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1 Introduction

D-branes in superstring theory play various essential roles, not only theoretically but also

phenomenologically in particle physics and cosmology, and have been intensively and ex-

tensively investigated (see for example [1–3] for phenomenological works and [4–7] for

cosmological works). But the dynamics has not yet been fully understood. Suppose two
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Dp-branes are set in a target space-time. If they are at rest in parallel, it is a BPS con-

figuration and stable. When they move at a relative velocity v, very weak attractive force

is induced [8, 9]. Furthermore, due to the parametric resonance associated with the open

string modes connecting Dp-branes [8, 10] and also due to the closed string emission [11, 12],

the configuration loses its energy. What is the fate of these Dp-branes? They may be either

separated apart or may be attracted to combine into a stack of Dp-branes with an enhanced

gauge symmetry [13, 14]: beauty is attractive. If an appropriate initial condition is given,

they may start revolving around each other and form a bound state. The motivation of

the present work is to investigate such a possibility.

The mechanism we search for is similar to the Coleman-Weinberg mechanism in the fol-

lowing sense. For a revolving motion, there is repulsive centrifugal potential. Thus, if there

are no other attractive forces, revolving motion cannot be a solution. When two D-branes

relatively move, the configuration generally violates the BPS condition and attractive force

arises radiatively. Thus the question is whether the classical centrifugal potential can be

balanced by the attractive force generated by one-loop radiative corrections of massive

open string modes stretched between revolving D-branes.

In order to answer whether such a stationary state exists or not, we calculate one-loop

corrections to the interaction between two D3-branes revolving with each other. At large

distances r > ls, we cannot expect a bound (resonant) state, since the induced attractive

force is too weak compared to the centrifugal repulsive force. Thus we focus on the behavior

of the potential at shorter distances r . ls. At short distances, the closed string picture

is no longer valid and replaced by its dual open string picture [15]. Then the open string

massless modes dominantly contribute to the potential between D-branes whose effective

action is given by the supersymmetric Yang-Mills (SYM) theory. We first calculate the

one-loop Coleman-Weinberg potential in a background corresponding to the two D3-branes

revolving with each other with the radius r and the angular frequency ω. The U(2) gauge

symmetry in D3-brane worldvolume is spontaneously broken to U(1) × U(1) by the Higgs

mechanism, where the vacuum expectation value is given by the diameter 2r.1 Open strings

stretched between D3-branes acquire mass ∼ 2r due to the Higgs mechanism. In addition,

the revolution with the angular frequency ω breaks supersymmetry and the masses are

split by an amount of ω between bosons and fermions. The one-loop Coleman-Weinberg

potentials m(r, ω)4 logm(r, ω)2 generate the effective potential for the moduli field r. Since

the potential must vanish at ω = 0, we expect that the potential between revolving D3-

branes is given by V ∝ ω2r2 in the leading order of r and ω expansions. Therefore, the

moduli field r is expected to acquire mass proportional to the supersymmetry breaking

scale ω.

This is, however, not the end of the story since we have infinitely many massive open

string modes whose masses M are dominantly given by the string scale ms :=
√

1/2πα′,

with additional r and ω corrections; M = M(ms, r, ω). One-loop corrections of the massive

modes to the potential of r are given by the Coleman-Weinberg form M4 logM2. Due to

the supersymmetry at ω = 0, m2
sr

2 terms must vanish. Thus, expanding M(ms, r, ω)

1Here, we set the string scale 2πα′ = 1 and the distance r has dimension of mass.

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
2

with respect to r and ω, one-loop threshold corrections from these massive open string

modes are expected to become ω2r2. Since there are infinitely many massive states, the

coefficients might be large compared to the contributions from the massless modes. One

of the motivations of the present paper is to calculate the string threshold corrections to

the moduli field r in the perspective of the hierarchy problem of the Higgs boson mass.

In this paper, we propose an efficient method to calculate the threshold corrections

of open string massive modes even when the open string spectrum cannot be explicitly

obtained. The method is to combine the SYM and the supergravity calculations with

appropriate cutoffs in the moduli parameters. It was first suggested in [15], where a par-

tial modular transformation (open-closed string duality transformation) was utilized. The

partial modular transformation converts the ultraviolet (UV) region of the open string

one-loop amplitude to the infrared (IR) region of the closed string tree propagations, and

an introduction of cutoffs in the moduli parameter avoids the double counting of summing

both open and closed string channels. We apply the method to calculate the interaction

potential between revolving D3-branes in parallel.

The paper is organized as follows. In section 2, we first introduce a method to efficiently

calculate string threshold corrections from massive open string modes in D-brane models.

In a toy example where the open string spectrum can be exactly obtained, we check that the

method gives a very accurate approximation to the potential. We then apply it to a system

of revolving Dp-branes. In section 3, the contributions from massless open string modes

are calculated in the SYM theory with a stationary revolving background. In section 4,

we calculate the contributions from massive open string modes using the supergravity

theory with an appropriate Schwinger parameter cutoff. In section 5, we sum up these

two contributions in sections 3 and 4. We explicitly evaluate the effective potential at

short distances r � ms by expanding the formulae derived in the previous sections, and

draw the shape of the potential. We also discuss a possibility of a bound state. Section 6

is devoted to conclusions and discussions. Some technical details in the calculations are

given in appendices. In appendix A, we derive tree amplitudes of the supergravity for a

pair of generally moving Dp-branes. In appendix B, we evaluate the one-loop Yang-Mills

amplitude for a system of revolving Dp-branes, especially p = 3, by using the ω-expansion.

The expansion is valid for ω < r. In appendix C, the same amplitude is evaluated by the

r-expansion, which is valid for r < ω.

2 String threshold corrections in D-brane models

We are interested in interaction potential between D-branes, which are relatively moving

in a target space-time. At weak string coupling, we can obtain the potential by calculating

the one-loop partition function of an open string stretched between the D-branes. For

simple cases, we can quantize the stretched open strings and determine a closed form of

the one-loop effective potential. But in many other cases where D-branes are accelerating,

it is not possible to write the effective potential in a closed form, since open strings have

complicated boundary conditions. For example, when two D-branes are revolving like a

binary star, open string spectrum can be solved only perturbatively with respect to the
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relative velocity [16]. Thus, in order to calculate the potential between these D-branes,

it is necessary to develop an alternative method. In this section, we propose an efficient

method to obtain the interaction potential between generally moving D-branes, including

threshold corrections of massive open string modes. The method was indicated in a seminal

paper [15].

Schematically, the effective potential V (R) is given as

V (R) = −
∫ ∞

0

dt

t
e−

R2

2πα′ tZ(t), (2.1)

where R is the distance between the D-branes. Z(t) is the partition function of the stretched

open string with the modulus (Schwinger parameter) t, where the factor e−
R2

2πα′ t due to

the string tension is extracted. In many known examples the R-dependence only appears

through e−
R2

2πα′ t and Z(t) is R-independent, but generally it is not the case. The method for

analyzing the effective potential at all ranges of R is based on a simple idea of separating

the integration region into the UV region of t ∈ [0, 1] and the IR region of t ∈ [1,∞). The

IR region for the open strings is dominantly given by the massless modes of open strings. If

the modular transformation for Z(t) can be explicitly performed, the UV region is mapped

to the IR region of the dual closed strings and thus determines the large R behavior of the

potential. But as we will see in the next section 2.1, it may also give sizable contributions

to the small R behavior of the potential. They are the threshold corrections of infinitely

many open string massive modes.

The UV region [0, 1] is dominantly described by the massless closed string modes, i.e.,

supergravity. The property holds even when the modular transformation is not explicitly

given. Thus the open string one-loop amplitude of the UV region is approximated by using

the supergravity calculations with an appropriate cutoff corresponding to t ∈ [0, 1].

2.1 Why are the string threshold corrections important?

In this section, we explain the method of partial modular transformation. It can provide

a good approximation of the effective potential without directly performing the one-loop

open string amplitude. Let us start from a toy example in the bosonic string theory. The

model contains an open string tachyon and the potential is not well-defined for small R, but

still it is a good example to see its efficiency and usefulness of the method. The effective

potential of a pair of static parallel Dp-branes in the bosonic string theory is given by

V (R) = −
∫ ∞

0

dt

t
e−

R2

2πα′ t(8π2α′t)−
1
2

(p+1)η(it)−24. (2.2)

The integral contains contribution from the tachyon which makes the integral divergent at

small R. We simply ignore it here. In the following sections, we will consider tachyon-free

models whose effective potential is well-defined for all ranges of R.

First, let us consider the potential at large R. As usual, the asymptotic behavior of

V (R) at large R can be easily determined by using the modular transformation. Due to

the exponential factor e−
R2

2πα′ t, small t region dominantly contributes to the behavior at
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large R. After a modular transformation, we get

V (R) = −(8π2α′)−
1
2

(p+1)

∫ ∞
0

ds e−
R2

2πα′ s
−1

s
1
2

(p−25)η(is)−24. (2.3)

The large s region gives the dominant contribution at large R. Thus we expand the

Dedekind eta function η(is) as

η(is)−24 =

∞∑
n=−1

dne
−2πns, (2.4)

where d−1 = 1, d0 = 24, d1 = 324, d2 = 3200 etc., and we retain only terms with small n.

Again we ignore the closed tachyon contribution (n = −1) here. The n = 0 term gives

V (R) ∼ −(4π)−
1
2

(p+1)(2πα′)11−pΓ

(
23− p

2

)
Rp−23, (2.5)

which is a good approximation for large R, up to the tachyonic contribution. It corresponds

to the exchange of massless closed string states, i.e., the dilaton and the graviton.

The behavior of V (R) at small R, however, is more non-trivial. Similarly we can

expand the η(it) in eq. (2.2) by using the formula of eq. (2.4). Then, discarding the open

string tachyon (d−1), we may think that only the massless open string modes contribute

to the behavior of V (R) at small R. But actually it is not the case because all values of

t, including large t, can contribute to the integral.2 For example, the contribution from

n-th excited states with the coefficient dn in (2.4) gives the following contribution to the

effective potential V (R);∫ ∞
1/Λ2

dt

t
e−

R2

2πα′ tt−
1
2

(p+1)e−2πnt

=

{
2Λ−

√
4πx+O(1/Λ), (p = 0)

Λ4

2 − Λ2x+ 3−2γ
4 x2 − 1

2x
2 log(x/Λ2) +O(1/Λ2), (p = 3)

(2.6)

where we have introduced the UV cutoff Λ (in unit of the string scale) and

x :=
R2

2πα′
+ 2nπ. (2.7)

The first and the second terms in the formula for p = 3 are nothing but the quartic and

quadratic divergences in d = 4 quantum field theories. The third and the fourth terms are

the Coleman-Weinberg effective potential with a mass squared, M2 = x. Since x increases

with increasing n, massive open string modes give huge contributions to the low energy

effective potential. Therefore, we cannot simply discard the contributions from massive

open string states in determining the behavior of V (R) for small R, even though they

are heavy. We also need to take an appropriate treatment of the UV cutoff Λ appearing

2It is known that a singular behavior of physical quantities can be extracted solely from the lightest

open string states which become massless in the singular limit [15].
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in the above formulas, which causes ambiguities of finite renormalizations of low energy

observables.

In addition, the above calculations can provide behaviors of the potential V (R) only

for small R or large R regions. But, we are interested in the behavior of potential V (R)

in the whole ranges of R. In the next section, we propose an efficient method to evaluate

V (R) interpolating the small R and large R regions.

2.2 Partial modular transformation

We will now provide an efficient method to obtain a good approximation of V (R) for

all ranges of R. Interestingly, this method also resolves the issue of the UV divergences

mentioned in the previous section.

Our method is based on the following rewriting of the potential of eq. (2.2):

V (R) = −(8π2α′)−
1
2

(p+1)

[∫ ∞
1

dt

t
e−

R2

2πα′ tt−
1
2

(p+1)η(it)−24

+

∫ ∞
1

ds e−
R2

2πα′ s
−1

s
1
2

(p−25)η(is)−24

]
. (2.8)

Here, we divided the integration region [0,∞) for t into [0, 1] and [1,∞), and perform the

modular transformation for the first half region. An advantage of this rewriting is that,

since t, s ≥ 1 are satisfied, the Dedekind eta functions in the right-hand side can be replaced

with a few terms in eq. (2.4) corresponding to light open (closed) string states, even for

small R. For example,∫ ∞
1

dt

t
e−

R2

2πα′ t−
1
2

(p+1)η(it)−24 → (tachyon) + 24

∫ ∞
1

dt

t
e−

R2

2πα′ t−
1
2

(p+1) (2.9)

is a good approximation for all ranges of R.

Accuracy of the approximation can be estimated as follows. Using the expansion of

eq. (2.4), the left-hand side of eq. (2.9) can be estimated as

∞∑
n=0

dn

∫ ∞
1

dt

t
e−

R2

2πα′ tt−
1
2

(p+1)e−2πnt <
∞∑
n=0

dne
−2πn

∫ ∞
1

dt

t
e−

R2

2πα′ tt−
1
2

(p+1). (2.10)

Since e−2π = 0.001867 is a very small number, the contributions from massive states

are much smaller than those from the massless states. One might be worried that the

exponential growth of dn would invalidate this argument. However, it is known that dn
grows as e4π

√
n, which is not large enough to overcome the suppression factor e−2πn. The

total contribution (without tachyon) to V (R) turns out to be smaller than the massless

state contribution times an infinite sum

∞∑
n=0

dne
−2πn = η(i)−24 − e2π = 1.026 d0. (2.11)

Therefore, the error due to discarding all massive open string states is less than 3%. Note

that the smallness of the error is assured because we have introduced the cutoff at t = 1.

– 6 –
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The second half in eq. (2.8) can be similarly approximated as

∞∑
n=0

dn

∫ ∞
1

ds e−
R2

2πα′ s
−1

s
1
2

(p−25)e−2πns <

∞∑
n=0

dne
−2πn

∫ ∞
1

ds e−
R2

2πα′ s
−1

s
1
2

(p−25). (2.12)

Therefore, retaining the contributions from massless closed string states gives a good ap-

proximation with the same accuracy as above. We emphasize that the accuracy of the

approximation does not depend on R, so this approximation is valid for all range of R. If

one needs a more precise approximation, one can retain the first excited states for both

open and closed string channels. Then,

∞∑
n=1

dne
−2πn = η(i)−24 − e2π − 24 = 1.019 d1e

−2π, (2.13)

shows that the expected error is about 0.019 d1e
−2π/d0 = 0.05%.

Several comments are in order. First the method is to sum the contributions from the

open massless modes and the closed massless modes. If we did not introduce the Schwinger

parameter cutoff, it would be a double counting. But as is clear from the procedure, it is

not. Next, the expression is finite, as long as the square of the mass of the “tachyonic”

state is positive. This implies that the issue of the UV divergences and ambiguities of

finite renormalizations mentioned above are resolved by summing all open string massive

contributions. Finally, in eq. (2.8), we separated the region of the moduli integration at

t = s = 1, which is the fixed point of the modular transformation. If we separate the

modulus at a different value, t = 2 and s = 1/2 for example, the suppression factor for the

open string channel becomes e−4π = 3.487× 10−6 and the approximation becomes better.

However, the suppression factor for the closed string channel becomes e−π = 0.04321,

giving a worse approximation. Hence the choice t = s = 1 seems to be optimal.

2.3 Another example: D3-branes at angle

As another example in the superstring case, we consider a pair of D3-branes at angle in

Type IIB string theory. We follow the notations of the section 13.4 in [17, 18]. For φ4 = 0,

the one-loop effective potential is given by

V (R) = −
∫ ∞

0

dt

t
(8π2α′t)−

1
2 e−

R2

2πα′ t
i
∏4
a=1 ϑ11

(
i
πφ
′
at, it

)
η(it)3

∏3
a=1 ϑ11

(
i
πφat, it

) , (2.14)

where

φ′1 :=
1

2
(φ1 + φ2 + φ3), φ′2 :=

1

2
(φ1 + φ2 − φ3),

φ′3 :=
1

2
(φ1 − φ2 + φ3), φ′4 :=

1

2
(φ1 − φ2 − φ3). (2.15)

We assume that the angles φa are small so that the mass spectrum of the stretched open

string is not largely deviated from that for the BPS configuration with φa = 0. This

integral is convergent for large t if

4∑
a=1

|φ′a| ≤
3∑

a=1

|φa| (2.16)

– 7 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
2

Figure 1. The effective potential V (R) for D3-branes at angle with φ = π/12 and α′ = 1. The

exact effective potential in eq. (2.14) is drawn with red solid line. The blue broken line shows the

potential using the approximate formula in eq. (2.18), which agrees very well with the exact one.

is satisfied. This corresponds to the condition for the absence of open string tachyons. A

solution of this condition is

φ1 = φ2 = φ3 = φ (2.17)

for any φ. The integral is always convergent for small t since there is no closed string

tachyons. Therefore, the effective potential V (R) with φa satisfying eq. (2.17) is well-

defined for all ranges of R.

Similarly to the bosonic example in the previous section, the stringy result of eq. (2.14)

can be approximated by a sum of open light and closed massless contributions,

Ṽ (R) =
1√

8π2α′

[∫ ∞
1

dt t−
3
2 e−

R2

2πα′ t
2 sinh

(
3
2φt
)

sinh3
(

1
2φt
)

sinh3(φt)

+

∫ ∞
1

ds s−
3
2 e−

R2

2πα′ s
−1 2 sin

(
3
2φ
)

sin3
(

1
2φ
)

sin3 φ

]
. (2.18)

This formula provides a good approximation of eq. (2.14). Indeed, the plot of V (R) and

Ṽ (R) is shown in figure 1. The error for the approximation is quite small for all range of

R, which is difficult to see by naked eyes.

2.4 General recipe

Let us summarize the method to give an efficient approximation to the one-loop effective

potential V (R) at all ranges of R. In the example in the previous section, given a modulus

integral for the effective potential of interest in eq. (2.14), we divided the integration region

into two, and performed the modular transformation for one of the integrals. Then, we

retained only the contributions from light states to the integrals, open (nearly) massless

states and closed massless states. The resulting expression gives a good approximation

to the full effective potential for all ranges of R. Now we generalize the method to more

complicated situations. To determine the approximate expression for the effective potential

– 8 –
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in the D-brane system, we did not actually need to know the full spectrum of the stretched

open string. Only the information of the effective theories of the open massless states and

the closed massless states are necessary. Namely the approximate effective potential is

given as a sum of the SYM and the supergravity contributions;

Ṽ (R) = Ṽo(R) + Ṽc(R), (2.19)

where Ṽo(R) and Ṽc(R) are schematically given as

Ṽo(R) = −
∫ ∞

1

dt

t

∫
dDk

(2π)D

∑
light open

e−2πtEo(k)− R2

2πα′ t,

Ṽc(R) = −
∫ ∞

1
ds

∑
massless
closed

∫
dD
′
k

(2π)D′
〈B|c〉〈c|B′〉e−2πsEc(k)− R2

2πα′ s
−1

. (2.20)

Here |B〉 and |B′〉 are the boundary states for the D-branes and |c〉 are the closed string

massless states propagating between D-branes.

Ṽo(R) is the Schwinger parametrization of the one-loop determinant for light open

string states with the UV cutoff at the string scale. Thus, it can be obtained from the

worldvolume theory of the D-brane system under consideration. Suppose that a D-brane

configuration of interest is described by a classical field configuration in the worldvolume

theory. Then, the one-loop calculation around the classical configuration gives the desired

one-loop determinant. If we rewrite this in terms of the Schwinger parameter and put a

suitable cutoff, we obtain Ṽo(R) without performing any stringy calculations.

On the other hand, Ṽc(R) is obtained from the massless closed string exchange between

the D-branes. For general configurations of D-branes, see [19, 20]. This can be understood

by noticing that the Schwinger parametrization of the massless propagator in D′ dimensions

is proportional to ∫
dD
′
k

(2π)D′
eikx

k2
= (4π)−

D′
2

∫ ∞
0

ds s−
D′
2 e−

1
4
x2s−1

. (2.21)

The interaction vertex 〈B|c〉 of a D-brane to a closed string state is given by the corre-

sponding Dirac-Born-Infeld (DBI) action with Chern-Simons (CS) term, provided that the

trajectory of the D-brane is specified. Then, we obtain Ṽc(R) by determining the appropri-

ate tree amplitudes in supergravity, written in the Schwinger parametrization, and putting

a suitable UV cutoff at the string scale.

Now, we have the recipe for a well-approximated expression to the full one-loop effective

potential of a D-brane system, which includes threshold contributions from infinitely many

massive open string modes:

1. Find a classical configuration in the worldvolume theory of a D-brane system under

consideration, which corresponds to the D-brane configurations we are interested in.

Then perform one-loop calculations around the classical configuration, and express

the resulting one-loop determinant in terms of the Schwinger parameter t. UV cutoff

in the t-integration is introduced.
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2. Calculate the classical potential, mediated by the massless closed string states in

supergravity, between the given configurations of D-branes. The coupling vertices

are derived from the corresponding DBI action with CS term. Express the result in

terms of the Schwinger parameter s and introduce the UV cutoff.

3. Normalize t and s such that the R-dependence appears in either of the form

e−
R2

2πα′ t, e−
R2

2πα′ s
−1

, (2.22)

and put the “cutoff” at t, s = 1. This corresponds to introducing the UV cutoff at

the string mass scale ms = (2πα′)−1/2.

4. The sum of the above two expressions gives a good approximation Ṽ (R) to the full

effective potential V (R) for all ranges of R.

If we interpret this recipe from the open string channel, what we have done amounts

to summing all the stringy threshold corrections to the effective potential with a very good

accuracy. This can be done by converting the threshold corrections into a contribution

from the closed string massless states. The open-closed duality plays a key role in this

calculation.

Note that the above calculations in the recipe can be performed even for off-shell con-

figurations of D-brane system. In principle, an off-shell interaction of D-branes would be

calculated in terms of an open string field theory. The leading order contribution with

respect to gs is given by the one-loop open string amplitude. The Schwinger parametriza-

tion for this amplitude should be available. According to the recipe given above, we divide

the integration region of the Schwinger parameter into two. A half of them corresponding

to small Schwinger parameters can be replaced with a tree amplitude of a closed string

field theory, assuming that the open-closed duality persists off-shell. By truncating both

string field theory calculations, they are reduced to off-shell calculations in a worldvolume

theory of the D-branes and in a supergravity. We know, in principle, how to perform the

both calculations. These calculations should give an approximate effective potential for an

off-shell D-brane system.

We should also emphasize again that our recipe does not suffer from a double-counting

problem, since we have introduced a cutoff in the Schwinger parameter integration. One

can convince oneself of the validity of our recipe by examining the large R behavior of

Ṽo(R). Due to the factor e−
R2

2πα′ t and the cutoff at t = 1, Ṽo(R) exponentially damps at

large R, V (R) ∼ e−R
2/2πα′ . Therefore, the Newton potential appears only from Ṽc(R). It

is also important to notice that, although Ṽc(R) ∼ −1/R7−p at large R, Ṽc(R) is finite in

the limit R→ 0, due to the cutoff at s = 1.

In the following, we apply our method to the revolving D-branes. In [16], we inves-

tigated this system based on a worldsheet theory of the stretched open string. However,

there were several difficulties. One of them is the fact that the revolving configuration is

off-shell at tree level, so that worldsheet calculations could have some troubles, for example

an ambiguity for the renormalization procedure. We will see that our method in this paper

gives a quite reasonable finite result for the effective potential of the revolving D-branes,

improving our previous investigation in [16].

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
2

3 Gauge theory calculations in revolving Dp-branes

In the following sections, we apply the recipe in the previous section to calculate the

effective potential Ṽ (R) for a system of Dp-branes revolving around each other. The

distance R = 2r is chosen to have mass dimension 1 and so is the radius of the revolution

r. The radius with dimension −1 is given by 2πα′r. In this section, we set 2πα′ = 1.

To determine Ṽo(2r), we perform a one-loop calculation around a suitable background

field configuration in maximally supersymmetric Yang-Mills theory in p+1 dimensions.3

For Ṽc(2r), in the next section, we calculate the amplitude for the one-particle exchange

between the revolving Dp-branes in Type II supergravity.

Before discussing details, we first briefly explain our procedure to calculate the one-

loop radiative corrections to the effective potential based on the background field method.

We first divide the field configurations into collective coordinates and fluctuations around

it. The collective coordinates represent generally off-shell background. In the present case,

it represents the revolving motion of D-branes. On the other hand, fluctuations are chosen

so that they are perpendicular to the collective coordinates in the field configurations so

that the Gaussian integrations can be performed. Massive open string modes correspond to

these fluctuations. Then by calculating the one-loop determinant, we can obtain one-loop

corrections to the effective potential.

The maximally supersymmetric Yang-Mills theory in p+1 dimensions consists of gauge

fields Aµ (µ = 0, 1, · · · , p), scalar fields ΦI (I = p + 1, · · · , 9) and fermions which are

obtained from a Majorana-Weyl fermion Ψ in ten dimensions via the dimensional reduction.

Since we want to describe two Dp-branes revolving around each other, we choose the gauge

group to be SU(2). The U(1) part describes the center of mass degrees of freedom and it is

irrelevant in the present analysis. The signature of the metric is (−1, 1, · · · , 1) all through

the paper.

The action including a gauge-fixing term and the associated ghost action is given by

S =
1

g2

∫
dp+1x Tr

[
−1

4
FµνF

µν − 1

2
DµΦID

µΦI +
1

4
([ΦI ,ΦJ ])2

+
i

2
Ψ̄ΓµDµΨ +

1

2
Ψ̄ΓI [ΦI ,Ψ]

]
− 1

2g2

∫
dp+1x Tr

[
(∂µAµ − i[BI ,ΦI ])

2
]

+
1

g2

∫
dp+1x Tr

[
c̄(∂µDµc− [BI , [ΦI , c]])

]
, (3.1)

where Γµ,ΓI are the Dirac matrices in ten dimensions, and BI are background fields for

3The effective theory of Dp-branes is given by the DBI action with CS term and contains higher derivative

corrections to the SYM theories. These higher dimensional vertices are suppressed by a factor 1/ms and

the corrections to the effective potential between D-branes can be neglected in the region r < ms. Such

suppression property is different from the threshold corrections of massive open string modes running in

internal lines of the Feynman diagrams, which may give sizable contributions to the potential as discussed

in section 2.1.
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the scalars ΦI . We have chosen the background field gauge

∂µAµ − i[BI ,ΦI ] = 0. (3.2)

(See e.g. [21].) This is a natural gauge choice from the point of view of N = 1 SYM theory

in ten dimensions.

3.1 SYM in a general background BI

We expand the action of eq. (3.1) around the background BI by setting

Aµ = aµ, ΦI = BI + φI , Ψ = ψ. (3.3)

The relevant part S2 of the action for obtaining the one-loop determinant consists of terms

quadratic in the fluctuations aµ, φI and ψ. It is given by

S2 =
1

g2

∫
dp+1x Tr

[
−1

2
(∂µaν)2 +

1

2
[BI , aµ]2 − 1

2
(∂µφI)

2 +
1

2
[BI , φJ ]2

+[BI , BJ ][φI , φJ ] + 2i∂µBI [a
µ, φI ]

+
i

2
ψ̄Γµ∂µψ +

1

2
ψ̄ΓI [BI , ψ] + c̄∂µ∂µc− c̄[BI , [BI , c]]

]
.

(3.4)

In the following, we are interested in a background configuration BI corresponding to

a motion of the Dp-branes. The background configuration BI takes the form of

BI = bI(t)σ3, (3.5)

where bI(t) are functions of time t, describing the trajectories of the Dp-branes, and σi are

Pauli matrices. It turns out that most of the terms in S2 including BI are the mass terms

for the fluctuations. In addition, there is a mixing term of the gauge field aµ and the scalar

field φI , 2i∂µBI [a
µ, φI ] which gives a non-trivial effect of the background to the one-loop

determinant.

The effective potential between the Dp-branes are induced by an open string stretched

between them. Such an open string corresponds to the off-diagonal components of the

fluctuations, which are proportional to σ1,2. As mentioned before, there are no linear terms

for them in the action. To compute the one-loop determinant relevant for the effective

potential, we perform the Wick rotation

t = −iτ, a0 = iaτ , Γ0 = −iΓτ (3.6)

to regularize the path integral, and set

am = ãmσ+ + ã†mσ−, φI = ϕIσ+ + ϕ†Iσ−, ψ = χσ+ + χ̃σ−, (3.7)
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where σ± := 1
2(σ1 ± iσ2) and m = 1, · · · , p, τ . Note that χ and χ̃ are related to each other

by the Majorana-Weyl condition of ψ. Inserting them into S2, we obtain

S2 =
1

g2

∫
dp+1x Tr

[
|∂man|2 + 4(bI)

2|am|2 + |∂mϕI |2 + 4(bI)
2|ϕJ |2

−4i∂mbI(amϕ
†
I − a

†
mϕI) + iχ̄Γm∂mχ− 2χ̄ΓIbIχ

+c̄+∂
2c+ + c̄−∂

2c− − 4(bI)
2(c̄+c+ + c̄−c−)

]
, (3.8)

where we denoted am instead of ãm for notational simplicity.

3.2 One-loop amplitude of SYM in revolving Dp-branes

We now consider a specific background corresponding to the revolving Dp-branes (p ≤ 7)

in the 8–9 plane. The extended directions of Dp-branes are taken to be the same and thus

always in parallel. The corresponding background configuration is given by

b8 = r cosωτ, b9 = r sinωτ, (3.9)

and bI = 0 otherwise, where ω is the angular frequency of the revolution and r is the

radius of the circle on which the D-branes are revolving. Note that ω above has been

analytically continued according to the Wick rotation of eq. (3.6). To recover the results

in the Lorentzian signature, we will replace ω with −iω.

At first sight, since the quadratic action S2 for the above stationary configuration bI
is τ -dependent, one may think that the one-loop determinant also depends on τ . Indeed,

it is the case when D-branes are moving with a constant relative velocity [8, 9]. But in the

present situation, since the motion is stationary, the τ -dependence of the effective potential

can be eliminated. By introducing new fields ϕ± defined by

ϕ± :=
1√
2
e∓iωτ (ϕ8 ± ϕ9), (3.10)

the τ -dependence of the bosonic part of S2 can be eliminated. Similarly, the τ -dependence

of the fermionic part of S2 can be eliminated by introducing

θ := exp

[
1

2
ωτΓ89

]
χ. (3.11)

In terms of these new fields, the quadratic action S2 becomes

S2 =
1

g2

∫
dp+1x [LB + LF + Lfree] (3.12)

where

LB = |(∂m + iωm)ϕ+|2 + 4r2|ϕ+|2 + |(∂m − iωm)ϕ−|2 + 4r2|ϕ−|2

+|∂ma|2 + 4r2|a|2 − 2
√

2rω
(
ϕ−a

† + ϕ†−a− ϕ+a
† − ϕ†+a

)
, (3.13)

LF = iθ̄Γm

(
∂m −

1

2
ωmΓ89

)
θ − 2rθ̄Γ8θ, (3.14)

Lfree = |∂mai|2 + 4r2|ai|2 + c̄+∂
2c+ − 4r2c̄+c+ + c̄−∂

2c− − 4r2c̄−c−. (3.15)
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Here, we defined ωm := ωδmτ and i = 1, 2, · · · , p. For notational simplicity, we used a

instead of aτ .

Now we can compute the one-loop determinant. Since the τ -dependence is no longer

present, we can employ the momentum representation. Then, the bosonic Lagrangian LB
can be written as

(k2 + 4r2)

∣∣∣∣∣a(k)− 2
√

2rω

k2 + 4r2
(ϕ−(k)− ϕ+(k))

∣∣∣∣∣
2

+(k2 + ω2 + 4r2 + 2ωkτ )|ϕ+(k)|2 + (k2 + ω2 + 4r2 − 2ωkτ )|ϕ+(k)|2

− 8(rω)2

k2 + 4r2
|ϕ−(k)− ϕ+(k)|2, (3.16)

where k2 = (km)2. The path integral for a can be easily performed, resulting in the

determinant det(−∂2 +4r2)−1. To perform the path integral for ϕ±, we need to diagonalize

the matrix (
k2 + ω2 + 4r2 − 8(rω)2

k2 + 4r2

)
I2×2 +

(
2ωkτ

8(rω)2

k2+4r2
8(rω)2

k2+4r2
−2ωkτ

)
, (3.17)

where I2×2 is the diagonal matrix. Its eigenvalues are given by

EB±(k) := k2 + ω2 + 4r2 − 8(rω)2

k2 + 4r2
±

√
4ω2k2

τ +

(
8(rω)2

k2 + 4r2

)2

. (3.18)

Hence, the path integral for the bosonic field ϕ± gives det(EB+(−i∂))−1 det(EB−(−i∂))−1.

Next, consider the fermionic part LF . In the momentum representation, it can be

written as

−( θ̄+ θ̄− )

(
Γm
(
km + 1

2ωm
)

2rΓ8

2rΓ8 Γm
(
km − 1

2ωm
))( θ+

θ−

)
, (3.19)

where θ± satisfy iΓ89θ± = ±θ±. The result of the path integral is given by the determinant

of the following matrix[ (
km + 1

2ωm
)2

+ 4r2 2rωΓτ8

2rωΓ8τ
(
km − 1

2ωm
)2

+ 4r2

]

=

[
1 0

0 Γ8τ

][ (
km + 1

2ωm
)2

+ 4r2 2rω

2rω
(
km − 1

2ωm
)2

+ 4r2

][
1 0

0 Γτ8

]
,

(3.20)

which is the square of the matrix in eq. (3.19). The eigenvalues of this matrix are

EF±(k) = k2 +
1

4
ω2 + 4r2 ± ω

√
k2
τ + 4r2 (3.21)
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with multiplicity four for each of them. Therefore, the resulting determinant is given by

det(EF+(−i∂))4 det(EF−(−i∂))4.

The remaining part Lfree simply gives det(−∂2 + 4r2)−5.

In summary, we obtain the one-loop determinant whose logarithm is given by

log
[
det(−∂2 + r2)−6 det(EB+(−i∂))−1 det(EB−(−i∂))−1

× det(EF+(−i∂))4 det(EF−(−i∂))4
]

=

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1

[
e−tEB+(k) + e−tEB−(k)

−4
(
e−tEF+(k) + e−tEF−(k)

)
+ 6 e−t(k

2+4r2)
]
, (3.22)

where Λ is a UV momentum cutoff with mass dimension 1. In section 3.3, it is fixed at

Λ = ms following the recipe in section 2.4.

A similar calculation was performed in [8] where D0-branes are moving with constant

velocities. In this situation, an open string stretched between the D0-branes changes its

length with time. If the change is non-adiabatic, this causes the parametric resonance,

resulting in open string pair productions. Indeed, the one-loop determinant for this system

has an imaginary part. On the other hand, since our investigation is performed to find

a possibility of a solution in which the induced attractive potential and the centrifugal

potential are balanced, we assumed that the revolving D-brane system we have discussed

so far is stationary. Thus the length of the stretched open string is constant in time and

there is no pair production of open strings, indicated by the absence of an imaginary part

in the one-loop determinant (3.22).

3.3 One-loop effective potential Ṽo(2r) from SYM

The contributions from the open light modes to the effective potential Ṽo(2r) are given as

a sum of the bosonic and fermionic ones,

Ṽo(2r) = Ṽo,B(2r) + Ṽo,F (2r) (3.23)

where they are given by

Ṽo,B(2r) = −
∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1

[
e−tEB+(k) + e−tEB−(k) + 6e−t(k

2+4r2)
]
, (3.24)

Ṽo,F (2r) = 4

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1

[
e−tEF+(k) + e−tEF−(k)

]
. (3.25)

The ghost contribution is included in the bosonic part, Ṽo,B(2r).

Let us now determine the cutoff parameter Λ following the recipe in section 2.4. The

factor due to the string tension in the above expression is exp(−r2t/(πα′)2) where α′ is

recovered. Since R = 2r, the recipe tells us to choose the cutoff at t̃cutoff = 1 when we rescale

the variable t so that exp(−r2t/(πα′)2) = exp(−(2r)2t̃/2πα′). Thus we choose t = 2πα′t̃
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and the momentum cutoff Λ can be fixed by the relation, tcutoff = Λ−2 = 2πα′t̃cutoff = 2πα′.

Therefore, Λ = ms.

Though Λ should be fixed as above, it is interesting to see the asymptotic behavior

of Ṽo(2r) at large r in the limit Λ → ∞. By rescaling the integration variables, Ṽo(2r) is

rewritten as

Ṽo(2r) = −rp+1

∫ ∞
r2Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4)

6− 8e−
α2

4
t cosh

(
tα
√
k2
τ + 4

)

+2e
−t

(
α2− 8α2

k2+4

)
cosh

t
√

4α2k2
τ +

(
8α2

k2 + 4

)2
 , (3.26)

where α := ω/r. This indicates that the 1/r expansion of this expression corresponds to

the α expansion. We find that there are no terms with an odd power of α, as it should

be, since the potential is independent of the direction of rotation with angular frequency

ω. The O(α0) terms cancel trivially due to supersymmetry. The next O(α2) terms also

cancel between Ṽo,B(2r) and Ṽo,F (2r);

− rp+1

∫ ∞
r2Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4) · 16α2

(
t

k2 + 4
− t2

)
Λ→0−−−→ 0. (3.27)

Then, the leading non-vanishing terms are O(rp+1α4), or equivalently O(v4/r7−p), where

v := rω. This behavior, which can be interpreted as the effective potential for Dp-branes

at large r, is the same as the one expected from the supergravity calculation, which will

be shown in the next section.

The effective potential Ṽo(2r) in the Lorentzian signature is obtained by the replace-

ment ω → −iω after evaluating the integral in the Euclidean signature. Details are dis-

cussed in section 5. We briefly comment on some properties of the effective potential. For

r > ls, the effective potential represents an attractive force, which qualitatively agrees

with the supergravity result. For small r < ls, on the other hand, the effective potential

behaves nontrivially as a function of r and ω. Many cancellations occur between bosons

and fermions and we will show that, for p = 3, a minimum of the potential appears at a

fixed value of ω.

4 Supergravity calculations in revolving Dp-branes

In this section, we calculate the classical potential Ṽc(2r) by the one-particle exchanges of

massless closed string modes.

4.1 Potential between D-branes mediated by supergravity fields

The relevant fields are the graviton, dilaton and R-R (p+1)-field. The bosonic part of the

action of Type II supergravity is given by

SSUGRA =
1

2κ2
10

∫
d10x
√
−g
[
R+

1

2
(dΦ)2 +

1

2
(dC(p+1))2 + · · ·

]
, (4.1)
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where the fields are normalized such that the kinetic terms become canonical. Then the

propagators are given by

dilaton: ∆(x) := 2κ2
10

∫
d10k

(2π)10

eik·x

k2
, (4.2)

graviton: ∆µν;ρσ(x) :=

(
ηµρηνσ + ηµσηνρ −

1

4
ηµνηρσ

)
∆(x), (4.3)

R-R field: ∆µ0···µp;ν0···νp(x) :=
∑

σ∈Sp+1

sgn(σ) ηµ0νσ(0) · · · ηµpνσ(p)∆(x), (4.4)

where the target space indices run over 0, 1 · · · , 9.

We then specify how these supergravity fields are coupled to D-branes. Suppose that

a Dp-brane is embedded in the target space as

Xµ = Xµ(ζ) (4.5)

where ζα are the worldvolume coordinates with α = 0, 1, · · · , p. The interaction vertices of

the Dp-brane with the supergravity fields can be read off from the DBI action with CS term

SDBI+CS = Tp

∫
dp+1ζ

[
e

1
4

(p−3)Φ
√
−ĝ + Ĉp+1

]
, (4.6)

where Tp is the tension of a Dp-brane and

ĝαβ = ∂αX
µ∂βX

νgµν , Ĉ
(p+1)
α1···αp+1 = ∂α1X

µ1 · · · ∂αp+1X
µp+1C

(p+1)
µ1···µp+1 (4.7)

are the induced fields on the worldvolume. The vertices can be read off from the variations

of this action. The relevant terms are

dilaton:
p− 3

4
Tp

∫
dp+1ζ

√
− det η̂αβ δφ, (4.8)

graviton: −1

2
Tp

∫
dp+1ζ

√
− det η̂αβ η̂

γδ∂γX
µ∂δX

ν δgµν , (4.9)

R-R field:
Tp

(p+ 1)!

∫
dp+1ζ εα0···αp∂α0X

µ0 · · · ∂αpXµp δCµ0···µp , (4.10)

where

η̂αβ := ∂αX
µ∂βX

νηµν , η̂αβ η̂βγ = δαγ . (4.11)

The dilaton vacuum expectation value is absorbed in the string coupling constant.

Using the above propagators and interaction vertices, the classical potential is given

by a sum of contributions of the exchanges of the supergravity fields:

Ṽc = −2κ2
10

∫
dp+1ζ

∫
dp+1ζ̃ ∆(X − X̃)

(
FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

)
, (4.12)
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where

FΦ(X, X̃) =

(
p− 3

4

)2

T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃), (4.13)

Fg(X, X̃) = T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

×
(
−(p+ 1)2

16
+

1

2
η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)

)
, (4.14)

FC(X, X̃) = T 2
p det(∂αX · ∂βX̃). (4.15)

Here, FΦ(X, X̃), Fg(X, X̃) and FC(X, X̃) are contributions from the dilaton, graviton and

RR-fields, respectively. Details of the calculations are given in appendix A.1.

4.2 Supergravity potential of revolving Dp-branes

We apply the result of eq. (4.12) to the revolving Dp-branes. The embedding functions Xµ

and X̃µ for the revolving Dp-branes are given by

Xα = ζα, X8 = r cosωζ0, X9 = r sinωζ0,

X̃α = ζ̃α, X̃8 = −r cosωζ̃0, X̃9 = −r sinωζ̃0.
(4.16)

Inserting these functions into eq. (4.12) and performing some of the integrations, we obtain

Ṽc(2r) = −κ2
10T

2
p (4π)−

10−p
2

v4

1 + v2

∫ ∞
Λ̃−2

ds s−
10−p

2

×
∫
dζ exp

[
− 1

4s

(
ζ2 + 2r2(1 + cosωζ)

)]
(1 + cosωζ)2, (4.17)

where v = rω. For details of the calculations, see appendix A.3. Note that we have per-

formed the Wick rotation of ζ0 and ζ̃0 so that the integral is well-defined. ω is analytically

continued as well.

Following the recipe in section 2.4, the cutoff Λ̃ is fixed as follows. The suppression

factor due to the string tension in the above integrand is given by exp(−r2/s). The cutoff

is chosen at s̃ = 1 when this factor is expressed as exp(−(2r)2/(2πα′s̃)). Thus we take s =

πα′s̃/2 and scutoff = Λ̃−2 = πα′/2. Hence Λ̃ needs to be fixed at Λ̃ =
√

4/(2πα′) = 2ms.

Several comments are in order. First, let us investigate the large r behavior of the

potential with v fixed as a small value. The integral eq. (4.17) becomes

Ṽc(2r) = −(4π2α′)3−p(4π)−
7−p
2 Γ

(
7− p

2

)
v4

r7−p +O(v6), (4.18)

It reproduces the effective potential for two Dp-branes moving with the relative velocity

2v and the impact parameter 2r, which can be calculated in string worldsheet theory (see

eq. (13.5.7) in [18]). This provides a consistency check for our result in eq. (4.17).

We note that the potential from the supergravity calculation in eq. (4.18) is propor-

tional to v4/r7−p. This behavior in case of p = 0 is well-known in the calculation of
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D0-brane scattering in the BFSS matrix theory [22, 23]. As mentioned at the end of sec-

tion 3.3, the same potential can be reproduced from the SYM calculation, if we take the

UV cutoff to infinity Λ→∞. In our calculation, Λ needs to be fixed at ms in order to avoid

the double counting, and the behavior of the Newton potential at large r is generated only

by the supergravity calculation.

There is no chance of a bound state at large distances r > ls. The potential is pro-

portional to −ω4rp−3 and a very weak attractive potential. Indeed, if angular momentum

of the revolving D-brane is conserved, ω is proportional to 1/r2. Then the potential is

proportional to −rp−11. Though it is attractive, the attractive force is too weak to balance

with the repulsive centrifugal potential which is proportional to 1/r2.

Finally, note that the potential in eq. (4.17) is proportional to v4 = ω4r4 and the v2 =

ω2r2 terms are cancelled. It is contrary to a naive expectation that there are large radiative

corrections to the ω2r2 term in the effective potential: the supersymmetry breaking scale

is given by ω. We come back to this property in the next section.

5 One-loop effective potential at all ranges of r

We now investigate the behavior of the one-loop contributions, in the sense of open-strings,

to the effective potential at all ranges of r by adding the contributions from SYM and

supergravity; Ṽ (2r) = Ṽo(2r)+ Ṽc(2r). Here we assume that the angular frequency is small

compared to the string scale, ω � ms and the pair of Dp-branes are revolving slowly. We

mainly focus on the p = 3 case. D0-branes are also interesting from the BFSS matrix

theory point of view, since a threshold bound state is expected to arise [24, 25]. We leave

its detailed analysis for future investigations.

In the following, we recover α′ and the “distance” r is defined to have mass dimension

1. The gauge theory results turn out to be intact by regarding r as a quantity with

mass dimension 1. For the supergravity result, we need to replace r with 2πα′r in order

to combine it with the gauge theory result for obtaining the effective potential in the

worldvolume effective field theory.

The contributions from open light modes to the potential in Euclidean signature is

given by a sum of these two contributions,

Ṽo,B(2r) = −
∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−(k2+4r2)t

×

6 + 2e
−ω2t+

8(rω)2

k2+4r2
t
cosh

t
√

4ω2k2
τ +

(
8(rω)2

k2 + 4r2

)2
 ,

Ṽo,F (2r) = 8

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−(k2+4r2)te−

1
4
ω2t cosh

(
t
√
ω2k2

τ + 4(rω)2
)
,

(5.1)

where the UV cutoff is fixed as Λ =
√

1/2πα′ = ms. They are complicated integrals and the

behaviors at small r and ω are nontrivial. We first look at some general behaviors. First,
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as discussed at the end of section 3.3, the potential is exponentially damped Ṽo ∼ e−4r2/Λ2

at large r > Λ = ms. In the small r region, it behaves nontrivially, though the potential

vanishes at r = 0. This can be seen by setting r = 0 in eq. (5.1).

Ṽo,B(2r) = −
∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−k

2t
[
6 + 2e−ω

2t cosh (2ωkτ t)
]
,

Ṽo,F (2r) = 8

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−k

2te−
1
4
ω2t cosh (ωkτ t) . (5.2)

Then, the ω dependence in each integral is removed by a shift of kτ variable: kτ → kτ ± ω
for the bosonic contribution and kτ → kτ ±ω/2 for the fermionic contribution. We see that

the bosonic and fermionic contributions are cancelled at r = 0 and Ṽo(0) = 0. Thus, the

supersymmetry makes the potential non-singular at r = 0. Similarly the potential Ṽo(2r)

vanishes at ω = 0.

The contributions from the supergravity Ṽc(2r) in eq. (4.17) gives the Newton potential

at large r and the threshold corrections to Ṽo(2r) at small r. We discuss more details later,

but here note that the potential is proportional to v4 = ω4r4, and there are no terms

proportional to v2. As discussed in the introduction, since the supersymmetry breaking

scale is given by ω, we may naively expect large threshold corrections proportional to ω2r2

from open string massive modes. In the present calculations, however, they are cancelled

between infinitely many modes, and no terms like ω2r2 are generated for the moduli field

r in the worldvolume effective field theory. It might be a stringy effect with infinitely

many particles, and could not occur in ordinary quantum field theories. It is amusing if

a similar mechanism would be applied to the hierarchy problem of the Higgs potential in

the Standard Model.

5.1 Shape of the one-loop contributions of the effective potential

In this section, in order to get an overview of the one-loop effective potential Ṽ (2r), we

expand the formulae in eq. (5.1) with respect to ω and perform the integrations. First, we

look at Ṽo(2r). From the integral representation of eq. (5.1), the expansion turns out to be

an expansion with respect to ω/r. Thus the validity of the following expansion is restricted

in the region ω < r. This region is important for phenomenological applications [26, 27].

Details of the calculations are given in appendix B. After analytic continuation ω → −iω,

we obtain the effective potential for p = 3 in the Lorentzian signature up to O(ω4);

Ṽo,B(2r) = − Λ4

4π2

[(
1− 4r2

Λ2

)
e−4r2/Λ2

+
16r4

Λ4
E1(4r2/Λ2)

]
−ω2

[
r2

π2
e−4r2/Λ2 −

(
r2

π2
+

4r4

π2Λ2

)
E1(4r2/Λ2)

]
−ω4

[(
1

24π2
+

2r2

3π2Λ2
+

10r4

3π2Λ4

)
e−4r2/Λ2 −

(
6r4

π2Λ4
+

40r6

3π2Λ6

)
E1(4r2/Λ2)

]
+O(ω6), (5.3)
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Ṽo,F (2r) =
Λ4

4π2

[(
1− 4r2

Λ2

)
e−4r2/Λ2

+
16r4

Λ4
E1(4r2/Λ2)

]
−ω2

[
r2

π2
E1(4r2/Λ2)

]
− ω4

[(
1

48π2
− r2

12π2Λ2

)
e−4r2/Λ2

]
+O(ω6), (5.4)

where En(x) are the exponential integral functions defined in eq. (B.9), whose small x

behavior for n = 1 is given by

E1(x) = −γ − log x+ x− x2

4
+O(x3). (5.5)

Both of the bosonic and fermionic contributions have quartic and quadratic divergences

but they are completely cancelled as expected. The sum gives the SYM contribution to

the effective potential;

Ṽo(2r) = −ω
2r2

π2

[
e−4r2/m2

s −
(

4r2

m2
s

)
E1(4r2/m2

s)

]
−ω4

[(
1

16π2
+

7r2

12π2m2
s

+
10r4

3π2m4
s

)
e−4r2/m2

s

−
(

6r4

π2m4
s

+
40r6

3π2m6
s

)
E1(4r2/m2

s)

]
+O(ω6). (5.6)

Here we have replaced Λ by ms. This formula is valid as far as the condition ω < r is

satisfied. At large r it is exponentially damped and the potential is negative so that the

corresponding force is attractive. From a general discussion, we saw that the potential

vanishes Ṽo(0) = 0 at the origin. At small r (but r > ω), the potential in eq. (5.6) behaves

like the inverted harmonic potential, −ω2r2/π2, and the corresponding force is repulsive

for a fixed ω. The next order term proportional to ω4 seems to give a constant value at

r = 0 and contradict with the general discussion Ṽo(0) = 0. However, it is simply because

r = 0 at fixed ω is out of the validity region of the ω expansion in eq. (5.6).

In the region r < ω, we can perform a different approximation of the integral for Ṽo(2r)

to estimate the shape of the potential. We set r = βω and expand Ṽo(2r) in terms of β.

As a result, we obtain

Ṽo =
β2ω4

π2

(
−m

2
s

ω2

(
1− E2(ω2/m2

s)
)

+

∫ ∞
ω2/m2

s

dt

t
e−t/4F

(
1

2
,

3

2
;
t

4

))
+O(β4).

(5.7)

Details of the calculations are given in the appendix C. The leading order behavior with

respect to ω/ms is the same as the above ω-expansion

Ṽo(2r) ∼ −
ω2r2

π2
. (5.8)

Thus, as far as the leading behavior is concerned, eq. (5.6) seems to give a good approxi-

mation at small r.
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Figure 2. The shape of the effective potential Ṽ (2r) (the sum of eqs. (5.6) and (5.9)) with ω = 0.1

and Λ = 1.

The contributions from the supergravity calculations in eq. (4.17) can be also obtained

by the ω expansion. In this case, the expansion is with respect to v = ωr, and the validity

holds as far as ωr < 1 (here, the mass dimension of r is taken to be −1). Recall that, in

this section, r is defined to have mass dimension 1. Thus we need to multiply r in eq. (4.17)

by 1/2πα′ = m2
s. After expanding eq. (4.17) with respect to ω, the integrals can be easily

performed and we obtain

Ṽc(2r) = − ω4

16π2

[
1−

(
1 + 4r2/m2

s

)
e−4r2/m2

s

]
+O(ω6) . (5.9)

At large r, it is approximated by

Ṽc(2r) ∼
−ω4

16π2
= − v4

16π2r4
(5.10)

with v = ωr, which reproduces the Newton-like potential for D3-branes in D=10. At small

r, it becomes

Ṽc(2r) ∼ −
ω4r4

2π2m4
s

. (5.11)

Note that a naively expected term v2 = ω2r2 is absent and the potential starts from v4.

It has been known in the large r behavior of the D-brane potential, but it has also an

important implication in the small r behavior of the effective potential in the field theory

of D-branes.

Now we sum the contributions from SYM and supergravity. The shape of the potential

Ṽ (2r) is drawn in figure 2 with ω fixed at 0.1. At large r, Newton potential is reproduced

and the corresponding force is attractive. At small r, there is a minimum of the one-loop

potential and the corresponding force is repulsive. In the intermediate region of r, both

of the SYM and supergravity contribute to the potential. In the next section, we briefly

argue a possibility of a bound state by combining both of the classical centrifugal potential

and the one-loop effective potential discussed above.

5.2 Can the revolving D3-branes form a bound state?

Finally we briefly argue whether there exists a bound state of revolving D3-branes with the

potential Ṽ (2r) studied above. Assume that the angular momentum is conserved and there
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Figure 3. The shape of the potential U(2r) with T3 = 1, L = 0.01 and Λ = 1.

are no quantum radiation. We then need to take into account the effect of the centrifugal

potential for the D3-branes. Also it is necessary to study the behavior of the potential with

fixing the angular momentum L of the D3-branes per unit volume, instead of the angular

frequency ω.

The potential we need to study is given by

U(2r) :=
L2

4T3r2
+ Ṽ (2r) (5.12)

with ω replaced with L/T3r
2. The relative distance and reduced mass for a unit volume is

given by 2r and T3/2 = m4
s/4πgs. Since our calculations are based on the one-loop string

calculations, the string coupling constant should be smaller than 1. In such a situation, the

potential U(2r) behaves like in figure 3, and there is no minimum, because the centrifugal

potential is more dominant than the induced potential by the one-loop calculations. It

excludes a possibility of forming a bound state for revolving two D3-branes as long as the

string coupling is weak.

The situation is changed if we consider a stack of N D3-branes revolving around each

other. Suppose that each of the revolving D3-branes are replaced with N D3-branes. Then,

Ṽ (2r) is multiplied by N2, since there are N2 open strings stretched between the two sets

of D3-branes. On the other hand, the centrifugal potential is multiplied by N . Therefore,

the potential U(2r) is modified as

UN (2r) :=
NL2

4T3r2
+N2Ṽ (2r). (5.13)

For a sufficiently large N , the behavior of UN (2r) changes to the figure drawn in figure 4,

which is qualitatively different from U(2r). The potential at small r in eq. (5.8) shows

that the potential UN (r) falls off as r−2 for small r after replacing ω by 1/r2. It is still

questionable if a stable bound state exists, but it is amusing that the potential shows

different behavior at small r.

6 Conclusions and discussions

In this paper, we have calculated the one-loop effective potential between revolving par-

allel Dp-branes (especially p = 3) in ten-dimensional space-time. Since the end points of
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Figure 4. The shape of the potential UN (2r) with T3 = 1, L = 0.01 and Λ = 1, N = 5.

open strings attached to the Dp-branes are accelerating, the boundary conditions become

complicated, and we cannot exactly obtain the spectrum of open strings. Thus, in the

usual method with string worldsheet theory, it is difficult to calculate one-loop open string

amplitudes to obtain the shape of the potential in the whole ranges of r.

In this paper, we have introduced a method of partial modular transformation and

calculated the effective potential without resorting to the conventional method to obtain

open string amplitudes. Our method of the partial modular transformation is to perform

the modular transformation only in the UV region of the open string modular parameter.

Then, the one-loop open string amplitudes can be approximated by a sum of the one-

loop amplitudes in the SYM effective worldvolume field theory and tree-level amplitudes

in supergravity theory. Corresponding to the partial modular transformation, appropriate

cutoffs in both theories are introduced, which can remove undesirable double counting of

open and closed channels. Furthermore, the approximation is good with an accuracy of

less than 3%.

We then applied the method to a system of revolving parallel Dp-branes (in particular,

D3-branes) with angular frequency ω and the relative distance 2r. In the SYM side, we

calculated one-loop field theory amplitudes in a background corresponding to the revolv-

ing motion of D-branes. In the supergravity side, we calculated potential generated by

exchanges of supergravity fields between revolving D-branes. Summing these contributions

with appropriate cutoffs, we have obtained a potential Ṽ (2r) in the whole ranges of r. At

large r, the supergravity potential is reproduced. At small r, we found that the potential

has a minimum for a fixed ω, and the whole shape is drawn in figure 2.

From the field theory point of view, r is the moduli field in effective worldvolume SYM

field theory. Due to the supersymmetry, the moduli field is massless at ω = 0 and expected

to acquire a mass proportional to ω by supersymmetry breaking. It is indeed the case in the

SYM calculations; the ω2r2 term is radiatively generated in the effective potential. On the

other hand, the supergravity calculation, which corresponds to one-loop amplitudes of open

string massive states, shows that the leading order term of the potential is given by O(ω4) ,4

and no terms like ω2r2 arise. The cancellation of the threshold corrections to the term ω2r2

among infinitely many massive modes will be related to the large supersymmetries in the

4This fact is known in the context of D0-brane scattering at large r, e.g. [15].

– 24 –



J
H
E
P
0
1
(
2
0
2
0
)
1
8
2

bulk space-time. We hope to apply the cancellation mechanism of the stringy threshold

corrections to the hierarchy problem of the Higgs potential.

Another interesting behavior is the shape of the effective potential and a possibility

of a bound state. The potential in figure 2 has a minimum in small r region, but when

we discuss a bound state, we need to take the centrifugal potential into account. With

the angular momentum kept fixed, the shape of the potential is changed to figure 3 and

the minimum disappears. The balance between the centrifugal potential and the induced

effective potential is, however, subtle and if we consider a stack of N D-branes, the shape

of the potential might change to figure 4. Then the next task is to quantize the collective

coordinate, i.e. D-brane relative motion, in the potential of figure 4. In future investigations,

we want to come back to the issue of bound states and to construct phenomenologically

viable models.
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A Supergravity potential between Dp-branes

In this appendix we calculate the classical potential between revolving Dp-branes induced

by exchange of massless supergravity fields. First, consider a general configuration of a

pair of Dp-branes. Their trajectories Xµ(ζ) and X̃µ(ζ̃) are arbitrary. The propagators and

the interaction vertices necessary for the following calculations are given in subsection 4.1.

A.1 General formula for supergravity potential

The dilaton exchange gives a contribution to the potential as

−
(
p− 3

4

)2

T 2
p

∫
dp+1ζ

∫
dp+1ζ̃

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)∆(X − X̃). (A.1)

The graviton exchange gives a contribution to the potential as

−1

4
T 2
p

∫
dp+1ζ

∫
dp+1ζ̃

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

×η̂αβ(X)∂αX
µ∂βX

ν η̂γδ(X̃)∂γX̃
ρ∂δX

σ∆µν,ρσ(X − X̃). (A.2)

The integrand can be simplified as follows:

η̂αβ(X)∂αX
µ∂βX

ν η̂γδ(X̃)∂γX̃
ρ∂δX̃

σ∆µν,ρσ(X − X̃)

= η̂αβ(X)η̂γδ(X̃)∂αX
µ∂βX

ν∂γX̃
ρ∂δX̃

σ

(
ηµρηνσ + ηµσηνρ −

1

4
ηµνηρσ

)
∆(X − X̃)

= η̂αβ(X)η̂γδ(X̃)

(
2(∂αX · ∂γX̃)(∂βX · ∂δX̃)− 1

4
(∂αX · ∂βX)(∂γX̃ · ∂δX̃)

)
∆(X − X̃)

=

(
2η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)− (p+ 1)2

4

)
∆(X − X̃). (A.3)
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Therefore, we obtain

(p+ 1)2

16
T 2
p

∫
dp+1ζ

∫
dp+1ζ̃

√
− det η̂αβ(X)

√
− det η̂γδ(X̃) ∆(X − X̃)

−1

2
T 2
p

∫
dp+1ζ

∫
dp+1ζ̃

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

×η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)∆(X − X̃). (A.4)

The R-R field exchange gives a contribution to the potential as

−
T 2
p

((p+ 1)!)2

∫
dp+1ζ

∫
dp+1ζ̃ εα0···αp∂α0X

µ0 · · · ∂αpXµpεβ0···βp∂β0X̃
ν0 · · · ∂βpX̃νp

×ηµ0···µp;ν0···νp∆(X − X̃), (A.5)

where

ηµ0···µp;ν0···νp :=
∑

σ∈Sp+1

sgn(σ) ηµ0νσ(0) · · · ηµpνσ(p) . (A.6)

The integrand can be simplified as follows:

εα0···αp∂α0X
µ0 · · · ∂αpXµpεβ0···βp∂β0X̃

ν0 · · · ∂βpX̃νpηµ0···µp,ν0···νp

=
∑

σ∈Sp+1

sgn (σ)εα0···αp∂α0X
µ0 · · · ∂αpXµpεβ0···βp∂β0X̃

ν0 · · · ∂βpX̃νpηµ0νσ(0) · · · ηµpνσ(p)

=
∑

σ∈Sp+1

sgn (σ)εα0···αp∂α0X
µ0 · · · ∂αpXµp

×sgn(σ) εβσ(0)···βσ(p)∂βσ(0)X̃
νσ(0) · · · ∂βσ(p)X̃

νσ(p)ηµ0νσ(0) · · · ηµpνσ(p)
=

∑
σ∈Sp+1

εα0···αpεβ0···βp∂α0X
µ0 · · · ∂αpXµp∂β0X̃

ν0 · · · ∂βpX̃νpηµ0ν0 · · · ηµpνp

= (p+ 1)! εα0···αpεβ0···βp(∂α0X · ∂β0X̃) · · · (∂αpX · ∂βpX̃)

= ((p+ 1)!)2 det(∂αX · ∂βX̃). (A.7)

Therefore, we obtain

− T 2
p

∫
dp+1ζ

∫
dp+1ζ̃ det(∂αX · ∂βX̃) ∆(X − X̃). (A.8)

In summary, the supergravity potential is totally given by

− 2κ2
10

∫
dp+1ζ

∫
dp+1ζ̃ ∆(X − X̃)

(
FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

)
, (A.9)

where

FΦ(ζ, ζ̃) =

(
p− 3

4

)2

T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃), (A.10)

Fg(ζ, ζ̃) = T 2
p

√
− det η̂αβ(X)

√
− det η̂γδ(X̃)

(
−(p+ 1)2

16

+
1

2
η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)

)
, (A.11)

FC(ζ, ζ̃) = T 2
p det(∂αX · ∂βX̃). (A.12)
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A.2 Supergravity potential in D1-branes at angle

As a simple check of our formula in appendix A, let us consider a simple example of

D1-branes at angle. Their trajectories are given by

Xα = ζα, (α = 0, 1)

X̃0 = ζ̃0, X̃1 = cosφ ζ̃1, X̃2 = sinφ ζ̃1, X̃9 = r, (A.13)

and zero otherwise. It is easy to find that

η̂αβ(X) = η̂αβ(X̃) = ηαβ , ∂αX · ∂βX̃ =

[
−1 0

0 cosφ

]
. (A.14)

Then, we obtain

η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX)

= Tr

[
−1 0

0 1

][
−1 0

0 cosφ

][
−1 0

0 1

][
−1 0

0 cosφ

]
= 1 + cos2 φ, (A.15)

and

det(∂αX · ∂βX̃) = − cosφ. (A.16)

Therefore,

FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

= −
(

1− 3

4

)2

T 2
p −

(
−(1 + 1)2

16
+

1 + cos2 φ

2

)
T 2
p + cosφ ρ2

p

= −2T 2
1 sin2 φ

2
. (A.17)

This reproduces the known result [18].

A.3 Supergravity potential between revolving branes

The trajectories are given as

Xα = ζα, X8 = r cosωζ0, X9 = r sinωζ0,

X̃α = ζ̃α, X̃8 = −r cosωζ̃0, X̃9 = −r sinωζ̃0,
(A.18)

where α = 0, 1, · · · , p, and Xµ, X̃µ = 0 otherwise. We obtain

η̂αβ(X) =

[
−1 + v2 0

0 1p

]
= η̂αβ(X̃). (A.19)

Therefore,

η̂αβ(X) =

[
(−1 + v2)−1 0

0 1p

]
= η̂αβ(X̃), (A.20)
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and √
− det η̂αβ(X) =

√
1− v2 =

√
− det η̂αβ(X̃). (A.21)

We also obtain

∂αX · ∂βX̃ =

[
−1− v2 cosω(ζ0 − ζ̃0) 0

0 1p

]
. (A.22)

Then

η̂αβ(X)(∂βX · ∂δX̃)η̂δγ(X̃)(∂γX̃ · ∂αX) =
(1 + v2 cosω(ζ0 − ζ̃0))2

(1− v2)2
+ p, (A.23)

det(∂αX · ∂βX̃) = −(1 + v2 cosω(ζ0 − ζ̃0)). (A.24)

Now, we find

FΦ(X, X̃) = T 2
p

(
p− 3

4

)2

(1− v2), (A.25)

Fg(X, X̃) = T 2
p

{
−(p+ 1)2

16
(1− v2) +

1

2

[
(1 + v2 cosω(ζ2 − ζ̃0))2

1− v2
+ p(1− v2)

]}
(A.26)

FC(X, X̃) = −ρ2
p(1 + v2 cosω(ζ2 − ζ̃0)). (A.27)

They give

FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃) = T 2
p

v4

2(1− v2)

(
1 + cosω(ζ0 − ζ̃0)

)2
. (A.28)

Then, the effective potential becomes

−2κ2

∫
dp+1ζ

∫
dp+1ζ̃ ∆(X − X̃)

(
FΦ(X, X̃) + Fg(X, X̃) + FC(X, X̃)

)
= −κ2T 2

p

v4

1− v2

∫
dp+1ζ

∫
dp+1ζ̃ ∆(X − X̃)

(
1 + cosω(ζ0 − ζ̃0)

)2
. (A.29)

The integral can be rewritten as follows.∫
dp+1ζ

∫
dp+1ζ̃ ∆(X − X̃)

(
1 + cosω(ζ0 − ζ̃0)

)2

= Vp

∫
dζ0

∫
dζ̃0

∫
d10−pk

(2π)10−p
1

k2

(
1 + cosω(ζ0 − ζ̃0)

)2

× exp
(
ikτ (ζ0 − ζ̃0) + ik9r(cosωζ0 + cosωζ̃0) + ik9r(sinωζ

0 + sinωζ̃0)
)

= Vp

∫
dζ0

∫
dζ̃0(4π)−

10−p
2

∫ ∞
0

ds s−
10−p

2

(
1 + cosω(ζ0 − ζ̃0)

)2

× exp

(
− 1

4s

[
−(ζ0 − ζ̃0)2 + r2

(
2 + 2 cosω(ζ0 − ζ̃0)

)])
= Vp+1(4π)−

10−p
2

∫
dζ

∫ ∞
0

ds s−
10−p

2 e−
1
4s [−ζ

2+2r2(1+cosωζ)] (1 + cosωζ)2 , (A.30)

where ζ := ζ0 − ζ̃0. To make this integral well-defined, we perform the Wick rotation

ζ → −iζ and the analytic continuation ω → iω. The result is given in (4.17) in section 4.2.
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B ω expansion of SYM potential Ṽo(r)

In this appendix, we evaluate the SYM potential by expanding it with respect to ω/r.

Thus its validity is restricted to ω < r. The contributions to the effective potential from

bosons and the ghost are

Ṽo,B = −
∫ ∞

Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4r2)

×

6 + 2e
−tω2+t

8(rω)2

k2+4r2 cosh

t
√

4ω2k2
τ +

(
8(rω)2

k2 + 4r2

)2


=

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4r2)

[
−8 + ω2

(
2t− 4k2

τ t
2 − 16r2t

k2 + 4r2

)
+ω4

(
−t2 + 4k2

τ t
3 − 4

3
k4
τ t

4 − 32k2
τr

2t3 − 16r2t2

k2 + 4r2
− 128r4t2

(k2 + 4r2)2

)]
+O(ω6) . (B.1)

Those from fermions are

Ṽo,F = 4

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4r2)e−t·
ω2

4 · 2 cosh
(
t
√
ω2k2

τ + 4(rω)2
)

=

∫ ∞
Λ−2

dt

t

∫
dp+1k

(2π)p+1
e−t(k

2+4r2)

[
8 + ω2

(
−2t+ 4k2

τ t
2 + 16r2t2

)
+ω4

(
1

4
t2 − k2

τ t
3 − 4r2t3 +

1

3
k4
τ t

4 +
8

3
k2
τr

2t4 +
16

3
r4t4

)]
+O(ω6). (B.2)

In the following, we drop the O(ω0) terms since they trivially cancel between bosons and

fermions. For the other terms, the t-integration can be done easily.

The bosonic contribution becomes∫
dp+1k

(2π)p+1
e−(k2+4r2)/Λ2

[
ω2

(
2Λ2 − 4k2

τ

Λ2(k2 + 4r2)
− 16r2 + 4k2

τ

(k2 + 4r2)

)
+ω4

(
−3Λ4 − 12Λ2k2

τ + 4k4
τ

3Λ6(k2 + 4r2)
+

16Λ2r2 − 32k2
τr

2 − Λ4 + 8k2
τΛ2 − 4k4

τ

Λ4(k2 + 4r2)2

−128r4 − 16Λ2r2 + 64k2
τr

2 − 8k2
τΛ2 + 8k4

τ

Λ2(k2 + 4r2)3
− 128r4 + 64k2

τr
2 + 8k4

τ

(k2 + 4r2)4

)]
+O(ω6). (B.3)

The fermionic contribution becomes∫
dp+1k

(2π)p+1
e−(k2+4r2)/Λ2

[
ω2

(
16r2 − 2Λ2 + 4k2

τ

Λ2(k2 + 4r2)
+

16r2 + 4k2
τ

(k2 + 4r2)2

)
+ω4

(
64r4 − 48Λ2r2 + 32k2

τr
2 + 3Λ4 − 12k2

τΛ2 + 4k4
τ

12Λ6(k2 + 4r2)
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+
64r4 − 32Λ2r2 + 32k2

τr
2 + Λ4 − 8k2

τΛ2 + 4k4
τ

4Λ4(k2 + 4r2)2

+
32r4 − 8Λ2r2 + 16k2

τr
2 − 2k2

τΛ2 + 2k4
τ

Λ2(k2 + 4r2)3
+

32r4 + 16k2
τr

2 + 2k4
τ

(k2 + 4r2)4

)]
+O(ω6). (B.4)

In the following, we focus on p = 3. By the rotational symmetry, k2
τ in the integrand

can be replaced with 1
4k

2. To deal with k4
τ , we employ the polar coordinates for the

momentum. Then∫
d4k

(2π)4
f(k2)k4

τ =
1

(2π)4

∫ ∞
0

dκκ3f(κ2)κ4 · 4π
∫ π

0
dθ sin2 θ cos4 θ

=
1

(2π)4

∫ ∞
0

dκκ3f(κ2)κ4 · π
2

4

=

∫
d4k

(2π)4
f(k2) · 1

8
k4. (B.5)

Using this rewriting, the bosonic contribution becomes∫
d4k

(2π)4
e−(k2+4r2)/Λ2

[
ω2

(
− 1

Λ2
+

4r2 + Λ2

Λ2(k2 + 4r2)
− 12r2

(k2 + 4r2)2

)
+ω4

(
−k

2 + 4r2

6Λ6
+

8r2 + 3Λ2

6Λ6
− 8r4 + 24Λ2r2

3Λ6(k2 + 4r2)

+
24r2

Λ4(k2 + 4r2)2
− 80r4

Λ2(k2 + 4r2)3
− 80r4

(k2 + 4r2)4

)]
+O(ω6). (B.6)

The fermionic contribution becomes∫
d4k

(2π)4
e−(k2+4r2)/Λ2

[
ω2

(
1

Λ2
+

12r2 − Λ2

Λ2(k2 + 4r2)
+

12r2

(k2 + 4r2)2

)
+ω4

(
k2 + 4r2

24Λ6
+

8r2 − 3Λ2

24Λ6
+

10r4 − 6Λ2r2

3Λ6(k2 + 4r2)

+
10r4 − 4Λ2r2

Λ4(k2 + 4r2)2
+

20r4 − 4Λ2r2

Λ2(k2 + 4r2)3
+

20r4

(k2 + 4r2)4

)]
+O(ω6). (B.7)

The k-integration can be done as follows.∫
d4k

(2π)4
e−(k2+4r2)/Λ2 1

(k2 + 4r2)n

=
2π2

(2π)4

∫ ∞
0

dκκ3e−(κ2+4r2)/Λ2 1

(κ2 + 4r2)n

=
1

16π2

∫ ∞
0

du e−(u+4r2)/Λ2 u

(u+ 4r2)n

=
1

16π2

∫ ∞
4r2

du e−u/Λ
2 u− 4r2

un
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=
1

16π2
(4r2)2−n

∫ ∞
1

du e−4r2u/Λ2 u− 1

un

=
1

16π2
(4r2)2−n (En−1(4r2/Λ2)− En(4r2/Λ2)

)
, (B.8)

where En(x) are defined as

En(x) :=

∫ ∞
1

du
e−xu

un
. (B.9)

For n ≤ 0, they are elementary functions:

E0(x) =
1

x
e−x, E−1(x) =

x+ 1

x2
e−x, E−2(x) =

x2 + 2x+ 2

x3
e−x, (B.10)

etc. Note that En(x) with n > 1 satisfy

En(x) = − e−xu

(n− 1)un−1

∣∣∣∞
1
− x

n− 1

∫ ∞
1

du
e−xu

un−1

=
e−x

n− 1
− x

n− 1
En−1(x). (B.11)

Using these recursion relations, the effective potential can be written in terms of E1(x) and

elementary functions. The bosonic contribution becomes

ω2

[
r2

π2
e−4r2/Λ2 −

(
r2

π2
+

4r4

π2Λ2

)
E1(4r2/Λ2)

]
+ω4

[(
− 1

24π2
− 2r2

3π2Λ2
− 10r4

3π2Λ4

)
e−4r2/Λ2

+

(
6r4

π2Λ4
+

40r6

3π2Λ6

)
E1(4r2/Λ2)

]
+O(ω6). (B.12)

The fermionic contribution becomes

ω2

[
r2

π2
E1(4r2/Λ2)

]
+ ω4

[(
− 1

48π2
+

r2

12π2Λ2

)
e−4r2/Λ2

]
+O(ω6). (B.13)

The sum of these two contributions is

ω2

[
r2

π2
e−4r2/Λ2 − 4r2

π2Λ2
E1(4r2/Λ2)

]
+ω4

[(
− 1

16π2
− 7r2

12π2Λ2
− 10r4

3π2Λ4

)
e−4r2/Λ2

+

(
6r4

π2Λ4
+

40r6

3π2Λ6

)
E1(4r2/Λ2)

]
+O(ω6). (B.14)

Performing the analytic continuation of ω, this becomes

−ω2

[
r2

π2
e−4r2/Λ2 − 4r2

π2Λ2
E1(4r2/Λ2)

]
−ω4

[(
1

16π2
+

7r2

12π2Λ2
+

10r4

3π2Λ4

)
e−4r2/Λ2 −

(
6r4

π2Λ4
+

40r6

3π2Λ6

)
E1(4r2/Λ2)

]
+O(ω6). (B.15)
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The ω-independent terms which we have dropped at the beginning are, as noted,

trivially cancelled between bosons and fermions,

Λ4

16π2
E3(4r2/Λ2) · (−8 + 8) = 0. (B.16)

C r expansion of SYM potential Ṽo(r)

In the region r < ω, the expansion of the effective potential in appendix B is no longer

valid and we need another method to approximate it. In this appendix, we set r = βω and

approximate the effective potential in terms of β-expansion. Thus this evaluation of the

effective action is valid in the region of r < ω. The bosonic and fermionic contributions to

the effective action for p = 3 are rewritten as

Ṽo,B(ω, β) = −ω4

∫ ∞
ω2/Λ2

dt

t

∫
d4k

(2π)4
e−Bt

6 + 2e−tet
8β2

B cosh

2t

√
k2
τ +

(
4β2

B

)2


Ṽo,F (ω, β) = 8ω4

∫ ∞
ω2/Λ2

dt

t

∫
d4k

(2π)4
e−Bte−t/4 · cosh

(
t
√
k2
τ + 4β2

)
(C.1)

where B = k2 + 4β2. Since the integral

−ω4

∫ ∞
ω2/Λ2

dt

t

∫
d4k

(2π)4
e−Bt

[
6 + 2e−t cosh(2tkτ )− 8e−t/4 cosh(tkτ )

]
(C.2)

which is obtained by setting β = 0 in the integrands except for the factor e−Bt in the each

of contributions vanishes, we can subtract it from the total potential. Therefore the total

potential can be written as

Ṽo(ω, β) = Ṽ ′o,B(ω, β) + Ṽ ′o,F (ω, β), (C.3)

where

Ṽ ′o,B(ω, β) = −ω4

∫ ∞
ω2/Λ2

dt

t

∫
d4k

(2π)4
e−Bt2e−t

×

et 8β2B cosh

2t

√
k2
τ +

(
4β2

B

)2
− cosh (2tkτ )

 ,
Ṽ ′o,F (ω, β) = 8ω4

∫ ∞
ω2/Λ2

dt

t

∫
d4k

(2π)4
e−Bte−t/4

×
[
cosh

(
t
√
k2
τ + 4β2

)
− cosh (tkτ )

]
. (C.4)
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We now expand the square brackets in each of the above equations with respect to t and

pick up the terms proportional to β2. We find

et
8β2

B

∞∑
n=0

4n

(2n)!
t2n
(
k2
τ +

16β4

B2

)n∣∣∣∣∣
β2

= 8
β2

k2

∞∑
n=0

4n

(2n)!
t2n+1k2n

τ ,

∞∑
n=0

1

(2n)!
t2n
(
k2
τ + 4β2

)n∣∣∣∣∣
β2

= 4β2
∞∑
n=0

n+ 1

(2n+ 2)!
t2n+2k2n

τ . (C.5)

Then, by rescaling the integration variable k as∫
d4k

(2π)4

e−tk
2
k2n
τ

k2
= t−(n+1)

∫
d4k

(2π)4

e−k
2
k2n
τ

k2
,∫

d4k

(2π)4
e−tk

2
k2n
τ = t−(n+2)

∫
d4k

(2π)4
e−k

2
k2n
τ , (C.6)

the leading order terms in (C.4) become

Ṽ ′o,B(ω, β) = −16β2ω4
∞∑
n=0

4n

(2n)!

∫ ∞
ω2/Λ2

dt

t
e−ttn

∫
d4k

(2π)4

e−k
2
k2n
τ

k2
+O(β4),

Ṽ ′o,F (ω, β) = 16β2ω4
∞∑
n=0

1

(2n+ 1)!

∫ ∞
ω2/Λ2

dt

t
e−t/4tn

∫
d4k

(2π)4
e−k

2
k2n
τ +O(β4).

(C.7)

We can perform the momentum integrations as∫
d4k

(2π)4

e−k
2
k2n
τ

k2
=

1

16π2
·

Γ
(
n+ 1

2

)
√
π(n+ 1)

,∫
d4k

(2π)4
e−k

2
k2n
τ =

1

16π2
·

Γ
(
n+ 1

2

)
√
π

. (C.8)

We find that the summation can be performed as follows: for Ṽ ′o,B(ω, β),

∞∑
n=0

4n

(2n)!

∫ ∞
ω2/Λ2

dt

t
e−ttn

∫
d4k

(2π)4

e−k
2
k2n
τ

k2

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t

∞∑
n=0

4n

(2n)!

Γ
(
n+ 1

2

)
√
π

tn

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t

∞∑
n=0

4n

(2n)!

(2n)!

4n(n+ 1)!
tn

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t

et − 1

t

=
1

16π2

Λ2

ω2

(
1− E2(ω2/Λ2)

)
, (C.9)
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and for Ṽ ′o,F (ω, β),

∞∑
n=0

1

(2n+ 1)!

∫ ∞
ω2/Λ2

dt

t
e−t/4tn

∫
d4k

(2π)4
e−k

2
k2n
τ

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t/4

∞∑
n=0

1

(2n+ 1)!

Γ
(
n+ 1

2

)
√
π

tn

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t/4

∞∑
n=0

2
√
π

4n+1n! Γ(n+ 3
2)

Γ
(
n+ 1

2

)
√
π

tn

=
1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t/4 · 1

2

∞∑
n=0

Γ
(
n+ 1

2

)
Γ
(
n+ 3

2

) 1

n!

(
t

4

)n
=

1

16π2

∫ ∞
ω2/Λ2

dt

t
e−t/4F

(
1

2
,

3

2
;
t

4

)
. (C.10)

Therefore, the total potential becomes

Ṽo =
β2ω4

π2

(
−Λ2

ω2

(
1− E2(ω2/Λ2)

)
+

∫ ∞
ω2/Λ2

dt

t
e−t/4F

(
1

2
,

3

2
;
t

4

))
+O(β4).

(C.11)

If we also assume ω � Λ, then

−Λ2

ω2

(
1− E2(ω2/Λ2)

)
= log

ω2

Λ2
− 1 + γ +O(ω2/Λ2), (C.12)

and ∫ ∞
ω2/Λ2

dt

t
e−t/4F

(
1

2
,

3

2
;
t

4

)
= E1(ω2/4Λ2) +

∫ ∞
0

dt

t
e−t/4

(
F

(
1

2
,
3

2
;
t

4

)
− 1

)

+

∫ ω2/Λ2

0

dt

t
e−t/4

(
F

(
1

2
,
3

2
;
t

4

)
− 1

)
= −γ − log

ω2

4Λ2
+ 2− log 4 +O(ω2/Λ2) (C.13)

imply

Ṽo =
ω4β2

π2
=
ω2r2

π2
(C.14)

in the r < ω < Λ region. The potential in eq. (5.8) is obtained by analytical continuation

back to the Lorentzian signature.
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