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practice. We show that a much simpler channel, the Petz map, is sufficient for entanglement

wedge reconstruction for any code space of fixed finite dimension — no twirling is required.

Moreover, the error in the reconstruction will always be non-perturbatively small. From a
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error correction.
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1 Introduction

The AdS/CFT correspondence — a duality between a gravitational theory in asymptotically

AdS space, and a conformal field theory in one fewer spatial dimension — has enjoyed

extraordinary success in the twenty years since it was first proposed [1]. An important

problem in AdS/CFT is that of subregion duality: which subregion of the CFT (if any)

is dual to a given subregion of the bulk spacetime? Recently, it was discovered that the

bulk-to-boundary map in AdS/CFT defines a quantum error correcting code [2, 3]. In

light of this profound revelation, the problem of subregion duality can be rephrased: which

subregion of the bulk spacetime can be ‘reconstructed’ from a given subregion of the

boundary?

Over the course of the last five years, this question has been answered [4–6]: the bulk

region encoded in an arbitrary boundary region A is the so-called entanglement wedge of

A, denoted a. Within a single, static timeslice, the entangement wedge1 of A is the bulk

region bounded by A itself and its Ryu-Takayanagi surface χA [10], which is the minimal

area bulk surface anchored to the boundary of A; see figure 1. Given any bulk operator φa
lying within the entanglement wedge a, there exists a boundary operator ΦA acting only on

the boundary region A, which approximately reproduces the action of the bulk operator φa.

The task of finding such an operator ΦA is known as entanglement wedge reconstruction.

The conjecture of entanglement wedge reconstruction was developed in [11–13] and

established with increasing levels of rigour in [4–6, 14]. It was shown in [9, 15] that the

error in the reconstruction can be made non-perturbatively small at large boundary gauge

group rank N , or equivalently small gravitational coupling GN .

1This definition is valid only within a single, static timeslice of a static bulk spacetime, or at a moment

of time reversal symmetry. More generally, and more formally, the covariant Ryu-Takayanagi surface χA is

defined to be the smallest surface of extremal area homologous to A [7]. The entanglement wedge is then

the bulk domain of dependence of any achronal bulk surface bounded by A and χA. At higher orders in

perturbation theory, one should use the quantum extremal surface, which extremizes the Ryu-Takayanagi

formula A/4GN + Sbulk, where Sbulk is the bulk entanglement entropy, rather than simply the classical

area A [8, 9].
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D†A φa

A1

A2

Figure 1. An operator φa, acting on the entanglement wedge a of A = A1∪A2, can be reconstructed

on the boundary region A by the map D†
A : Ma → MA. The solid interior curves represent the

RT surface of A and the entire shaded region forms the entanglement wedge a (restricted to a

single timeslice). The darker gray areas are the entanglement wedges of A1 and A2 individually,

and also together form the causal wedge of A. Since the operator φa is not in the causal wedge

of A, we cannot reconstruct it simply by using the bulk and boundary equations of motion; the

more sophisticated machinery of quantum error correction is required. Moreover, φa can only be

reconstructed on A = A1 ∪A2; neither A1 nor A2 alone contains any information about φa.

The realization that bulk reconstruction can be rephrased in the language of quantum

error correction [2] paved the way for most of this success. Bulk operators in AdS/CFT

are only well defined within the “code subspace” Hcode of states with the correct smooth

bulk geometry. If we let J : Hcode → HCFT be the isometry embedding this code subspace

into the larger CFT Hilbert space, entanglement wedge reconstruction can be rephrased

as the task of finding a decoding channel D that can recover from the noisy channel

N = [J(·)J†]A, where ρA is the restriction of the boundary state ρ to region A. More

specifically, entanglement wedge reconstruction is equivalent to the existence of a decoding

channel D such that, for all states ρ in the bulk code space,

D ◦ N (ρ) ≈ ρa, (1.1)

where ρa is the restriction of the bulk state ρ to the entanglement wedge a.2 If such a

decoding channel exists, then we can use the adjoint channel D†, defined by

Tr[D†(φ)σ] = Tr[φD(σ)], (1.2)

for all operators φ and states σ, to map bulk operators φa to boundary reconstructions

ΦA = D†(φa) with support only in region A. Since

Tr(ΦA ρ) = Tr[φaD ◦ N (ρ)] ≈ Tr(φa ρ), (1.3)

the expectation values of φa and ΦA approximately agree for all states ρ ∈ S(Hcode). It

can be shown that this is also true for higher point correlators [5].

2Here, restriction can be thought of as a partial trace, but in an operator algebra quantum error correction

picture, this is really a restriction of a state to a subalgebra.

– 2 –



J
H
E
P
0
1
(
2
0
2
0
)
1
6
8

Interestingly, the entanglement wedge a may contain regions outside of the ‘causal

wedge’ of A (the intersection of the past and future of the boundary domain of dependence

of A). Given a bulk operator φ in the causal wedge of a region A, it is well-understood

how to reconstruct the operator φ within the boundary region A, given only the bulk and

boundary equations of motion, using the so-called HKLL procedure [16, 17]. However,

it was only by introducing the tool of quantum error correction that we have begun to

understand that the entire entanglement wedge (rather than just the causal wedge) can

indeed be reconstructed from region A.

The first clue that a boundary region A encodes more than just the causal wedge

actually comes from the Ryu-Takayanagi (RT) formula [10, 18]. Including the leading

quantum correction [19], the RT formula states that the entanglement entropy SA of any

boundary region A is given by

SA =
A(χA)

4GN
+ Sbulk, (1.4)

where A(χA) is the area of the RT surface χA and Sbulk is the bulk entanglement entropy

associated to the entanglement wedge of A. The entanglement entropy, although not an

actual observable, is therefore a quantity that depends only on the reduced density matrix of

the state on region A, but depends on the entire entanglement wedge in the bulk. Somewhat

remarkably, (1.4) alone is, in fact, sufficient to imply the existence of decoding channels D
that can be used for entanglement wedge reconstruction [4, 5]. The key intermediate step,

which was shown in [14], is that (1.4) implies an approximate equality between bulk and

boundary relative entropies.

Unfortunately, even though it is, at this point, very well established that entanglement

wedge reconstruction is possible in principle (and hence that decoding channels D must

exist), it has proved somewhat challenging to find constructions that work for bulk operators

lying outside the causal wedge (and hence for which we cannot use the HKLL prescription)

and that are both explicit and practical. An explicit, if somewhat impractical, general

construction was given in [2, 4]. However, this construction relies on the unphysical

assumption of exact quantum error correction, which does not exist at finite N .

It was shown in [6] that the evolution of bulk operators in bulk modular time is related

via the extrapolate dictionary to the evolution of boundary operators in boundary modular

time. Since bulk modular evolution should be linear in the free field approximation N →∞,

one might hope to expand a bulk operator at any point in the entanglement wedge in terms

of the modular evolution of operators at the boundary of the wedge, and thus derive an

explicit formula for the boundary representation of the bulk operator. However, as yet, the

details of this expansion remain unknown, and it is not even clear how to show rigorously

that one should exist at all.

Finally, it was demonstrated in [5], using the tools of approximate operator algebra

quantum error correction, that robust entanglement wedge reconstruction can be achieved

using the so-called twirled Petz map [20], even at finite N . The twirled Petz map is an

example of a “universal recovery channel” — a general purpose decoding map that lets one

approximately recover from the action of a quantum channel. That is, given a quantum

– 3 –



J
H
E
P
0
1
(
2
0
2
0
)
1
6
8

channel N and a fixed state σ, the goal is to find a recovery channel Rσ,N such that

Rσ,N ◦N [ρ] ≈ ρ for all ρ. The twirled Petz map is one such recovery channel Rσ,N , defined

to be

Rσ,N (ρ) =

∫
dt
π

2
(cosh(πt) + 1)−1 σ

1−it
2 N †

(
[N (σ)]−

1−it
2 ρ [N (σ)]−

1+it
2

)
σ

1+it
2 . (1.5)

If we replace σ by the maximally mixed state τ , the expression simplifies significantly.

We can use the twirled Petz map for bulk reconstruction by setting the channel N to be

N = [J(·)J†]A. With the simple choice σ = τ , this leads to the boundary reconstruction

ΦA of a bulk operator φa as

ΦA = R†τ,N (φa) =
1

dcode

∫
dt
π

2
(cosh(πt) + 1)−1 τ

− 1−it
2

A [JφaJ
†]Aτ

− 1+it
2

A , (1.6)

where τA = N (τ). Even though choosing the reference state to be maximally mixed has

simplifed the expression, it still involves a twirling or averaging over boundary modular

time with the precisely chosen weighting π/2 (cosh(πt) + 1)−1.

In this paper, we will show that such averaging is unnecessary for code spaces of any

fixed finite dimension in the semiclassical limit N →∞ and GN → 0. Instead it is sufficient

to use the much simpler Petz map [21] reconstruction

ΦA =
1

dcode
τ
−1/2
A [JφaJ

†]A τ
−1/2
A . (1.7)

We are hopeful that this more tractable recovery map should prove significantly easier

to evaluate explicitly; we discuss the challenges and prospects of doing so in section 4.

For other examples of situations where twirling is unnecessary and the Petz map itself is

sufficient, see [22–25].

Our strategy for proving the efficacy of the Petz map for entanglement wedge recon-

struction builds on work by Barnum and Knill [26], who showed that, for ordinary subspace

quantum error correction, the Petz map will always have an average decoding error that is

almost as small as the average error of the optimal decoding channel. Roughly speaking,

the Petz map is always ‘pretty good’. We extend these results to subsystem and operator

algebra quantum error correcting codes and then show that the average error can always be

used to bound the worst-case error, so long as the dimension of the code space does not

grow too quickly in the limit of large N . (We discuss very large code spaces such as those

of black hole microstates briefly in section 4.)

In section 2, we formalize the problem of entanglement wedge reconstruction in the

language of quantum error correction and show how to adapt the results of Barnum and

Knill to prove that reconstruction is possible using the Petz map. Our main technical result

is a general theorem in quantum error correction, the proof of which is given in section 3,

and an application of which simplifies the problem of entanglement wedge reconstruction.

Section 4 consists of a brief discussion of potential applications and extensions of our work.

– 4 –
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2 Entanglement wedge reconstruction and the Petz map

In order to apply information-theoretic techniques to the problem of entanglement wedge

reconstruction, we first need to rephrase our task in the language of quantum information.

We employ the same framework used in [5] — finite-dimensional approximate operator

algebra quantum error correction.

The AdS/CFT correspondence is a duality between a boundary conformal field theory

with Hilbert space HCFT , and a bulk quantum gravity theory. In principle, if AdS/CFT

is supposed to be a true duality between theories, the ‘bulk’ Hilbert space should be

isomorphic to the boundary Hilbert space HCFT . However, a complete, non-perturbative,

microscopic description of the entire Hilbert space from a purely bulk perspective, if one

exists, remains unknown. Moreover, any such Hilbert space would be dominated by large

black holes. Instead, we are normally only interested in a small ‘code subspace’ Hcode of

states with a smooth semiclassical bulk geometry; for example, we might consider small bulk

perturbations about the vacuum state. We therefore have an isometry J : Hcode → HCFT .

Equivalently, we can consider the quantum channel J (·) = J(·)J† which maps bulk density

matrices to boundary density matrices. As it turns out, none of our results rely on J being

an isometry as opposed to a more general quantum channel.

For simplicity, we assume that both Hcode and HCFT are finite-dimensional. In the

case of Hcode, this is justified by the fact that we cannot include arbitrarily high energy

excitations in the bulk without causing significant backreaction and eventually creating a

black hole. In the case of HCFT , we should be able to regularize the boundary theory in

the UV, while only affecting bulk physics close to the boundary. Of course, the real value

of these assumptions for our purposes is that they allow us to apply known results from the

large literature on finite-dimensional quantum error correction.

We denote the algebra of observables on the Hilbert space Hcode by B(Hcode) and the

algebra of observables on HCFT by B(HCFT ). The entanglement wedge a has an associated

von Neumann subalgebra Ma
i
↪→ B(Hcode), consisting of bulk observables that act only

on a; similarly, the boundary region A is associated with a von Neumann subalgebra

MA
i
↪→ B(HCFT ). We use the notation from [5], where the space of density matrices on a

von Neumann subalgebraM acting on a Hilbert space H is denoted by S(M) ∼= S(H)∩M.

This space is isomorphic to the space of positive normalized linear functionals on the algebra.

See the appendix of [5] for more details.

The question of entanglement wedge reconstruction can then be rephrased as the

question of whether the channel N = [J (·)]A forms an approximate error-correcting code

for the algebra Ma. Here, the restriction channel [·]A simply projects the density matrix

onto the algebra MA. In other words, entanglement wedge reconstruction is possible if

(and only if) there exists a decoding channel D : S(MA)→ S(Ma) such that

D ◦ N (ρ) ≈ ρa, (2.1)

for all states ρ ∈ S(Hcode); the restriction ρa is the projection of ρ ontoMa. For subsystem

algebras, this corresponds to taking a partial trace over the complementary subsystem and
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Ma B(Hcode)

MA B(HCFT)

ia

D†

iA

N † J †

S(Ma) S(Hcode)

S(MA) S(HCFT)

resa

J
ND

resA

Figure 2. In the Heisenberg picture, Ma
i
↪→ B(Hcode) and MA

i
↪→ B(HCFT ) are von Neumann

subalgebras acting on the code space Hcode and CFT Hilbert space HCFT respectively. The

Heisenberg channel J † = J†(·)J maps boundary observables to their projection in the code

space. The task of entanglement wedge reconstruction is to find a Heisenberg decoding channel

D† :Ma →MA that maps bulk observables φa in Ma to boundary observables ΦA in MA. When

projected into the code space using J †, the boundary observable ΦA should reproduce the original

bulk observable φa. In the Schrödinger picture, the directions of all channels are reversed. The

channel J now maps bulk states to the corresponding boundary states. The Heisenberg channels

ia and iA, which embed the von Neumann subalgebras Ma and MA into the larger algebras of

observables B(Hcode) and B(HCFT ), are the adjoints of the restriction maps onto S(Ma) and S(MA)

respectively. Finally, the decoding channel D : S(MA)→ S(Ma) satisfies D[J (·)A] ≈ (·)a.

hence agrees with the usual notion of a reduced density matrix; operator algebra quantum

error correction therefore generalizes subsystem quantum error correction.

In the Heisenberg (adjoint) picture, this condition becomes

N † ◦ D†(φa) = J † ◦ D†(φa) ≈ φa. (2.2)

Note that, since the adjoint of the restriction channel is simply the embedding of the

subalgebra in the larger algebra of observables, N †(OA) = J †(OA) for all operators

OA ∈MA. In other words, ΦA = D†(φa) acts in approximately the same way as φa:

Tr(ΦAJ (ρ)) ≈ Tr(φaρ) (2.3)

The complete setup, in both the Schrödinger and Heisenberg pictures, is shown in figure 2.

It was argued in [5] that the twirled Petz map provides an example of a decoding map

with an error that is perturbatively suppressed in 1/N . It was then shown in [15] that there

must exist some decoding channel D with a non-perturbatively small error; however, this

argument was non-constructive. Both results relied heavily on the approximate equality

between bulk and boundary relative entropies found in [14]. A refined statement of this

approximate relative entropy equality was derived in [9], which allows one to show the

existence of a decoding channel that is accurate to all orders in perturbation theory. Here,

we shall simply take as our starting assumption the existence of some good decoding channel

D′; we will not need to know any details of this channel. We can therefore use the result

of [15] to assume that the decoding error when using this channel is non-perturbatively

small. The following theorem, which we prove in section 3, then implies that the Petz map

is also a good decoding channel:

– 6 –
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Theorem 1. Let Ma
i
↪→ B(Hcode) be a von Neumann subalgebra acting on the code space

Hcode with dimension dcode, let N be a quantum channel, and suppose that there exists a

channel D′ such that

‖D′ ◦ N (ρ)− ρa‖1 < δ .

Let

Pτ,N :=
1

dcode
N †
[
N (τ)−1/2(·)N (τ)−1/2

]
be the Petz map with maximally mixed reference state τ . Then

‖Pτ,N ◦ N (ρ)|a − ρa‖1 ≤ dcode

√
8δ. (2.4)

Note that our bound on the error when reconstructing the reduced state using the Petz

map Pτ,N is significantly higher than the original error δ. Not only is the error proportional

to
√
δ, but it is also proportional to the dimension of the code space dcode. As we shall see

in section 3, the square root appears because of inefficiencies in converting between trace

distances and fidelities using the Fuchs-van de Graaf inequalities [27], while the factor of

dcode appears in order to convert a bound on the average-case error into a bound on the

worst-case error. Nevertheless, so long as the error using the original decoding channel

D′ is non-perturbatively small, the Petz map error will also be non-perturbatively small,

provided the dimension of the code space does not grow superpolynomially in N . For most

code spaces of interest, such as perturbations about the vacuum, the code space dimension

will be O(1), and so this factor of code space dimension is not problematic. We discuss

very large code spaces, such as those containing large numbers of black hole microstates,

briefly in section 4. However, so long as we confine ourselves to perturbative excitations of

quantum fields in a fixed gravitational background, the Petz map can always be trusted —

no twirling is required.

3 Proof of Theorem 1

The spirit of Theorem 1 follows that of Barnum and Knil [26], who proved the following

theorem for ordinary subspace quantum error correction:

Theorem 2 (Barnum-Knill [26]). Given any pair of quantum channels D′, N , and ensemble

of commuting density matrices (pk, ρk) whose sum
∑

k pkρk = ρ, the Petz map

Pρ,N [·] := ρ1/2N †
[
N (ρ)−1/2(·)N (ρ)−1/2

]
ρ1/2

with reference state ρ, satisfies∑
k

pkF (ρk,PN ,ρ ◦ N ) ≥ (
∑
k

pkF (ρk,D′ ◦ N ))2. (3.1)

Here, the entanglement fidelity F (σ,Z) is defined by

F (σ,Z) := 〈σ| V †Z (|σ〉〈σ| ⊗ 1E)VZ |σ〉 ,

where |σ〉 ∈ Hcode ⊗HR is a purification of σ ∈ S(Hcode) and VZ : Hcode → Hcode ⊗HE is

a Stinespring extension of the channel Z : S(Hcode)→ S(Hcode).

– 7 –
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If we now assume that D′ is a recovery channel for N that works with high fidelity,

then Theorem 2 states that PN ,ρ ◦ N is close to the identity when measured using the

average entanglement fidelity of an ensemble {ρk} with average state ρ. Note that, unlike

our Theorem 1, there is no factor of dcode in the size of the error for the Petz map PN ,ρ
as compared to the original decoding channel D′. Instead, (3.1) implies that the error,

measured using the average entanglement fidelity, increases by at most a factor of two.3

The factor of dcode will appear when we convert this average error into a worst-case error.

For concreteness, let us write down an explicit basis for the von Neumann subalgebra

Ma. The exact description of J andMA (and hence N ) are unimportant for our purposes.

It is a fact about finite-dimensional von Neumann algebras (see, for example, [28]) that we

can always find a set of Hilbert spaces Hα and Hᾱ, parameterized by α, such that

Ma =
⊕
α

B(Hα)⊗ 1ᾱ,

Hcode =
⊕
α

Hα ⊗Hᾱ.
(3.2)

Note that ∑
α

dαdᾱ = dcode, (3.3)

where dα, dᾱ and dcode are the dimensions of Hα, Hᾱ and Hcode respectively. In this basis,

any state ρa ∈ S(Ma) can be parameterized as

ρa =
∑
α

pαρα ⊗ τᾱ =
∑
α,iα

pαp
(α)
iα
|iα〉〈iα| ⊗ τᾱ, (3.4)

where the states τᾱ ∈ S(Hᾱ) are maximally mixed, ρα ∈ S(Hα) are normalized density

matrices, pα and p
(α)
i are normalized probability distributions, and |iα〉 forms an orthonormal

basis for Hα.

We now have all the ingredients we need to begin a proof of Theorem 1. Let Z = Pτ,N ◦N .

We first note that Z is a self-adjoint superoperator. For any operator φ,

Tr[φZ(ρ)] =
1

dcode
Tr
[
φN †

(
N (τ)−1/2N (ρ)N (τ)−1/2

)]
(3.5)

= Tr[Z(φ)ρ] = Tr[φZ†(ρ)]. (3.6)

Hence we have that Z = Z†. Note that this argument relied crucially on our choice for the

reference state in the Petz map Pτ,N as the maximally mixed state.

Now, let φa ∈Ma be a Hermitian operator, which we can assume to have eigendecom-

position

φa = λiα |iα〉〈iα| . (3.7)

3An entanglement fidelity F (ρ,D ◦ N ) = 1 implies perfect recovery of a purification of ρ. Hence, we can

naturally quantify the recovery error when decoding using the channel D′ by

δ = 1−
∑
k

pkF (ρk,D′ ◦ N ).

The equivalent error measure, when decoding using the Petz map Pρ,N , will then be bounded by 2 δ.

– 8 –
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We can bound the operator norm

‖Z†(φa)− φa‖∞ ≤ ‖Z†(φa)− φa‖1 (3.8)

≤
∑
α,iα

|λiα | ‖(Z† − 1)[|iα〉〈iα| ⊗ 1ᾱ]‖1 (3.9)

=
∑
α,iα

|λiα | dᾱ‖Z[ρiαα ]− ρiαα ‖1, (3.10)

where the first inequality uses the monotonicity of the Schatten p-norms, the second

inequality used the triangle inequality, and in the final equality we factored out dᾱ so that

ρiαα = |iα〉〈iα| ⊗ τᾱ are normalized states, and more importantly we used the fact that the

channel Z is self-adjoint. We now simply need to bound the average trace norm error of

the channel Z on states ρa ∈ S(Ma). This is quadratically controlled by Theorem 2:

Proposition 2.1. ∑
iα,α

dᾱ
dcode

‖Z[ρiαα ]− ρiαα ‖21 ≤ 8δ (3.11)

Proof. We first note that ∑
iα,α

dᾱ
dcode

ρiαα = τ. (3.12)

Hence∑
iα,α

dᾱ
dcode

‖Z[ρiαα ]− ρiαα ‖21 ≤ 4
∑
iα,α

dᾱ
dcode

(1− F (ρiαα ,Z[ρiαα ])) (3.13)

≤ 4− 4(
∑
α

dᾱ
dcode

F (ρiαα ,D′ ◦ N [ρiαα ]))2 (3.14)

≤ 4− 4

(∑
α

dᾱ
dcode

(
1− 1

2
‖D′ ◦ N [ρiαα ]− ρiαα ‖1

))4

(3.15)

≤ 8δ, (3.16)

where the first inequality uses one of the Fuchs-van de Graaf inequalities [27], the second

uses (3.12) and Theorem 2, the fourth again uses the Fuchs-van de Graaf inequalities, and

the fifth uses our assumption ‖D′N (ρ)− ρa‖1 < δ and (3.3).

Applying Proposition 2.1 to (3.8), we find

∑
α,iα

|λiα | dᾱ‖Z[ρiαα ]− ρiαα ‖1 ≤ ‖φa‖∞
∑
α,iα

√
dᾱdcode ·

√
dᾱ
dcode

‖Z[ρiαα ]− ρiαα ‖1 (3.17)

≤ ‖φa‖∞
√∑
α,iα

dᾱdcode ·
√

8δ (3.18)

= ‖φa‖∞ dcode ·
√

8δ, (3.19)

– 9 –
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where, in the first inequality, we used the fact that ‖φa‖∞ ≥ |λiα | for all λiα and, in the

second inequality, we used the Cauchy-Schwarz inequality. We therefore find that

‖Z†(φa)− φa‖∞ ≤ ‖φa‖∞dcode

√
8δ.

Now, since

‖Z(ρ)a − ρa‖1 = sup
φa∈B(Ha)

1

‖φa‖∞
Tr([Z†(φa)− φa]ρ) ≤ sup

φa∈B(Ha)

1

‖φa‖∞
‖Z†(φa)− φa‖∞,

(3.20)

we immediately arrive at our desired result

‖(Pτ,N ◦ N [ρ])a − ρa‖1 = ‖(Z[ρ])a − ρa‖1 ≤ dcode

√
8δ, (3.21)

for any state ρ ∈ S(Hcode).

Note that we could have directly seen from Proposition 2.1 (using the triangle inequality)

that for any state ρa ∈ S(Ma) we have

‖Z(ρa)a − ρa‖1 ≤
√

8δdcode. (3.22)

However, although this is a tighter bound than (3.21), it only applies to states in the

code space that are of the form given in (3.4). In the Heisenberg picture, we want our

reconstructed operator to work for all states in the code space — not just states in S(Ma).

The same problem of extending reconstruction from states ρa ∈ S(Ma) to all states

ρ ∈ S(Hcode) was previously encountered for the twirled Petz map in [5]. It was shown that

the approximate equality between bulk and boundary relative entropies [14] implies that

any state ρ ∈ S(Hcode) satisfies

N (ρ) ≈ N (ρa). (3.23)

Hence (3.22) implies that, for all states ρ ∈ S(Hcode), we have

‖Z(ρ)a − ρ‖1 ≤
√

8δdcode + ε, (3.24)

where ε is independent of dcode and ε → 0 in the limit N → ∞. However, (3.23) really

only holds because of the complementary recovery property of AdS/CFT. Not only does

region A learn everything about the entanglement wedge a, it also learns nothing about the

complementary bulk region ā, which is the entanglement wedge of region Ā. In general,

operator algebra quantum error correcting codes will not even approximately satisfy (3.23)

— consider, for example, the case where N is the identity channel and Ma is any proper

subalgebra of the algebra of observables B(Hcode). It follows that (3.24) is specific to

holographic codes. In contrast, Theorem 1 is a completely general fact about operator

algebra quantum error correction. Theorem 1 is therefore a true extension of the range of

validity of the Petz map as a general-purpose, approximate recovery channel to operator

algebra and subsystem codes.
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4 Discussion

In this work, we proved a theorem in quantum error correction about the quality of decoding

using the Petz map as a general recovery channel. Our theorem generalizes the work of

Barnum and Knill [26] to the case of operator algebra quantum error correction, and

subsystem quantum error correction.

By applying our theorem to AdS/CFT, we showed that entanglement wedge reconstruc-

tion can be achieved using the Petz map, so long as the dimension of the code space we

expect to be able to reconstruct is not too large. In particular, the Petz map constitutes a

good recovery map provided the code space dimension does not grow superpolynomially in

the limit of large N . In practice, this is almost always the case for code spaces of interest.

It is worth commenting briefly on the major exception to this rule: code spaces

containing large numbers of black hole microstates.4 The entropy of such code spaces

may, in general, be O(1/GN ). Hence the dimension of the code space may be exponential

in N . However, as yet, the only black hole microstates that we understand are generic,

equilibrium microstates. For code spaces made out of such microstates, we would expect

the worst-case and average reconstruction errors to approximately agree, even though the

in-principle large code space dimension means that very large differences between these

two fidelities are possible. It is therefore reasonable to hope that the Petz map will still

be valid for entanglement wedge reconstruction. On the other hand we should not trust

any semi-classical description of non-generic, finely-tuned black hole microstates, and thus

entanglement wedge reconstruction might not be possible for such states. As such, there

are no known situations in which entanglement wedge reconstruction is possible, yet we

cannot use the Petz map to achieve it.

While we emphasized the utility of the Petz map over other reconstruction techniques,

we have not made any serious attempt to actually evaluate the Petz map in particular cases.

Though the Petz map is much simpler to write down and, in principle, evaluate than the

twirled Petz map, there still remain significant obstacles to doing so. Let us briefly discuss

the challenges involved. We wish to explicitly evaluate

ΦA =
1

dcode
τ
−1/2
A [JφaJ

†]A τ
−1/2
A . (4.1)

The operator JφaJ
† can be found by taking the global HKLL boundary reconstruction

ΦHKLL and projecting it into the code space [5]

JφaJ
† = PcodeΦ

HKLLPcode. (4.2)

Therefore, the main challenge lies in finding the restriction of this operator to region A.

For simplicity, we assume, in accordance with common practice (though not with reality)

that the CFT Hilbert space factorizes as HCFT ∼= HA ⊗ HĀ with MA
∼= B(HA); the

restriction map is then simply a partial trace over HĀ. One difficulty arises because the

HKLL procedure gives an operator Φ that is not localized in time. To take the partial

4For a detailed discussion of this topic see, for example, [15].
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trace over region Ā, we need to use the Heisenberg equations of motion to rewrite ΦA in

terms of operators at time zero.5 Such operators will in general be very complicated and

hard to evaluate. Essentially, the obstruction is simply the usual obstruction to evaluating

quantities that are not protected by symmetry on the boundary side of AdS/CFT. Strongly

coupled quantum field theories are simply hard to deal with; thankfully, there also exists a

weakly coupled bulk.
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