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1 Introduction

The AdS/CFT correspondence is a remarkable duality that relates quantum field theories

in anti de Sitter space and conformal field theories on its boundary [1–3]. Mathematically,

it is stated as the equality between the bulk path integral with the properly set boundary

conditions and the generating function of the CFT correlators on the boundary. The

AdS/CFT correspondence has attracted significant interest in recent years as it provides

new tools for addressing important and challenging issues of quantum gravity and strongly

coupled systems. Probably, the most studied regime of the AdS/CFT correspondence

is the one in which the bulk theory is weakly coupled, while the boundary theory has

many degrees of freedom. In this regime the bulk loop expansion translates into the 1/N

expansion of the large-N CFT.

On the CFT side, the large-N expansion can be studied using various methods. In

particular, in certain cases the associated diagrammatic expansions are available. Alterna-

tively, one can use the large-N bootstrap, which amounts to solving the crossing equations

perturbatively in 1/N . In this approach one starts with the CFT data of mean field the-

ory, which is of order O(N0) and solves the crossing equations identically. Next, one gives

O(1/N2) corrections to the CFT data.1 By imposing crossing to order O(1/N2), one finds

constraints on these corrections. These define four-point correlators at order O(1/N2),

which, using holography, can be reinterpreted as bulk tree-level diagrams. For comprehen-

sive analysis at this order in the holographic context see [4, 5]. Proceeding further, one

finds, that the CFT data at order O(1/N2) sources O(1/N4) contributions to the crossing

equations. To satisfy crossing at this order, the CFT data should receive O(1/N4) cor-

rections. This procedure should be repeated iteratively, thus reproducing the CFT data

order by order. Impressive progress in this direction was achieved in recent years [5–19]. In

particular, the CFT data to order O(1/N4) in different theories was computed. Though,

these results were derived from large-N considerations in the CFT, assuming holography,

these are also regarded as one-loop computations in the bulk.

In turn, on the bulk side, despite some direct computations of loop amplitudes are

available, the literature on the subject remains limited. First progress was made in [20–22],

where bubble diagrams were computed in the Mellin representation. Later, further results

were obtained in different representations [23–29]. In the course of this work it was found

that amplitudes in AdS have a specific analytic structure, similar to the analytic structure

of amplitudes in flat space. In particular, locations of poles in the Mellin amplitude for

the bubble diagram were identified in [20]. Then, this amplitude was computed exactly

in [21, 22] and contributions to the conformal block decomposition associated with the

singular part of the Mellin amplitude were found. It was further shown, that the conformal

block coefficients in this decomposition factorize into the OPE coefficients associated with

tree-level diagrams, obtained by cutting two lines in the original bubble diagram — which

is exactly the relation that one expects from large-N considerations on the boundary.

Finally, by taking the flat space limit, this factorization property was related to unitarity.

1Here we give the orders in 1/N as they appear in models with operators in the adjoint representation

of some internal algebra with large N . For vector models 1/N2 should be replaced with 1/N .
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Figure 1. This figure illustrates the key steps of section 3. First, we use the split representation

for a pair of propagators to represent loop diagram a) in the from b). Blobs L and R refer to

generic bulk processes, which, for simplicity, we consider to be tree diagrams. Next, we substitute

the conformal partial wave expansions for the subdiagrams into b), which gives c). In c) triangles

denote the properly normalized conformally-invariant three-point structures. Finally, we evaluate

the bubble integral for the structures highlighted in green, which leads to the conformal partial

wave expansion for the original loop diagram d).

The analytic structure of more general amplitudes was later studied in Mellin space [25, 26]

and similar factorization patterns were observed.

In the present paper we will further investigate the analytic structure of loop ampli-

tudes in AdS and show how factorization of amplitude’s singularities translates into familiar

relations from the large-N bootstrap. We perform our analysis using the conformal partial

wave expansion for bulk amplitudes, because this representation makes the connection with

the CFT data on the boundary straightforward. Besides that, the conformal partial wave

expansion seems to be more suitable for treating higher-spin theories in the bulk, for which

Mellin amplitudes degenerate [30–33].

The key steps of our computation are as follows, see figure 1. For a given cut of the

loop amplitude, we factorize each propagator that we are going to cut using the split rep-

resentation. This brings the original amplitude into a form of an integrated product of

off-shell amplitudes for the subdiagrams resulting from the cut. Next, we use the confor-

mal partial wave expansion for the subdiagrams in a suitable channel and integrate over

– 2 –
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Figure 2. Using representation d) from figure 1 for the loop diagram, we study the analytic

structure of the coefficient function of its conformal partial wave expansion in section 4. We find

that this coefficient function has singularities at double-trace locations, which, moreover, factorize

into coefficient functions for subdiagrams. On the figure “d.t.s.” refers to double-trace singularities.

auxiliary boundary points introduced by the split representation. To this end we use the

bubble integral formula [34, 35] iteratively until the space-time dependence reduces to a

single partial wave. This eventually yields the conformal partial wave expansion for the

original loop diagram with the coefficient function given as an integral over spectral pa-

rameters of propagators. Analytic structure of these integrals is then studied using the

standard methods, figure 2, see [26, 36] for review.

As a result, we find that the singular part of the original amplitude associated with a

given cut can be computed as a product of on-shell amplitudes for subdiagrams, integrated

over the on-shell phase space of the particles on the cut lines — the same way as it happens

in flat space. We then give diagrammatic rules to compute these singularities — the AdS

version of the Cutkosky rules. Next, we show that the previously found relation between

the amplitudes for the diagram and its subdiagrams is consistent with the standard large-N

considerations on the boundary. We carry out the above analysis in detail for the case of

a double-particle cut of a four-point amplitude and then show how this approach can be

applied in more general situations.

The paper is organized as follows. In section 2 we review the necessary background

material for computing Witten diagrams in the form of the conformal partial wave ex-

pansion. Next, in section 3 we express a one-loop four-point amplitude with a non-trivial

double-cut in a given channel in terms of off-shell amplitudes associated with the subdi-

agrams produced by the cut. In section 4 we use the standard methods to analyze the

analytic structure of the integrals we encountered in the previous section. Agreement with

the large-N analysis is established in section 5. Then, in section 6 we briefly discuss various

consequences and generalizations of the presented approach. Finally, we give our conclu-

sions in section 7. In appendix A we illustrate how the standard analysis of integral’s

singularities works with a simple example.

2 Amplitudes in AdS: the basics

In this section we review how the conformal block decomposition for tree-level Witten

diagrams in Euclidean AdSd+1 can be derived. For simplicity here we will focus on scalar

fields only. For more details we refer the reader to [20, 37, 38].

– 3 –
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2.1 Two-point functions

Witten diagrams involve two types of propagators: bulk-to-boundary propagators for ex-

ternal lines and bulk-to-bulk propagators for internal lines. The canonically normalized

bulk-to-boundary propagator for a scalar field of dimension ∆ is given by

Π∆(X,P ) =
C∆

(−2P ·X)∆
, C∆ =

Γ(∆)

2πhΓ(∆ + 1− h)
, h ≡ d

2
. (2.1)

Throughout the paper we use the ambient space formalism for AdS and CFT, X refer to

bulk, while Q and P to boundary points.

It will be convenient to deal with the bulk-to-bulk propagators in the so-called split

representation [20, 37, 38].2 To this end one first defines harmonic functions

Ων(X1, X2) ≡ ν2

π

∫
dPΠh+iν(X1, P )Πh−iν(X2, P ), Ων(X1, X2) = Ω−ν(X1, X2). (2.2)

They satisfy the free equation of motion identically(
∇2

1 + h2 + ν2
)

Ων(X1, X2) = 0 (2.3)

and are used as a basis in the space of bulk two-point functions. In particular, one has

δ(X1, X2) =

∫ ∞
−∞

dνΩν(X1, X2). (2.4)

Employing (2.3) and (2.4), it is straightforward to solve

(∇2
1 −m2)Π∆(X1, X2) = −δ(X1, X2), m2 = ∆(∆− d) (2.5)

for the bulk-to-bulk propagator as

Π∆(X1, X2) =

∫
dν

1

ν2 + (∆− h)2
Ων(X1, X2). (2.6)

On the CFT side, it is conventional to use normalization

〈O∆(P1)O∆(P2)〉 =
1

P∆
12

, P12 ≡ −2P1 · P2. (2.7)

It is not hard to see that in the boundary limit of the bulk-to-boundary propagator (2.1)

we arrive at (2.7) times C∆. To account for this difference between bulk and boundary

normalizations, before comparing with the CFT side, Witten diagrams have to be divided

by a factor of C1/2
∆i

for each external line of the diagram. Note that C∆ > 0 for ∆ above the

unitarity bound, so square roots of C∆ in relevant theories are defined unambiguously.

2See also [39–42] for earlier closely related results.
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2.2 Three-point functions

A three-point Witten diagram for scalars of dimensions ∆i is defined by

A3(P1, P2, P3) = g3

∫
dXΠ∆1(X,P1)Π∆2(X,P2)Π∆3(X,P3), (2.8)

where g3 is the bulk coupling constant. Evaluating the integral, one finds [43]

A3(P1, P2, P3) = g3b(∆1,∆2,∆3)[O∆1(P1)O∆2(P2)O∆3(P3)], (2.9)

where

b(∆1,∆2,∆3)

= C∆1C∆2C∆3

πhΓ
(

∆1+∆2+∆3−d
2

)
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆3+∆1−∆2
2

)
Γ
(

∆3+∆2−∆1
2

)
2Γ(∆1)Γ(∆2)Γ(∆3)

(2.10)

and

[O∆1(P1)O∆2(P2)O∆3(P3)] ≡ 1

P
∆1+∆2−∆3

2
12 P

∆2+∆3−∆1
2

23 P
∆3+∆1−∆2

2
31

. (2.11)

Here we use square brackets to denote conformally invariant three-point functions with a

unit normalization. These are not three-point correlators of a CFT as they do not include

the OPE coefficients.

2.3 Partial waves and conformal blocks

Four-point functions will be presented in the form of the conformal partial wave expansion,

which can then be reduced to the conformal block decomposition by evaluating the contour

integral. Originally, this approach was developed in [44–47]. Below we fix conventions and

give some relevant formulae, see [35, 48] for further details and references.

Conformal partial waves are defined by

Ψ∆i
∆ (Pi) ≡

∫
dP0[O∆1(P1)O∆2(P2)O∆(P0)][O∆̃(P0)O∆3(P3)O∆4(P4)]. (2.12)

Each conformal partial wave is a linear combination of a conformal block and its shadow

partner

Ψ∆i
∆ (Pi) = S∆3,∆4

∆̃
G∆i

∆ (Pi) + S∆1,∆2

∆ G∆i

∆̃
(Pi), ∆̃ ≡ d−∆, (2.13)

where

S∆1,∆2

∆ =
πhΓ(∆− h)Γ

(
∆̃+∆1−∆2

2

)
Γ
(

∆̃+∆2−∆1
2

)
Γ(∆̃)Γ

(
∆+∆1−∆2

2

)
Γ
(

∆+∆2−∆1
2

) . (2.14)

The conformal partial wave expansion of the four-point function is its representation

in the form of an integral over conformal partial waves with dimensions in the principal

series, ∆ = h+ iν, ν ∈ R,

A∆i(Pi) =

∫ ∞
−∞

dνI∆i
h+iνΨ∆i

h+iν(Pi). (2.15)

– 5 –
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Substituting (2.13), one finds

A∆i(Pi) =

∫ ∞
−∞

dνI∆i
h+iν

(
S∆3,∆4

h−iν G∆i
h+iν(Pi) + S∆1,∆2

h+iν G∆i
h−iν(Pi)

)
=

∫ ∞
−∞

dν
(
I∆i
h+iνS

∆3,∆4

h−iν + I∆i
h−iνS

∆1,∆2

h−iν

)
G∆i
h+iν(Pi).

(2.16)

The coefficient function I can always be split into two parts

I∆i
h+iν = I

∆i;(+)
h+iν + I

∆i;(−)
h+iν , I

∆i;(±)
h+iν S∆3,∆4

h−iν = ±I∆i;(±)
h−iν S∆1,∆2

h−iν . (2.17)

Clearly, I(−) does not contribute to (2.16), so without loss of generality, we can assume

that I(−) is vanishing. As a result, we get

A∆i(Pi) =

∫ ∞
−∞

dνC∆i
h+iνG

∆i
h+iν(Pi) , (2.18)

where

C∆i
h+iν ≡ 2I∆i

h+iνS
∆3,∆4

h−iν . (2.19)

Provided that Pi are in a kinematic regime where the OPE is valid, G∆i
h+iν decays

exponentially in the lower half ν-plane, so we can close the contour in that direction.

The resulting integral is then evaluated employing the residue theorem. Assuming that

singularities of C within the contour occur at h+ iν = ∆n we find

A∆i(Pi) = −2π
∑
n

Res
h+iν=∆n

(
C∆i
h+iνG

∆i
h+iν(Pi)

)
. (2.20)

If h+ iν = ∆n is a pole of order m, we get

Res
h+iν=∆n

(
C∆i
h+iνG

∆i
h+iν(Pi)

)
=

1

(m− 1)!
lim

∆→∆n

[
∂m−1

∂∆m−1

(
(∆−∆n)mC∆i

∆ G∆i
∆ (Pi)

)]
=

m−1∑
k=0

1

k!(m− 1− k)!

∂m−1−k

∂∆m−1−k κ
∆i
∆ (∆n,m)

∂k

∂∆k
G∆i

∆ (Pi)

∣∣∣∣
∆=∆n

,

(2.21)

where

κ∆i
∆ (∆n,m) ≡ (∆−∆n)mC∆i

∆ . (2.22)

Therefore, higher order singularities in the expansion (2.18) result into the presence of terms

with derivatives of conformal blocks in the conformal block decomposition. Such terms are

absent in complete CFT’s, however, they do occur for perturbative bulk computations and

for CFT’s in the large-N expansion. We will denote the coefficients of such a conformal

block decomposition as

A∆i(Pi) =
∑
n

∑
k=0

a
[k]
∆n

1

k!

∂k

∂∆k
G∆i

∆ (Pi)

∣∣∣∣
∆=∆n

. (2.23)

In view of the connection with the boundary theory, it is more conventional to express

the coefficients of derivatives of conformal blocks in terms of anomalous dimensions, as we

review in section 5.

– 6 –
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2.4 Four-point functions

Below we illustrate how the split representation allows one to find the conformal partial

wave expansions for simplest tree-level four-point Witten diagrams.

The four-point Witten diagram for g4φ
4 interaction is defined by

A∆i(Pi) ≡ g4

∫
dXΠ∆1(X,P1)Π∆2(X,P2)Π∆3(X,P3)Π∆4(X,P4). (2.24)

Its evaluation proceeds as follows. First, one introduces an additional trivial bulk integra-

tion using a delta-function

A∆i(Pi) = g4

∫
dX1

∫
dX2Π∆1(X1, P1)Π∆2(X1, P2)δ(X1, X2)Π∆3(X2, P3)Π∆4(X2, P4).

(2.25)

Next, rewriting the delta-function as in (2.4) and substituting Ων in the split form (2.2),

one finds

A∆i(Pi) = g4

∫
dX1

∫
dX2

∫
dν
ν2

π

∫
dP0Πh+iν(X1, P0)Πh−iν(X2, P0)

Π∆1(X1, P1)Π∆2(X1, P2)Π∆3(X2, P3)Π∆4(X2, P4)

= g4

∫ ∞
−∞

dν
ν2

π
b(∆1,∆2, h+ iν)b(∆3,∆4, h− iν)Ψ∆i

h+iν .

(2.26)

Bulk integrals in (2.26) are evaluated with the help of (2.9). This brings the amplitude

to the form of the conformal partial wave expansion. Finally, expressing conformal partial

waves in terms of conformal blocks we obtain

A∆i(Pi) = 2g4

∫ ∞
−∞

dν
ν2

π
S∆3,∆4

h−iν b(∆1,∆2, h+ iν)b(∆3,∆4, h− iν)G∆i
h+iν

= g4

∫ ∞
−∞

dνB∆i
h+iνG

∆i
h+iν ,

(2.27)

where

B∆i
h+iν ≡

πh−1

8

C∆1C∆2C∆3C∆4

Γ(∆1)Γ(∆2)Γ(∆3)Γ(∆4)Γ(iν)Γ(h+ iν)

Γ
(

∆1+∆2−h+iν
2

)
Γ
(

∆1+∆2−h−iν
2

)
Γ
(

∆3+∆4−h+iν
2

)
Γ
(

∆3+∆4−h−iν
2

)
Γ
(
h+iν+∆1−∆2

2

)
Γ
(
h+iν+∆2−∆1

2

)
Γ
(
h+iν+∆3−∆4

2

)
Γ
(
h+iν+∆4−∆3

2

)
.

(2.28)

Analogously, one can find the direct channel conformal partial wave expansion for the

exchange

A∆i(Pi) = g3g
′
3

∫
dX1

∫
dX2Π∆1(X1, P1)Π∆2(X1, P2)

Π∆(X1, X2)Π∆3(X2, P3)Π∆4(X2, P4),

(2.29)

– 7 –
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where g3 and g′3 are two cubic bulk coupling constants. The only difference between (2.29)

and (2.25) is that the delta-function for the contact interaction is replaced with the bulk-

to-bulk propagator for the exchange. Proceeding in the same way as before we find

A∆i(Pi) = g3g
′
3

∫ ∞
−∞

dν
1

ν2 + (∆− h)2
B∆i
h+iνG

∆i
h+iν . (2.30)

Using the same procedure, one can evaluate any contact four-point amplitude [49] as

well as any exchange in the direct channel [38, 50]. The result has the form of the conformal

partial wave expansion, in which the coefficient function can be conveniently factorized

A∆i(Pi) =

∫ ∞
−∞

dνA∆i
h+iνB

∆i
h+iνG

∆i
h+iν(Pi). (2.31)

Here B is the universal kinematic factor (2.28), while A is characteristic of a particular

bulk process: A turns out to be polynomial in ν for contact diagrams and has poles for the

direct channel exchanges. This motivates why amplitudes with regular A are considered

regular, while the pole part of A and the associated contributions to the conformal block

decomposition are considered to be the singular part of the amplitude.3

To obtain the conformal block decomposition from (2.31), we start by closing the

integration contour in the lower half-ν plane. When identifying the singularities of the

integrand that are located inside the contour it is important to keep in mind that (2.31)

can be applied literally only when the external dimensions ∆i are in the principal series. For

∆i away from the principal series the integral should be defined by analytic continuation

to the required values of ∆i. This implies that if while changing ∆i some poles of C cross

the real ν line, the integration contour should be properly indented, so that all singularities

of C remain on the same side of the contour.

To start, consider singularities generated by B (2.28). It contains a product of eight

gamma functions, which generate eight series of poles. However, for ∆i in the principal

series, only the poles from

Γ
(

∆1+∆2−h−iν
2

)
and Γ

(
∆3+∆4−h−iν

2

)
(2.32)

appear in the lower half complex ν-plane. Similarly, only these singularities should be

considered when reducing (2.31) to the conformal block decomposition for ∆i in the case

of interest — that is for all ∆i real and satisfying the unitarity bound.

Depending on the values of ∆i, we need to consider two situations, for which the

analysis is different, especially on the CFT side. First, we consider the case

1

2
(∆1 + ∆2 −∆3 −∆4) /∈ Z. (2.33)

3Nowadays, it became conventional to define the singular part of the correlator as its double discontinuity

in the coordinate representation on the boundary [8, 10–14, 16, 18, 19]. This definition of the singular part

is consistent with the one given in the text in the sense that only the singularities of A result into terms

in the conformal block decomposition with non-vanishing double discontinuity. It is worth mentioning that

the singular part can also be defined in the Mellin space as the pole part of the Mellin amplitude [20–22].

The latter definition differs from previous ones in the regard that it is channel-independent and captures

singularities in all channels simultaneously. It was demonstrated that these definitions of the singular part

reproduce singularities of flat space amplitudes in the flat space limit [11, 20–22].

– 8 –
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For these values of ∆i the two series of poles from (2.32) do not overlap and produce

conformal blocks of dimensions

∆1 + ∆2 + 2n, ∆3 + ∆4 + 2n, n ∈ Z, n ≥ 0 (2.34)

in the conformal block decomposition. Otherwise, that is for

1

2
(∆1 + ∆2 −∆3 −∆4) ∈ Z, (2.35)

two series of poles overlap and produce double poles. This situation occurs, for example,

when we are dealing with the amplitude of four identical scalar fields. Applying the residue

theorem at these singularities one finds that the conformal block decomposition of the

amplitude contains not only conformal blocks, but also their first derivatives.

In addition to the singularities of B, producing regular terms in the amplitude, one

should take into account singular contributions generated from poles of A. These are

evaluated in a similar way. For example, for the exchange (2.30) this results in a conformal

block of dimension ∆. As for the regular contributions, there can be various degeneracies

in locations of poles of A with itself as well as with poles of B. These cases are analyzed

analogously.

3 One-loop amplitude from tree-level amplitudes

In this section we consider a one-loop four-point amplitude with a non-trivial two-particle

cut in a given channel and show how the methods reviewed in the previous section combined

with the bubble integral formula can be used to obtain its conformal partial wave expansion

in terms of the conformal partial wave expansions for tree-level subdiagrams, resulting from

a cut of the original diagram.

To start, we use the split representation for two propagators, that will be cut in the

following. We will label by Qi the external lines of the amplitude and by Pi the two

extra boundary points introduces by the split representation. Then, the amplitude can be

factorized into the amplitudes for subdiagrams as follows

AO(Qi) =

∫
dν1dν2dP1dP2

ν2
1

π

ν2
2

π

1

ν2
1 + (∆1 − h)2

1

ν2
2 + (∆2 − h)2

A
∆e

1,∆
e
2,h+iν1,h+iν2

L (Q1, Q2;P1, P2) ·A∆e
3,∆

e
4,h−iν1,h−iν2

R (Q3, Q4;P1, P2).

(3.1)

Here AO is the original loop amplitude, AL and AR are the amplitudes for its left and

right subdiagrams and the superscript e for dimensions refers to external lines. It is worth

emphasizing that both tree-level amplitudes have two out of four external lines off-shell.

Next, we substitute the conformal partial wave expansion for the left subdiagram

A
∆e

1,∆
e
2,h+iν1,h+iν2

L (Q1, Q2;P1, P2)

=

∫
dνLI

∆e
1,∆

e
2,h+iν1,h+iν2

L|h+iνL
Ψ

∆e
1,∆

e
2,h+iν1,h+iν2

h+iνL
(Q1, Q2;P1, P2)

(3.2)
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and the analogous one for the right subdiagram into (3.1). As a result, we obtain

AO(Qi) =

∫
dν1dν2

ν2
1ν

2
2

π2

1

ν2
1 + (∆1 − h)2

1

ν2
2 + (∆2 − h)2∫

dνLdνRI
∆e

1,∆
e
2,h+iν1,h+iν2

L|h+iνL
I

∆e
3,∆

e
4,h−iν1,h−iν2

R|h+iνR∫
dP1dP2Ψ

∆e
1,∆

e
2,h+iν1,h+iν2

h+iνL
(Q1, Q2;P1, P2)Ψ

∆e
3,∆

e
4,h−iν1,h−iν2

h+iνR
(Q3, Q4;P1, P2).

(3.3)

3.1 Integrated product of conformal partial waves

The last line of (3.3) has the form of a product of two conformal partial waves integrated

over two common points

I ≡
∫
dP1dP2Ψ

∆e
1,∆

e
2,h+iν1,h+iν2

h+iνL
(Q1, Q2;P1, P2)Ψ

∆e
3,∆

e
4,h−iν1,h−iν2

h+iνR
(Q3, Q4;P1, P2). (3.4)

It can be simplified as follows.

First, we use the definition of conformal partial waves (2.12), introducing two additional

integrals over PL and PR

I =

∫
dP1dP2dPLdPR[O∆e

1
(Q1)O∆e

2
(Q2)Oh+iνL

(PL)][Oh−iνL
(PL)Oh+iν1(P1)Oh+iν2(P2)]

[Oh−iν1(P1)Oh−iν2(P2)Oh+iνR
(PR)][Oh−iνR

(PR)O∆e
3
(Q3)O∆e

4
(Q4)].

(3.5)

Then we find that integrals over P1 and P2 in (3.5) can be evaluated using the bubble

integral formula [34, 35]∫
dP1dP2[O∆̃1

(P1)O∆̃2
(P2)O∆0(P0)][O∆1(P1)O∆2(P2)O∆̃3

(P3)]

= 4π
π3hΓ(∆0 − h)Γ(h−∆0)

Γ(h)Γ(∆0)Γ(d−∆0)

δ(ν0 − ν3)δ(P0, P3)

+δ(ν0 + ν3)
Γ
(

∆̃0+∆2−∆1
2

)
Γ
(

∆̃0+∆1−∆2
2

)
Γ
(

∆0+∆2−∆1
2

)
Γ
(

∆0+∆1−∆2
2

) Γ(∆0)

Γ(h−∆0)

1

πh
1

P∆0
03

 ,

(3.6)

where ν0 = −i(∆0 − h) and ν3 = −i(∆3 − h). Employing it inside (3.5), we obtain

I =

∫
dPLdPR[O∆e

1
(Q1)O∆e

2
(Q2)Oh+iνL

(PL)][Oh−iνR
(PR)O∆e

3
(Q3)O∆e

4
(Q4)]

4π
π3hΓ(iνR)Γ(−iνR)

Γ(h)Γ(h+ iνR)Γ(h− iνR)

(
δ(νR − νL)δ(PR, PL)

+δ(νR + νL)
Γ
(
h−iνR+iν2−iν1

2

)
Γ
(
h−iνR+iν1−iν2

2

)
Γ
(
h+iνR+iν2−iν1

2

)
Γ
(
h+iνR+iν1−iν2

2

) Γ(h+ iνR)

Γ(−iνR)

1

πh
1

P h+iνR
LR

 .

(3.7)

– 10 –



J
H
E
P
0
1
(
2
0
2
0
)
1
5
4

The first term inside brackets in (3.7) has δ(PR, PL), which makes PR integration

trivial. The remaining PL integral just gives the definition of the conformal partial wave.

The second term produces the identical contribution. To see that one should first evaluate

the integral over PR with the Symanzik star formula [20, 37, 51, 52] and take into account

the fact that I is supposed to be integrated over νL and νR against IL and IR that satisfy

the symmetry property discussed below (2.17). This is a straightforward computation and

we leave it to the reader. Adding both terms, we find

I = 8π
π3hΓ(iνL)Γ(−iνL)

Γ(h)Γ(h+ iνL)Γ(h− iνL)
δ(νR − νL)Ψ

∆e
i

h+iνL
(Qi). (3.8)

3.2 Collecting the results

Now we come back to the loop amplitude (3.3) we were computing. With (3.8) we find

AO(Qi) =

∫
dνL8π

π3hΓ(iνL)Γ(−iνL)

Γ(h)Γ(h+ iνL)Γ(h− iνL)∫
dν1dν2

ν2
1ν

2
2

π2

1

ν2
1 + (∆1 − h)2

1

ν2
2 + (∆2 − h)2

I
∆e

1,∆
e
2,h+iν1,h+iν2

L|h+iνL
I

∆e
3,∆

e
4,h−iν1,h−iν2

R|h+iνL
Ψ

∆e
i

∆L
(Qi).

(3.9)

This formula gives the conformal partial wave expansion for the one-loop amplitude in

terms of tree-level data. The coefficient function of the conformal partial wave expansion

for the one-loop amplitude is then given by

IO(ν; ∆e
i ) =

8π3h−1Γ(iν)Γ(−iν)

Γ(h)Γ(h+ iν)Γ(h− iν)∫ ∫
dν1dν2

ν2
1

ν2
1 + (∆1 − h)2

ν2
2

ν2
2 + (∆2 − h)2

I
∆e

1,∆
e
2,h+iν1,h+iν2

L|h+iν I
∆e

3,∆
e
4,h−iν1,h−iν2

R|h+iν .

(3.10)

4 Singularities of one-loop amplitudes

In the previous section we expressed a one-loop amplitude with a non-trivial double-particle

cut in terms of tree-level subamplitudes. The resulting formula (3.9), (3.10) is exact in

the sense that no terms were omitted when it was derived. At the same time, tree-level

amplitudes involved in this formula feature off-shell fields on external lines. Below we will

show that, as in flat space, the singular part of the one-loop amplitude associated with a

given double-particle cut is defined purely in terms of tree-level diagrams with all external

lines being on-shell. We will then recast the result into the form suitable for comparison

with the CFT. At a more technical level, in (3.10) the coefficient function for the one-

loop amplitude IO is expressed as a double integral of a weighted product of coefficient

functions of tree-level amplitudes IL and IR. Instead of evaluating the integrals exactly,

one can study their analytic structure employing the standard techniques, see e.g. [26, 36].
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4.1 Locations of singularities

As a first step, we need to understand the analytic structure of the integrand in variables ν1

and ν2. Besides the explicit poles coming from propagators, the right hand side of (3.10)

also has two coefficient functions IL and IR for tree-level diagrams. In the examples,

considered in section 2.4 the dependence of the latter on ν1 and ν2 was given by

I
∆e

1,∆
e
2,h+iν1,h+iν2

L|h+iν ∝ b(h− iν, h+ iν1, h+ iν2),

I
∆e

3,∆
e
4,h−iν1,h−iν2

R|h+iν ∝ b(h+ iν, h− iν1, h− iν2).
(4.1)

It is not hard to see, that (4.1) correctly captures singularities of the coefficients functions

in ν1 and ν2 in general. Indeed, the type of a bulk processes associated with AL and AR only

affects the ν dependence. The only way how the ν1 and ν2 dependence can be changed is if

the bulk vertices involve derivatives of external lines P1 and P2. Such derivatives, however,

generate only polynomial contributions in ν1 and ν2. For example, employing that

∇2Πh+iν1 = −(h2 + ν2
1)Πh+iν1 , (4.2)

we find that a d’Alembertian acting on the external line P1 of AL produces an additional

factor of −(h2 + ν2
1) for the coefficient function IL, which does not bring any new singu-

larities. Thus, unless we are dealing with a non-local theory, in which such polynomial

terms may sum up to a singularity, all singularities of the coefficient functions IL and IR

are produced by the b factors as stated in (4.1).

To summarize, in total, the integrand in (3.10) has the following analytic structure: it

has two pairs of poles generated by the two propagators

1

ν2
1 + (∆1 − h)2

,
1

ν2
2 + (∆2 − h)2

(4.3)

and series of poles generated by the coefficient functions of tree-level diagrams

b(h− iν, h+ iν1, h+ iν2) b(h+ iν, h− iν1, h− iν2). (4.4)

With the analytic structure of the integrand clarified, we proceed with the analytic

structure of the integral itself. To this end, we use the standard argument, which goes as

follows. First, one notices that for real ν all poles (4.3)–(4.4) are away from the real axis,

where the ν1 and ν2 integration contours are located. Therefore, we can conclude that the

integral is regular for real ν.4 Next, one considers the analytic continuation of the integral

to the complex ν plane. When ν moves away from the real axis, poles (4.3)–(4.4) also

move and the integration contours should be deformed so that singularities do not cross

them. The integral remains analytic in ν unless the integration contours get pinched by the

singularities, which prevents their further deformations. In other words, all singularities of

the integral can be found by studying the configurations in which the integration contours

get pinched by the singularities of the integrand.

4This integral can be divergent and then it has to be regularized by subtracting counterterms. The

counterterms are, however, regular, and do not affect the analytic structure of the integral.
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For (3.10) the analysis of the analytic structure is straightforward, but somewhat

cumbersome, due to the presence of several series of poles and zeros in (4.4) as well as

due to extra zeros in the explicit prefactor in (3.10). Luckily, the integral with the same

analytic structure was analyzed in [20], where the Mellin amplitude for a bubble diagram

was studied. We will not repeat this analysis in detail here and just quote the end result.5

Namely, one finds that IO has singularities at

h± iν = ∆1 + ∆2 + 2n, n ∈ Z, n ≥ 0. (4.5)

These, for example, occur when the contour is trapped between three singularities

{ν1 = −i(∆1−h), ν2 = −i(∆2−h), h+ iν1 + iν2− iν = −2n, n ∈ Z, n ≥ 0}, (4.6)

which gives a series (4.5) with a plus sign on the left hand side. Other seven series of pinch-

ing configurations are related to (4.6) by the symmetry with respect to three independent

reflections ν → −ν, ν1 → −ν1 and ν2 → −ν2.

4.2 Residues

Once locations of poles of the integral are identified, we can proceed by specifying their

residues in the standard way. When the pinching configuration occurs, one can always split

the integration contour into two parts, so that the first part is free of any pinches, while the

second part consists of an infinitesimal contour encircling one of the singularities. Then,

the singular part of the integral associated with a given pinch configuration remains the

same if we replace the original contour with its second part. The latter, in turn, can be

evaluated by the residue theorem.

For the pinch configuration (4.6) the singularity of the integral can be captured by

replacing the νi integration contours along the real axes with infinitesimal circular contours

around ν1 = −i(∆1−h) and ν2 = −i(∆2−h). Evaluation of the latter integrals reduces to

the evaluation of residues at these poles. Taking into account the symmetry of the integral

ν1 → −ν1 and ν2 → −ν2, we get an extra factor of four. Summing up, we find

I
∆e

i

O|h+iν = 32
π3h+1Γ(iν)Γ(−iν)

Γ(h)Γ(h+ iν)Γ(h− iν)
(h−∆1)(h−∆2)I

∆e
1,∆

e
2,∆1,∆2

L|h+iν I
∆e

3,∆
e
4,∆̃1,∆̃2

R|h+iν

+ less singular terms.

(4.7)

Let us be more precise with what is captured by the explicit term in (4.7) and what

we mean by “less singular terms”. The argument presented above implies that the integral

on the right hand side of (3.10) with IL and IR depending on νi as in (4.1) produces simple

poles in ν at double-trace6 locations (4.5), moreover, residues of the original integral and

5We also illustrate the key features of this analysis with a toy example in appendix A.
6Here “double-trace” refers to double-trace operators on the CFT side, associated with these singularities.

This terminology is standard in the AdS/CFT literature and will be further explained in section 5, in which

we discuss the CFT dual picture. It is worth stressing that in the present setup we encounter two types

of double-trace operators — those built of pairs of operators on external lines of the Witten diagram and

those built of operators running in the loop. The associated contributions play different roles in the bulk

analysis, see section 4.4.
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the integral over a deformed contour at these locations are the same. In the following, we

will encounter situations in which IL and IR themselves have poles in ν at (4.5). Clearly, in

this case the ν1 and ν2 integration will increase the total order of the pole of IL and IR by

one. Then the explicit term in (4.7) can be used to compute reliably the coefficients of the

highest order poles of IO at double-trace locations, while “less singular terms” refers to all

other contributions to IO, that do not affect the leading order double-trace singularity. It

is worth stressing here that in addition to double-trace singularities occurring at (4.5), the

explicit term in (4.7) also has singularities at various shadow double-trace locations. These

should be ignored. This issue is illustrated in appendix A and will be further discussed

below.

4.3 Translation to the CFT language

We have just derived formula (4.7), which relates the conformal partial wave coefficient

functions for the singular part of the one-loop amplitude and for its tree level subdiagrams.

Before we will be able to rewrite it in the form suitable for making the connection with

the large-N expansion on the boundary side, we need to make a couple of straightforward

manipulations.

First, we want to express IR featuring shadow dimensions ∆̃1 and ∆̃2 on external lines

in terms of an analogous coefficient function for physical dimensions. These are related by

a properly normalized shadow transform, which, as it is not hard to see, gives

I
∆e

3,∆
e
4,∆̃1,∆̃2

R|h+iν =
b(∆̃1, ∆̃2, h+ iν)

b(∆1,∆2, h+ iν)
I

∆e
3,∆

e
4,∆1,∆2

R|h+iν . (4.8)

Next, we would like to account for different normalizations on the AdS and the CFT

sides as discussed below (2.7). We will use an extra bar to indicate quantities given in the

CFT normalization.

Then, we convert coefficient functions of the conformal partial wave expansions to the

coefficient functions of conformal blocks (2.18). Combining everything together, we find

C̄
∆e

i

O|h+iν = 16
π3h+1Γ(iν)Γ(−iν)

Γ(h)Γ(h+ iν)Γ(h− iν)

C∆1C∆2

S∆1,∆2

h−iν
(h−∆1)(h−∆2)

b(∆̃1, ∆̃2, h+ iν)

b(∆1,∆2, h+ iν)
C̄

∆e
1,∆

e
2,∆1,∆2

L|h+iν C̄
∆e

3,∆
e
4,∆1,∆2

R|h+iν + less singular terms

= 4π
Γ(iν)Γ(∆1)Γ(∆2)

Γ(h)Γ(h− iν)Γ(h−∆1)Γ(h−∆2)

Γ
(
h−iν+∆1−∆2

2

)
Γ
(
h−iν+∆2−∆1

2

)
Γ
(

∆̃1+∆̃2−h+iν
2

)
Γ
(

∆̃1+∆̃2−h−iν
2

)
Γ
(
h+iν+∆1−∆2

2

)
Γ
(
h+iν+∆2−∆1

2

)
Γ
(

∆1+∆2−h+iν
2

)
Γ
(

∆1+∆2−h−iν
2

)
C̄

∆e
1,∆

e
2,∆1,∆2

L|h+iν C̄
∆e

3,∆
e
4,∆1,∆2

R|h+iν + less singular terms.

(4.9)

4.3.1 Conformal block coefficients

Finally, we would like to rewrite (4.9) as a relation between the coefficients of the conformal

block decompositions. In the same way as in (4.7), one can argue that in (4.9) the explicit
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term correctly captures the leading order singularities at locations (4.5). Furthermore, only

singularities in the lower half ν-plane are relevant for the conformal block decomposition.

Then, using (2.20)–(2.23), we can find the coefficients of the highest derivative terms in

the conformal block decomposition for the loop diagram in terms of analogous coefficients

for tree-level subdiagrams.

Let us be more explicit. Consider a case in which the left tree diagram has the pole of

order mL at ∆n ≡ ∆1 + ∆2 + 2n, while the right one has the order mR singularity. Then,

given that the prefactor on the right hand side of (4.9) has zeros at double-trace locations,

the order of the singularity for C̄O is mL+mR−1. In this case, the highest derivative term in

the conformal block decomposition of the left diagram has mL−1 derivatives of the double-

trace conformal block, while for the right diagram it has mR − 1 derivatives. Explicitly,

the coefficients of these highest derivative terms are computed as follows, see (2.20)–(2.23)

ā
[mL−1]
L|∆n

= −2π lim
∆→∆n

(
(∆−∆n)mLC̄L|∆

)
,

ā
[mR−1]
R|∆n

= −2π lim
∆→∆n

(
(∆−∆n)mRC̄R|∆

)
.

(4.10)

Then, the highest derivative term for the loop diagram has mL + mR − 2 derivatives and

the associated highest derivative coefficient is

ā
[mL+mR−2]
O|∆n

= −2π lim
∆→∆n

(
(∆−∆n)mL+mR−1C̄O|∆

)
. (4.11)

Substituting (4.9) into the right hand side of (4.11) and employing (4.10), we obtain

ā
[mL+mR−2]
O|∆n

=
ā

[mL−1]
L|∆n

ā
[mR−1]
R|∆n

āM|∆n

, (4.12)

where āM denotes the conformal block coefficient for the block of dimension ∆n in mean

field theory.7

Having derived a general formula (4.12), let us now consider particular cases, relevant

for typical one-loop bulk computations. First, in the case of generic dimensions on the

external lines of tree diagrams, each C̄ has simple poles at double-trace locations (4.5)

and the associated conformal block decompositions do not involve derivatives of conformal

blocks. Then the above analysis implies that the loop diagram also has only simple poles

at locations (4.5) and (4.12) gives the coefficients of the double-trace conformal blocks of

the loop diagram in terms of those for tree-level subdiagrams

ā
[0]
O|∆n

=
ā

[0]
L|∆n

ā
[0]
L|∆n

āM|∆n

. (4.13)

For a bubble diagram with no-derivative interaction this formula was found in [22].

Alternatively, one may consider the case in which (2.35) holds. In particular, this

happens when fields appearing on external lines are identical. Then, second order poles

at tree level lead to first derivatives of conformal blocks in the tree-level conformal block
7These were found in [53] in d = 4 and in [22] in general dimensions.
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decompositions. Moreover, according to the above analysis, the loop diagram will have

poles of third order at double-trace locations, resulting in second derivatives of conformal

blocks in the conformal block decomposition. The explicit relation between the highest

derivative coefficients is given by

ā
[2]
O|∆n

=
ā

[1]
L|∆n

ā
[1]
R|∆n

āM|∆n

. (4.14)

By rewriting this formula in terms of anomalous dimensions, one can show that it is con-

sistent with the expectation from the large-N analysis. This will be further discussed in

section 5. Relation (4.14) was also used to compute one-loop diagrams for identical fields,

see e.g. [7].

4.4 Summary on singular and non-singular contributions

Before finishing this section, let us reiterate once again what our analysis of the double-

particle singularity captures and what contributions it misses, now using the language of

the conformal block decomposition.

Firstly, as we explained above, (4.12) captures only the coefficients of the highest

derivative terms of conformal blocks of dimensions ∆1 + ∆2 + 2n. In the case (4.13)

the highest derivative terms have no derivatives, so (4.13) gives an exact formula for the

coefficients of double-trace conformal blocks of dimensions ∆1 + ∆2 + 2n. However, the

loop diagram, in addition, contains conformal blocks of dimensions ∆e
1 + ∆e

2 + 2n and

∆e
3 + ∆e

4 + 2n. The associated singularities are present in tree-level subdiagrams due to

B factors, see (2.31), and as a consequence of (3.10) also appear for the loop amplitude.

These contributions to the loop amplitude are regular in the sense that these are typical

of contact interactions. These regular terms are not captured by (4.13). Alternatively, in

the case of identical fields, (4.14) captures the contribution involving second derivatives of

double-trace conformal blocks in the conformal block decomposition. The remaining terms

— those with single derivatives and no derivatives of double-trace conformal blocks — can

be regarded as regular as these can be generated by contact interactions.

Secondly, (4.12) does not capture “single-trace singularities”. To be more precise, the

coefficient functions A, see (2.31), for tree-level subdiagrams may contain poles in ν, result-

ing into single-trace contributions to the conformal block decomposition. This happens,

for example, for exchanges in the direct channel. Then, as it is not hard to see from (3.10),

these poles carry over to the loop amplitude. Thus, one expects, that the associated single-

trace conformal blocks are also present in the conformal block decomposition of the loop

amplitude. Similarly, these single-trace contributions to the loop amplitude are not cap-

tured by our analysis. At the same time, it is worth stressing, that the presence/absence of

single-trace blocks for tree-level subdiagrams does not affect the result (4.12) for double-

trace conformal blocks.

The situation we described here is identical to that in flat space, in which the double-

particle cut diagram captures the associated discontinuity of the amplitude, but does not

say anything about the regular part of the amplitude and singularities associated with

other cut diagrams.
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5 Large-N expansion for the dual theory

In the previous section we demonstrated how the double-cut singularity of a one-loop

bulk diagram is related to tree-level diagrams obtained from the original loop diagram by

cutting two propagators. In this section we will review the CFT dual counterpart of this

analysis. Our goal is to demonstrate that relations such as (4.13) and (4.14) are consistent

with the standard large-N considerations. As on the bulk side, we will have two different

situations: the one in which the degeneracy condition (2.35) is satisfied and the other one

in which it is not. In these two cases the analysis is somewhat different. Let us start from

a non-degenerate case.

5.1 Non-degenerate case

In this section we will be interested in a one-loop diagram in AdS space, which has the

fields dual to operators Oe
1, Oe

2, Oe
3 and Oe

4 on external lines and a non-trivial two-particle

cut through lines propagating fields dual to operators O1 and O2. Our goal is to relate

the CFT data of the singular part of the loop diagram associated with a given cut to the

CFT data of the tree diagrams, resulting from the cut of the loop diagram, employing

CFT considerations. Moreover, we will assume that dimensions of the fields are such that

degeneracy condition (2.35) never takes place.

We begin by analyzing the CFT dual of tree-level amplitudes appearing after cutting

a loop diagram. These correspond to correlators

〈Oe
1Oe

2O1O2〉, 〈Oe
3Oe

4O1O2〉, (5.1)

where Oe
i and Oi are the single-trace operators dual to the bulk fields appearing on external

lines and running in the loop of the bulk amplitude respectively. Expanding the first

correlator at large N , we find

〈Oe
1Oe

2O1O2〉 = 〈Oe
1Oe

2O1O2〉(0) +
1

N2
〈Oe

1Oe
2O1O2〉(1) + . . . . (5.2)

Here the leading term in the expansion vanishes, as it corresponds to the disconnected

diagram, which is absent in the case in which all operators are different. By AdS/CFT

correspondence, the bulk gravitational constant GN equals 1/N2,8 at large N , so the

second term on the right hand side of (5.2) corresponds to the tree-level contribution we

are interested in.

The OPE of Oe
1 and Oe

2 has the schematic form

Oe
1 ×Oe

2 =

(
1

N
+ . . .

)
Oi +

(
1 +

1

N2
+ . . .

)
[Oe

1Oe
2]n,l

+

(
1

N2
+ . . .

)
[O1O2]n,l + . . . .

(5.3)

8Formula GN = 1/N2 at large N refers to particular examples of the holographic correspondence, such

as the classical one [1–3]. Instead, in the present paper we rather discuss general bulk theories, which may

have many independent coupling constants. In this case we require that g3 ∝ 1/N , g4 ∝ 1/N2 for cubic and

quartic couplings in the large-N limit and similarly for higher order interactions. This scaling guarantees

the appropriate identification of the bulk loop expansion and the 1/N expansion on the boundary.
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Here Oi refers to all single-trace operators that can appear in a given OPE, while [OiOj ]n,l
and [Oe

iOe
j ]n,l are the double-trace operators of the schematic form

[OiOj ]n,l = Oi�n∂µ1 . . . ∂µlOj + . . . (5.4)

and similarly for [Oe
iOe

j ]n,l. At large N they have the following dimensions

∆ij|n,l = ∆
(0)
ij|n,l +

1

N2
γ

(1)
ij|n,l + . . . , ∆ee

ij|n,l = ∆
ee|(0)
ij|n,l +

1

N2
γ

ee|(1)
ij|n,l + . . . , (5.5)

where

∆
(0)
ij|n,l = ∆i + ∆j + 2n+ l, ∆

ee|(0)
ij|n,l = ∆e

i + ∆e
j + 2n+ l, (5.6)

and γ are the anomalous dimensions.

The OPE coefficients implicitly appearing in (5.3) also admit the 1/N expansion, for

which we introduce the following notations

cOe
1Oe

2Oi =
1

N
c

(1)
Oe

1Oe
2Oi

+ . . . ,

cOe
1Oe

2[Oe
1Oe

2]n,l
= c

(0)
Oe

1Oe
2[Oe

1Oe
2]n,l

+
1

N2
c

(1)
Oe

1Oe
2[Oe

1Oe
2]n,l

+ . . . ,

cOe
1Oe

2[O1O2]n,l
=

1

N2
c

(1)
Oe

1Oe
2[O1O2]n,l

+ . . . .

(5.7)

Note the appearance of c(0), which are the OPE coefficients of mean field theory. The OPE

of O1 and O2 is analogous.

In these terms, the conformal block decomposition of 〈Oe
1Oe

2O1O2〉 acquires the form9

〈Oe
1Oe

2O1O2〉(1) =
∑
i

c
(1)
Oe

1Oe
2Oi

c
(1)
O1O2Oi

G
∆e

1∆e
2∆1∆2

∆i

+
∑
n,l

c
(0)
Oe

1Oe
2[Oe

1Oe
2]n,l

c
(1)
O1O2[Oe

1Oe
2]n,l

G
∆e

1∆e
2∆1∆2

[Oe
1Oe

2]n,l

+
∑
n,l

c
(1)
Oe

1Oe
2[O1O2]n,l

c
(0)
O1O2[O1O2]n,l

G
∆e

1∆e
2∆1∆2

[O1O2]n,l
.

(5.8)

It is not hard to see that this conformal block decomposition is consistent with the one we

encountered for the bulk tree-level diagrams in section 2.4. Indeed, the first line in (5.8)

contains single-trace conformal blocks generated by the A factor in (2.31), while the other

two lines are the double-trace contributions generated by the kinematic B factor. Analo-

gous relations hold for the second correlator in (5.1) at the leading order — one just needs

to replace Oe
1 and Oe

2 with Oe
3 and Oe

4.

Now, let us move to the correlator 〈Oe
1Oe

2Oe
3Oe

4〉 and focus on its O(1/N4) part, that

corresponds to the one-loop level. To derive its conformal block decomposition, we need

to take into account contributions from all operators that appear simultaneously in the

OPE’s Oe
1 × Oe

2 and Oe
3 × Oe

4 with the OPE coefficients and anomalous dimensions, that

are relevant at this order.
9Hopefully, the notation in which we write the operator itself instead of its dimension as an index of a

conformal block will not lead to any confusions.
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First, we consider [O1O2]n,l. They appear in both OPE’s with the leading OPE

coefficient of order O(1/N2), see (5.7). This means that we should have the following

contribution

〈Oe
1Oe

2Oe
3Oe

4〉(2) ⊃
∑
n,l

c
(1)
Oe

1Oe
2[O1O2]n,l

c
(1)
Oe

3Oe
4[O1O2]n,l

G
∆e

1∆e
2∆e

3∆e
4

[O1O2]n,l
. (5.9)

This is precisely the contribution we are after. It is not hard to see that the conformal

block coefficients appearing in (5.9) are related to the conformal block coefficients in the

last line of (5.8) and the analogous ones for 〈Oe
3Oe

4O1O2〉(1) as found in (4.13).10

Other set of operators that should be taken into account is [Oe
1Oe

2]n,l. These may give

two types of contributions. The first type is

〈Oe
1Oe

2Oe
3Oe

4〉(2) ⊃
∑
n,l

c
(0)
Oe

1Oe
2[Oe

1Oe
2]n,l

c
(2)
Oe

3Oe
4[Oe

1Oe
2]n,l

G
∆e

1∆e
2∆e

3∆e
4

[Oe
1Oe

2]n,l
. (5.10)

These terms are, however, regular and we are not interested in them here. Another type

of contributions is of the form

〈Oe
1Oe

2Oe
3Oe

4〉(2) ⊃
∑
n,l

c
(0)
Oe

1Oe
2[Oe

1Oe
2]n,l

c
(1)
Oe

3Oe
4[Oe

1Oe
2]n,l

γ
ee|(1)
12|n,l

∂

∂∆ee
12|n,l

G
∆e

1∆e
2∆e

3∆e
4

[Oe
1Oe

2]n,l
. (5.11)

It is linear in c
(1)
Oe

3Oe
4[Oe

1Oe
2]n,l

, which is the CFT data of the tree-level correlator

〈Oe
1Oe

2Oe
3Oe

4〉(1). It is also linear in γ
ee|(1)
12|n,l , which is the CFT data of the tree-level cor-

relator 〈Oe
1Oe

2Oe
1Oe

2〉(1). This implies, that (5.11) is the contribution associated with a

double-particle cut through lines, that propagate fields dual to Oe
1 and Oe

2. This diagram

may be non-vanishing, but it is not the diagram we set to compute here.

Finally, let us consider contributions from single-trace operators Oi. These can also

be of two types

〈Oe
1Oe

2Oe
3Oe

4〉(2) ⊃
∑
i

(
c

(2)
Oe

1Oe
2Oi

c
(1)
Oe

3Oe
4Oi

+ c
(1)
Oe

1Oe
2Oi

c
(2)
Oe

3Oe
4Oi

)
G

∆e
1∆e

2∆e
3∆e

4
∆i

+
∑
i

c
(1)
Oe

1Oe
2Oi

c
(1)
Oe

3Oe
4Oi

γ
(1)
i

∂

∂∆i
G

∆e
1∆e

2∆e
3∆e

4
∆i

.
(5.12)

From the bulk perspective these contributions correspond to single-particle cuts. Indeed,

the first line involves c(2) for single-trace operators, which corresponds to one-loop correc-

tions to the bulk cubic vertex. The second line involves anomalous dimensions γ(1) for the

single-trace operators, which via holography maps to the mass shift of the bulk propagator.

Such contributions cannot be derived from unitarity and analyticity in flat space and also

they are not captured by the analysis of AdS double-cut diagrams in the previous section.

On the CFT side these cannot be reconstructed via large-N expansion neither, but rather

should be taken as an input data.

10On the bulk side we only discussed contributions of scalar double-trace operators, l = 0, and the spin

label was omitted.
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5.2 Degenerate case

Here we review the CFT counterpart of the setting for which degeneracy (2.35) occurs. For

simplicity, we consider the case, in which all operators — appearing on the external lines

and on the cut lines — are identical.

The OPE of O with itself is schematically of the form

O ×O = 1 +

(
1

N
+ . . .

)
O +

(
1 +

1

N2
+ . . .

)
[OO]n,l + . . . . (5.13)

Here 1 denotes the identity operator and [OO]n,l are the double-trace operators as de-

fined in (5.4). As in the previous section, we expand the CFT data in 1/N , which also

specifies the four-point correlator order by order. The role of single-trace operators in this

discussion is the same as in the previous section, so below we focus on the double-trace

contributions only.

At order O(N0) the double-trace operators [OO]n,l have the mean field theory

dimensions

∆
(0)
n,l = 2∆ + 2n+ l, (5.14)

which then acquire corrections

∆n,l = ∆
(0)
n,l +

1

N2
γ

(1)
n,l +

1

N4
γ

(2)
n,l + . . . . (5.15)

Similarly, the OPE coefficients for [OO]n,l in (5.13) admit the 1/N expansion

cOO[OO]n,l
= c

(0)
OO[OO]n,l

+
1

N2
c

(1)
OO[OO]n,l

+
1

N4
c

(2)
OO[OO]n,l

+ . . . (5.16)

and c(0) refers to the OPE coefficients in mean field theory.

Accordingly, the four point correlator can be expanded as

〈OOOO〉 = 〈OOOO〉(0) +
1

N2
〈OOOO〉(1) +

1

N4
〈OOOO〉(2) + . . . . (5.17)

Here the leading term is just the disconnected correlator. The subleading term for the

four-point correlator admits the conformal block decomposition

〈OOOO〉(1) = 2c
(0)
OO[OO]n,l

c
(1)
OO[OO]n,l

G∆
∆n,l

+
(
c

(0)
OO[OO]n,l

)2
γ

(1)
n,l

∂

∂∆n,l
G∆

∆n,l
. (5.18)

Proceeding to order 1/N4 we find the following terms

〈OOOO〉(2) =

(
2c

(0)
OO[OO]n,l

c
(2)
OO[OO]n,l

+
(
c

(1)
OO[OO]n,l

)2
)
G∆

∆n,l

+

((
c

(0)
OO[OO]n,l

)2
γ

(2)
n,l + 2c

(0)
OO[OO]n,l

c
(1)
OO[OO]n,l

γ
(1)
n,l

)
∂

∂∆n,l
G∆

∆n,l

+
1

2

(
c

(0)
OO[OO]n,l

γ
(1)
n,l

)2 ∂2

∂∆2
n,l

G∆
∆n,l

.

(5.19)

Here the term in the last line is the only singular contribution. Moreover, it is completely

fixed by order 1/N2 CFT data. It is not hard to see that the relation between the coefficients

of second derivatives of double-trace conformal blocks in (5.19) and the coefficients of first

derivatives in (5.18) is given by (4.14), that we found from bulk considerations.
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6 Generalizations and consequences

In this section we will comment on a number of straightforward extensions and corollaries

of the previous discussion.

6.1 Higher-loop and higher-point functions

The arguments presented above admit a straightforward extension to higher-point and

higher-loop amplitudes. Let us illustrate this with a simple example.

Suppose we have a four-point two-loop amplitude which admits a three-particle cut in

a given channel. Using the split representation for the propagators involved in the cut, we

rewrite a given amplitude as an integrated product of two tree-level five-point functions.

By appropriately choosing the channel for the tree-level amplitudes we find, schematically,

AO(Qi) =

∫
dPL1dPL2dPR1dPR2dP1dP2dP3dνL1dνL2dνR1dνR2dν1dν2dν3(. . . )

[O∆e
1
(Q1)O∆e

2
(Q2)O∆L1

(PL1)][O∆̃L1
(PL1)Oh+iν1(P1)O∆L2

(PL2)]

[O∆̃L2
(PL2)Oh+iν2(P2)Oh+iν3(P3)][Oh−iν2(P2)Oh−iν3(P3)O∆R2

(PR2)]

[O∆̃R2
(PR2)Oh−iν1(P1)O∆R1

(PR1)][O∆̃R1
(PR1)O∆e

3
(Q3)O∆e

4
(Q4)].

(6.1)

Here P1, P2 and P3 are additional boundary points introduced by the split representation

of the propagators to be cut and ν1, ν2 and ν3 are the associated spectral parameters.

Analogously, PL1 , PL2 , PR1 and PR2 are the intermediate points of conformal partial waves

for the left and the right tree amplitudes and νL1 , νL2 , νR1 and νR2 are the respective

spectral parameters. Various coefficient functions in (6.1) we leave implicit.

We can analyze (6.1) using iterative applications of the procedure from the previous

section. To be more precise, we start by evaluating P2 and P3 integrals employing the

bubble integral formula. Then delta-functions that it produces can be used to remove

νR2 and PR2 integrals. After that we integrate out P1 and PL2 using the bubble integral

formula again, which, eventually, leads to the conformal partial wave expansion for the

original four-point diagram.

Similarly, one can use the arguments of the previous sections iteratively to study the

analytic structure of the resulting spectral integrals. Namely, we first consider the integral

over ν2 and ν3 and find singularities in νL2 that it produces. Next, we use the same

methods to find singularities in νL1 after νL2 and ν1 are integrated out. Eventually, we find

the triple-cut — or, equivalently, triple-trace — singularities of the conformal partial wave

expansion of the initial two-loop diagram.

In summary, to deal with amplitudes that admit non-trivial cuts of multiple propa-

gators, one should expand each subdiagram in partial waves and then proceed iteratively,

at each step applying the bubble formula to a bubble formed by a pair of propagators.

Each iteration, effectively, reduces the number of propagators in the diagram by one: in-

stead of a pair of propagators with dimensions ∆1 and ∆2 one obtains a single propagator

with singularities at double-trace locations ∆1 + ∆2 + 2n. The iterative procedure stops

when there is only one propagator left. Its singularities correspond to the multiple-trace
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operators formed from the operators associated with the cut lines of the original diagram.

This procedure is analogous to the approach used in [21] to compute higher loop bubble

diagrams. However, unlike the approach of [21], our procedure is applicable to all types

of diagrams.

These results can be compared with the large-N expansion in the CFT. The leading

contribution to the five-point correlator is of order O(1/N3). Expanding the left correlator

into conformal blocks in the same channel as the left amplitude in (6.1), we will find the

following terms

〈Oe
1Oe

2O1O2O3〉(1) ⊃ c(1)
Oe

1Oe
2[O1O2O3]c

(0)
[O1O2O3]O1[O2O3]c

(0)
[O2O3]O2O3

G
∆e

1∆e
2∆1∆2∆3

[O1O2O3],[O2O3] (6.2)

and similarly for the right amplitude. Then, applying bulk formula (4.13) two times we

find that the two-loop amplitude has singular terms associated with a three-particle cut of

the form

〈Oe
1Oe

2Oe
3Oe

4〉 ⊃ c
(1)
Oe

1Oe
2[O1O2O3]c

(1)
Oe

3Oe
4[O1O2O3]G

∆e
1∆e

2∆e
3∆e

4

[O1O2O3] , (6.3)

which is consistent with the expectation form the CFT analysis.

Clearly, this argument can be generalized to any number of cut propagators and any

number of external lines for the diagrams involved. The same procedure can also be applied

for the case in which the diagrams resulting from a cut involve loops themselves. More

thorough and systematic analysis of these extensions we leave for future research.

6.2 AdS Cutkosky rules

The effect of the contour deformation used in section 4 to extract the singular part of the

amplitude, eventually, amounts to the replacement of propagators with cut propagators

Π∆(X1, X2) → 2π

∆− h
Ωi(∆−h)(X1, X2) = Π∆(X1, X2)−Πd−∆(X1, X2). (6.4)

This can be regarded as the AdS version of flat space Cutkosky rules [36, 54].11 Let us re-

mind the reader again, that in contrast to the usual Cutkosky rules, replacement (6.4) not

only gives the singular part of the amplitude, but also results in additional shadow singular-

ities, which were not present in the initial amplitude. It would be interesting to understand

how these shadow contributions can be removed in future. Presumably, this should require

analytic continuation of the amplitude to the Lorentzian signature. Alternatively, one can

project out the unnecessary contributions using monodromy transformations, see [55].

It is also instructive to reformulate the prescription (6.4) in terms of the CFT correla-

tors. By taking care of all the necessary normalization factors, for the double-particle cut

we find that

〈Oe
1(Q1)Oe

2(Q2)Oe
3(Q3)Oe

4(Q4)〉O ⊃ 〈Oe
1(Q1)Oe

2(Q2)O1(P1)O2(P2)〉L
1

N∆1

1

N∆2

[Õ1(P1)Õ1(P ′1)][Õ2(P2)Õ2(P ′2)]〈Oe
3(Q3)Oe

4(Q4)O1(P ′1)O2(P ′2)〉R,
(6.5)

11The analogy between Π∆ − Πd−∆ and flat space cut propagators is rather obvious: indeed, they both

satisfy free equations of motion identically. Moreover, the fact that substitution Π∆ → Π∆ − Πd−∆ into

the exchange diagram produces only a single-trace conformal block with its shadow partner is well-known.

In (6.4) we state that this idea naturally extends to loop amplitudes.
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where

N∆ ≡
πdΓ(∆− h)Γ(h−∆)

Γ(∆)Γ(d−∆)
. (6.6)

The operation of insertion of the operator

|O(P1)〉 1

N∆
[Õ1(P1)Õ1(P ′1)]〈O(P2)| (6.7)

into a correlator is known to carry out its projection onto a contribution associated with the

operator O and its shadow [55]. In particular, when inserted into a four-point correlator,

it gives a contribution associated with the conformal block in which the operator O is

exchanged plus its shadow partner. Similarly, multiple insertions of the projector (6.7) as

they appear in (6.5) can be understood as a projection of the correlator onto the space of

multi-particle states for the associated set of operators. This interpretation parallels the

one of the Cutkosky rules, in which a particular singularity of the S-matrix is expressed

in terms of an integral over the on-shell phase space of particles associated with the cut

propagators. A closely related discussion in a somewhat different form can be found in [22].

6.3 Spinning fields

So far our analysis was focused on scalar fields only. The procedure we employed, however,

can be straightforwardly generalized to include fields with spin. The main technical diffi-

culty related to such a generalization is due to the presence of multiple tensor structures

for three-point correlators of operators of general spin and due to the necessity to compute

all possible bubble integrals involving these tensor structures.

The simplest extension to consider along these lines is to take into account spinning

conformal blocks with scalar operators on external lines. These contributions are relevant

even in theories of scalar fields in the bulk, if, for example, a quartic vertex contains

derivatives or cubic couplings are non-vanishing. To be able to compute the singular part

of a one-loop amplitude using the procedure from sections 3 and 4, one needs to deal

with bubble integrals that involve two spinning operators on external lines and two scalar

operators at the points being integrated out. Such bubble integrals are known [34, 35].

It is straightforward to check that this computation eventually leads to the result of the

form (4.12), in which we just need to replace conformal block coefficients for scalar operators

with spinning ones.

Instead of giving this computation explicitly, we will present a shortcut method. It is

clear, that if the loop computation is done directly, we will find a relation of the form

a
[0]
O|∆n,l,l

= αn,la
[0]
L|∆n,l,l

a
[0]
R|∆n,l,l

, (6.8)

in which it only remains to find the multiplicative factor αn,l. To do that, we will use that

the singular part of the loop diagram can be computed by the sewing procedure (6.5). This

formula is valid for any correlators used in place of tree-level amplitudes and we will take

them to be the disconnected correlators. Then, due to the standard identities with the

two-point correlators, the left hand side of (6.5) is also a disconnected correlator. Thus,
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plugging for all a’s in (6.8) the conformal block coefficients of mean field theory, we find that

αn,l =
(
a

[0]
M|∆n,l,l

)−1
, (6.9)

which was to be demonstrated. Generalization to the case in which anomalous dimensions

are present is straightforward. The relation between the bubble integral and the mean field

theory conformal block coefficients that we encountered here in a similar context appeared

previously in [35].

For more general spin configurations the same argument can be used to bypass the

computation of the bubble integral explicitly. It is worth stressing, however, that only

particular types of tensor structures appear in three-point correlators of mean field theory,

so only some of the cut diagrams in the bulk can be computed with this trick. If the

tree amplitudes resulting from a cut of a loop diagram involve different tensor structures

in their conformal block decompositions, then the associated bubble diagrams have to be

evaluated explicitly. It would be interesting to see what is the analogue of (4.12) in this

case and how this procedure can be reconciled with the large-N expansion for the CFT

dual theory.

6.4 Reconstruction of the complete amplitude

Here we briefly mention the issue of reconstruction of the complete amplitude from its

singularities. In flat space, once the high-energy behavior is known, this reconstruction

can be carried out using simple arguments from complex analysis. Analogous approaches

were recently developed in the CFT [6, 8, 11, 48]. Similarly to the flat space approach,

in the CFT’s one can derive bounds on the correlators in the Regge limit both at finite

N [8] and in the large-N limit [56] and then, using analyticity, reconstruct the complete

correlator from singular terms up to a finite number of lower-spin contributions compatible

with a given Regge behavior.

This analysis is particularly simple when applied to the correlators or AdS amplitudes

in the form of the conformal partial wave expansion. The idea is based on the fact that

exchanges are compatible with the required Regge behavior. Hence, to find a complete

amplitude, once its singular part is known, we just need to promote each conformal block

in the conformal block decomposition of the singular part to the associated exchange, see

e.g. [57]. As was reviewed in section 2, the coefficient function of the conformal partial

wave expansion for the exchange diagram in the direct channel has the form of a product

of the standard kinematical B factor times another pole factor

A =
β

ν2 + (∆− h)2
, (6.10)

responsible for generation of singular contributions (2.30). This means that to find the

complete amplitude from its singular part given by its C-coefficient function, we just need

to consider all singularities of A = C/B and for each of them add a term of the form (6.10)

with the appropriate locations of poles and the appropriate residues to A of the complete

amplitude. Putting differently, Regge behavior bounds translate into bounds on A at

ν →∞, which allows to reconstruct A from its singularities.
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The resulting sum over poles may require regularization. In practice this boils down

to a subtraction of few polynomial terms in ν with infinite coefficients, which renders the

amplitude finite. Related discussions in other representations can be found in [7, 22]. It is

worth noting that using this approach one can compute individual diagrams and the result

does not have to be crossing symmetric.

This idea can be combined with the previously explained approach of computing am-

plitude’s singularities to evaluate any loop amplitude. The main technical difficulty for

implementing this approach in practice is that the conformal partial wave expansions for

exchanges in the crossed channel are rather complicated. They cannot be computed using

the methods reviewed in section 2. Instead, one can first compute the conformal partial

wave expansion for the exchange in the direct channel and then convert it to the crossed

channel employing the crossing kernels or use alternative methods. For recent discussions of

conformal block decompositions of exchanges in the crossed channel, see [5, 28, 58]. It would

be interesting to test the utility of this approach to computing loop amplitudes in practice.

6.5 Higher-spin theories

In this section we will consider separately a rather special case of free vector12 models

and their higher-spin bulk duals. The approach to the computation of loop corrections in

higher-spin theories based on the analytic structure of bulk diagrams was used in [17] and

we would like to provide justifications for some assumptions made there. We refer the reader

to [17] for the relevant background material on higher-spin theories and vector models.

From the boundary theory perspective the problem of 1/N corrections may seem triv-

ial. Indeed, given that the theory is free, all correlators can be readily computed and they

do not receive any 1/N corrections. Naively, one may think that this implies that all bulk

loop corrections should vanish. However, this should not necessarily be the case. The

reason is that the identification GN = 1/N between the bulk Newton’s constant and N

may be valid only at the leading order in 1/N . This means that bulk amplitudes may

receive loop corrections, but these should be proportional to the tree-level result. Indeed,

if this is the case, the agreement with the boundary result may still be achieved by the

appropriate shift in the identification between bulk and boundary coupling constants. By

studying vacuum diagrams it was found [59–62] that such a shift is, indeed, necessary. Ac-

cordingly, loop corrections for non-vacuum diagrams should also be non-vanishing. Aiming

to confirm this, in [17] the double-cut singularity of the one-loop four-point amplitude in

the higher-spin theory was computed. Below we will comment on some peculiar issues

related to the application of the analysis of previous sections to this case.

As explained above, we are free to take tree-level four-point functions of a higher-spin

theory to be equal to the connected part of the four-point correlator of the O(N) (one

can similarly consider U(N) and USp(N) cases) vector model, however, keeping in mind,

that the identification between the coupling constants in the bulk and on the boundary

may eventually be different from GN = 1/N . To start, we will focus on the scalar four-

point amplitude. As we are dealing with four identical fields, the B factor contributes

12Accordingly one should replace 1/N2 with 1/N compared to the rest of the paper.
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second order poles at double-trace locations to the coefficient function of the conformal

partial wave expansion of the four-point tree-level amplitude. In the higher-spin case, given

that the boundary theory is free from anomalous dimensions, these singularities should be

compensated by zeros from the A factor, so that the product A×B has only simple poles.

Let us see what this peculiarity of tree-level diagrams implies at loop level.

To construct one-loop diagrams from tree-level ones we proceed as in section 3. This

requires to extend some of the external lines of tree-level amplitudes off-shell. We will

assume that this extension results in the same analytic structure in ν1 and ν2 — see (4.1)

— as for more standard theories in AdS.13 Carrying out the remaining steps as before,

we find that the one-loop amplitude has simple poles at double-trace locations and the

associated conformal block coefficients are related to those at tree level by (4.13). In other

words, despite a rather peculiar structure of higher-spin theories, (4.13) can still be used to

compute the double-trace contributions to the conformal block decomposition of the one-

loop diagram with a double-cut in a given channel. Moreover, considering that anomalous

dimensions are absent, this gives a complete double-trace part for this amplitude. It is

worth stressing, however, that, in contrast to ordinary theories in AdS, these contributions

are not singular. Moreover, they are not specific to diagrams with a non-trivial double-

particle cut in a given channel: in particular, these contributions are present already for

tree-level four-point functions. This issue complicates the application of the standard

unitarity method for the computation of higher-spin amplitudes at one loop.

A complete computation in the higher-spin theory also requires to take into account

contributions from higher-spin fields running in the loop. It turns out that the tensorial

structures appearing in tree-level amplitudes are the same as for mean field theory correla-

tors, so one can still use the appropriate generalization of (4.13) as discussed in section 6.3.

To summarise, with some reasonable assumptions, the methods presented above can be

used to compute a complete double-trace part of all one-loop diagrams with a non-trivial

double-particle cut in higher-spin theory. Reconstruction of the complete amplitude is,

however, more tricky.

Before concluding, we briefly consider the boundary interpretation of this computa-

tion. In the higher-spin case the analysis of section 5.2 applies except that the anomalous

dimensions are vanishing. For scalars, this means that the O(1/N) CFT data induces a

O(1/N2) contribution

〈OOOO〉(2) ⊃
(
c

(1)
OO[OO]n,l

)2
G∆

∆n,l
, (6.11)

to the four-point correlator, which is consistent with the bulk analysis. The connection with

the bulk computation gets more tricky if we take into account contributions from all spins.

The reason is that the double-trace operators associated with pairs of fields running in the

loop mix up in a non-trivial way — the associated two-point functions are not diagonal.

As a result, the bulk summation over all pairs of spins that run in the loop does not seem

to have a straightforward counterpart on the CFT side.

13This may be a tricky step considering that holographically reconstructed higher-spin theories are non-

local in a conventional sense [32, 63], hence, in principle, infinite-derivative terms can generate additional

singularities. It would be interesting to see whether such singularities can affect the analysis of section 4.
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7 Conclusions and outlook

In this paper we considered a general one-loop four-point amplitude for scalar fields in

AdS admitting a non-trivial double-particle cut in a given channel. By employing the

split representation for bulk-to-boundary propagators it was expressed in terms of off-shell

tree-level four-point amplitudes. Then, by studying the analytic structure of the resulting

spectral integrals we expressed the double-particle singularity of the loop amplitude in

terms of the tree-level data. The main result of the paper is given by (4.9) and may be

regarded as the AdS counterpart of the flat space formula that relates the discontinuity of a

one-loop amplitude associated with a pair of particles going on-shell to tree-level diagrams

by unitarity. The analogy is the most transparent if flat space amplitudes are expressed in

terms of partial waves with definite spin and energy in the center of mass frame.

Throughout the paper we employed the conformal partial wave expansion for bulk

amplitudes. This representation is particularly convenient for establishing the connection

with the CFT data on the boundary. We demonstrated that relation (4.9) translates into

a simple statement that the O(1/N2) CFT data defines a certain singular part of the four-

point correlator at order O(1/N4). This relation was used recently rather extensively both

for computing loop diagrams in AdS and O(1/N4) corrections to correlators in conformal

field theories. In this regard, our result shows that this relation can be justified purely

from the bulk analysis, that is without resorting to the CFT dual description.

Our findings admit a number of straightforward generalizations that we briefly discuss

in section 6. In particular, they seem to admit a rather straightforward generalization to

higher-point amplitudes and to cuts involving more than two propagators, still giving the

results, consistent with the expectations from the large-N considerations on the boundary.

Supplemented with the techniques of reconstructing the amplitude from its singular part,

these results may be instructive in showing that holography works at any loop order once

the duality is true at tree level.

Finally, let us note that despite the analysis carried out in this paper was perturbative,

there are reasons to expect that it can be extended to the non-perturbative level in some

way. Indeed, flat space unitarity constrains singularities of the complete non-perturbative

S-matrix and a similar relation should also be true in AdS. A precise understanding of

how this might work is complicated by the difficulties with the definition of multi-trace

operators at finite N , see [64, 65]. It would be interesting to clarify this in future.
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A Singularity structure: an example

In this appendix we consider a toy example of an integral that shares many common features

with the integral we studied in section 4 and, at the same time, can be easily evaluated

exactly. We give this example to illustrate that the contour deformation that we used in

the main text does allow to capture the singularities of the original integral correctly, at

the same time, producing additional shadow poles. A systematic account of the topic can

be found in [26, 36].

Consider an integral

I(ν) =

∫ ∞
−∞

dν1dν2f(ν1, ν2, ν), (A.1)

where

f(ν1,ν2,ν) =
(h2+ν2)ν2

1ν
2
2(

(∆1−h)2+ν2
1

)(
(∆2−h)2+ν2

2

)
1

((ν+ν1+ν2)2+h2)((ν−ν1+ν2)2+h2)((ν+ν1−ν2)2+h2)((ν−ν1−ν2)2+h2)
.

(A.2)

This integral has the analytic structure similar to that of (3.10), except that we replaced

everywhere gamma functions, producing series of poles or zeros, with single poles or ze-

ros at locations where the arguments of the respective gamma functions vanish. Indeed,

besides the explicit propagator factors (4.3), in (A.2) we also have poles at locations of

the leading singularities generated by the gamma functions in the numerator of (4.4). In

addition (A.2) has zeros ν2
1ν

2
2 as in (3.10) and (h2 + ν2) instead of two series of zeros from

(Γ(h+ iν)Γ(h− iν))−1 in the explicit prefactor in (3.10).

The integral (A.1) can be evaluated exactly using the residue theorem two times. The

result is

I(ν) =
π2(∆1 + ∆2)

16h∆1∆2

(
ν2 + (∆1 + ∆2 − h)2

) . (A.3)

We can see that the integral has poles only at locations that can be regarded as double-trace

locations (4.5) with n = 0, that is

h± iν = ∆1 + ∆2. (A.4)

To capture these singularities of I, one can instead consider an integral of f along con-

tours encircling singularities of the integrand generated by the propagator factors. The new

integral can be evaluated by collecting the residues at ν1 = ±i(∆1−h) and ν2 = ±i(∆2 − h)

with the result

I ′(ν) ≡ 4(2πi)2 Res
ν2=−i(∆2−h)

Res
ν1=−i(∆1−h)

f(ν1, ν2, ν)

=
4π2(h2 + ν2)(∆1 − h)(∆2 − h)(

ν2 + (∆1 + ∆2 − h)2
)(
ν2 + (∆1 + ∆2 − 3h)2

)
1(

ν2 + (∆1 −∆2 − h)2
)(
ν2 + (∆2 −∆1 − h)2

) .
(A.5)
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It is straightforward to verify that

Res
ν=±i(∆1+∆2−h)

I(ν) = Res
ν=±i(∆1+∆2−h)

I ′(ν), (A.6)

as required. In other words, I ′ correctly captures singularities of the original integral I.

However, it is not hard to see that I ′ has additional poles not present in I.

This example can be extended in various ways to illustrate the features we encountered

in the main text. For instance, if we assume that the integrand itself has poles in ν at

locations (A.4) then, clearly, the integral will have poles at these locations of order higher

by one.
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