = ∆6δ4,7 + k4 − γ16 − γ26 − γ36 − γ46

γ57 = ∆57,46δ2 − k2 + γ14 + γ16 + γ24 + γ26 + γ34 + γ36 + γ46 . (4.22)

These were obtained by substituting (4.19) into (3.4).
Explicitly, I in (4.14) then takes the form

I =

 ∏
(rs)∈V7,mix

∫
dγ̃rs
2πi

∫
dγrs
2πi Γ(−γ̃rs)Γ(γ̃rs + γrs)(vrs − 1)γ̃rs

Γ (∆12,δ1 − k1)

× Γ (∆3δ1,δ2 + k1,2 − γ13) Γ (∆45,δ3 − k3) Γ (∆67,δ4 − k4)
× Γ (∆1δ1,2 + k1 − γ13 − γ14 − γ15 − γ16)
× Γ (∆δ2δ3,δ4 + k23,4 − γ14 − γ15 − γ24 − γ34 − γ35)
× Γ (∆2δ4,13δ3 + k4,3 + γ13 + γ14 + γ15 − γ26 + γ34 + γ35)
× Γ (∆3δ2,δ1 + k2,1 − γ34 − γ35 − γ36)
× Γ (∆4δ3,5 + k3 − γ14 − γ24 − γ34 − γ46)
× Γ (∆6δ4,7 + k4 − γ16 − γ26 − γ36 − γ46)
× Γ (∆57,46δ2 − k2 + γ14 + γ16 + γ24 + γ26 + γ34 + γ36 + γ46) . (4.23)
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We first evaluate the 10-dimensional contour integral over the γrs variables for (rs) ∈ V7,mix.
We perform the contour integrations one at a time, in the following order:

γ16, γ36, γ26, γ46, γ35, γ15, γ24, γ34, γ13, γ14.

With this choice of ordering, we are able to make direct use of the first Barnes lemma (4.15)
at every step.17 To keep the manuscript to a reasonable length, we refrain from including
the lengthy but straightforward computational details, and merely present the final result
of this 10-fold contour integral:

I =

 ∏
(rs)∈V7,mix

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs


×
(
Γ(∆12,δ1 − k1)Γ(γ̃24 + γ̃26 + ∆2δ1,1 + k1)Γ(γ̃13 + γ̃14 + γ̃15 + γ̃16 + ∆1δ1,2 + k1)

)
×
(
Γ(γ̃14 + γ̃15 + γ̃16 + γ̃24 + γ̃26 + ∆δ1δ2,3 + k12,)Γ(γ̃13 + ∆3δ1,δ2 + k1,2)

× Γ(γ̃34 + γ̃35 + γ̃36 + ∆3δ2,δ1 + k2,1)
)

×
(
Γ(γ̃14 + γ̃15 + γ̃24 + γ̃34 + γ̃35 + ∆δ2δ3,δ4 + k23,4)Γ(γ̃46 + ∆δ3δ4,δ2 + k34,2)

× Γ(γ̃16 + γ̃26 + γ̃36 + ∆δ2δ4,δ3 + k24,3)
)

×
(
Γ(∆45,δ3 − k3)Γ(γ̃14 + γ̃24 + γ̃34 + γ̃46 + ∆4δ3,5 + k3)Γ(γ̃15 + γ̃35 + ∆5δ3,4 + k3)

)
×
(
Γ(∆67,δ4 − k4)Γ(∆7δ4,6 + k4)Γ(γ̃16 + γ̃26 + γ̃36 + γ̃46 + ∆6δ4,7 + k4)

)
× 1

Γ(γ̃13 + γ̃14 + γ̃15 + γ̃16 + γ̃24 + γ̃26 + ∆δ1 + 2k1)

× 1
Γ(γ̃14 + γ̃15 + γ̃16 + γ̃24 + γ̃26 + γ̃34 + γ̃35 + γ̃36 + ∆δ2 + 2k2)

× 1
Γ(γ̃14 + γ̃15 + γ̃24 + γ̃34 + γ̃35 + γ̃46 + ∆δ3 + 2k3)

× 1
Γ(γ̃16 + γ̃26 + γ̃36 + γ̃46 + ∆δ4 + 2k4) . (4.24)

Next, we evaluate the remaining integrals via the Cauchy residue theorem. We close all γ̃rs
contours to the right to be able to drop the contribution from the arc at infinity, picking the
lone semi-infinite sequence of poles starting at the origin, at γ̃rs = jrs for jrs ∈ Z≥0 for each
(rs) ∈ V7,mix.18 These poles come from the poles of Γ(−γ̃rs) in the first line of (4.24), and

17Notably, after the γ15 integral, we need to do a linear change of variables γ14 → γ14 − γ24 − γ34.
18We recall that the contour for the γ̃rs integrals was chosen such that it separates the semi-infinite series

of poles running to the left from those running to the right; see (4.12).
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the residues, which are elementary to compute, introduce
(n−2

2
)
additional infinite sums:

I =

 ∏
(rs)∈V7,mix

∞∑
jrs=0

(1− vrs)jrs
jrs!


×
(
Γ(∆12,δ1 − k1)Γ(j24 + j26 + ∆2δ1,1 + k1)Γ(j13 + j14 + j15 + j16 + ∆1δ1,2 + k1)

)
×
(
Γ(j14 + j15 + j16 + j24 + j26 + ∆δ1δ2,3 + k12,)Γ(j13 + ∆3δ1,δ2 + k1,2)

× Γ(j34 + j35 + j36 + ∆3δ2,δ1 + k2,1)
)

×
(
Γ(j14 + j15 + j24 + j34 + j35 + ∆δ2δ3,δ4 + k23,4)Γ(j46 + ∆δ3δ4,δ2 + k34,2)

× Γ(j16 + j26 + j36 + ∆δ2δ4,δ3 + k24,3)
)

×
(
Γ(∆45,δ3 − k3)Γ(j14 + j24 + j34 + γ̃46 + ∆4δ3,5 + k3)Γ(γ̃15 + γ̃35 + ∆5δ3,4 + k3)

)
×
(
Γ(∆67,δ4 − k4)Γ(∆7δ4,6 + k4)Γ(j16 + j26 + j36 + j46 + ∆6δ4,7 + k4)

)
× 1

Γ(j13 + j14 + j15 + j16 + j24 + j26 + ∆δ1 + 2k1)

× 1
Γ(j14 + j15 + j16 + j24 + j26 + j34 + j35 + j36 + ∆δ2 + 2k2)

× 1
Γ(j14 + j15 + j24 + j34 + j35 + j46 + ∆δ3 + 2k3)

× 1
Γ(j16 + j26 + j36 + j46 + ∆δ4 + 2k4) . (4.25)

Now we are ready to put everything together into (4.10) to obtain the conformal block
W7,mix. There will be a host of simplifying cancellations between factors of Gamma func-
tions. For example, the factors of one-half times a Gamma function in the five Mellin
vertex factors (4.18) cancel against a factor of one-half times a Gamma function appear-
ing in each of the five OPE coefficients in (4.20) (after employing the explicit form of the
OPE coefficients (4.21)). The remaining triplet of factors of Gamma functions of the form
Γ(∆ab,c)Γ(∆bc,a)Γ(∆ca,b), in the numerators of each of the five OPE coefficients combine
with the five groups of a triplet of Gamma functions in the numerator of (4.25) separated
by parentheses, of the form Γ(∆ab,c+p)Γ(∆bc,a+q)Γ(∆ca,b+r), to give rise to five groups of
triplets of Pochhammer symbols of the form (∆ab,c)p(∆bc,a)q(∆ca,b)r. These combine with
the Lauricella functions in the Mellin vertex factors to give what we call the “conformal
block vertex factors,” one associated to each vertex of the canonical AdS diagram. The
Gamma functions in the denominator of the five OPE coefficients with external dimen-
sions in the argument cancel the same factors appearing in the normalization constant N
in (4.6). For Gamma functions in the denominator of the OPE coefficients with internal
dimensions in their arguments, there are precisely two copies for each internal dimension,
while there is only one such factor for each internal dimension in the normalization constant
N . Thus after cancellations, we are left with a product in the numerator of W7,mix over
factors of Gamma function, one each for every internal dimension. These combine with
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the Gamma functions in the denominator of (4.25) of the form Γ(∆δi + ti) to give rise to
four Pochhammer symbols, (∆δi)ti in the denominator. This together with the Pochhamer
symbols originally appearing in (4.10) combine to give what we call the “conformal block
edge factor,” one for each internal leg of the canonical AdS diagram. Finally, the factor of
π(n−2)h in N for n = 7 cancels with (n − 2) factors of πh distributed over (n − 2) OPE
coefficients (4.20). Thus all explicit factors of π cancel.

This leads to the following final expression for the conformal block:

W7,mix(xi)=W 0
7,mix(xi)

( 4∏
i=1

∞∑
ki=0

) 4∏
i=1

u
∆δi

2 +ki
i

ki!

 ∏
(rs)∈V7,mix

∞∑
jrs=0

(1−vrs)jrs
jrs!

( 4∏
i=1

Ei

)( 5∏
i=1

Vi

)
,

(4.26)
where Ei are precisely the conformal block edge factors (3.14) and Vi are the conformal
block vertex factors (3.16) prescribed by the Feynman rules, thus confirming the Feynman
rules in this particular example.

4.2 Comb channel

To derive the comb channel conformal block obtained in section 3.2 via Feynman rules, we
start with the Mellin amplitude of the following tree-level n-point AdS diagram (n ≥ 4):

An,comb :=
∆1

∆2

∆3 ∆n−2

∆n−1

∆n∆δ1 ∆δn−3

(4.27)

where the external scalar operators of dimensions ∆i are inserted at coordinates xi. In
total (n − 3) single-particle bulk fields are exchanged in the interior, which are dual to
single-trace operators with conformal dimensions ∆δi for 1 ≤ i ≤ n − 3. The ellipses in
the middle indicate a repeating pattern. This is the canonical AdS diagram for the comb
channel block shown in figure 1a.

To reproduce the block from section 3.2, we will utilize the same input data as before.
This data comprises of a set of n(n−3)/2 independent cross-ratios (3.17). Correspondingly,
we choose the dependent Mellin index set Dcomb to be (3.18) which allows us to rewrite the
Mellin product (4.1) in terms of the cross-ratios and the Mandelstam invariants for internal
legs (3.22), as shown in (3.20). The choice of cross-ratios also determines the index set
Vcomb (3.24), which represents a subset of independent Mellin variables. With Dcomb and
Vcomb in hand, one can use (2.16) to obtain the index set associated with the remaining
(n− 3) independent Mellin parameters,

Ucomb :=
{
(1j)

∣∣ 2 ≤ j ≤ n− 2
}
. (4.28)
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12 13 14 15 16 . . . 1(n− 3) 1(n− 2) 1(n− 1) 1n
23 24 25 26 . . . 2(n− 3) 2(n− 2) 2(n− 1) 2n

34 35 36 . . . 3(n− 3) 3(n− 2) 3(n− 1) 3n
. . . ...

...
. . . ...

...
. . . ...

...
(n− 4)(n− 3) (n− 4)(n− 2) (n− 4)(n− 1) (n− 4)n

U (n− 3)(n− 2) (n− 3)(n− 1) (n− 3)n
V (n− 2)(n− 1) (n− 2)n
D (n− 1)n

Figure 6. Color-coded matrix displaying the canonical choice of Mellin variable index subsets
Ucomb,Vcomb and Dcomb.

For reference, we have collected all comb channel index sets together into a color-coded
upper-triangular matrix in figure 6.

Using the Feynman rules for Mellin amplitudes, it is trivial to write down Mellin
amplitude for the diagram (4.27),

Mn,comb(γij) =

n−3∏
i=1

∞∑
ki=0

(n−3∏
i=1

EMellin
i

)(
V Mellin

1

(
n−4∏
i=1

V Mellin
i+1

)
V Mellin
n−2

)
, (4.29)

where each of the (n − 3) edge factors is given in terms of the Mandelstam invariants si
and the associated single-trace parameters ki by (4.4), and the (n−2) vertex factors follow
directly from (4.5):

V Mellin
1 = 1

2Γ(∆12δ1, − h)F (1)
A [∆12δ1, − h; {−k1}; {∆δ1 − h+ 1} ; 1] (4.30)

V Mellin
i+1 = 1

2Γ(∆δiδi+1(i+2), − h)

× F (2)
A

[
∆δiδi+1(i+2), − h; {−ki,−ki+1};

{
∆δi − h+ 1,∆δi+1 − h+ 1

}
; 1, 1

]
V Mellin
n−2 = 1

2Γ(∆(n−1)nδn−3, − h)F (1)
A

[
∆(n−1)nδn−3, − h; {−kn−3};

{
∆δn−3 − h+ 1

}
; 1
]
,

for 1 ≤ i ≤ n− 4.
One can now obtain the single-trace projection of the AdS diagram (4.27) by evaluating

the residue at the “single-trace poles” in the “Ucomb-plane.” The poles are situated at (4.8),
which in the Ucomb-plane corresponds to

γ1j = ∆jδj−2,δj−1 + kj−2,j−1 −
j−1∑
i=2

γij (2 ≤ j ≤ n− 2) , (4.31)

which we obtained by inverting (3.22), where we made the identifications ∆δ0 := ∆1 and
k0 := 0 to write (4.31) compactly.
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The residue at the poles (4.31) is given by (4.9) where the dependent variables inside
Gamma functions, written in (3.19), transform to

γ1(n−1) = ∆δn−3(n−1),n + kn−3 −
n−2∑
j=2

γj(n−1)

γ1n = ∆1n,23...(n−1) +
n−2∑
j=2

γj(n−1) +
∑

2≤i<j≤n−2
γij

γin = ∆iδi−1,δi−2 + ki−1,i−2 −
n−1∑
j=i+1

γij (2 ≤ i ≤ n− 2)

γ(n−1)n = ∆(n−1)n,δn−3 − kn−3 . (4.32)

The conformal block (4.10) is then obtained by projecting out the following OPE
coefficients:

f1 = C∆1∆2∆δ1
fi+1 = C∆δi

∆δi+1∆i+2 fn−2 = C∆n−1∆n∆δn−3
, (4.33)

for 1 ≤ i ≤ n− 4, whose general form was given in (4.21).
We will now evaluate the second line of (4.10), or more precisely, the equivalent form

in (4.14). Substituting (4.31) and (4.32) in (4.14), we get

I =

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi

∫
dγrs
2πi

 ∏
2≤r<s≤n−1

Γ(−γ̃rs)Γ(γ̃rs + γrs)(vrs − 1)γ̃rs


× Γ

∆n1,23...(n−1) +
∑

2≤r<s≤n−1
γrs

 (4.34)

×

n−1∏
i=2

Γ

∆iδi−2,δi−1 + ki−2,i−1 −
i−1∑
j=2

γji

Γ

∆iδi−1,δi−2 + ki−1,i−2 −
n−1∑
j=i+1

γij

 ,
where we employed the additional identifications ∆δn−2 := ∆n and kn−2 := 0 to write I
compactly.

To evaluate the
(n−2

2
)
-dimensional contour integral over γrs variables, we will employ

a multi-dimensional variant of the first Barnes lemma

(
K∏
r=1

∫
dsr
2πi Γ(Ar + sr)Γ(Br − sr)

)
Γ
(
C +

K∑
r=1

sr

)
Γ
(
D −

K∑
r=1

sr

)
(4.35)

=

(∏K
r=1 Γ(Ar +Br)

)
Γ (C +D) Γ

(∑K
r=1Ar +D

)
Γ
(∑K

r=1Br + C
)

Γ
(∑K

r=1(Ar +Br) + C +D
) ,

which can be easily proven by a repeated application of the first Barnes lemma (4.15).
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Looking forward, our strategy will be to evaluate the contour integrals in the order
shown below (see figure 6 for color key):

(4.36)

Here, integrals over elements of the index Vcomb (shown in blue) are indicated with black
dots. Integrals over all black dots connected via links are performed simultaneously by an
application of (4.35), while the dotted arrow shows the order in which the contour integrals
over the disconnected chains of dots are performed.

Concretely, for 2 ≤ m ≤ n− 1, define

Jm :=

 ∏
m≤r<s≤n−1

Γ(γ̃rs + γrs)

Γ

∆nδm−2,m(m+1)...(n−1) + km−2 +
∑

m≤a<b≤n−1
γab


×

n−1∏
i=m

Γ

m−1∑
j=2

γ̃ji + ∆iδi−2,δi−1 + ki−2,i−1 −
i−1∑
j=m

γji

 (4.37)

×

n−1∏
i=m

Γ

∆iδi−1,δi−2 + ki−1,i−2 −
n−1∑
j=i+1

γij

 .
Then for 2 ≤ m ≤ n− 2 integrating Jm over the elements in the m-th row of the index set
Vcomb in (4.36) gives  ∏

m+1≤j≤n−1

∫
dγmj
2πi

 Jm = λmJm+1 , (4.38)

where

λm :=
Γ
(
∆mδm−2,δm−1

)
Γ
(
∆mδm−1,δm−2

)
Γ
(
∆δm−2δm−1,m

)
Γ
(
∆δm−1

) 1(
∆δm−1

)
2km−1+

∑m

i=2

∑n−1
j=m+1 γ̃ij

×
(
∆mδm−2,δm−1

)
km−2,m−1+

∑m−1
i=2 γ̃im

(
∆mδm−1,δm−2

)
km−1,m−2+

∑n−1
j=m+1 γ̃mj

×
(
∆δm−2δm−1,m

)
k(m−2)(m−1),+

∑m−1
i=2

∑n−1
j=m+1 γ̃ij

, (4.39)
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which is proven in appendix B.2. Moreover, at m = n−1, Jm reduces to a γij-independent
expression,

Jn−1 = Γ
(
∆(n−1)δn−3,n

)
Γ
(
∆(n−1)n,δn−3

)
Γ
(
∆nδn−3,(n−1)

)
(4.40)

×
(
∆(n−1)δn−3,n

)
kn−3+

∑n−2
i=2 γ̃i(n−1)

(
∆(n−1)n,δn−3

)
−kn−3

(
∆nδn−3,(n−1)

)
kn−3

.

The careful reader may notice that both (4.39) and (4.40) can be written more compactly
purely in terms of Gamma functions. We have chosen to express them in terms of
Pochhammer symbols to facilitate matching with the Feynman rules of section 2 at the
end of this section.

In terms of Jm, the original contour integral (4.34) can be written as

I =

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

 ∏
2≤i<j≤n−1

∫
dγij
2πi

 J2

=

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

λ2

 ∏
3≤i<j≤n−1

∫
dγij
2πi

 J3

=

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

λ2λ3

 ∏
4≤i<j≤n−1

∫
dγij
2πi

 J4

=

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

λ2λ3 . . . λn−3

 ∏
n−2≤i<j≤n−1

∫
dγij
2πi

 Jn−2

=

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

(n−2∏
m=2

λm

)
Jn−1, (4.41)

where in the second step onward, we made repeated use of (4.38) to perform all γrs integrals
in the manner indicated in (4.36).

Now we turn to the γ̃rs integrals. For carrying out the contour integrals, it is convenient
to rewrite I in terms of Gamma functions as

I=

 ∏
(rs)∈Vcomb

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)γ̃rs

 (4.42)

×
(
n−2∏
m=2

Γ

∆δm−2δm−1,m+k(m−2)(m−1),+
m−1∑
i=2

n−1∑
j=m+1

γ̃ij


×

Γ(∆mδm−2,δm−1 +km−2,m−1+
∑m−1
i=2 γ̃im)Γ(∆mδm−1,δm−2 +km−1,m−2+

∑n−1
j=m+1 γ̃mj)

Γ(∆δm−1 +2km−1+
∑m
i=2
∑n−1
j=m+1 γ̃ij)

)

×Γ
(

∆(n−1)δn−3,n+kn−3+
n−2∑
i=2

γ̃i(n−1)

)
Γ(∆(n−1)n,δn−3−kn−3)Γ(∆nδn−3,(n−1)+kn−3).

Examining the pole structure of the integrand (4.42), we notice that just like in the example
of the seven-point block in the previous subsection, we can evaluate the remaining γ̃rs
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contour integrals by closing the contours to the right. In the process, each integral picks
up a semi-infinite sequence of poles originating from Γ(−γ̃rs) at γ̃rs = jrs for non-negative
integers jrs, for each (rs) ∈ Vcomb. All other poles lie to the left of the contour and the
contribution from the arc at infinity vanishes. This immediately leads to

I=

 ∏
(rs)∈VComb

∞∑
jrs=0

(1−vrs)jrs
jrs!

( n−2∏
m=2

Γ
(

∆δm−2δm−1,m+k(m−2)(m−1),+
m−1∑
r=2

n−1∑
s=m+1

jrs

)

×
Γ(∆mδm−2,δm−1 +km−2,m−1+

∑m−1
r=2 jrm)Γ(∆mδm−1,δm−2 +km−1,m−2+

∑n−1
s=m+1jms)

Γ(∆δm−1 +2km−1+
∑m
r=2
∑n−1
s=m+1jrs)

)

×Γ
(
∆(n−1)δn−3,n+kn−3+

n−2∑
r=2

jr(n−1)

)
Γ(∆(n−1)n,δn−3−kn−3)Γ(∆nδn−3,(n−1)+kn−3). (4.43)

It is now suggestive to re-express I in terms of Pochhammer symbols, as shown here:

I =

 ∏
(rs)∈VComb

∞∑
jrs=0

(1−vrs)jrs
jrs!

( n−2∏
m=2

(∆δm−2δm−1,m)
k(m−2)(m−1),+

∑m−1
r=2

∑n−1
s=m+1 jrs

×
(∆mδm−2,δm−1)

km−2,m−1+
∑m−1

r=2 jrm
(∆mδm−1,δm−2)

km−1,m−2+
∑n−1

s=m+1 jms

(∆δm−1)2km−1+
∑m

r=2

∑n−1
s=m+1 jrs

)

×(∆(n−1)δn−3,n)
kn−3+

∑n−2
r=2 jr(n−1)

(∆(n−1)n,δn−3)−kn−3(∆nδn−3,n−1)kn−3

×
(
n−2∏
m=2

Γ(∆δm−2δm−1,m)Γ(∆mδm−2,δm−1)Γ(∆mδm−1,δm−2)
Γ(∆δm−1)

)
×Γ(∆(n−1)δn−3,n)Γ(∆(n−1)n,δn−3)Γ(∆nδn−3,n−1) . (4.44)

Putting this I back into the expression for the full conformal block (4.10), it is clear that,
just like for the seven-point example above, all explicitly shown (n− 2) triplets of Gamma
functions in the numerator of (4.44) cancel against the same triplets appearing in the (n−2)
OPE coefficients (4.33). The remaining factor of the Gamma function in the numerator
of each OPE coefficient cancels against the Gamma function in each of the Mellin vertex
factors (4.30). The explicit factor of Gamma function in the denominator in (4.44) cancels
against one of two such identical factors in the normalization constant N written in (4.6),
while the factors of Gamma functions in the denominators of the OPE coefficients cancel
out all factors of Gamma functions in N which carry external conformal dimensions in
their argument. All explicit factors of π cancel out too, leaving only the Pochhammer
symbols in (4.44), and powers of cross-ratios (as well as the expected factors of factorials).

It is now straightforward to check that the (n − 2) triplets of Pochhammer symbols
in (4.44) reproduce precisely the (n− 2) triplets of Pochhammer symbols appearing in the
vertex factors of the Feynman rules (3.34). Likewise the (n− 2) factors of Lauricella func-
tions in the Mellin space vertex factors (4.30) appearing inside (4.10) find precise term by
term agreement with the Lauricella functions in the conformal block vertex factors (3.34).
The remaining (n−3) ratios of Pochhamer symbols, of the form (∆δi−h+1)ki/(∆δi)2ki+`i
for an appropriately defined `δi agree perfectly with the edge factors in the conformal
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block Feynman rules (2.4), where `δi are identified as the post-Mellin parameters (3.30)
associated with the internal legs labeled with conformal dimensions ∆δi .

Thus, starting from first principles (viz. using the Feynman rules for Mellin ampli-
tudes), we have reproduced the conformal block of section 3.2 which was obtained from an
application of the proposed Feynman rules (and also previously obtained in ref. [58] using
geodesic bulk diagram techniques).

4.3 OPE channel

To reproduce the OPE channel conformal block obtained previously via Feynman rules, we
start with the following canonical AdS diagram:

An,OPE :=

∆1

∆2

∆4∆3
∆n−3 ∆n−2

∆n−1

∆n
∆δ1 ∆δn−3

∆δ2 ∆δn−4
, (4.45)

where the ellipses represent a repeating pattern of “upright Y-shaped” interacting legs
attached to the central horizontal line. The vertical internal exchanges are labeled with
even-indexed scaling dimensions ∆δ2 ,∆δ4 ,∆δ6 , . . . ,∆δn−4 , while the horizontal internal ex-
changes are labeled with odd-indexed scaling dimensions ∆δ1 ,∆δ3 ,∆δ5 , . . . ,∆δn−3 .

Just like in the previous two examples, we will use the same cross-ratios (3.35) as
input data as used for Feynman rules. Let us recall the associated index sets which will
be important in the computations to follow. The associated choice of dependent and
independent Mellin index sets will also be identical. The dependent set DOPE was given
in (3.36) which allowed a rewriting of the Mellin product as shown in (3.39), with the
Mandelstam invariants for each internal leg as defined in (3.38), and also determined the
set VOPE as shown in (3.41). The remaining independent Mellin variables are associated
with the set UOPE which can be found using (2.16):19

UOPE :=
{

((2j + 1)(2j + 2))
∣∣ 0 ≤ j ≤ n/2− 1

} ⋃ {
(2(2j))

∣∣ 2 ≤ j ≤ n/2− 2
}
. (4.46)

It is useful to represent the index sets visually as shown in figure 7.
According to the Feynman rules for Mellin amplitudes, the AdS diagram (4.45) has

the Mellin amplitude,

Mn,OPE(γij) =

n−3∏
i=1

∞∑
ki=0

(n−3∏
i=1

EMellin
i

)n/2∏
i=1

V
(1)Mellin
i

n/2−2∏
i=1

V
(3)Mellin
i

 . (4.47)

19Explicitly, UOPE = {(12), (34), (56), (78), . . . , ((n− 1)n)}
⋃
{(24), (26), (28), . . . , (2(n− 4))}.
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Figure 7. Color-coded matrix displaying the canonical choice of Mellin variable index subsets
UOPE,VOPE and DOPE.

Here each of the edge factors is given by (4.4) with the Mandelstam invariants si given
in (3.38) and the associated legs assigned single-trace parameters ki, and the vertex factors
come directly from (4.5):

V
(1)Mellin

1 = 1
2Γ(∆12δ1,−h)F (1)

A [∆12δ1,−h;{−k1};{∆δ1−h+1} ;1] (4.48)

V (1)Mellin
a = 1

2Γ(∆(2a−1)(2a)δ2a−2,−h)F (1)
A

[
∆(2a−1)(2a)δ2a−2,−h;{−k2a−2};

{
∆δ2a−2−h+1

}
;1
]

V
(1)Mellin
n
2

= 1
2Γ(∆(n−1)nδn−3,−h)F (1)

A

[
∆(n−1)nδn−3,−h;{−kn−3};

{
∆δn−3−h+1

}
;1
]

V
(3)Mellin
b = 1

2Γ(∆δ2b−1δ2bδ2b+1,−h)F (3)
A

[
∆δ2b−1δ2bδ2b+1,−h;{−k2b−1,−k2b,−k2b+1};{

∆δ2b−1−h+1,∆δ2b−h+1,∆δ2b+1

}
;1,1,1

]
,

for 2 ≤ a ≤ n/2− 1 and 1 ≤ b ≤ n/2− 2.
Substituting (4.47) into (4.1), we proceed to obtain the single-trace projection of the

AdS diagram as described around (4.8). This leads to (4.9) which is the desired conformal
block times a set of known OPE coefficients,

f
(1)
1 =C∆1∆2∆δ1

f (1)
a =C∆2a−1∆2a∆δ2a−2

f
(1)
n
2

=C∆n−1∆n∆δn−3
f

(3)
b =C∆δ2b−1∆δ2b∆δ2b+1

,

(4.49)
for 2 ≤ a ≤ n/2 − 1 and 1 ≤ b ≤ n/2 − 2, which can be factored out to obtain the
block (4.10). This single-trace projection is obtained by evaluating the residue at the
poles (4.8), which in the UOPE-plane occur at

γ12 = ∆12,δ1 − k1 γ(n−1)n = ∆(n−1)n,δn−3 − kn−3 γ(2i+1)(2i+2) = ∆(2i+1)(2i+2),δ2i − k2i

γ2(2j) = ∆δ2j−3δ2j−2,δ2j−1 + k(2j−3)(2j−2),(2j−1) −
∑

(ab)∈VOPE
a<b,b=2j−1 or 2j

γab , (4.50)

for 1 ≤ i ≤ n/2 − 2, and 2 ≤ j ≤ n/2 − 2. Substituting these in the dependent Mellin
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variables γab (3.37) for (ab) ∈ DOPE, we get20

γ1n=∆1δ1,2+k1−
n−1∑
j=3

γ1j

γ2n=∆2δn−3,1δ2δ4...δn−4 +k(n−3),24...(n−4)−γ2(n−1)+
n−2∑
j=3

γ1j+
∑

3≤i<j≤(n−2)
(ij)∈VOPE

γij

γ(2i+1)n=∆(2i+1)δ2i,(2i+2)+k2i−
∑

((2i+1)b)∈VOPE

γ(2i+1)b

γ(2j+2)n=∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1+
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)−
∑

((2j+2)b)∈VOPE
b>2j+2

γ(2j+2)b

γ(n−2)n=∆(n−2)n,(n−3)(n−1)δn−5−kn−5+
n−3∑
j=1

γj(n−1)+
n−4∑
j=1

γj(n−3)

γ(n−2)(n−1) =∆(n−1)δn−3,n+kn−3−
n−3∑
j=1

γj(n−1)

γ2(n−2) =∆δn−5δn−4,δn−3 +k(n−5)(n−4),(n−3)−
∑

(ab)∈VOPE
a<b,b=n−3 or n−2

γab , (4.51)

for 1 ≤ i ≤ n/2− 2 and 1 ≤ j ≤ n/2− 3, where we made use of

n
2−2∑
j=2

γ2(2j) = ∆δ1δ2δ4δ6...δn−6,δn−5 + k1246...(n−6),(n−5) −
∑

(ij)∈VOPE
i<j,j=3,4,...,n−4

γij , (4.52)

and
n
2−2∑
j=1

γ(2j+1)(2j+2) = ∆3456...(n−3)(n−2),δ2δ4...δn−4 − k24...(n−4), . (4.53)

Substituting (4.50) and (4.51) back in (4.14), we turn to evaluating the remaining
contour integrals. Like in the seven-point and comb channel examples, we will first integrate
over the γrs variables for (rs) ∈ VOPE. The order in which we will integrate is shown below

20A notational remark: if (ab) ∈ VOPE, then so is (ba) ∈ VOPE. So if {(14), (24), (34), (45), (46), (47)} ⊆
VOPE, whenever there is a restriction of the form (a4) ∈ VOPE with a < 4, it only admits elements from the
set {(14), (24), (34)} and not elements from the set {(45), (46), (47), . . .}. Without the restriction a < 4, all
elements above will be admitted upon selecting (a4) ∈ VOPE.
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(consult figure 7 for reference):

(4.54)

The direction of the dotted arrow (right to left) indicates the order in which we integrate
over the connected elements of the set VOPE. Each connected chain corresponds to a sub-
set of contour integrals that will be evaluated with the help of the inductive first Barnes
lemma (4.35). While any ordering works, the precise ordering chosen here makes it pos-
sible to set up an inductive step. The strategy will be as follows: we will first evaluate
integrals (4.14) associated with the two (right-most) black-colored chains in (4.54). Using
the resulting expression from the black-colored chain integrals, we will establish a two-step
induction; the green and magenta colored chains above suggest how the induction will work.

In appendix B.3.1, we present the computation of the integrals marked as black-colored
chains above. The end result of this computation is given in (B.24). To set up induction,
we define a new contour integral În−2K−1 such that

În−2K−1
∣∣∣
K=1

= I (4.55)

where I is given by (B.24), and În−2K−1 is defined to be

În−2K−1 :=

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

 n−3∏
j=n−2K−2

Wj

 (4.56)

×

 ∏
(rs)∈VOPE

s 6=n−2K−1,...,n−1

∫
dγrs
2πi

Mn−2K−1

n−2K−2∏
r=1,r 6=2

∫
dγr(n−2K−1)

2πi

Ln−2K−1 ,
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for 1 ≤ K ≤ n/2− 2. Here Wn−3 which was defined in (B.19), is repeated below,

Wn−3 (4.57)

:=

Γ
(
∆(n−1)n,δn−3−kn−3

)
Γ
(
∆nδn−3,(n−1)+kn−3

)
Γ

 ∑
(i(n−1))∈VOPE

γ̃i(n−1)+∆(n−1)δn−3,n+kn−3


Γ

 ∑
(i(n−1))∈VOPE

γ̃i(n−1)+∆δn−3 +2kn−3

 ,

and

Wj :=



Γ
(∑j+1

i=1,i 6=2 γ̃i(j+3) +
∑j+1
i=1 γ̃i(j+2) +∆δjδj+1,δj+2 +k(j)(j+1),(j+2)

)
×Γ

(∑j+1
i=1,i 6=2

∑n−1
b=j+4 γ̃ib+

∑n
2−1
b= j+3

2
γ̃2(2b+1) +∆δjδj+2,δj+1 +k(j)(j+2),(j+1)

)

×

Γ

 n−1∑
a=j+4

γ̃(j+3)a+
n−1∑
a=j+4

γ̃(j+2)a+∆δj+2δj+1,δj +k(j+2)(j+1),(j)


Γ
(∑j+1

i=1,i 6=2

∑n−1
b=j+2 γ̃ib+

∑n
2−1

b= j+1
2
γ̃2(2b+1)+∆δj

+2kj

) j odd

Γ(∆(j+1)(j+2),δj−kj)Γ
(∑

(r(j+2))∈VOPE
γ̃r(j+2)+∆(j+2)δj ,(j+1)+kj

)
Γ

 ∑
(r(j+1))∈VOPE

γ̃r(j+1) +
∑

(r(j+2))∈VOPE

γ̃r(j+2) +∆δj +2kj


×Γ

(∑
(r(j+1))∈VOPE

γ̃r(j+1) +∆(j+1)δj ,(j+2) +kj
)

j even
(4.58)

for n− 2K − 2 ≤ j ≤ n− 4.21 Additionally, we define

Mn−2K−1

:= Γ(∆12,δ1 − k1)

n
2−K−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j − k2j)


 ∏

(rs)∈VOPE
s 6=n−2K−1,...,n−1

Γ(γ̃rs + γrs)



×


n
2−K−2∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 + k(2j−1)(2j),(2j+1) −
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




× Γ

 ∑
((n−2K)a)∈VOPE

a>n−2K

γ̃(n−2K)a +
∑

((n−2K−1)a)∈VOPE
a>n−2K

γ̃(n−2K−1)a + ∆δn−2K−1δn−2K−2,δn−2K−3

+ k(n−2K−1)(n−2K−2),(n−2K−3)

)
, (4.59)

21We note that Wj at j = n− 4 coincides with (B.25).
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and

Ln−2K−1

:=

n−2K−2∏
r=1,r 6=2

Γ(γ̃r(n−2K) + γ̃r(n−2K−1) +γr(n−2K−1))


×Γ

 n−1∑
j=n−2K+1

γ̃1j +∆1δ1,2 +k1−
n−2K−1∑
j=3

γ1j


×Γ

γ̃2(n−2K−1) +∆δn−2K−3δn−2K−2,δn−2K−1 +k(n−2K−3)(n−2K−2),(n−2K−1)−
n−2K−2∑
a=1,a 6=2

γa(n−2K−1)



×


n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K+1

γ̃(2j+1)a+∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−2K,...,n−1

γ(2j+1)b




×


n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K+1

γ̃(2j+2)a+∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K,...,n−1

γ(2j+2)b




×Γ

K−1∑
i=0

γ̃2(n−2i−1) +∆2δn−2K−1,1δ2δ4...δn−2K−2 +k(n−2K−1),24...(n−2K−2) +
n−2K−1∑
j=3

γ1j

+
∑

3≤i<j≤n−2K−1
(ij)∈VOPE

γij

 . (4.60)

It can be checked that (4.55) holds. This will serve as the base case for an inductive
argument which we develop next.

We would like to integrate Ln−2K−1 over γ1(n−2K−1), γ3(n−2K−1), γ4(n−2K−1), . . . ,

γ(n−2K−2)(n−2K−1). This will turn out to be associated with integrating out a green-
colored chain in (4.54) in an intermediate step, where this computation is described in
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appendix B.3.2. Here we rewrite the result of this computation, given in (B.31) as follows:

În−2K−1

= Γ(∆12,δ1−k1)

n
2−K−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j−k2j)

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)γ̃rs



×

 n−3∏
j=n−2K−3

Wj


 ∏

(rs)∈VOPE
s 6=n−2K−3,...,n−1

∫
dγrs
2πi Γ(γ̃rs+γrs)


n−2K−4∏
r=1,r 6=2

∫
dγr(n−2K−3)

2πi



×
∫
dγ2(n−2K−3)

2πi

n−2K−4∏
r=1,r 6=2

∫
dγr(n−2K−2)

2πi

Ln−2K−2 , (4.61)

where

Ln−2K−2 :=

 ∏
(rs)∈VOPE

r<s,s=n−2K−3,n−2K−2

Γ(γ̃rs + γrs)



×


n
2−K−2∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 + k(2j−1)(2j),(2j+1) −
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




× Γ

γ̃1(n−2K) + γ̃1(n−2K−1) +
n−1∑

j=n−2K+1
γ̃1j + ∆1δ1,2 + k1 −

n−2K−2∑
j=3

γ1j


× Γ

(
K−1∑
i=0

γ̃2(n−2i−1) + γ̃2(n−2K−1) + ∆2δn−2K−3,1δ2δ4...δn−2K−4 + k(n−2K−3),24...(n−2K−4)

+
n−2K−2∑
j=3

γ1j +
∑

3≤i<j≤n−2K−2
(ij)∈VOPE

γij



×


n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+1)a + ∆(2j+1)δ2j ,(2j+2) + k2j −
∑

((2j+1)b)∈VOPE
b 6=n−2K−1,...,n−1

γ(2j+1)b




×

n
2−K−2∏
j=1

Γ
(

n−1∑
a=n−2K−1

γ̃(2j+2)a + ∆(2j+2)δ2j+1,(2j+1)δ2j−1 + k2j+1,2j−1

+
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1) −
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K−1,...,n−1

γ(2j+2)b

) . (4.62)

Now, we would like to integrate over γ2(n−2K−3), γ1(n−2K−2), γ3(n−2K−2), γ4(n−2K−2), . . .,
γ(n−2K−4)(n−2K−2). This will be associated with integrating over the magenta-colored
chain in (4.54) immediately to the left of the green-colored chain we previously integrated
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out. This computation is described in appendix B.3.3 and the final result is presented
in (B.36). In fact, it is straightforward to show that (B.36) can be written as (4.56) upon
sending K → K + 1. That is, comparing (B.36) with (4.56), we conclude,

În−2K−1 = În−2K−1
∣∣∣
K→K+1

= În−2K−3 , (4.63)

where on the r.h.s. ,Mn−2K−3 and Ln−2K−3 are given by (4.59) and (4.60) respectively, with
K → K+1, and the range of validity for Wj in (4.58) now becomes n−2K−4 ≤ j ≤ n−4.
This establishes the inductive step, and together with the base case (4.55) furnishes the
following chain of equalities:

I = În−3 = În−5 = · · · = În−2K−1 = · · · = Î3 . (4.64)

As we move progressively to the right down the chain of equalities above, we account for
evaluations of more and more contour integrals from the set VOPE, until we are left with
just one integral. At the right-most equality at K = n

2 − 2, the original contour integral I
(see (B.12)) reduces to

I = Î3 =

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

n−3∏
j=2

Wj

M3

∫
dγ13
2πi L3 , (4.65)

where the Wj for 2 ≤ j ≤ n− 3 are given in (4.57)–(4.58), M3 is given by (4.59) which at
K = n

2 − 2 simplifies to

M3 = Γ(∆12,δ1 − k1) Γ

 ∑
(4a)∈VOPE

a>4

γ̃4a +
∑

(3a)∈VOPE
a>4

γ̃3a + ∆δ3δ2,δ1 + k32,1

 , (4.66)

and L3 is obtained by setting K = n
2 − 2 in (4.60),

L3 = Γ(γ̃14 + γ̃13 +γ13)Γ

n−1∑
j=5

γ̃1j +∆1δ1,2 +k1−γ13

 Γ(γ̃23 +∆δ1δ2,δ3 +k12,3−γ13)

×Γ

n
2−3∑
i=0

γ̃2(n−2i−1) +∆2δ3,1δ2 +k3,2 +γ13

 . (4.67)

The contour integral in (4.65), which corresponds to the lone black dot in (4.54) at the
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left-most extreme, can be evaluated using the first Barnes lemma (4.15), to give

I =

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

n−3∏
j=2

Wj

M3 (4.68)

×
Γ
(∑n−1

j=3 γ̃1j + ∆1δ1,2 + k1
)

Γ(γ̃13 + γ̃14 + γ̃23 + ∆δ1δ2,δ3 + k12,3)

Γ
(∑n−1

j=3 γ̃1j +
∑n

2−2
i=0 γ̃2(n−2i−1) + ∆δ1 + 2k1

)

× Γ

n−1∑
j=5

γ̃1j +
n
2−3∑
i=0

γ̃2(n−2i−1) + ∆δ1δ3,δ2 + k13,2

Γ

n
2−2∑
i=0

γ̃2(n−2i−1) + ∆2δ1,1 + k1


⇒ I =

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs

n−3∏
j=1

Wj


× Γ(∆12,δ1 − k1) Γ

n−1∑
j=3

γ̃1j + ∆1δ1,2 + k1

Γ

n
2−2∑
i=0

γ̃2(n−2i−1) + ∆2δ1,1 + k1

 ,
where we identified a factor of W1 above by comparing with (4.58) at j = 1, thus extending
the regime of validity of the Wj coefficients in (4.57)–(4.58) to 1 ≤ j ≤ n− 3.

The
(n−2

2
)
-dimensional contour integral over the γ̃rs variables is significantly less com-

plicated to evaluate. Just like in the seven-point and n-point comb channel examples, we
close the contour to the right, and using the fact that all Gamma functions in the inte-
grand contain positive linear combinations of γ̃rs variables in their arguments except for
the factors of Γ(−γ̃rs), the only poles picked are the ones at origin and the semi-infinite
sequence of poles at positive integral values of γ̃rs for each (rs) ∈ VOPE. This introduces(n−2

2
)
new sums over the Mellin parameters jrs, and furnishes a series expansion represen-

tation of the conformal block where, effectively, all positive linear combinations of the γ̃rs
Mellin variables in the Gamma functions get replaced with positive linear combinations of
the corresponding Mellin parameters jrs.

Let us mention some salient points of comparison between the blocks of this section and
section 3.3. As shown in the previous two subsections, one can re-express all series coeffi-
cients in terms of Pochhammer symbols, such that all explicit factors of Gamma functions
cancel out. The Lauricella functions in (4.48) and (3.48) are identical, and the positive lin-
ear combinations of Mellin parameters appearing in the Pochhammer symbols find perfect
agreement as well. For instance, the arguments of the Gamma functions (or equivalently
the Pochhammer symbols) in the numerators of Wj for even j = 2a− 2 match with those
of the Pochhammer symbols in V (1)

a in (3.48) for 2 ≤ a ≤ n/2− 1, and those of Wj for odd
j = 2b−1 match with those of V (3)

b in (3.48) for 1 ≤ b ≤ n/2−2. Moreover, the numerators
of Wn−3 are identified with the Pochhammer symbols in V

(1)
n−2 in (3.48), while the triplet

of factors in the final line of (4.68) are matched with the vertex factor V (1)
1 in (3.48). This

accounts for (n − 2) triplet of Pochhammer symbol combinations, one for each internal
vertex of the binary graph. There are, additionally, (n − 3) factors of Pochhammer sym-
bols in the denominators of the (n− 3) Wj coefficients, and each of these is in one-to-one
correspondence with the denominators of the (n− 3) internal edge factors (2.4).
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A careful comparison between the block found using the Feynman rules for conformal
blocks, and the one found using the Mellin formalism in this section confirms that there
is full agreement between the n-point conformal block of this section and section 3.3, thus
confirming the Feynman rules for n-point blocks in the OPE channel.

5 Discussion

In this paper we proposed a simple set of rules for constructing any scalar conformal block
with scalar exchanges, given the appropriate cross-ratios as input data. The rules are
summarized in (2.2)–(2.6), and the prescription for obtaining the post-Mellin parameters
appearing in the Pochhammer symbols and summations is described in section 2.1.22 These
rules help bypass lengthy, often impossibly hard computations needed to obtain conformal
blocks. They are very similar and closely related to the Feynman rules for Mellin am-
plitudes, as in both methods we assign a factor for each edge and vertex appearing in
the unrooted binary graph representation of the conformal block or Witten diagram. In
fact, the same Lauricella functions appear in the Feynman rules for both conformal blocks
and Mellin amplitudes. This was exhibited to be a consequence of the derivation of the
Feynman rules in specific examples in section 4, where our starting point was the Mellin
amplitude of certain canonical Witten diagrams. One important difference was that the
type of Lauricella function which appears in a Mellin amplitude depends on the degree of
the interaction vertex appearing in the AdS diagram; one associates the Lauricella function
F

(`)
A for a bulk interaction vertex with ` incident internal edges. For conformal blocks ` ≤ 3

because of the OPE structure of blocks; a related fact is that we needed to consider Mellin
amplitudes for canonical Witten diagrams in an effective φ3 scalar field theory in AdS.
The Lauricella functions were also expected from the point of view of previous work on the
holographic duals of higher-point conformal blocks [55, 57, 58], where the same functions
appeared in the context of three-propagator identities which were used in the derivation of
the geodesic diagram representation of blocks.

The Feynman rules provide an interesting, explicit and analytical representation for
arbitrary conformal blocks, which may help investigate hidden mathematical structure and
properties of conformal blocks, such as higher-point recursion relations, dimensional rela-
tions, and possible closed-form representations. The symmetric Lauricella functions in the
power series expansion of the blocks also facilitate the symmetry analysis of conformal
blocks; for instance permutation symmetries become manifest when the block is expressed
in terms of the Lauricella functions. It would be interesting to undertake a detailed sym-
metry analysis, along the lines of ref. [30], of arbitrary conformal blocks as prescribed by
the proposed Feynman rules. Recent work [63] on expressing higher-point functions in two
and four spacetime dimensions in terms of generalizations of Lauricella systems in the con-
figuration space of n points, generalized to complex and quaternionic settings respectively,
also provides an interesting mathematical connection and avenue of exploration.

The proposed Feynman rules were conjectured based on known results in the literature.
We applied the rules to obtain the n-point block in the OPE channel which was not

22In section 4, we also obtained a mixed series-integral representation (4.10).
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previously known, and verified it independently via the Mellin space formalism. Likewise we
worked out a previously unknown seven-point block, both via Feynman rules and via Mellin
amplitudes, and obtained a precise equivalence. These checks serve as non-trivial evidence
in support of the proposed rules. The methodology in section 4 of proving the Feynman
rules in particular examples, is also expected to work in exactly the same manner for
any particular choice of conformal block beyond those considered in this paper. However,
proving it for an arbitrary choice of a conformal block will presumably require more work.
Nevertheless, it would be useful to prove these rules in generality for arbitrary blocks.

Finally, it should also be possible to generalize these rules to arbitrary-point conformal
blocks for external and/or exchanged operators in arbitrary representations of the Lorentz
group. This would be especially useful from the point of view of setting up an n-point
conformal bootstrap for external scalars where internal exchanges can still involve spinning
operators. Weight-shifting operators [25] and differential operators [32, 33] may be helpful
in determining such generalizations. In fact, Mellin amplitudes for representations other
than scalars (see e.g. refs. [69, 76–80]) may also inform the discussion on generalization
of the conformal block Feynman rules beyond scalars. Turning the logic around, it would
be interesting to investigate whether generalizations of the block Feynman rules to other
representations benefit the study of higher-point spinning (Mellin) amplitudes.
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A Lauricella functions

The Lauricella function FA of ` variables is a generalized hypergeometric sum of ` vari-
ables [81–83] (see also ref. [69]) defined as

F
(`)
A

[
g; {a1, . . . , a`}; {b1, . . . , b`};x1, . . . , x`

]
:=

∏̀
i=1

∞∑
ni=0

 (g)∑`

i=1 ni

∏̀
i=1

(ai)ni
(bi)ni

xnii
ni!

. (A.1)

One can always perform one of the sums in (A.1) to re-express F (`)
A in terms of functions

involving `− 1 summations. For example, we present some identities for ` ≤ 3:

F
(1)
A [∆abc, − h; {−kc}; {∆c − h+ 1} ; 1] = (1−∆ab,c)kc

(∆c − h+ 1)kc
, (A.2)

F
(2)
A [∆abc, − h; {−kb,−kc}; {∆b − h+ 1,∆c − h+ 1} ; 1, 1] (A.3)

= (1−∆ac,b)kb(1−∆ab,c)kc
(∆b − h+ 1)kb(∆c − h+ 1)kc

3F2 [{−kb,−kc,∆abc, − h}; {∆ac,b − kb,∆ab,c − kc}; 1] ,
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and

F
(3)
A [∆abc, − h; {−ka,−kb,−kc}; {∆a − h+ 1,∆b − h+ 1,∆c − h+ 1} ; 1, 1, 1] (A.4)

= (−1)ka+kb+kc

(∆a − h+ 1)ka(∆b − h+ 1)kb(∆c − h+ 1)kc
× 1

(∆bc,a)−ka(−∆b + h)−kb(∆ab,c)−kc

× F 1,3,2
2,1,0

[
∆abc, − h ;−kb ,∆ab,c ,∆bc,a ;−ka ,−kc
∆ab,c − kc ,∆bc,a − ka ; ∆b − h+ 1 ;−

∣∣∣∣∣1, 1
]
,

where F p,r,uq,s,v is the Kampé de Fériet function [82, 84] (see also ref. [61]), defined by the
following hypergeometric series,

F p,r,uq,s,v

[
a; c; f

b; d; g

∣∣∣∣∣x, y
]

:=
∞∑

m,n=0

(a)m+n(c)m(f)n
(b)m+n(d)m(g)n

xmyn

m!n! , (A.5)

where
(a)m+n := (a1)m+n · · · (ap)m+n (b)m+n := (b1)m+n · · · (bq)m+n

(c)m := (c1)m · · · (cr)m (d)m := (d1)m · · · (ds)m
(f)n := (f1)n · · · (fu)n (g)n := (g1)n · · · (gv)n .

(A.6)

B Technical details

B.1 Proof of (3.46)

In this appendix we will compute `δ2i+1 which satisfies the recursion relation

`δ2i+3
2J= `δ2i+1 + `δ2i+2

(
0 ≤ i ≤ n

2 − 4
)
, (B.1)

where the even-indexed `δ2i+2 and the smallest odd-indexed `δ1 are known from (3.44).
We will now prove by induction that `δ2i+1 takes the form

`δ2i+1 =
n−1∑

s=2i+3
j1s +

2i+2∑
r=3

n−1∑
s=2i+3

jrs +
n
2−1∑
z=i+1

j2(2z+1) , (B.2)

for 0 ≤ i ≤ n/2− 3.
Let’s first establish the base case. For i = 1,

`δ3
2J= `δ1 + `δ2

=
n−1∑
s=5

j1s +
4∑
r=3

n−1∑
s=5

jrs +
n−1∑

i=5,7,9,...
j2i (B.3)

agrees with (B.2).
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For the inductive step, assume (B.2) is true for i = K, where 0 ≤ K < n/2 − 3. We
will now show that (B.2) holds for i = K + 1. That is, assuming the following:

`δ2K+1 =
n−1∑

s=2K+3
j1s +

2K+2∑
r=3

n−1∑
s=2K+3

jrs +
n
2−1∑

z=K+1
j2(2z+1) (B.4)

we can now compute
`δ2K+3

2J= `δ2K+1 + `δ2K+2 , (B.5)

where we can use

`δ2K+2 =
n−1∑

s=2K+5
j(2K+3)s+

2K+2∑
r=1

jr(2K+3)+j1(2K+4)+
n−1∑

s=2K+5
j(2K+4)s+

2K+2∑
r=3

jr(2K+4) (B.6)

and (B.4) to compute the l.h.s. of (B.5):

`δ2K+3
2J=

n−1∑
s=2K+5

j(2K+3)s +
2K+2∑
r=1

jr(2K+3) + j1(2K+4) +
n−1∑

s=2K+5
j(2K+4)s +

2K+2∑
r=3

jr(2K+4)

+
n−1∑

s=2K+3
j1s +

2K+2∑
r=3

n−1∑
s=2K+3

jrs +
n
2−1∑

z=K+1
j2(2z+1)

=
n−1∑

s=2K+3
j1s +

2K+2∑
r=3

n−1∑
s=2K+3

jrs +
n
2−1∑

z=K+1
j2(2z+1) −

2K+4∑
2K+3

j1s +
2K+4∑
2K+3

n−1∑
2K+5

jrs

−
2K+2∑
r=3

2K+4∑
s=2K+3

jrs − j2(2K+3)

=
n−1∑

s=2K+5
j1s +

2K+4∑
r=3

n−1∑
s=2K+5

jrs +
n
2−1∑

z=K+2
j2(2z+1) , (B.7)

which is the same as (B.2) for i = K + 1, as needed.

B.2 Proof of (4.38)

We notice that the l.h.s. of (4.38) is of the form:

Km

 n−1∏
j=m+1

∫
dsj
2πi Γ(Aj + sj)Γ(Bj − sj)

Γ

C +
n−1∑

j=m+1
sj

Γ

D − n−1∑
j=m+1

sj

 , (B.8)

where the integration variables are si = γmi, and the coefficients are

Ai = γ̃mi

Bi =
m−1∑
j=2

γ̃ji + ∆iδi−2,δi−1 + ki−2,i−1 −
i−1∑

j=m+1
γji

C = ∆nδm−2,m(m+1)...(n−1) + km−2 +
∑

m+1≤a<b≤n−1
γab

D = ∆mδm−1,δm−2 + k(m−1),(m−2) , (B.9)
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with the overall factor

Km =

 ∏
m+1≤r≤s≤n−1

Γ (γ̃rs + γrs)

Γ
(
m−1∑
i=2

γ̃im + ∆mδm−2,δm−1 + km−2,m−1

)

×

 n−1∏
i=m+1

Γ

∆iδi−1,δi−2 + ki−1,i−2 −
n−1∑
j=i+1

γij

 . (B.10)

Using the inductive Mellin Barnes lemma (4.35), we can easily evaluate (B.8) to obtain

Km

 n−1∏
i=m+1

Γ

γ̃mi +
m−1∑
j=2

γ̃ji + ∆iδi−2,δi−1 + ki−2,i−1 −
i−1∑

j=m+1
γji


× Γ

∆nδm−1,(m+1)...(n−1) + km−1 +
∑

m+1≤a<b≤n−1
γab


× Γ

 n−1∑
i=m+1

γ̃mi + ∆mδm−1,δm−2 + k(m−1),(m−2)


×

Γ
(∑n−1

i=m+1
∑m−1
j=2 γ̃ji + ∆δm−1δm−2,m + km−2(m−1)

)
Γ
(∑n−1

i=m+1
∑m
j=2 γ̃ji + ∆δm−1 + 2km−1

) . (B.11)

Substituting in the explicit form for Km and using the definitions (4.37) and (4.39), we
recognize (B.11) to be precisely the r.h.s. of (4.38).

B.3 OPE channel calculations

B.3.1 Base case
Our starting point is the contour integral (4.14), which takes the explicit form

I=Γ(∆12,δ1−k1)Γ(∆(n−1)n,δn−3−kn−3)

n
2−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j−k2j)


×

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)γ̃rs

 ∏
(rs)∈VOPE

∫
dγrs
2πi Γ(γ̃rs+γrs)



×


n
2−2∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 +k(2j−1)(2j),(2j+1)−
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×Γ

∆1δ1,2+k1−
n−1∑
j=3

γ1j

Γ

∆(n−1)δn−3,n+kn−3−
n−3∑
j=1

γj(n−1)


×

n
2−2∏
j=1

Γ

∆(2j+1)δ2j ,(2j+2)+k2j−
∑

((2j+1)b)∈VOPE

γ(2j+1)b



×


n
2−3∏
j=1

Γ

∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1+
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)−
∑

((2j+2)b)∈VOPE
b>2j+2

γ(2j+2)b



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×Γ

∆2δn−3,1δ2δ4...δn−4 +k(n−3),24...(n−4)−γ2(n−1)+
n−2∑
j=3

γ1j+
∑

3≤i<j≤n−2
(ij)∈VOPE

γij


×Γ

∆(n−2)n,(n−3)(n−1)δn−5−kn−5+
n−3∑
j=1

γj(n−1)+
n−4∑
j=1

γj(n−3)

. (B.12)

Two straightforward applications of the first Barnes lemma (4.15) allow us to perform the
γ1(n−1) and γ2(n−1) integrals. The result is

I = Γ(∆12,δ1 − k1)Γ(∆(n−1)n,δn−3 − kn−3)

n
2−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j − k2j)



×

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs


 ∏

(rs)∈VOPE
s 6=n−1

∫
dγrs
2πi Γ(γ̃rs + γrs)



×
[(

n−3∏
r=3

∫
dγr(n−1)

2πi

)
L̃n−1

]
n
2−2∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 + k(2j−1)(2j),(2j+1) −
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




× Γ

γ̃1(n−1) + ∆1δ1,2 + k1 −
n−2∑
j=3

γ1j

Γ

∆(n−2)δn−3,(n−3)δn−5 + kn−3,n−5 +
n−4∑
j=1

γj(n−3)



× Γ

γ̃2(n−1) + ∆2δn−3,1δ2δ4...δn−4 + k(n−3),24...(n−4) +
n−2∑
j=3

γ1j +
∑

3≤i<j≤n−2
(ij)∈VOPE

γij


× Γ

( 2∑
i=1

γ̃i(n−1) + ∆(n−2)δ1,(n−3)δn−5δ2δ4...δn−4 + k1,(n−5)24...(n−4) + ∆δn−3 + 2kn−3

+
n−4∑
j=1

γj(n−3) +
∑

3≤i<j≤n−2
(ij)∈VOPE

γij


−1

, (B.13)
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where the integrand for the integrals over γ3(n−1), . . . , γ(n−3)(n−1) above has been collected
into the following object,

L̃n−1

:=
(
n−3∏
r=3

Γ(γ̃r(n−1) +γr(n−1))
)n

2−2∏
j=1

Γ

∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE

γ(2j+1)b



×


n
2−3∏
j=1

Γ

∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)−
∑

((2j+2)b)∈VOPE
b>2j+2

γ(2j+2)b




×Γ

∆(n−2)nδ1δn−3,(n−3)(n−1)δn−5δ2δ4...δn−4 +k1(n−3),(n−5)24...(n−4) +
n−4∑
j=1

γj(n−3) +
∑

3≤i<j≤n−2
(ij)∈VOPE

γij

+
n−3∑
j=3

γj(n−1)

Γ

 2∑
i=1

γ̃i(n−1) +∆(n−1)δn−3,n+kn−3−
n−3∑
j=3

γj(n−1)

 . (B.14)

To evaluate the integrals over L̃n−1, we can use the inductive first Barnes lemma (4.35)
with the identifications

Ar = γ̃(r+2)(n−1)

Br =


∆(r+2)δr+1,(r+3) +kr+1−

∑
((r+2)b)∈VOPE

b 6=n−1

γ(r+2)b (r odd)

∆(r+2)δr+1,(r+1)δr−1 +kr+1,r−1 +
∑

(a(r+1))∈VOPE
a<r+1

γa(r+1)−
∑

((r+2)b)∈VOPE
b>r+2,b 6=n−1

γ(r+2)b (r even)

C = ∆(n−2)nδ1δn−3,(n−3)(n−1)δn−5δ2δ4...δn−4 +k1(n−3),(n−5)24...(n−4) +
n−4∑
j=1

γj(n−3) +
∑

3≤i<j≤n−2
(ij)∈VOPE

γij

D=
2∑
i=1

γ̃i(n−1) +∆(n−1)δn−3,n+kn−3 (B.15)
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for 1 ≤ r ≤ n− 5. Then the contour integrals evaluate to

(
n−3∏
r=3

∫
dγr(n−1)

2πi

)
L̃n−1

=

Γ

∆(n−2)δ1,(n−3)δn−5δ2δ4...δn−4 +k1,(n−5)24...(n−4)+
n−4∑
j=1

γj(n−3)+
∑

3≤i<j≤n−2
(ij)∈VOPE

γij+
2∑
i=1

γ̃i(n−1)+∆δn−3 +2kn−3


Γ

(
n−5∑
r=1

γ̃(r+2)(n−1)+
2∑
i=1

γ̃i(n−1)+∆δn−3 +2kn−3

)

×

 n−5∏
r=1,3,...

Γ(γ̃(r+2)(n−1)+∆(r+2)δr+1,(r+3)+kr+1−
∑

((r+2)b)∈VOPE
b 6=n−1

γ(r+2)b)


×

 n−6∏
r=2,4,...

Γ(γ̃(r+2)(n−1)+∆(r+2)δr+1,(r+1)δr−1 +kr+1,r−1+
∑

(a(r+1))∈VOPE
a<r+1

γa(r+1)−
∑

((r+2)b)∈VOPE
b>r+2,b 6=n−1

γ(r+2)b


×Γ
(

∆nδn−3,(n−1)+k(n−3)

)
Γ

(
n−5∑
r=1

γ̃(r+2)(n−1)+
2∑
i=1

γ̃i(n−1)+∆(n−1)δn−3,n+kn−3

)
(B.16)

where we used

n−5∑
r=1

Br = ∆(n−3)δ2δ4δ6...δn−6δn−4δn−5,(n−2)δ1 + k246...(n−6)(n−4)(n−5),1 −
∑

3≤i<j≤n−2
(ij)∈VOPE

γij −
n−4∑
j=1

γj(n−3) .

(B.17)
Putting this result back in I, we obtain

I = Γ(∆12,δ1 − k1)

n
2−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j − k2j)

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs − 1)γ̃rs


×

 ∏
(rs)∈VOPE

s 6=n−1,n−2,n−3

∫
dγrs
2πi Γ(γ̃rs + γrs)


 ∏

(rs)∈VOPE
s=n−3,r<s,r 6=2

∫
dγrs
2πi

Wn−3

×


n
2−3∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 + k(2j−1)(2j),(2j+1) −
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×

 ∏
(rs)∈VOPE

s=n−2 or (rs)=(2(n−3))

∫
dγrs
2πi

Ln−2 , (B.18)
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where we have defined

Wn−3 (B.19)

:=

Γ
(
∆(n−1)n,δn−3−kn−3

)
Γ
(
∆nδn−3,(n−1) +kn−3

)
Γ

 ∑
(i(n−1))∈VOPE

γ̃i(n−1) +∆(n−1)δn−3,n+kn−3


Γ

 ∑
(i(n−1))∈VOPE

γ̃i(n−1) +∆δn−3 +2kn−3

 ,

and

Ln−2

:=

 ∏
(rs)∈VOPE

r<s,s=n−2,n−3

Γ(γ̃rs+γrs)



×Γ

(
γ̃1(n−1) +∆1δ1,2 +k1−

n−2∑
j=3

γ1j

)
Γ

∆δn−5δn−4,δn−3 +k(n−5)(n−4),(n−3)−
∑

(ab)∈VOPE
a<b,b=n−3 or n−2

γab



×

n
2−2∏
j=1

Γ(γ̃(2j+1)(n−1) +∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−1

γ(2j+1)b)



×

n
2−3∏
j=1

Γ

γ̃(2j+2)(n−1) +∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−1

γ(2j+2)b


Γ

γ̃2(n−1) +∆2δn−3,1δ2δ4...δn−4 +k(n−3),24...(n−4) +
n−2∑
j=3

γ1j +
∑

3≤i<j≤n−2
(ij)∈VOPE

γij


×Γ

(
∆(n−2)δn−3,(n−3)δn−5 +kn−3,n−5 +

n−4∑
j=1

γj(n−3)

)
. (B.20)

Now, we will integrate over γ2(n−3), γ1(n−2), γ3(n−2), γ4(n−2), . . . , γ(n−4)(n−2). The depen-
dence on all these variables has been packaged into Ln−2 above. We first integrate
over γ2(n−3) using the first Barnes lemma (4.15), and then do a change of variables
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γi(n−3) → γi(n−3) − γi(n−2), for i = 1, 3, 4, . . . , n− 4. Doing this, we obtain,∫
dγ2(n−3)

2πi Ln−2

= Γ

(
γ̃1(n−1) +∆1δ1,2 +k1−

n−3∑
j=3

γ1j

)n
2−3∏
j=1

Γ(γ̃(2j+1)(n−1) +∆(2j+1)δ2j ,(2j+2) +k2j

−
∑

((2j+1)b)∈VOPE
b 6=n−1,n−2

γ(2j+1)b)

Γ

γ̃2(n−1) +∆2δn−3,1δ2δ4...δn−4 +k(n−3),24...(n−4) +
n−3∑
j=3

γ1j +
∑

3≤i<j≤n−3
(ij)∈VOPE

γij



×

n
2−3∏
j=1

Γ

γ̃(2j+2)(n−1) +∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−1,n−2

γ(2j+2)b


Γ

(
γ̃(n−3)(n−1) +∆δn−3δn−4,δn−5 +k(n−3)(n−4),(n−5)

)

×
Γ(γ̃2(n−3) +∆δn−5δn−4,δn−3 +k(n−5)(n−4),(n−3)−

∑n−4
a=1,a 6=2 γa(n−3))

Γ(γ̃2(n−3) + γ̃(n−3)(n−1) +∆δn−4 +2kn−4−
∑n−4

a=1,a 6=2 γa(n−3))
L̃n−2 , (B.21)

where L̃n−2 is defined to be

L̃n−2 :=

 n−4∏
r=1,r 6=2

Γ(γ̃r(n−2) +γr(n−2))

 n−4∏
r=1,r 6=2

Γ(γ̃r(n−3) +γr(n−3)−γr(n−2))


×Γ

γ̃2(n−3) + γ̃(n−3)(n−1) +∆(n−3)δn−4,(n−2) +kn−4−
n−4∑

b=1,b 6=2
(γb(n−3)−γb(n−2))


×Γ

∆(n−2)δn−4,(n−3) +kn−4−
n−4∑

j=1,j 6=2
γj(n−2)

 . (B.22)

L̃n−2 collects the Mellin variable-dependent integrand for the integrals over γi(n−2) for
i = 1, 3, 4, . . . , n−4. Using (4.35) we can easily evaluate these integrals in one go to obtain n−4∏

r=1,r 6=2

∫
dγr(n−2)

2πi

 Mn−2

=

 n−4∏
i=1,i 6=2

Γ(γ̃i(n−2) + γ̃i(n−3) + γi(n−3))

Γ
(
γ̃2(n−3) + γ̃(n−3)(n−1) + ∆δn−4 + 2kn−4

−
n−4∑

a=1,a 6=2
γa(n−3)

) Γ
(∑n−4

i=1,i 6=2 γ̃i(n−2) + ∆(n−2)δn−4,(n−3) + kn−4
)

Γ
(∑n−4

i=1 γ̃i(n−3) + γ̃(n−3)(n−1) +
∑n−4
i=1,i 6=2 γ̃i(n−2) + ∆δn−4 + 2kn−4

)
× Γ

 n−4∑
i=1,i 6=2

γ̃i(n−3) + γ̃2(n−3) + γ̃(n−3)(n−1) + ∆(n−3)δn−4,(n−2) + kn−4

 . (B.23)
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Substituting these results back in I, we obtain

I = Γ(∆12,δ1−k1)

n
2−3∏
j=1

Γ(∆(2j+1)(2j+2),δ2j −k2j)

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)γ̃rs



×

 ∏
(rs)∈VOPE

s 6=n−1,n−2,n−3

∫
dγrs
2πi Γ(γ̃rs+γrs)


 n−4∏
r=1,r 6=2

∫
dγr(n−3)

2πi Γ(
n−2∑
b=n−3

γ̃rb+γr(n−3))



×Wn−3Wn−4


n
2−3∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 +k(2j−1)(2j),(2j+1)−
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×Γ

γ̃2(n−3) +∆δn−5δn−4,δn−3 +k(n−5)(n−4),(n−3)−
n−4∑

a=1,a 6=2
γa(n−3)


×Γ

(
γ̃(n−3)(n−1) +∆δn−3δn−4,δn−5 +k(n−3)(n−4),(n−5)

)
Γ

γ̃1(n−1) +∆1δ1,2 +k1−
n−3∑
j=3

γ1j



×Γ

γ̃2(n−1) +∆2δn−3,1δ2δ4...δn−4 +k(n−3),24...(n−4) +
n−3∑
j=3

γ1j +
∑

3≤i<j≤n−3
(ij)∈VOPE

γij



×


n
2−3∏
j=1

Γ(γ̃(2j+1)(n−1) +∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−1,n−2

γ(2j+1)b)



×


n
2−3∏
j=1

Γ

γ̃(2j+2)(n−1) +∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(a(2j+1))∈VOPE
a<2j+1

γa(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−1,n−2

γ(2j+2)b


 , (B.24)

where we have defined

Wn−4 :=

Γ(∆(n−3)(n−2),δn−4 − kn−4)Γ

 ∑
(i(n−2))∈VOPE

γ̃i(n−2) + ∆(n−2)δn−4,(n−3) + kn−4


Γ

 ∑
(i(n−3))∈VOPE

γ̃i(n−3) +
∑

(i(n−2))∈VOPE

γ̃i(n−2) + ∆δn−4 + 2kn−4


× Γ

 ∑
(i(n−3))∈VOPE

γ̃i(n−3) + ∆(n−3)δn−4,(n−2) + kn−4

 . (B.25)
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B.3.2 Integrals over a green-colored chain

First, integrating Ln−2K−1, defined in (4.60), over γ1(n−2K−1) we get∫
dγ1(n−2K−1)

2πi Ln−2K−1

= Γ

γ̃1(n−2K) + γ̃1(n−2K−1) +
n−1∑

j=n−2K+1
γ̃1j + ∆1δ1,2 + k1 −

n−2K−2∑
j=3

γ1j


× Γ

(
K−1∑
i=0

γ̃2(n−2i−1) + γ̃2(n−2K−1) + ∆2δn−2K−3,1δ2δ4...δn−2K−4 + k(n−2K−3),24...(n−2K−4)

+
n−2K−2∑
j=3

γ1j +
∑

3≤i<j≤n−2K−2
(ij)∈VOPE

γij


× Γ

 K∑
i=0

γ̃2(n−2i−1) +
n−1∑

j=n−2K−1
γ̃1j + ∆δn−2K−3δ1,δ2δ4...δn−2K−4 + k(n−2K−3)1,24...(n−2K−4)

+
∑

3≤i<j≤n−2K−2
(ij)∈VOPE

γij


−1

L̃n−2K−1 , (B.26)

where

L̃n−2K−1 :=

(
n−2K−2∏
r=3

Γ(γ̃r(n−2K) + γ̃r(n−2K−1) +γr(n−2K−1))

)

×

n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K+1

γ̃(2j+1)a+∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−2K,...,n−1

γ(2j+1)b




×

n
2−K−2∏
j=1

Γ

(
n−1∑

a=n−2K+1

γ̃(2j+2)a+∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1

+
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1)−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K,...,n−1

γ(2j+2)b




×Γ

(
K−1∑
i=0

γ̃2(n−2i−1) +
n−1∑

j=n−2K+1

γ̃1j +∆δn−2K−1δ1,δ2δ4...δn−2K−2 +k(n−2K−1)1,24...(n−2K−2)

+
∑

3≤i<j≤n−2K−1
(ij)∈VOPE

γij


×Γ
(
γ̃1(n−2K) + γ̃1(n−2K−1) + γ̃2(n−2K−1) +∆δn−2K−3δn−2K−2,δn−2K−1

+k(n−2K−3)(n−2K−2),(n−2K−1)−
n−2K−2∑
a=3

γa(n−2K−1)

)
. (B.27)
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Next, we will integrate L̃n−2K−1 over the Mellin variables
γ3(n−2K−1), γ4(n−2K−1), . . . , γ(n−2K−2)(n−2K−1) using the inductive Barnes lemma (4.35).
The integrand L̃n−2K−1 matches the integrand of (4.35) with the coefficient assignments:

Ar = γ̃(r+2)(n−2K) + γ̃(r+2)(n−2K−1)

Br =



n−1∑
a=n−2K+1

γ̃(r+2)a + ∆(r+2)δr+1,(r+3) + kr+1 −
∑

((r+2)b)∈VOPE
b 6=n−2K−1,...,n−1

γ(r+2)b r odd

n−1∑
a=n−2K+1

γ̃(r+2)a + ∆(r+2)δr+1,(r+1)δr−1 + kr+1,r−1 +
∑

(b(r+1))∈VOPE
b<r+1

γb(r+1)

−
∑

((r+2)b)∈VOPE
b>r+2,b 6=n−2K−1,...,n−1

γ(r+2)b r even

C =
K−1∑
i=0

γ̃2(n−2i−1) +
n−1∑

j=n−2K+1
γ̃1j + ∆δn−2K−1δ1,δ2δ4...δn−2K−2 + k(n−2K−1)1,24...(n−2K−2)

+
∑

3≤i<j≤n−2K−2
(ij)∈VOPE

γij

D = γ̃1(n−2K) + γ̃1(n−2K−1) + γ̃2(n−2K−1) + ∆δn−2K−3δn−2K−2,δn−2K−1

+ k(n−2K−3)(n−2K−2),(n−2K−1) , (B.28)

for 1 ≤ r ≤ n− 2K − 4. Then applying (4.35), we obtain(
n−2K−4∏
r=1

∫
dγ(r+2)(n−2K−1)

2πi

)
L̃n−2K−1 (B.29)

=

Γ
(

K∑
i=0

γ̃2(n−2i−1) +
n−1∑

j=n−2K−1
γ̃1j + ∆δn−2K−3δ1,δ2δ4...δn−2K−4

Γ
(∑n−2K−2

i=1,i 6=2
∑n−1
j=n−2K−1 γ̃ij +

∑K
i=0 γ̃2(n−2i−1) + ∆δn−2K−3 + 2kn−2K−3

)
+k(n−2K−3)1,24...(n−2K−4) +

∑
3≤i<j≤n−2K−2

(ij)∈VOPE

γij

)
Γ
(∑n−2K−2

i=1,i 6=2
∑n−1
j=n−2K−1 γ̃ij +

∑K
i=0 γ̃2(n−2i−1) + ∆δn−2K−3 + 2kn−2K−3

)

×


n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+1)a + ∆(2j+1)δ2j ,(2j+2) + k2j −
∑

((2j+1)b)∈VOPE
b 6=n−2K−1,...,n−1

γ(2j+1)b




×

n
2−K−2∏
j=1

Γ(
n−1∑

a=n−2K−1
γ̃(2j+2)a + ∆(2j+2)δ2j+1,(2j+1)δ2j−1 + k2j+1,2j−1

+
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1) −
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K−1,...,n−1

γ(2j+2)b)


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× Γ
(
n−2K−2∑
i=1,i 6=2

γ̃i(n−2K) +
n−2K−2∑
i=1

γ̃i(n−2K−1)

+ ∆δn−2K−3δn−2K−2,δn−2K−1 + k(n−2K−3)(n−2K−2),(n−2K−1)

)

× Γ
(
n−2K−2∑
i=1,i 6=2

n−1∑
j=n−2K+1

γ̃ij +
K−1∑
i=0

γ̃2(n−2i−1)

+ ∆δn−2K−3δn−2K−1,δn−2K−2 + k(n−2K−3)(n−2K−1),(n−2K−2)

)

where we used

n−2K−4∑
r=1

Br =
n−2K−2∑
i=3

n−1∑
j=n−2K+1

γ̃ij + ∆δ2δ4δ6...δn−2K−4δn−2K−3,δ1 + k246...(n−2K−4)(n−2K−3),1

−
∑

3≤a<b≤n−2K−2
(ab)∈VOPE

γab . (B.30)

Substituting the results of these integrations back into În−2K−1 in (4.56), we get

În−2K−1 = Γ(∆12,δ1−k1)

n
2−K−2∏
j=1

Γ(∆(2j+1)(2j+2),δ2j −k2j)

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)̃γrs


×

(
n−3∏

j=n−2K−3

Wj

) ∏
(rs)∈VOPE

s 6=n−2K−1,...,n−1

∫
dγrs
2πi Γ(γ̃rs+γrs)


×

n
2−K−2∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 +k(2j−1)(2j),(2j+1)−
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×Γ

(
γ̃1(n−2K) + γ̃1(n−2K−1) +

n−1∑
j=n−2K+1

γ̃1j +∆1δ1,2 +k1−
n−2K−2∑
j=3

γ1j

)

×Γ

(
K−1∑
i=0

γ̃2(n−2i−1) + γ̃2(n−2K−1) +∆2δn−2K−3,1δ2δ4...δn−2K−4 +k(n−2K−3),24...(n−2K−4)

+
n−2K−2∑
j=3

γ1j +
∑

3≤i<j≤n−2K−2
(ij)∈VOPE

γij


×

n
2−K−2∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+1)a+∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−2K−1,...,n−1

γ(2j+1)b




×

n
2−K−2∏
j=1

Γ(
n−1∑

a=n−2K−1

γ̃(2j+2)a+∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1

+
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1)−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K−1,...,n−1

γ(2j+2)b)

 , (B.31)
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where

Wn−2K−3 (B.32)

:=Γ

(
n−2K−2∑
i=1,i 6=2

γ̃i(n−2K)+
n−2K−2∑
i=1

γ̃i(n−2K−1)+∆δn−2K−3δn−2K−2,δn−2K−1 +k(n−2K−3)(n−2K−2),(n−2K−1)

)

×Γ

(
n−2K−2∑
i=1,i 6=2

n−1∑
j=n−2K+1

γ̃ij+
K−1∑
i=0

γ̃2(n−2i−1)+∆δn−2K−3δn−2K−1,δn−2K−2 +k(n−2K−3)(n−2K−1),(n−2K−2)

)

×

Γ

(
n−1∑

a=n−2K+1

γ̃(n−2K)a+
n−1∑

a=n−2K+1

γ̃(n−2K−1)a+∆δn−2K−1δn−2K−2,δn−2K−3 +k(n−2K−1)(n−2K−2),(n−2K−3)

)
Γ
(∑n−2K−2

i=1,i 6=2

∑n−1
j=n−2K−1

γ̃ij+
∑K

i=0
γ̃2(n−2i−1)+∆δn−2K−3 +2kn−2K−3

) ,

which agrees with Wj in (4.58) after setting j = n− 2K − 3 (i.e. for odd j).

B.3.3 Integrals over a magenta-colored chain

Integrating (4.62) over γ2(n−2K−3) using the first Barnes lemma (4.15), and shifting vari-
ables γi(n−2K−3) → γi(n−2K−3) − γi(n−2K−2) for i = 1, 3, 4, . . . , n− 2K − 4, we get

∫
dγ2(n−2K−3)

2πi Ln−2K−2 =

n
2−K−3∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 +k(2j−1)(2j),(2j+1)−
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×Γ

(
γ̃1(n−2K) + γ̃1(n−2K−1) +

n−1∑
j=n−2K+1

γ̃1j +∆1δ1,2 +k1−
n−2K−3∑
j=3

γ1j

)

×Γ

(
K−1∑
i=0

γ̃2(n−2i−1) + γ̃2(n−2K−1) +∆2δn−2K−3,1δ2δ4...δn−2K−4 +k(n−2K−3),24...(n−2K−4) +
n−2K−3∑
j=3

γ1j

+
∑

3≤i<j≤n−2K−3
(ij)∈VOPE

γij

 L̃n−2K−2

×

n
2−K−3∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+1)a+∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−2K−2,...,n−1

γ(2j+1)b




×

n
2−K−3∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+2)a+∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K−2,...,n−1

γ(2j+2)b)




×Γ

(
γ̃2(n−2K−3) +∆δn−2K−5δn−2K−4,δn−2K−3 +k(n−2K−5)(n−2K−4),(n−2K−3)−

n−2K−4∑
a=1,a 6=2

γa(n−2K−3)

)

×Γ

 ∑
((n−2K−2)a)∈VOPE

a>n−2K−2

γ̃(n−2K−2)a+
∑

((n−2K−3)a)∈VOPE
a>n−2K−2

γ̃(n−2K−3)a+∆δn−2K−3δn−2K−4,δn−2K−5

+k(n−2K−3)(n−2K−4),(n−2K−5)

)
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×Γ

γ̃2(n−2K−3) +
∑

((n−2K−2)a)∈VOPE
a>n−2K−2

γ̃(n−2K−2)a+
∑

((n−2K−3)a)∈VOPE
a>n−2K−2

γ̃(n−2K−3)a+∆δn−2K−4 +2kn−2K−4

−
n−2K−4∑
a=1,a 6=2

γa(n−2K−3)

)−1

, (B.33)

where we have defined

L̃n−2K−2 (B.34)

:=

n−2K−4∏
r=1,r 6=2

Γ(γ̃r(n−2K−2) +γr(n−2K−2))

n−2K−4∏
r=1,r 6=2

Γ(γ̃r(n−2K−3) +γr(n−2K−3)−γr(n−2K−2))


×Γ

(
γ̃2(n−2K−3) +

n−1∑
a=n−2K−1

γ̃(n−2K−3)a+∆(n−2K−3)δn−2K−4,(n−2K−2) +kn−2K−4

−
n−2K−4∑
a=1,a 6=2

γa(n−2K−3) +
n−2K−4∑
a=1,a 6=2

γa(n−2K−2)



×Γ

 ∑
((n−2K−2)a)∈VOPE

a>n−2K−2

γ̃(n−2K−2)a+∆(n−2K−2)δn−2K−4,(n−2K−3) +kn−2K−4−
n−2K−4∑
a=1,a 6=2

γa(n−2K−2)

 .

Now using (4.35), we can evaluate the integral
(∏n−2K−4

r=1,r 6=2
∫ dγr(n−2K−2)

2πi

)
L̃n−2K−2, to get

(
n−2K−4∏
r=1,r 6=2

∫
dγr(n−2K−2)

2πi

)
L̃n−2K−2

=

(∏n−2K−4
r=1,r 6=2 Γ(γ̃r(n−2K−2) + γ̃r(n−2K−3) +γr(n−2K−3))

)
Γ

 ∑
(r(n−2K−2))∈VOPE

γ̃r(n−2K−2) +
∑

(r(n−2K−3))∈VOPE

γ̃r(n−2K−3) +∆δn−2K−4 +2kn−2K−4


×Γ

γ̃2(n−2K−3) +
∑

((n−2K−2)a)∈VOPE
a>n−2K−2

γ̃(n−2K−2)a+
∑

((n−2K−3)a)∈VOPE
a>n−2K−2

γ̃(n−2K−3)a+∆δn−2K−4 +2kn−2K−4

−
n−2K−4∑
a=1,a 6=2

γa(n−2K−3)

)
Γ

 ∑
(r(n−2K−2))∈VOPE

γ̃r(n−2K−2) +∆(n−2K−2)δn−2K−4,(n−2K−3) +kn−2K−4


×Γ

 ∑
(r(n−2K−3))∈VOPE

γ̃r(n−2K−3) +∆(n−2K−3)δn−2K−4,(n−2K−2) +kn−2K−4

 . (B.35)
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Putting the results of these integrations back into În−2K−1 in (4.61), we get

În−2K−1 (B.36)

= Γ(∆12,δ1−k1)

n
2−K−3∏
j=1

Γ(∆(2j+1)(2j+2),δ2j −k2j)

 ∏
(rs)∈VOPE

∫
dγ̃rs
2πi Γ(−γ̃rs)(vrs−1)γ̃rs



×

 n−3∏
j=n−2K−4

Wj


 ∏

(rs)∈VOPE
s 6=n−2K−3,...,n−1

∫
dγrs
2πi Γ(γ̃rs+γrs)


n−2K−4∏
r=1,r 6=2

∫
dγr(n−2K−3)

2πi



×


n
2−K−3∏
j=1

Γ

∆δ2j−1δ2j ,δ2j+1 +k(2j−1)(2j),(2j+1)−
∑

(ab)∈VOPE
a<b,b=2j+1 or 2j+2

γab




×Γ

γ̃1(n−2K) + γ̃1(n−2K−1) +
n−1∑

j=n−2K+1
γ̃1j +∆1δ1,2 +k1−

n−2K−3∑
j=3

γ1j


×Γ

(
K−1∑
i=0

γ̃2(n−2i−1) + γ̃2(n−2K−1) +∆2δn−2K−3,1δ2δ4...δn−2K−4 +k(n−2K−3),24...(n−2K−4)

+
n−2K−3∑
j=3

γ1j +
∑

3≤i<j≤n−2K−3
(ij)∈VOPE

γij



×


n
2−K−3∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+1)a+∆(2j+1)δ2j ,(2j+2) +k2j−
∑

((2j+1)b)∈VOPE
b 6=n−2K−2,...,n−1

γ(2j+1)b




×


n
2−K−3∏
j=1

Γ

 n−1∑
a=n−2K−1

γ̃(2j+2)a+∆(2j+2)δ2j+1,(2j+1)δ2j−1 +k2j+1,2j−1 +
∑

(b(2j+1))∈VOPE
b<2j+1

γb(2j+1)

−
∑

((2j+2)b)∈VOPE
b>2j+2,b 6=n−2K−2,...,n−1

γ(2j+2)b




×Γ

γ̃2(n−2K−3) +∆δn−2K−5δn−2K−4,δn−2K−3 +k(n−2K−5)(n−2K−4),(n−2K−3)−
n−2K−4∑
a=1,a 6=2

γa(n−2K−3)



×Γ

 ∑
((n−2K−2)a)∈VOPE

a>n−2K−2

γ̃(n−2K−2)a+
∑

((n−2K−3)a)∈VOPE
a>n−2K−2

γ̃(n−2K−3)a+∆δn−2K−3δn−2K−4,δn−2K−5

+k(n−2K−3)(n−2K−4),(n−2K−5)

)n−2K−4∏
r=1,r 6=2

Γ(γ̃r(n−2K−2) + γ̃r(n−2K−3) +γr(n−2K−3))

 ,
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where

Wn−2K−4

:=
Γ(∆(n−2K−3)(n−2K−2),δn−2K−4−kn−2K−4)

Γ

 ∑
(r(n−2K−2))∈VOPE

γ̃r(n−2K−2) +
∑

(r(n−2K−3))∈VOPE

γ̃r(n−2K−3) +∆δn−2K−4 +2kn−2K−4


×Γ

 ∑
(r(n−2K−2))∈VOPE

γ̃r(n−2K−2) +∆(n−2K−2)δn−2K−4,(n−2K−3) +kn−2K−4


×Γ

 ∑
(r(n−2K−3))∈VOPE

γ̃r(n−2K−3) +∆(n−2K−3)δn−2K−4,(n−2K−2) +kn−2K−4

 , (B.37)

which agrees with Wj in (4.58) if we set j = n− 2K − 4 (i.e. for even j).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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