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1 Introduction

The inflationary paradigm [1–4] has emerged as a leading candidate for the origin of pri-

mordial fluctuations, which are postulated to arise from quantum fluctuations during a

phase of (approximately) de Sitter expansion in the early universe. Cosmological corre-

lations can be re-wound back to primordial correlation functions at the end of inflation,
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which provide a remarkably successful description of the current data from cosmological

observations. But in spite of this, the physics of inflation has remained elusive. This is due

to both theoretical and experimental limitations. In recent years, a significant theoretical

effort has been dedicated to refining our understanding of inflationary correlation functions.

Non-Gaussianities in primordial correlators encode information about interactions and field

content during inflation [5], so it is imperative to develop systematic approaches to classify

the possible shapes of non-Gaussianities for comparison with upcoming observational data.

See e.g. [6–18] for some recent efforts.

We propose an approach to the perturbative evaluation of late-time correlators in de

Sitter space based on the Mellin-Barnes representation in Fourier space. This has various

advantages. Computationally, the bulk integrals are trivialised since the dependence of the

propagators on conformal time is a simple power-law at the level of the Mellin-Barnes rep-

resentation. This feature straightforwardly gives rise to analytic expressions for boundary

correlators with any number of legs. The Mellin-Barnes representation of the boundary

correlators makes manifest their analytic structure, not only in the momenta but also in

the boundary dimension d and the scaling dimensions of the fields. Asymptotic expan-

sions of the correlators in the momenta/mass can moreover be systematically derived using

well-established methods in the Mellin-Barnes literature.

These features of the Mellin-Barnes representation could make it a convenient frame-

work to explore the basic principles that must be satisfied by late-time de Sitter correlators,

which may eventually be used to constrain (or “Bootstrap”) such observables without any

reference to bulk time-evolution (see e.g. [11, 17] for some initial works on the Bootstrap

of Cosmological Observables). Indeed, as we shall see, the location of the poles in the

Mellin-Barnes integrand are fixed by conformal symmetry,1 while the zeros may be fixed

by imposing the correct boundary conditions at possible singularities. This is the focus of

the companion work [30].

In this work we shall focus on using the Mellin framework for the bulk computation

of tree-level correlation functions of general scalars on (d+ 1)-dimensional de Sitter space,

including n-point contact diagrams and four-point exchange diagrams. For generic scalars,

the Mellin framework naturally identifies both types of diagrams with (generalised) Hyper-

geometric functions, which simplify for special values of the scaling dimensions. The ex-

change diagrams in particular have an appealing Mellin-Barnes representation, where they

are given as a product of the corresponding three-point structures that are sewn together by

a simple factor with poles that encode the Effective Field Theory Expansion and a second

factor containing only zeros which encode the boundary condition. The exchange four-point

function moreover factorises on the poles associated to the exchanged single particle state.

When d = 3 our results for generic external scalars are new, and reduce to existing

expressions available in the literature for when the external scalars are either simultaneously

conformally coupled or massless. To the best of our knowledge, the results for general d

were not previously available, even for the simplest case of external conformally coupled

1The constraints of Conformal Ward identities on Conformal Structures in Fourier space have been

studied in [6, 19–29].
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scalars. The ease at which these general results are obtained in the Mellin formalism is

testament to its efficacy. From the results for generic external scalars, it is straightforward

to extract inflationary corrections at leading order in slow roll by taking one of the external

legs to have soft momentum and a small mass.

Before concluding the introduction let us note that the Mellin formalism under con-

sideration can also be used in the perturbative bulk computation of boundary correlators

in anti-de Sitter space (i.e. Witten diagrams). As we shall demonstrate, the Mellin-Barnes

representations of de Sitter and anti-de Sitter propagators in momentum space differ only

by a simple phase. In position space, the Mellin representation for Witten diagrams [31–33]

has already stood out as an indispensable tool which moreover makes manifest the analogy

between AdS correlators and flat space scattering amplitudes [34–37]. It would be inter-

esting to investigate whether the techniques presented in this work could facilitate similar

progress in momentum space.2

Outline. This paper is organised as follows. In section 2 we discuss propagators of scalar

fields in dSd+1. After reviewing the pertinent aspects of the Wightman two-point functions

and the Schwinger-Keldysh formalism, in section 2.2 we show that the Wightman two-

point function can be obtained from the corresponding Harmonic function in Euclidean

anti-de Sitter space (EAdSd+1) by analytic continuation. This allows us to establish a

“split representation” for propagators in dSd+1. In section 2.3 we introduce the Mellin-

Barnes representation for propagators in Fourier space, where the analytic continuation

from EAdSd+1 is encoded in a simple phase. In section 3 we consider the computation of

late-time contact diagrams in dSd+1. We start off in section 3.1 with three-point functions

of generic scalars, before presenting the extension to n-point functions in section 3.2. In

section 3.3 we discuss simplifications which occur when one or more of the scalars is con-

formally coupled, together with some subtleties which arise when the Mellin integration

contour becomes pinched. This is also discussed in section 3.4 for the special case of three-

point functions of massless scalars for d = 3. In section 3.5 we show how kinematic limits

in the phase space of momenta can be studied using the Mellin-Barnes representation. In

section 4 we consider exchange four-point functions of general scalars, deriving its Mellin-

Barnes representation in section 4.1. In sections 4.2 and 4.3 we detail how the Operator

Product Expansion and Effective Field Theory expansion respectively are encoded in the

Mellin-Barnes representation.

Our notations and conventions are given in section 1.1. Various technical details are rel-

egated to the appendices, where we also review relevant aspects of Mellin-Barnes integrals

1.1 Notation and conventions

We study quantum scalar fields φ on a fixed (d + 1)-dimensional de-Sitter background,

which we denote by dSd+1. This can be viewed as a time-like hyperbola embedded in an

ambient (d+ 2)-dimensional Minkowski space-time R1,d+1,

X ·X := ηABX
AXB = L2, ηAB = diag (− + + . . . +) , A,B = 0, . . . , d+ 1, (1.1)

2Momentum space techniques for Witten diagrams have been relatively little explored to date except

for a handful of works, see e.g. [8, 9, 38–42].
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where L is the de Sitter radius. We shall consider a flat slicing xµ =
(
η, yi

)
, i = 1, . . . , d,

where

X0 =
η2 − L2 − yiyi

2η
, (1.2a)

Xi = −Ly
i

η
, (1.2b)

Xd+1 =
−η2 − L2 + yiyi

2η
, (1.2c)

and the metric reads

ds2 =
L2

η2

(
−dη2 + d~y2

)
. (1.3)

The conformal time η is related to the proper time t by

dη =
dt

a(t)
, a(t) = et/L. (1.4)

We shall be interested in the late-time correlation functions of φ, which are evaluated

on the future boundary of de Sitter by taking the late-time limit η → 0. Spatial slices of

de Sitter, including the future boundary, are parametrised by the spatial vectors yi. The

spatial momentum is represented by ki or ~k, with magnitude k = |~k|.

2 Propagators

We will begin in section 2.1 with a brief review on the relevant aspects of freely propa-

gating scalar fields on a fixed background de Sitter space-time, including the Wightman

function and Keldysh propagators. For more complete and detailed pedagogical reviews

see e.g. [43–47]. In section 2.2 we present a “split-representation” for de Sitter two-point

functions in position space, which are given as an integrated product of bulk-to-boundary

propagators. This is obtained as an analytic continuation of the split representation for

Harmonic functions in (d + 1)-dimensional Euclidean anti-de Sitter space (EAdSd+1). In

section 2.3 we introduce a Mellin-Barnes representation for the propagators in Fourier

space, where the dependence on the conformal time is a simple power-law and the analytic

continuation from EAdSd+1 is encoded in a simple phase.

2.1 Review: Wightman two-point functions and Keldysh propagators

Let us consider the free propagation of a scalar field φ of mass m, which satisfies the

Klein-Gordan equation (
∇2 −m2

)
φ = 0. (2.1)

At late times η → 0, the scalar field behaves as3

φ (η, ~x) ∼ O∆+ (~x) η∆+ +O∆− (~x) η∆− , (2.3)

3The behaviour (2.3) can be derived by considering the asymptotic form of the equation of motion

0 =
(
∇2 −m2)φ ∼ L−2 [− (η∂η)2 φ+ (d− 1) (η∂η)φ

]
−m2φ, (2.2)

and searching for solutions of the form φ (η, ~x) = A (~x) η∆.
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where the scaling dimensions of the boundary operators O∆± (~x) are related to the mass via

∆± =
d

2
± iν, (2.4a)

(mL)2 = ∆+∆−. (2.4b)

Particles in de Sitter space are classified according to Unitary Irreducible Representa-

tions (UIRs) of the isometry group SO (1, d+ 1) [48, 49].4 The non-tachyonic representa-

tions for scalar particles fall into two categories:

• Principal Series: Massive Particles, ν ∈ R, m2 ≥
(
d

2

)2

. (2.5)

• Complementary Series: Light Particles, ν → iµ, |µ| ∈
(

0,
d

2

)
,

0 < m2 <

(
d

2

)2

. (2.6)

Massless particles correspond to |µ| = d
2 and lie on the boundary of the complementary

series (which is sometimes referred to in the literature as the exceptional series).

In the following we will consider the Wightman two-point function,

G (x1, x2) = 〈0|φ (x1)φ (x2) |0〉, (2.7)

which obeys the homogeneous Klein-Gordon equation (2.1). This is the basic object from

which other two-point functions (e.g. retarded, advanced and Feynman Green’s functions)

can be obtained, as we shall review below. de Sitter invariant two-point functions are

functions of the invariant length between the two points,

P (x1, x2) =
ηABX

A
1 (x1)XB

2 (x2)

L2
, (2.8)

the dependence on which is convenient to express through the variable

σ(x1, x2) =
L2 +X1 (x1) ·X2 (x2)

2L2
, (2.9)

which in the flat slicing (1.3) reads

σ = 1 +
(η1 − η2)2 − (~y1 − ~y2)2

4η1η2
. (2.10)

As a function of σ the equation for the Wightman function takes the form (for σ 6= 1)

L−2

[
σ (1− σ) ∂2

σG (σ)−
(
d+ 1

2

)
(2σ − 1) ∂σG (σ)

]
−m2G (σ) = 0, (2.11)

4See [50–52] for the complete dictionary between UIRs of the de Sitter isometry algebra so (1, d+ 1) and

fields on dSd+1.
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which is Euler’s Hypergeometric differential equation. This has two independent solutions:

G (σ) = A 2F1

(
d

2
+ iν,

d

2
− iν;

d+ 1

2
;σ

)
+B 2F1

(
d

2
+ iν,

d

2
− iν;

d+ 1

2
; 1− σ

)
, (2.12)

linear combinations of which correspond to the one-parameter family of de Sitter invariant

vacua, known as α-vacua [53–55]. The solution with B = 0 corresponds to the standard

Bunch-Davies de Sitter vacuum [56]. This solution has a singularity at σ = 1, which is a

short-distance singularity.5 This allows us to fix the coefficient A by requiring that it has

the same strength as the short distance singularity in flat space, which is:

Gflat (x1, x2) ≈ 1

D(x1, x2)d−1

Γ
(
d+1

2

)
2(d− 1)π(d+1)/2

, (2.14)

while in de Sitter we have that6

2F1

(
d

2
+ iν,

d

2
− iν;

d+ 1

2
;σ

)
≈

Γ
(
d+1

2

)
Γ
(
d−1

2

)
Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

) 2d−1

(D(x1, x2)/L)d−1
, (2.16)

using the relation (2.13) between σ and the geodesic distance. This gives the following

expression for the Bunch-Davies solution:

G (σ) =
1

Ld−1

Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
(4π)(d+1)/2Γ

(
d+1

2

) 2F1

(
d

2
+ iν,

d

2
− iν;

d+ 1

2
;σ

)
. (2.17)

The Hypergeometric function moreover has a branch cut for σ ∈ (1,∞), where the two

points become time-like separated. The possible iε prescriptions for going around the

singularity in the complex plane, which are

σ± = 1− (~y1 − ~y2)2 − (η1 − η2)2 ∓ isgn (η1 − η2) ε

4η1η2
, (2.18)

correspond to the two possible Euclidean orderings of the operators,7

G−+ (x1, x2) = 〈0|φ̂ (x1) φ̂ (x2) |0〉 = G (σ−) , (2.20a)

G+− (x1, x2) = 〈0|φ̂ (x2) φ̂ (x1) |0〉 = G (σ+) . (2.20b)

5This can be understood by noting that σ is related to the geodesic distance D as

σ(x1, x2) =
1 + cos (D (x1, x2) /L)

2
. (2.13)

6Note that the expansion of the Gauss Hypergeometric function around z = 1 is

2F1 (a, b; c; z) =

[
Γ (c− a− b) Γ(c)

Γ(c− a)Γ(c− b) +O (z − 1)

]
−(1− z)c−a−be2iπ(c−a−b)

⌊
arg(z−1)

2π

⌋ [
Γ (a+ b− c) Γ(c)

Γ(a)Γ(b)
+O (z − 1)

]
. (2.15)

7In particular,

〈0|φ (t1, ~y1)φ (t2, ~y2) |0〉 = lim
εi→0
〈0|φ (t1 − iε, ~y1)φ (t2 + iε, ~y2) |0〉, (2.19)

where ε > 0. See e.g. [57].
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See e.g. [58, 59] for detailed considerations of this point. This will also be important when

we derive the Wightman function (2.17) as an analytic continuation from Euclidean anti-de

Sitter space.

In this way the Bunch-Davies time-ordered and anti-time-ordered two-point functions

are given in terms of the Wightman two-point function (2.20) as

〈0|T φ̂ (x1) φ̂ (x2) |0〉 = θ (η1 − η2)G−+ (x1, x2) + θ (η2 − η1)G+− (x1, x2) , (2.21a)

〈0|T̄ φ̂ (x1) φ̂ (x2) |0〉 = θ (η1 − η2)G+− (x1, x2) + θ (η2 − η1)G−+ (x1, x2) , (2.21b)

where T and T̄ denote time and anti-time-ordered products.

Schwinger-Keldysh formalism. In time-dependent backgrounds it is useful to employ

the Schwinger-Keldysh (or “in-in”) formalism [60–62] for perturbative evaluations of ex-

pectation values. In this formalism, to compute fixed-time expectation values one performs

a time-ordered integral which goes from the initial time to the time of interest η = η0, and

then performs an anti-time-ordered integral back to the initial time. This is called the

“in-in contour”. The propagators with points along the different parts of the contour are

G++ (x1, x2) = 〈0|T φ̂ (x1) φ̂ (x2) |0〉, (2.22a)

G+− (x1, x2) = 〈0|φ̂ (x2) φ̂ (x1) |0〉, (2.22b)

G−+ (x1, x2) = 〈0|φ̂ (x1) φ̂ (x2) |0〉, (2.22c)

G−− (x1, x2) = 〈0|T̄ φ̂ (x1) φ̂ (x2) |0〉, (2.22d)

where the + (−) subscripts denote the (anti-)time ordered part of the in-in contour. This

formalism was first applied to the evaluation of cosmological correlators in [63–65].

2.2 Split representation

In this section we introduce a convenient integral representation of de Sitter propagators,

where they are given as an integrated product of bulk-to-boundary propagators.8 In Eu-

clidean anti-de Sitter space, such a representation for propagators is often referred to in the

AdS/CFT literature as the “split representation”, which has proven to be an invaluable

tool in the evaluation of Witten diagrams [34–36, 66–82].

To derive the split representation in de Sitter space, it is useful to re-visit the split

representation in Euclidean anti-de Sitter space. In the Poincaré patch the EAdSd+1 metric

reads:

ds2 =
L2

z2

(
dz2 + d~y2

)
. (2.23)

This is related to the flat slicing of the de Sitter metric (1.3) by the analytic continuation

z = −ηe±
πi
2 and changing the sign of the metric [83]. In Euclidean anti-de Sitter space,

the counter-part of the Bunch-Davies Wightman function (2.7) is the Harmonic function,(
∇2

AdS −m2
)

Ων (x1, x2) = 0, (2.24)

8By boundary here we are referring to the late-time boundary at η = 0.
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Figure 1. Analytic continuation from EAdS to dS.

which admits the split representation (see e.g. [68, 84, 85]):

Ων (x1, x2) =
ν2

π

∫
dd~y K d

2
+iν,0 (x1; ~y)K d

2
−iν,0 (x2; ~y) . (2.25)

This is a product of bulk-to-boundary propagators in EAdSd+1 that are integrated over

their common boundary point ~y, which in Poincaré patch (2.23) read [86]:

K∆,0 (z1, ~y1; ~y) = C∆,0

(
z1

z2
1 + (~y1 − ~y)2

)∆

, C∆,0 =
1

L(d−1)/2

Γ (∆)

2πd/2Γ
(
∆ + 1− d

2

) .
(2.26)

That the Harmonic function is related to the Bunch-Davies de Sitter Wightman func-

tion (2.17) becomes manifest upon evaluating the boundary integral in (2.25), which gives

the Gauss Hypergeometric function (see e.g. [87]):

Ων (x1, x2) =
1

Γ (iν) Γ (−iν)

Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
Ld−1(4π)

d+1
2 Γ

(
d+1

2

) 2F1

(
d

2
+ iν,

d

2
− iν;

d+ 1

2
;σAdS

)
,

(2.27)

where, in the Poincaré patch (2.23),

σAdS = 1− (z1 + z2)2 + (~y1 − ~y2)2

4z1z2
. (2.28)

The Wightman function (2.17) can therefore be obtained from the EAdSd+1 Harmonic

function by Wick rotating z1 and z2 in opposite directions:

z1 = −η1e
±(π2−ε)i, z2 = −η2e

∓(π2−ε)i, (2.29)

which correspond to the two possible Euclidean orderings (2.20). See figure 1. In particular,

– 8 –
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Split representation of the Bunch-Davies Wightman two-point function

G (σ±) = Γ (iν) Γ (−iν) Ων(−η1e
±πi

2 , ~y1;−η2e
∓πi

2 , ~y2), (2.30)

which, via (2.25), provides the split representation for the Bunch-Davies de Sitter Wight-

man function. This is equivalent to the integral expressions derived in [50, 59, 88], though

the connection with the split representation of the EAdSd+1 Harmonic function was not

made manifest. The expression (2.30) moreover provides a split representation for the

Keldysh propagators (2.22). This is depicted in figure 2.

2.3 Mellin representation in Fourier space and the late-time limit

Because of translation invariance, it is convenient to study Cosmological Correlators in

Fourier space. The Fourier transform of the split representation (2.25), being a convolution,

completely factorizes:

Ω
ν,~k

(z1; z2) =
ν2

π
K d

2
+iν(z1, ~k)K d

2
−iν(z2,−~k). (2.31)

In Fourier space, the bulk-to-boundary propagator in EAdS is given by a Modified Bessel

function of the second kind [89], which admits the following convenient representation as

a Mellin-Barnes integral:

K d
2

+iν(z,~k) =
z
d
2
−iν

2L(d−1)/2Γ (1 + iν)

∫ i∞

−i∞

du

2πi
Γ

(
u+

iν

2

)
Γ

(
u− iν

2

)(
zk

2

)−2u+iν

,

(2.32)

where k = |~k| and at the level of the Mellin integrand the dependence on the co-ordinate

z is a simple power-law. Combined with (2.30), this gives the following Mellin-Barnes

representation of the Bunch-Davies Wightman function (2.30):9

Mellin-Barnes representation for the Wightman two-point function in Fourier space

G±∓,~k (η1, η2) = (−η1)
d
2 (−η2)

d
2

1

4πLd−1

∫
[du]2 e

δ±(u1,u2)ρν,ν (u1, u2)

×
2∏
j=1

(
−ηjk

2

)−2uj

, (2.34)

9To simplify the presentation we introduced the compact notation:∫
[du]2 =

∫ i∞

−i∞

du1

2πi

du2

2πi
. (2.33)
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(a)

(b)

Figure 2. Depiction of the split representation for de Sitter propagators on the ++ and −−
branches of the in-in contour, for η1 > η2, η̄1 > η̄2 (figure (a)) and η2 > η1, η̄2 > η̄1 (figure (b)).

The arrows along the vertical axis indicate the path along the in-in contour.
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where the Wick rotations to de Sitter space introduce a phase:

δ± (u1, u2) = ∓iπ (u1 − u2) , (2.35)

and we collected the Γ-functions from each bulk-to-boundary propagator together in the

function

ρν1,ν2 (u1, u2) =

2∏
j=1

Γ

(
uj +

iνj
2

)
Γ

(
uj −

iνj
2

)
. (2.36)

The boundary (i.e. late-time) limit is straightforward to take using the Mellin-Barnes

representation. Considering the late-time limit of a single leg, say η2 → 0, the power series

expansion of the Wightman function (2.34) in η2 is given by the residues of the poles in

the corresponding Mellin variable u2, which are at

u2 = −n∓ iν

2
, n = 0, 1, 2, 3, . . . . (2.37)

The leading contributions as η2 → 0 are given by the residues of the poles with n = 0, so

that10

lim
η2→0

G±∓,~k (η1, η2) = F
(ν)

±,~k
(η1; η2) + F

(−ν)

±,~k
(η1; η2), (2.38)

which defines de Sitter bulk-to-boundary propagators:11

Mellin-Barnes representation for de Sitter bulk-to-boundary propagators

F
(ν)

±,~k
(η; η0) = (−η)

d
2
−iν Nν (η0)

∫ i∞

−i∞

ds

2πi
eδ
±
ν (s)Γ

(
s+

iν

2

)
Γ

(
s− iν

2

)
×
(
−ηk

2

)−2s+iν

, (2.40)

where η0 ∼ 0, with complex conjugate phases:

δ±ν (s) = ∓iπ
(
s+

iν

2

)
. (2.41)

In (2.40) we adopted the Mellin variable s in place of u1, which we use henceforth for

propagators associated to external legs connected to the boundary. The integrals in (2.40)

are in fact the Mellin-Barnes representations for Hankel functions of the first and second

10Note that for the Principal Series ν ∈ R both terms are leading in the limit z → 0, while for represen-

tations with ∆ = d
2

+ iν ∈ R one of them dominates.
11For convenience we defined the normalisation:

Nν (η2) = (−η2)
d
2

+iν Γ (−iν)

4πLd−1
. (2.39)
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kind [90],

F
(ν)

+,~k
(η; η0) = −iπ

(
k

2

)+iν

Nν (η0) (−η)
d
2 e+νπH

(2)
iν (−ηk) , (2.42a)

F
(ν)

−,~k
(η; η0) = iπ

(
k

2

)+iν

Nν (η0) (−η)
d
2 e−νπH

(1)
iν (−ηk) , (2.42b)

as consistent with the known expressions for mode functions of scalar fields in de Sitter.

The expression (2.40) makes manifest that bulk-to-boundary propagators in dSd+1 can be

obtained as analytic continuations of EAdSd+1 bulk-to-boundary propagators (2.32).12

The Mellin-Barnes representations (2.34) and (2.40) for propagators in de Sitter space

are the primary tool with which we obtain the late-time correlators in this work. The

integrals over conformal time reduce to simple integrals of the power-law type, giving

expressions for the late-time correlators as Mellin-Barnes integrals in the momenta which,

as we shall see, provide a useful framework with which their properties can be studied, and

a natural language in which conformal correlators can be described in momentum space.

Late-time two-point function. In a similar way we can obtain the late-time two-

point function by also sending η1 → 0 in (2.38). Focusing on a single bulk-to-boundary

propagator (2.40), the non-analytic terms in k are generated by the residues of the poles:

s = − iν
2

+ n, n = 0, 1, 2, 3, . . . . (2.44)

The second set of poles in (2.40) at s = iν
2 + n generate only analytic terms which in

position space don’t give rise to long-distance correlations. The leading term is generated

by the leading Γ-function pole (with n = 0), which gives:

lim
η1,η2→0

〈0|φ~k (η1)φ−~k (η2) |0〉′ =
1

4πLd−1

[
Γ (−iν)2

(
k2η1η2

4

) d
2

+iν

+ ν → −ν

]
+ local,

(2.45)

where

〈0|φ~k (η1)φ~k′ (η2) |0〉 = (2π)d δd(~k + ~k′ )〈0|φ~k (η1)φ−~k (η2) |0〉′. (2.46)

The “+local” in (2.45) denotes analytic terms in kI which do not encode long-range

correlations. For light particles (2.6), where ν → iµ with |µ| ∈
(
0, d2
)
, the expectation value

decreases exponentially with time η
d
2
±iν ∼ e−( d2∓µ)t. For massive particles (2.5), where

ν ∈ R, we see an oscillatory behaviour η
d
2
±iν ∼ e−( d2±iν)t due to particle creation in the

expanding universe, for which the expectation value is exponentially suppressed for large

ν, |Γ (±iν)2 | ∼ e−πν .

12In particular, we have the following relation between the Hankel function and the modified Bessel

function of the second kind [91]:

Kiν (z) =
πi

2
e−

πν
2 H

(1)
iν (iz) . (2.43)
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Figure 3. Contact diagram contributing to the correlator 〈φ(ν1)φ(ν2) . . . φ(νn)〉 at late times η0 ∼ 0.

3 Contact diagrams

The most basic correlators are those generated by local contact interactions. We start

off with the simplest contact diagrams, which are those generated by three scalars. In

section 3.2 we show that the Mellin-Barnes representation of late-time 3-point contact

diagrams trivially extends to n-point contact diagrams. In all cases the late-time correlators

are given by generalised Hypergeometric functions. In sections 3.3 and 3.4 we discuss the

simplifications which occur when one or more of the scalars is conformally coupled or

massless. In section 3.5 we demonstrate the utility of the Mellin-Barnes representation in

the study of kinematic limits in the phase space of momenta.

3.1 Three general scalars

Consider the cubic interaction φ1φ2φ3 for general scalar fields φi of scaling dimension

∆k = d
2 + iνk. This interaction is unique on-shell. Strictly speaking, in the following we

shall assume that the νk belong to the Principal series, i.e. νk ∈ R, though the results

extend beyond the Principal Series with due care about the analytic continuation in νk
(which we discuss further below).

The 3pt correlator is given by

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉 = (2π)d δ(d)

(
~k1 + ~k2 + ~k3

)
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′, (3.1a)

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′ = 〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3
〉′+ + 〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3
〉′−, (3.1b)

where the +(−) sub-indices indicate the contributions from the (anti)-time-ordered

branches of the in-in contour, which at late-times η0 ∼ 0 is given by:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′± = ±i

∫ η0

−∞

dη

(−η/L)d+1
F

(ν1)
~k1,±

(η; η0)F
(ν2)
~k2,±

(η; η0)F
(ν3)
~k3,±

(η; η0), (3.2)

in terms of the bulk-to-boundary propagators (2.38).
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The Mellin-Barnes representation (2.40) of the bulk-to-boundary propagators renders

the integral over conformal time to a simple power-law integral:13

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′±

= ±iLd+1

 3∏
j=1

(
kj
2

)iνj
Nνj (η0)


︸ ︷︷ ︸

N3(η0,ki)

∫
[ds]3 ρν1,ν2,ν3 (s1, s2, s3)

3∏
j=1

e
δ±νj (sj)

(
kj
2

)−2sj

×
∫ η0

−∞
dη (−η)

d
2
−1−2(s1+s2+s3) , (3.4)

where the overall constant N3 (η0, ki) arises from the bulk-to-boundary propagators and

we combined the Γ-function factors from each leg into the function:

ρν1,ν2,ν3 (s1, s2, s3) =

 3∏
j=1

Γ

(
sj +

iνj
2

)
Γ

(
sj −

iνj
2

) . (3.5)

The requirement that the η-integral converges restricts the integration contour for Mellin-

Barnes integrals, in particular:

∫ η0

−∞
dη (−η)

d
2
−1−2(s1+s2+s3) = − (−η0)

d
2
−2(s1+s2+s3)

d
2 − 2 (s1 + s2 + s3)

, (3.6a)

Re

[
d

2
− 2 (s1 + s2 + s3)

]
< 0. (3.6b)

The leading contribution in the late-time limit η0 → 0 is therefore encoded in the residue

of the single pole at
d

4
− (s1 + s2 + s3) ∼ 0, (3.7)

so that in the late-time limit the integral over conformal time is encoded in a Dirac delta

function,

iπδ

(
d

4
− s1 − s2 − s3

)
= lim

η0→0

[∫ η0

−∞
dη (−η)

d
2
−1−2(s1+s2+s3)

]
(3.8a)

= − (−η0)
d
2
−2(s1+s2+s3)

d
2 − 2 (s1 + s2 + s3)

, (3.8b)

13For ease of presentation we introduced the following notation for late-time n-point correlators:

Nn (η0, ki) =

n∏
j=1

(
kj
2

)iνj
Nνj (η0) (3.3a)

∫
[ds]n =

∫ i∞

−i∞

ds1

2πi
. . .

dsn
2πi

. (3.3b)
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which gives

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′± = ±iL

d+1

2
e∓( d2 +i(ν1+ν2+ν3))πi2 N3 (η0, ki) I

(ν1,ν2,ν3)
~k1,~k2,~k3

, (3.9a)

I
(ν1,ν2,ν3)
~k1,~k2,~k3

=

∫
[ds]3 2πi δ

(
d

4
− s1 − s2 − s3

)
I

(ν1,ν2,ν3)
~k1,~k2,~k3

(s1, s2, s3) , (3.9b)

I
(ν1,ν2,ν3)
~k1,~k2,~k3

(s1, s2, s3) = ρν1,ν2,ν3 (s1, s2, s3)

3∏
j=1

(
kj
2

)−2sj

, (3.9c)

where we used the Dirac delta distribution to translate the sum of the phase factors (2.41)

from each bulk-to-boundary propagator (2.40) into an overall phase for each ± contribution.

The + and − contributions thus differ only by a phase. Eliminating one of the Mellin

variables, say s3, gives the correlation function as a double Mellin-Barnes integral,

I
(ν1,ν2,ν3)
~k1,~k2,~k3

=

(
k3

2

)− d
2
∫

[ds]2

2∏
j=1

Γ

(
sj +

iνj
2

)
Γ

(
sj −

iνj
2

)
(3.10)

× Γ

(
d

4
− s1 − s2 +

iν3

2

)
Γ

(
d

4
− s1 − s2 −

iν3

2

)(
k1

k3

)−2s1 (k2

k3

)−2s2

,

which is a function of the two ratios k1/k3 and k2/k3.

Combining the contributions from the + and − branches of the in-in contour, the

resulting expression for the late-time three-point function is:

Mellin-Barnes representation of late-time scalar 3pt contact diagram

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′ = Ld+1N3 (η0, ki) sin

((
d

2
+ i (ν1 + ν2 + ν3)

)
π

2

)
I

(ν1,ν2,ν3)
~k1,~k2,~k3

. (3.11)

A few comments are in order:

• As is standard treatment of Mellin-Barnes integrals (see e.g. [90]), the integration

contour runs parallel to the imaginary axis and is suitably indented so it separates

the sequences of poles encoded in Γ-functions of the type Γ (sj + aj) from those of

the type Γ (−sj + bj), see figure 4. See also appendix A where various pertinent

properties of Mellin-Barnes integrals are reviewed. This contour prescription is well-

defined for parameters aj and bj , where the sequences of poles from Γ-functions

Γ (sj + aj) do not collide with those from a Γ-function of the type Γ (−sj + bj). This

is always the case for Principal Series representations (2.5), where such sequences

of poles are strictly separated and they can only move along the imaginary axis as

the νj vary. Away from the Principal Series however, the sequences of poles can

move along the real axis. In this case, for a given boundary dimension d, certain

special values of νj lead to the collision of such sequences of poles and the prescribed

integration contour becomes “pinched”. See e.g. figure 5. This generates singularities
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Figure 4. Integration contour (Green) for the Mellin-Barnes representation (3.10) of the three-

point conformal structure. W.l.o.g. we focus on the integral in the Mellin variable s2 and take

Re (s1) = 0. In this figure all scaling dimensions are taken to lie on the Principal Series (2.5), νj ∈ R.

Poles of the Γ-functions Γ
(
s2 ± iν2

2

)
are displayed in red and the poles of Γ

(
d
4 − s1 − s2 ±

iν3
2

)
in

blue, which the integration contour is prescribed to separate.

which require careful regularisation to define the result for those values of νj and d

(either by analytic continuation or by the addition of appropriate counter-terms).14

We shall consider some explicit examples of this type in section 3.4 and at the end

of sections 3.3 and 4.3.

• The Mellin-Barnes integral (3.10) is nothing but Appell’s F4 function [93, 94], which

is a generalised Hypergeometric function of two-variables (see appendix B.2). In

particular,

I
(ν1,ν2,ν3)
~k1,~k2,~k3

=

(
k3

2

)− d
2

Γ(−iν1)Γ(−iν2)Γ

(
d

4
+
i(ν1 +ν2 +ν3)

2

)
×Γ

(
d

4
+
i(ν1 +ν2−ν3)

2

)(
k1

k3

)iν1
(
k2

k3

)iν2

(3.12)

×F4

(
d

4
+
i

2
(ν1 +ν2 +ν3) ,

d

4
+
i

2
(ν1 +ν2−ν3) ; iν1 +1, iν2 +1;

k2
1

k2
3

,
k2

2

k2
3

)
.

The appearance of the function F4 is expected since special conformal invariance on

scalar 3pt correlators in momentum space translates into Appell’s system of partial

14See also [20–22, 26, 92] for extensive studies of the regularisation and renormalisation of conformal

structures in momentum space.
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differential equations for F4 [19, 20] (see also [95, 96]), where a unique physical solu-

tion is selected by the absence of divergences in co-linear momentum configurations

(also known as “collapsed triangle limits”). In section 3.5 we will show how limits in

the phase space of momenta, including the “collapsed triangle limits”, can be studied

systematically using the Mellin-Barnes representation.

• The phases e∓( d2 +i(ν1+ν2+ν3))πi2 , however, cannot be fixed by conformal symmetry

alone. These are determined by the boundary condition at early times, which is

encoded in the propagators (2.40). When combining the contributions from the

different branches of the in-in contour, these phases give the sine function in (3.11)

which encodes the interference pattern between the different processes.

• Either of the s1 and s2 Mellin-Barnes integrals in (3.10) can be expressed in terms of

a Gauss Hypergeometric function 2F1 (a1, a2; a3; z) in the variable z = 1 − (ki/k3)2

(see appendix B.1), with parameters ai depending on the remaining Mellin variable.

Note that the resulting expression for the correlator would anyway still be a double

Mellin-Barnes integral, since the Gauss Hypergeometric function itself is defined by a

single Mellin-Barnes integral — see equation (B.1). This representation will come in

use in section 4.2, when we derive the OPE expansion of the corresponding exchange

four-point function. The representation (3.10) on the other hand is more suitable

for exploring other limits in the phase space of momenta, such as the soft limit of

external legs — which we consider in section 3.5.1.

• While for a general triplet of scalars the 3pt correlator (3.1) is given in terms of the

Appell function F4, in some special cases away from the Principal Series this simpli-

fies to more familiar functions. A known example is when two of the three scalars are

conformally coupled, where the function F4 reduces to a single Gauss Hypergeomet-

ric function 2F1 [11]. We shall work out this example in detail in section 3.3, along

with its extension to n-point diagrams. From the perspective of this work, however,

it is worth keeping in mind that the Gauss Hypergeometric function, like the Ap-

pell function, is ultimately defined by a Mellin-Barnes integral (see appendix B.1).

The latter provides the analytic continuation of the Hypergeometric series beyond its

radius of convergence, and played a central role in deriving many of its properties.

This includes: their analytic structure, transformation formulae and asymptotic ex-

pansions — examples of which we shall see in this work. The same is true for Appell’s

functions and other generalised Hypergeometric functions, as a consequence of their

Mellin-Barnes representation.

• While in the above we only considered the simplest cubic interaction of general scalars

φ1φ2φ3, the Mellin-Barnes approach can also be used to compute late-time correlators

generated by derivative interactions. Cubic interactions of scalars fields are unique

on-shell, so the result is represented by the same Mellin-Barnes integral except for

an overall polynomial factor in the νj which encodes derivative structure of the in-

teraction.
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In the following section we show how the formalism presented here extends without

difficulty to n-point contact diagrams.

3.2 n general scalars

The approach introduced in the previous section extends immediately to an arbitrary num-

ber of external legs. Consider the contact interaction of n general scalar fields φ1φ2 . . . φn.

Proceeding as before, with the Mellin-Barnes representation (2.40) of the bulk-to-boundary

propagators the + and − contributions to the late-time n-point function take the following

form

〈φ(ν1)
~k1

φ
(ν2)
~k2

...φ
(νn)
~kn
〉′±=±iLd+1Nn(η0,ki)

∫
[ds]n ρν1,ν2,...,νn (s1,s2,...,sn)

n∏
j=1

e
δ±νj (sj)

(
kj
2

)−2sj

×
∫ η0

−∞

dη

(−η)d+1

n∏
i=1

(−η)
d
2
−2si , (3.13)

where the overall constant is defined in (3.3a) and the extension of the function (3.5) to

n-external legs is

ρν1,ν2,... ,νn (s1, s2, . . . , sn) =

 n∏
j=1

Γ

(
sj +

iνj
2

)
Γ

(
sj −

iνj
2

) . (3.14)

As before, the integral over conformal time has been reduced to a power law:∫ η0

−∞

dη

(−η)d+1

n∏
i=1

(−η)
d
2
−2si = − (−η0)

d(n−2)
2
−2(s1+s2+...+sn)

d(n−2)
2 − 2 (s1 + s2 + . . . + sn)

, (3.15a)

Re

[
d(n− 2)

2
− 2 (s1 + s2 + . . . + sn)

]
< 0, (3.15b)

where the leading contribution in the late-time limit η0 → 0 is encoded in the single pole

at
d(n− 2)

4
− (s1 + s2 + . . . + sn) ∼ 0, (3.16)

so that the integration over conformal time is encoded in a Dirac delta function:

〈φ(ν1)
~k1

φ
(ν2)
~k2

. . . φ
(νn)
~kn
〉′± = ±iL

d+1

2
e
∓
(
d(n−2)

2
+i(ν1+...+νn)

)
πi
2 Nn (η0, ki) I

(ν1,...,νn)
~k1,...,~kn

, (3.17a)

where

I
(ν1,...,νn)
~k1,...,~kn

=

∫
[ds]n 2πiδ

(
d(n−2)

4
−s1− . . .−sn

)
I

(ν1,...,νn)
~k1,...,~kn

(s1, . . . ,sn) , (3.18)

I
(ν1,...,νn)
~k1,...,~kn

(s1, . . . ,sn) = ρν1,ν2,...,νn (s1, . . . ,sn)

n∏
j=1

(
kj
2

)−2sj

, (3.19)

and as before we pulled out the total phase factor coming from the bulk-to-boundary

propagators (2.40), which makes manifest that the + and − contributions differ by a
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phase. By eliminating one of the Mellin variables, say sn, this is a function of the n − 1

ratios of the momenta by kn:

I
(ν1,...,νn)
~k1,...,~kn

=

(
kn
2

)− d(n−2)
2
∫

[ds]n−1

n−1∏
j=1

Γ

(
sj +

iνj
2

)
Γ

(
sj−

iνj
2

)
(3.20)

×Γ

(
d(n−2)

4
−s1− . . .−sn−1 +

iνn
2

)
Γ

(
d(n−2)

4
−s1− . . .−sn−1−

iνn
2

)n−1∏
j=1

(
kj
kn

)−2sj

.

The full late-time n-point correlator is

Mellin-Barnes representation of the late-time scalar n-pt correlation function

〈φ(ν1)
~k1

φ
(ν2)
~k2

. . . φ
(νn)
~kn
〉′ = Ld+1Nn (η0, ki) sin

((
d(n− 2)

2
+ i (ν1 + . . .+ νn)

)
π

2

)
I

(ν1,...,νn)
~k1,...,~kn

.

(3.21)

This is a generalised Hypergeometric function of n− 1 variables and extends the results of

the previous section without any obstacle to n-point contact diagrams.

3.3 n-point contact diagrams with conformally coupled scalars

For certain special values of the scaling dimensions away from the Principal Series (2.5),

the correlators simplify. An interesting example is when an external scalar is conformally

coupled, where ν = i
2 , which is in the complementary series (2.6). The reason for this is

that the pair of Gamma functions in the Mellin-Barnes representation (2.40) of the bulk-

to-boundary propagator reduce to a single Gamma function via the Legendre duplication

formula:

Γ

(
s+

iν

2

)
Γ

(
s− iν

2

)
ν → i

2→ 2
3
2
−2s√πΓ

(
2s− 1

2

)
. (3.22)

Within a correlator, the integral over the Mellin variable associated to a conformally cou-

pled scalar therefore takes the form:

∫ i∞

−i∞

ds

2πi
Γ

(
2s− 1

2

)
Γ (t− 2s) z2s =

√
z + 1

2
Γ

(
t− 1

2

)(
1

z
+ 1

)−t
, (3.23)

where z is a function of the momenta ki. The derivation is given in appendix A.1. The

Mellin-Barnes integral associated to any conformally coupled scalar in a late-time correlator

may therefore be lifted.

A simple illustrative example of this mechanism is when all but one scalar is confor-

mally coupled. In this case, the n-point structure (3.18) can be represented by just a single
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Mellin-Barnes integral:

I
(i/2,...,i/2,νn)
~k1,...,~kn

=

∫ i∞

−i∞

ds

2πi
I

(i/2,...,i/2,νn)
~k1,...,~kn

(s) , (3.24a)

I
(i/2,...,i/2,νn)
~k1,...,~kn

(s) = π
n−1

2
2d(n−4)+n+1

2√
k1 . . . kn−1

(
kn
2

)− d(n−2)
2

+n−1
2
(

2
k1 + . . .+ kn−1

kn

)n−1
2

(3.24b)

× Γ

(
d(n− 2)

4
+
iνn
2
− s
)

Γ

(
d(n− 2)

4
− iνn

2
− s
)

× Γ

(
2s− n− 1

2

)(
2
k1 + . . .+ kn−1

kn

)−2s

,

where we applied (3.23) to lift n− 2 Mellin integrals associated to the conformally coupled

scalars in (3.17). The remaining Mellin-Barnes integral actually defines a Gauss Hyperge-

ometric function of argument kn−k1...−kn−1

2kn
(see appendix B.1), so that we can equivalently

write:

I
(i/2,...,i/2,νn)
~k1,...,~kn

=πn/2
(
kn
2

)− d(n−2)
2

+n−1
2 Γ

(
d(n−2)

2 +iνn− n−1
2

)
Γ
(
d(n−2)

2 −iνn− n−1
2

)
22(d−n)+n−1

2

√
k1 ...kn−1Γ

(
d(n−2)

2 +1− n
2

) (3.25)

×2F1

(
d(n−2)

2
+iνn−

n−1

2
,
d(n−2)

2
−iνn−

n−1

2
;
d(n−2)

2
+1−n

2
;
kn−k1 ...−kn−1

2kn

)
.

The late-time correlator (3.21) in this case therefore reduces to:

n-point contact diagram with n− 1 conformally coupled scalars and a general scalar

〈φ(i/2)
~k1

φ
(i/2)
~k2

. . . φ
(i/2)
~kn−1

φ
(νn)
~kn
〉′=πn/2Ld+1Nn (η0,ki)sin

((
d(n−2)

2
− n−1

2
+ iνn

)
π

2

)

× 1√
k1 . . . kn−1

(
kn
2

)− d(n−2)
2

+n−1
2 Γ

(
d(n−2)

2 + iνn− n−1
2

)
Γ
(
d(n−2)

2 − iνn− n−1
2

)
22(d−n)+n−1

2 Γ
(
d(n−2)

2 +1− n
2

) (3.26)

×2F1

(
d(n−2)

2
+ iνn−

n−1

2
,
d(n−2)

2
− iνn−

n−1

2
;
d(n−2)

2
+1− n

2
;
kn−k1 . . .−kn−1

2kn

)
,

which extends to an arbitrary d and n the d = 3 and n = 3 result obtained in [11].

The above expression further simplifies when νn also takes certain special values away

from the Principal Series (2.5), in which case the Mellin-Barnes representation is no longer

required. Naturally this is the case when all external scalars are conformally coupled, i.e.

when also νn = i
2 . In this case, the Gauss Hypergeometric function in (3.26) reduces to

2F1 (a, b; c; z)
b=c
= (1− z)−a , (3.27)
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so that we have:

〈φ(i/2)
~k1

. . . φ
(i/2)
~kn
〉′ = 2πn/2Ld+1Nn (η0, ki) sin

((
d(n− 2)

2
− n

2

)
π

2

)

× 2d(n−4)+n
2

√
k1 . . . kn

Γ
(
d(n−2)

2 − n
2

)
(k1 + k2 + . . .+ kn)︸ ︷︷ ︸

kt

d(n−2)
2
−n

2

. (3.28)

This extends to general d and n the result obtained for d = 3, n = 4 in [11], and d = 3, n = 3

in [97] (see also [8, 98]). Notice that for d > 1 and n > 2 the argument of the Gamma

function satisfies:
d(n− 2)

2
− n

2
> −1, (3.29)

so that the only pole of the Gamma function is when d(n−2)
2 − n

2 ∼ 0, for which there is also

a zero of the sine function. The expression (3.28) is therefore non-singular for all d > 1

and n > 2.

The remaining zeros of the sine function gives the values of d and n for which the

late-time φ4 contact diagram is vanishing, which is when:

d (n− 2)− n = 4m+ 4, m ∈ N0. (3.30)

Note that when n = 4 this occurs when d is even.

Contour pinching. The contact diagrams considered in this section provide an interest-

ing and moreover simple example of contour pinching discussed at the end of section 3.1.

When the general scalar φ(νn) lies on the Principal Series (2.5), the integration contour

in the Mellin-Barnes integral (3.24b) is un-pinched since, for νn ∈ R, the poles of the

Γ-function Γ
(
2s− n−1

2

)
:

s =
n− 1

4
− m

2
, m ∈ N0, (3.31)

are sharply separated from the poles of the Γ-functions Γ
(
d(n−2)

4 ± iνn
2 − s

)
:

s =
d

4
± iνn

2
+m, m ∈ N0, (3.32)

like in figure 4. When ν → iµ with µ ∈ R however, for certain values of µ these poles

overlap (see figure 5). This occurs when

µ =
d (n− 2)

2
− n− 1

2
. (3.33)

The contour pinching can be regulated by sending d → d + ε, which for n > 2 gives an

infinitesimal right-ward shift of the poles (3.32) with respect to the poles (3.31).

A simple example is the conformally coupled scalar, µ = 1
2 , which pinches the integra-

tion contour when d (n− 2) − n = 0.15 With the above regularisation, the integral (3.24)

15For example, when d = 3 this requires n = 3. For d > 3 there is no pole pinching when n = 3.
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Figure 5. Poles of the Mellin representation for the conformal structure (3.24) when the n-th scalar

does not lie on the Principal Series, νn = iµ with µ ∈ R. For ease of presentation, we display the

n = 3 case. As µ varies, the poles of Γ
(
d
4 ±

iνn
2 − s

)
(in blue) move along the real axis while the poles

of Γ (2s− 1) (in red) remain fixed. When µ = d
2 − 1 these poles collide and the contour separating

them (in Green) becomes pinched. The pinching is regulated by sending d→ d+ ε, with ε > 0.

becomes:

I
(i/2,...,i/2,i/2)
~k1,...,~kn

= π
n−1

2
2d(n−4)+n+1

2√
k1 . . . kn−1

(
kn
2

)− 1
2
(

2
k1 + . . .+ kn−1

kn

)n−1
2

×
∫ i∞

−i∞

ds

2πi
Γ

(
ε+

n

4
− 1

4
− s
)

Γ

(
ε+

n

4
+

1

4
− s
)

Γ

(
2s− n− 1

2

)
×
(

2
k1 + . . .+ kn−1

kn

)−2s

, (3.34)

where the regulator ε > 0 ensures that the integration contour is un-pinched. The integral

can then be evaluated by closing the contour to the right of the imaginary axis, which

encloses the poles (3.31). Re-summing the residues gives:

I
(i/2,...,i/2,i/2)
~k1,...,~kn

= π
n−1

2
2d(n−4)+n

2
+1

√
k1 . . . kn

[√
π

2ε
−
√
π

(
γ + log

(
2
k1 + . . .+ kn

kn

))
+O (ε)

]
.

(3.35)

The simple pole at ε = 0 is equivalent to the pole of the Γ-function in (3.28) at

d (n− 2)− n = 0. This is cancelled by the sine-factor, which arises upon combining the
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contributions from the + and − branches of the in-in contour (as in (3.21)):

〈φ(i/2)
~k1

φ
(i/2)
~k2

. . . φ
(i/2)
~kn−1

φ
(i/2)
~kn
〉′ = lim

ε→0

[
Ld+1Nn (η0, ki) sin

(επ
2

)
I

(i/2,...,i/2,i/2)
~k1,...,~kn

]
(3.36a)

= π
n
2

+1Ld+1Nn (η0, ki)
2d(n−4)+n

2

√
k1 . . . kn

, (3.36b)

which matches (3.28) when d (n− 2)− n = 0.

3.4 Massless scalars

Another interesting simple example of contour pinching is the three-point function of mass-

less scalars for d = 3, for which νj = 3i
2 . Keeping d general for the moment and fixing

νj = 3i
2 , the Mellin-Barnes representation (3.10) of the three-point structure reads

I
( 3i

2
, 3i

2
, 3i

2 )
~k1, ~k2,~k3

=2
√

2π
3
2k
− d

2
3

∫
[ds]2 (4s1−1)(4s2−1)(d−1−4s1−4s2) (3.37)

×Γ

(
2s1−

3

2

)
Γ

(
2s2−

3

2

)
Γ

(
d−3

2
−2s1−2s2

)(
k1

k3

)−2s1(k2

k3

)−2s2

=
√

2π
3
2

(k2+k3)1− d
2

(k2k3)
3
2

∫ i∞

−i∞

ds1

2πi
(4s1−1)(d−4−4s1)

(
k2k3(d−4s1−2)+2k2

2 +2k2
3

)
×Γ

(
2s1−

3

2

)
Γ

(
d−6

2
−2s1

)(
k1

k2+k3

)−2s1

,

where in the second equality we lifted the integral in s2, closing the integration contour to

the left of the imaginary axis. The poles in the remaining Mellin-variable s1 are

s1 =
3

4
− n

2
, n ∈ N0, (3.38a)

s1 =
d− 6

4
+
m

2
, m ∈ N0, (3.38b)

which overlap for d ≤ 9. To consider the correlator for d = 3, we set d→ 3 + ε to regulate

the contour pinching as before. Closing the integration contour to the right, which encloses

the poles (3.38b), one obtains

sin
(( ε

2
− 3
) π

2

)
I
( 3i

2
, 3i

2
, 3i

2 )
~k1, ~k2,~k3

=
1

ε

8
√

2π
3
2

(k1k2k3)
3
2

3∑
i=1

k3
i (3.39)

− 4
√

2π
3
2

9(k1k2k3)
3
2

3k1k2k3 − 3
∑
i 6=j

k2
i kj + (3 log kt + 3γ − 4)

3∑
i=1

k3
i

+O (ε) ,

where we included the interference factor (3.11) which arises from combining the contri-

butions from the + and − branches of the in-in contour, and expanded in ε. We see that,

in contrast to the three-point function of conformally coupled scalars considered in the

previous section, the pole at ε = 0 does not cancel upon combining all contributions along
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the in-in contour. In this case the correlator cannot be defined by analytic continuation in

d. The pole in ε is proportional to the local term

A

(k1k2k3)
3
2

3∑
i=1

k3
i , (3.40)

and so can be compensated by a local counter-term of this type. This is in accordance

with the analyses [97, 99–101], which each have the same non-divergent piece given by the

second line of (3.39) up to a finite local term proportional to (3.40).

3.5 Kinematic limits of the momenta à la Mellin-Barnes

The Mellin-Barnes representation is a useful tool for studying kinematic limits of correlators

in the phase space of momenta, which are encoded in the leading poles of certain Gamma

functions in the Mellin integrand. This will be demonstrated in the following sections for

various limits of interest: the soft momentum limit (section 3.5.1), collapsed triangle limits

(section 3.5.2) and the high energy limit (section 3.5.3). We focus for ease of illustration on

three-point functions, though the methodology applies in general. We shall also consider

interesting limits of four-point exchange diagrams in section 4.

3.5.1 Soft momentum limit

Suppose we want to take the soft momentum limit, say k1 → 0, of the general three-point

function (3.11). With the Mellin formalism, this is simply given by the residue of the first

pole in the series: s1 = − iν1
2 − n, n = 0, 1, 2, . . . , which is encoded by one of the two

Gamma functions in the Mellin representation (2.40) of the propagator for the field φ
(ν1)
~k1

:16

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′±
∣∣∣
k1→0, k2∼k3

= ±iL
d+1

2
N3 (η0, ki) e

∓( d2 +i(ν1+ν2+ν3))πi2 (3.41)

× Γ (−iν1)

(
k1

2

)2iν1
(
k3

2

)− d
2

+i(ν3+ν2−ν1) ∫ i∞

−i∞

ds2

2πi
Γ

(
s2 +

iν2

2

)
Γ

(
s2 −

iν2

2

)
× Γ

(
d

4
+
iν3

2
+
iν1

2
− s2

)
Γ

(
d

4
− iν3

2
+
iν1

2
− s2

)
,

where we recall that momentum conservation implies that limk1→0

(
k2
k3

)
= 1. The remain-

ing s2-integral can be evaluated using Barnes’ first lemma, which gives:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′±
∣∣∣
k1→0,k2∼k3

=±iL
d+1

2
N3(η0,ki)e

∓( d2 +i(ν1+ν2+ν3))πi2 (3.42)

× Γ(−iν1)

Γ
(
d
2 +iν1

)(k1

2

)2iν1
(
k3

2

)− d
2

+i(ν2+ν3−ν1)

Γ

(
d

4
+
i(ν2+ν3+ν1)

2

)
Γ

(
d

4
+
i(ν2−ν3+ν1)

2

)
×Γ

(
d

4
+
i(−ν2+ν3+ν1)

2

)
Γ

(
d

4
+
i(−ν2−ν3+ν1)

2

)
.

16The second Gamma function in the Mellin representation (2.40) encodes the series of poles s1 = − iν1
2
−n,

n ∈ N0, which give purely local contributions (i.e. contributions analytic in k1) that do not give rise to long

distance correlations in position space.
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Figure 6. Generic configuration of momenta for a three-point function vs. the collinear configu-

ration (collapsed triangle) k3 ∼ k1 + k2, where the length of one side is the sum of the other two.

Note that if the field φ(ν1) is exactly massless, ν1 = di
2 , the three-point function vanishes

in the soft limit.

For higher-point functions (of any type) one proceeds in exactly the same way to

obtain the soft-limit k1 → 0, taking the residue of the leading pole s1 = − iν1
2 in the Mellin-

Barnes representation of the corresponding bulk-to-boundary propagator that generates

non-analytic contributions in k1.

3.5.2 Collapsed triangle limit

Collapsed triangle configurations are those for which the momenta are collinear e.g. k3 =

k1 + k2, see figure 6. The correlators should be non-singular in such configurations, which

is related to the adiabatic vacuum condition [102–106].

We can study the singularity structure of correlators at the level of the Mellin-Barnes

integral (3.11) by using the following trick. Parameterising the distance from the collapsed

configuration by ε, we replace k3 = k1 + k2 + ε and use the basic formula:

(z + ε)−λ =
1

Γ (λ)

∫ i∞

−i∞

du

2πi
Γ (u+ λ) Γ (−u)

εu

zu+λ
, (3.43)

where in this example z = k1 + k2. The series expansion of the correlator for ε < 1 is given

by closing the integration contour to the right, where the leading contribution in the ε→ 0

limit is given by the residue of the pole with smallest real part. This integration contour al-

ways includes the series of poles u = 0, 1, 2, . . . encoded the Gamma function Γ (−u), which

do not generate any singularities in ε since the exponent is non-negative on these poles.

Further poles in u are hidden in the integration over the Mellin variables in (3.11), the

dependence on which enters (3.43) through λ = −2s2 where, for convenience, we shifted

s2 → s2−s1 so that the s1 integral is disentangled from the u-integral. The location of these

poles can actually be determined without having to evaluate any integral. They can be gen-

erated through either of the following two mechanisms (which are detailed in appendix C):

1. Poles at the values of u for which series of poles in the other Mellin variables collide.

In the example under consideration, this occurs for:

u = ±iν2 − n′, n′ ∈ N0, (3.44)

– 25 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
0

i.e. those values for which the series of poles in the Gamma function Γ (u+ λ) overlap

with the poles of either Γ
(
s2 ± iν2

2

)
in the propagator (2.40).

The poles (3.44) are not enclosed by the u-integration contour in (3.43) when we close

it to the right (as required for ε < 1). This mechanism therefore does not generate

any singularities in the correlator (3.11) in the collapsed triangle limit ε→ 0.

2. Poles at the values of u for which the other Mellin integrals diverge.

Using Stirling’s formula, the asymptotic behaviour of the s2 integral as |Im [s2] | → ∞
is

∼ e−2π|Im[s2]|+log(|Im[s2]|)(u−Re[s1]+ d
2
−2), (3.45)

which is exponentially suppressed for all values of u. This mechanism therefore also

does not generate any singularities in the correlator (3.11) in the collapsed triangle

limit ε → 0, though it is responsible for singularities in the high energy limit — as

we shall see in the following section.

We have thus ruled out the existence of poles with Re [u] < 0 when we close the

u-integration contour in (3.43) to the right, which confirms the regularity of the correla-

tor (3.11) in the collapsed triangle limit ε→ 0.

While above we focused on the collapsed triangle configuration k3 = k1 +k2, in exactly

the same way we can verify there are no singularities in the other collinear momentum

configurations, such as k1 − k2 ∓ k3 = 0.

3.5.3 High energy limit kt = k1 + k2 + k3 → 0

Using the same trick we can study the singularity of the correlator (3.11) in the limit

kt ≡ k1 + k2 + k3 → 0. The coefficient of this singularity is related to the high-energy limit

of the flat space amplitude [6, 11, 40, 107].

As for the collapsed triangle limit in the previous section, we replace k3 = z+kt and use

the formula (3.43) to parameterise the exponent of kt with the Mellin variable u. The poles

which lie to the right of the u-integration contour encode the singularity structure as kt → 0.

The only difference with respect to the collapsed triangle limit of the previous section is that

the parameter z now takes negative values: z = − (k1 + k2). This does not change the series

of poles (3.44) generated by the collision of poles in the Mellin variable s2. It does, however,

change the asymptotic behaviour of the s2 integral as |Im [s2] | → ∞, which now goes as:

∼ e−2π(|Im[s2]|+Im[s2])+log(|Im[s2]|)(u−Re[s1]+ d
2
−2). (3.46)

We see that there is a possible divergence when Im [s2] < 0, where (|Im [s2] |+ Im [s2]) = 0,

for which the integrand is no longer exponentially suppressed. The leading term is now

sensitive to the Mellin integral in s1. For simplicity let’s suppose the scalar associated

to s1 is conformally coupled. In this case the s1 Mellin-Barnes integral can be lifted (see

section 3.3), and the asymptotic behaviour of the s2 integrand for Im [s2]→ −∞ is:

∼ elog(|Im[s2]|)(u+ d−5
2 ). (3.47)
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The integral thus diverges for u+ d−5
2 ≥ −1, signalling the presence of a series of poles at

(see appendix B.2):

u =
3− d

2
+ n, n ∈ N0. (3.48)

These poles lie to the right of the u-integration contour and so contribute to the series

expansion of the correlator in kt < 1 together with the poles at

u = n′, n′ ∈ N0, (3.49)

which are encoded by the Gamma function Γ (−u) in the formula (3.43). The leading

contribution in the limit kt → 0 is therefore given by the residue at:

u =
3− d

2
< 0 if d > 3, (3.50a)

u = 0 if d ≤ 3. (3.50b)

For d > 3 the correlator thus has a singularity of the form:

〈φ(i/2)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′±
∣∣∣
kt→0

∼ k
3−d

2
t . (3.51)

For d = 3 the pole at u = 0 is actually double pole because when d = 3 the series (3.48)

and (3.49) coincide, so in this case the correlator has a logarithmic singularity:

〈φ(i/2)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3
〉′±
∣∣∣
d=3, kt→0

∼ log kt. (3.52)

As we saw in section 3.3, when the external scalars are all conformally coupled, every

Mellin-Barnes integral can be lifted from the correlator — as in (3.28). In this case the

singular behaviour as kt → 0 is manifest and agrees with the above.

4 Exchange diagrams

Having considered contact diagrams in the previous section, in this section we apply the

Mellin formalism to tree-level exchange four-point functions in dSd+1. In section 4.1 we

derive the Mellin-Barnes representation for an exchange diagram involving general internal

and external scalars, which takes the form of an integrated product of the Mellin-Barnes

representations for the corresponding three-point contact diagrams. In the subsequent

sections we discuss various features of the Mellin-Barnes representations, including how

it encodes the Operator Product Expansion in section 4.2 and the Effective Field Theory

expansion in section 4.3.

4.1 General external and internal scalars

In the following we consider the tree-level exchange of a general scalar φ(ν) between two

pairs of scalars φ(νj) which is generated by the zero-derivative cubic vertices considered in
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Figure 7. Tree exchange diagrams of a general scalar φ(ν) contributing to the correlation function

〈φ(ν1)φ(ν2)φ(ν3)φ(ν4)〉 at late times η0 ∼ 0. The +− and −+ contributions (top right and bottom

left) factorise into a product of two late-time three-point contact diagrams, one from the + branch

of the in-in contour and the other from the − branch.

section 3.1. The contributions from the different branches of the in-in contour in this case

are:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉 = (2π)d δ(d)

(
~k1 + ~k2 + ~k3 + ~k4

)
〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′, (4.1a)

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ =

∑
±±̂

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±̂, (4.1b)

where each branch receives a contribution from the s-, t and u-exchange channels, which

we denote by:17

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±̂ =

∑
α=s,t,u

(α)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±̂. (4.2)

In the following we shall focus without loss of generality on the s-channel exchange,

where (see figure 7)

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±̂ = (±i)

(
±̂i
) ∫ η0

−∞

dη1

(−η1/L)d+1

∫ η0

−∞

dη2

(−η2/L)d+1

× F (ν1)

±,~k1
(η1; η0)F

(ν2)

±,~k2
(η1; η0)G±±̂,~kI (η1; η2)F

(ν3)

±̂,~k3
(η2; η0)F

(ν4)

±̂,~k4
(η2; η0), (4.3)

17We employ the sans-serif notation s, t and u to denote the three exchange channels, which are not to

be confused with the Mellin variables s, t and u.
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and ~kI = ~k1 + ~k2 = −~k3 − ~k4 is the exchanged momentum.18 The Keldysh bulk-to-bulk

propagators G±±̂,~kI were defined in equation (2.22) and their Mellin-Barnes representation

is given by (2.34). In the following we discuss the contributions from the different branches

of the in-in contour, before combining them together in equation (4.20).

+− and −+ contributions. These are the simplest contributions since the Keldysh

bulk-to-bulk propagators factorise into a product of a time-ordered and anti-time-ordered

bulk-to-boundary propagators (see section 2.3) so that, in turn, the +− and −+ contribu-

tions factorise into a product of + and − contributions to late-time three-point functions

— which we evaluated in section 3.1. See figure 7 for a diagrammatic understanding of

this property. In particular, the corresponding Keldysh propagator can be expressed as

G±∓,~kI (η1, η2) =
1

4π

(
k

2

)−2iν

(Nν (η0))−2 F
(−ν)

±,~kI
(η1; η0)F

(ν)

∓,−~kI
(η2; η0) , (4.4)

from which it immediately follows

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±∓

=
1

4π

N4 (η0, ki)

Nν (η0)2

(
k

2

)−2iν

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν)
~kI
〉′±〈φ

(−ν)

−~kI
φ

(ν3)
~k3

φ
(ν4)
~k4
〉′∓ (4.5a)

=
L2(d+1)

16π
N4 (η0, ki) e

±(ν1+ν2)π
2 e∓(ν3+ν4)π

2 I
(ν1,ν2,ν)
~k1,~k2,~kI

I
(−ν,ν3,ν4)

−~kI ,~k3,~k4
, (4.5b)

where in the second equality we inserted the expression (3.9) for the three-point factors.

Combining the two contributions gives:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′+− + (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′−+

=
L2(d+1)

8π
N4 (η0, ki) cos

(
(ν1 + ν2 − ν3 − ν4)

πi

2

)
I

(ν1,ν2,ν)
~k1,~k2,~kI

I
(−ν,ν3,ν4)

−~kI ,~k3,~k4
, (4.6)

where the cosine function encodes the interference between the two processes.

++ and −− contributions. In contrast, the ++ and −− contributions are not fac-

torised and contain contact terms arising from the collision of the two bulk points.19 This

is manifest from the θ-function terms in the corresponding Keldysh propagators (2.22).

Each contribution consists of two terms, one for η2 < η1 and the other for η2 > η1:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±± = (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,< + (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>,

18Note that for the t- and u-channel exchanges we have instead ~kI = ~k1+~k4 and ~kI = ~k1+~k3, respectively.
19This is not possible for the +− and −+ contributions, where the two bulk points lie on different

branches of the in-in contour.
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which read

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′++,< = (+i) (+i)

∫ η0

−∞

dη1dη2

(−η1/L)d+1 (−η2/L)d+1
θ (η1 − η2)

× F (ν1)

+,~k1
(η1; η0)F

(ν2)

+,~k2
(η1; η0)G−+,~kI

(η1; η2)F
(ν3)

+,~k3
(η2; η0)F

(ν4)

+,~k4
(η2; η0), (4.7a)

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′++,> = (+i) (+i)

∫ η0

−∞

dη1dη2

(−η1/L)d+1 (−η2/L)d+1
θ (η2 − η1)

× F (ν1)

+,~k1
(η1; η0)F

(ν2)

+,~k2
(η1; η0)G

+−,~kI (η2; η1)F
(ν3)

+,~k3
(η2; η0)F

(ν4)

+,~k4
(η2; η0), (4.7b)

and

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′−−,< = (−i) (−i)

∫ η0

−∞

dη1dη2

(−η1/L)d+1 (−η2/L)d+1
θ (η1 − η2)

× F (ν1)

−,~k1
(η1; η0)F

(ν2)

−,~k2
(η1; η0)G

+−,~kI (η2; η1)F
(ν3)

−,~k3
(η2; η0)F

(ν4)

−,~k4
(η2; η0), (4.8a)

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′−−,> = (−i) (−i)

∫ η0

−∞

dη1dη2

(−η1/L)d+1 (−η2/L)d+1
θ (η2 − η1)

× F (ν1)

−,~k1
(η1; η0)F

(ν2)

−,~k2
(η1; η0)G−+,~kI

(η1; η2)F
(ν3)

−,~k3
(η2; η0)F

(ν4)

−,~k4
(η2; η0). (4.8b)

In this case, the Mellin-Barnes representation reduces the conformal time integrals to the

basic form: ∫ η0

−∞
dη2dη1 θ (η1 − η2) (−η1)α (−η2)β =

(−η0)α+β+2

(β + 1) (α+ β + 2)
, (4.9a)∫ η0

−∞
dη2dη1 θ (η2 − η1) (−η1)α (−η2)β =

(−η0)α+β+2

(α+ 1) (α+ β + 2)
, (4.9b)

where, for both contributions (4.7) and (4.8),

α =
d

2
− 1− 2 (s1 + s2 + u1) , β =

d

2
− 1− 2 (s3 + s4 + u2) , (4.10)

where the Mellin variables sj are assigned to bulk-to-boundary propagators (2.40) for the

external fields φ
(νj)
~kj

and the uj to the Wightman function (2.34) for the internal field. For

convergence of the integrals (4.9) we impose the following constraints on the Mellin-Barnes

contours:

Re

[
d

2
− 2 (s1 + s2 + u1)

]
< 0, Re

[
d

2
− 2 (s3 + s4 + u2)

]
< 0. (4.11)

From (4.9) we see that the late-time limit η0 → 0 is encoded in the residue of the pole at:

α+ β + 2 = d− 2 (s1 + s2 + s3 + s4 + u1 + u2) ∼ 0, (4.12)

where the restrictions (4.11) require the contour to intersect the real axis to the right of

this pole, meaning that we must close the contour to the left of the imaginary axis. At late
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times this gives the contributions (4.7) and (4.8) as an integrated product of three-point

structures:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,< = −e±(ν1+ν2+ν3+ν4)π

2
L2(d+1)

16π
N4 (η0, ki) (4.13a)

×
∫ i∞

−i∞

du

2πi

e∓2uπi

u+ ε
I

(ν1,ν2,ν)
~k1e±πi,~k2e±πi,~kI

(+u) I
(ν3,ν4,ν)
~k3,~k4,~kI

(−u) ,

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,> = −e±(ν1+ν2+ν3+ν4)π

2
L2(d+1)

16π
N4 (η0, ki) (4.13b)

×
∫ i∞

−i∞

du

2πi

e∓2uπi

u+ ε
I

(ν1,ν2,ν)
~k1,~k2,~kI

(−u) I
(ν3,ν4,ν)
~k3e±πi,~k4e±πi,~kI

(+u) ,

where the restrictions (4.11) translate into Re [u] > 0, which we reflected in the ε prescrip-

tion. The three-point structures are given by

I
(ν1,ν2,ν3)
~k1,~k2,~k3

(u) =

∫
[ds]2 ρν1,ν2,ν3 (s1, s2, w − u)

×
(
k3

2

)−2w 2∏
j=1

(
kj
2

)−2sj ∣∣∣
w= d

4
−s1−s2

, (4.14)

which for u = 0 coincide with (3.9):

I
(ν1,ν2,ν3)
~k1,~k2,~k3

(u = 0) = I
(ν1,ν2,ν3)
~k1,~k2,~k3

. (4.15)

The u = 0 poles displayed in (4.13) thus generate factorised contributions to the exchange

diagram.20 The organisation of the different contributions to the exchange diagram

become more transparent upon lifting the u-integral, the details for which we give in

appendix A.2. The resulting expression for the total ++ and −− contributions to the

s-channel exchange is:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′++ + (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′−−

=
L2(d+1)

8π
N4 (η0, ki)

∫
[ds]4 cosec (π(w + w̄)) δ++−− (w, w̄)

× I(ν1,ν2,ν)
~k1,~k2,~kI

(s1, s2, w) I
(−ν,ν3,ν4)

−~kI ,~k3,~k4
(s3, s4, w̄)

∣∣∣w= d
4−s1−s2

w̄= d
4−s3−s4

, (4.17)

20This makes manifest that the factorised contributions can be obtained from the +− and −+ contribu-

tions (4.5) to the exchange four-point function through the analytic continuation:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,<

∣∣∣
factorised

= −e∓(ν1+ν2+ν3+ν4)(s)〈φ(ν1)
~k1e±πi

φ
(ν2)
~k2e±πi

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±∓, (4.16a)

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>

∣∣∣
factorised

= −e∓(ν1+ν2+ν3+ν4)(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3e±πi

φ
(ν4)
~k4e±πi

〉′∓±, (4.16b)

where we recall that the constant N4 (η0, ki) depends on the external momenta. This feature was exhibited

in [11] for external conformally coupled scalars in d = 3.
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in terms of the Mellin-Barnes representation for the three-point conformal structure (3.9b),

and the function

δ++−− (w, w̄) = cosh (πν) sin

(
π

(
i (ν1 + ν2 + ν3 + ν4)

2
+
d

2
− w − w̄

))
− 1

2

[
sin

(
π(
d

2
+
i (ν1 + ν2 + ν3 + ν4)

2
+ w − w̄)

)
+ w ↔ w̄

]
, (4.18)

gives the zeros of the Mellin integrand, encoding the interference between the different pro-

cesses. Comparing with the expression (4.5) for the +− and −+ contributions, we see that

the cosecant factor is responsible for the non-factorisation of the ++ and −− contributions.

We shall discuss the properties of the expression (4.6) below, after combining it with

the +− and −+ contributions to obtain the final result for the exchange diagram.

Combined contributions. The expression (4.6) for the +− and −+ contributions can

be re-expressed in the same form as (4.17) simply using equation (3.9b). The interference

factor in this case reads:

δ+−−+ (w, w̄) = cos

(
(ν1 + ν2 − ν3 − ν4)

πi

2

)
sin (π(w + w̄)) (4.19)

=
1

2
sin

(
π

(
i (ν3 + ν4 − ν1 − ν2)

2
− w − w̄

))
+

1

2
sin

(
π

(
i (ν1 + ν2 − ν3 − ν4)

2
− w − w̄

))
.

Combined with (4.17), this gives the following Mellin-Barnes representation of the

s-channel exchange diagram:

General scalar 4pt exchange in the s-channel

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ = L2(d+1)

8π
N4 (η0, ki)

∫
[ds]4 cosec (π(w + w̄)) δ (w, w̄)

× I(ν1,ν2,ν)
~k1,~k2,~kI

(s1, s2, w) I
(−ν,ν3,ν4)

−~kI ,~k3,~k4
(s3, s4, w̄)

∣∣∣w= d
4−s1−s2

w̄= d
4−s3−s4

, (4.20)

with total interference factor:

δ (w, w̄) = δ++−− (w, w̄) + δ+−−+ (w, w̄) (4.21)

= cosh (πν) sin

(
π

(
i (ν1 + ν2 + ν3 + ν4)

2
+
d

2
− w − w̄

))
+

1

2
sin

(
π

(
i (ν3 + ν4 − ν1 − ν2)

2
− w − w̄

))
+

1

2
sin

(
π

(
i (ν1 + ν2 − ν3 − ν4)

2
− w − w̄

))
− 1

2

[
sin

(
π

(
d

2
+
i (ν1 + ν2 + ν3 + ν4)

2
+ w − w̄

))
+ w ↔ w̄

]
.
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We note that Barnes integrals of the type (4.20) are known in the Mathematics liter-

ature as (four-variable) Meijer-G functions [108].21

In the following we discuss various properties of the expression (4.20).

• The expression (4.20) for the exchange diagram is an integrated product of three-

point conformal structures22 sewn together by the factor:

cosec (π(w + w̄))︸ ︷︷ ︸
EFT

δ (w, w̄) . (4.22)

The poles of cosecant function are responsible for the non-factorised contributions to

the exchange four-point function, the residues of which generate an infinite sum of

contact terms which constitute the Effective Field Theory (EFT) expansion of the

exchange four-point function. In particular, the csc-function has two sequences of

poles:

w + w̄ = −n, n = 0, 1, 2, . . . , (4.23a)

w + w̄ = 1 +m m = 0, 1, 2, . . . , (4.23b)

where the expansion of the correlator in kI is obtained by closing the Mellin contour on

the first series (4.23a), whose residues generate only non-negative integer powers of k2
I :(

kI
2

)−2(w+w̄)
(4.23a)→

(
k2
I

4

)n
. (4.24)

In section 4.3 we detail how to extract the coefficients of this expansion from the

Mellin-Barnes representation in the case of external conformally coupled scalars.

• The factorised contributions to the exchange diagram are instead encoded in the

sequences of Γ-function poles in w, w̄ associated to the exchanged particle φ(ν).

These in particular originate from the Mellin-Barnes representation (2.34) for its

Wightman function, which are the following four sequences:

w = ± iν
2
− n, n ∈ N0, (4.25a)

w̄ = ±̂ iν
2
−m, m ∈ N0. (4.25b)

That these correspond to factorised contributions in the exchange diagram can

be straightforwardly observed from the fact that the interference factor (4.22) is

constant on each series:

cosec (π(w + w̄)) δ (w, w̄)
∣∣∣
w=± iν

2
−n or w̄=± iν

2
−m

= 2 sinπ

(
d

4
+
i (ν1 + ν2 ∓ ν)

2

)
sinπ

(
d

4
+
i (ν3 + ν4 ∓ ν)

2

)
, ∀n,m. (4.26)

21Technically it is a sum of Meijer-G functions owing to the interference factor (4.21).
22The product of three-point structures appearing in the expression (4.20) is precisely the Mellin-Barnes

representation for the boundary conformal partial wave which is dual to the exchanged field in the bulk. This

connection is made more concrete in [30], which provides a different approach to obtain the expression (4.20)

purely from the knowledge of the boundary conformal partial wave.
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Notice that the constant is the product of the interference factors for the correspond-

ing three-point functions (3.11). Non-analytic terms in the exchanged momentum

are generated when the series of poles in w and w̄ have correlated signs in front of

ν, while analytic terms are generated when the signs are anti-correlated:(
kI
2

)−2(w+w̄)
±±→

(
k2
I

4

)∓iν+(m+n)

, (4.27a)(
kI
2

)−2(w+w̄)
±∓→

(
k2
I

4

)m+n

, (4.27b)

where the ± above the arrows denote the signs of the poles in (4.25a) and (4.25b)

respectively. The non-analytic terms (4.27a) are characteristic of a particle ex-

change and thus serve as a signal for particle production [11]. The tail of analytic

terms (4.27b) accompanying (4.27a) are required for the absence of singularities in

the collapsed triangle configurations kI ∼ k1 + k2 and kI ∼ k3 + k4 (see [11, 17]),

and should not be confused with the contact contributions (4.24).23 In section 4.2

we extract the coefficients of the terms (4.27a) and (4.27b) from the Mellin-Barnes

representation (4.20).

• It is interesting to note that the form (4.20) of the exchange four-point function can

be fixed by conformal symmetry, except the precise expression for the interference

factor δ (w, w̄), which encodes the early time boundary condition (Bunch Davies).

In the spirit of the “Cosmological Bootstrap” [11, 17], the interference factor may be

fixed by demanding the absence of singularities in the collapsed triangle configura-

tions (i.e. the adiabatic vacuum condition) mentioned in the above bullet point. One

might envisage using this as a guiding principle to “Bootstrap” the Mellin-Barnes

representation for more general exchange four-point functions for spinning fields.

• Notice that there is an ambiguity in the splitting of the cosecant into Gamma

functions:

cosec (πz + πn) = (−1)n cosec (πz)

→ cosec (πz) = (−1)n Γ (z + n) Γ (1− z − n) , (4.28)

owing to the periodicity of the sine function. As we have seen, the Mellin-Barnes

integration contour is sensitive to the above splitting, since it prescribed to the

separate poles of all Gamma functions of the type Γ (a+ s) from those of the type

Γ (b− s). The different Mellin-Barnes contours generated by this freedom give

exchange diagrams which differ by contact terms (analytic in kI), which correspond

to different choices of higher-derivative improvement terms in the cubic vertices

(which vanish on-shell). For the exchange diagram (4.20) we used the non-derivative

cubic interaction of the type φ1φ2φ3, which corresponds to the splitting (4.28) with

23A simple way to understand this point is that the factorised contributions satisfy the homogeneous

conformal invariance condition on four-point correlators (see e.g. section 5.2.1 of [11] or section 3.3 of [17]

for a more recent treatment) and so by definition do not contain contact terms.
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n = 0 and z = w + w̄, which we arrive to by keeping track of the Gamma functions

before we combine them into the cosecant function (the details of which are given in

section A.2, where we evaluate the u-integral).

• The representation of the exchange diagram as a quadruple Mellin-Barnes integral

is the best one can do for generic scalar fields, which is a function of four variables:

kI/ki, i = 1, 2, 3, 4. As we saw in section 3.3, for certain special values of the scaling

dimensions away from the Principal Series, the number of Mellin-Barnes integrals

required is reduced. A simple example which we shall see in section 4.3 is when all

external scalars are conformally coupled, which the expression (4.20) simplifies to

a double-Mellin-Barnes integral for a general exchanged field and is a function of

two variables kI/k12 and kI/k34. The simplest expression for general d is when the

exchanged scalar is also conformally coupled, which can be given in terms of Gauss

Hypergeometric functions

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4 (η0, ki)

4π2L2(d+1)

kI
√
k1k2k3k4

(4.29)

×

[
Γ

(
d− 3

2

)2

(k1 + k2 + kI)
3−d (k3 + k4 + kI)

3−d

+2 sin

(
πd

2

)
(k1 + k2 + kI)

3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k3 − k4

k1 + k2 + kI

)
+2 sin

(
πd

2

)
(k3 + k4 + kI)

3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k1 − k2

k3 + k4 + kI

)]
.

Notice that this expression is singular for d = 3, which arises from pinching of the

Mellin integration contour. At the end of section 4.3 we show how the Mellin-Barnes

representation defines this correlator for d = 3 by analytic continuation.

• Another way to obtain the exchange four-point function is by solving the conformal

invariance conditions as an EFT expansion [11]. This idea was implemented in [17]

for external conformally coupled scalars when d = 3. One can then apply the

weight-shifting operator provided in [11] to obtain the exchange with external

massless-scalars interacting in a shift-symmetric fashion from the result for external

conformally coupled scalars.24 The Mellin-Barnes representation (4.20) instead

gives an expression for the exchange four-point function in general d and for generic

internal and external scalars, from which the EFT expansion and non-perturbative

corrections can be extracted by evaluating the appropriate residues — as discussed in

the bullet points above. We shall make contact with the result of [17] in section 4.3.

The above features of the Mellin-Barnes representation will be considered in further

detail in the following sections.

24More generally, weight-shifting operators which relate spinning correlators to scalar correlators are

available in position space [71–73, 80, 109–111] and more recently in momentum space [17, 25, 29, 112].
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Figure 8. Left: configuration of momenta in the OPE (collapsed) limit kI → 0 for exchange

four-point functions, where ~kI = ~k1 + ~k2. Right: in position space this corresponds to the points

forming two pairs which are separated far from each other.

4.2 OPE expansion

A limit of particular interest is the collapsed limit kI → 0, in which the non-analytic

terms in kI signal the exchange of the physical (on-shell) single-particle state [11] — see

equation (2.45). In position space, this is the Operator Product Expansion (OPE) limit.

See figure 8.25

As we saw at the end of the previous section, these terms are encoded in the factorised

contributions to the exchange diagram. In the following we shall detail how to use the

Mellin formalism to derive the expansion of these contributions in kI , from which we can

read off the OPE limit of the exchange four-point function. To this end it is useful to make

the change of variables s1 → s1 − s2 and s3 → s3 − s4, so that the exchange four-point

function (4.20) takes the form:

〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′=N4 (η0,ki)

L2(d+1)

8π

(
k1k3

2

)− d
2
∫ i∞

−i∞

dw

2πi

dw̄

2πi
cosec(π(w+ w̄))δ (w,w̄)

×Γ

(
w+

iν

2

)
Γ

(
w− iν

2

)(
kI
k1

)−2w

I

(
iν2

2
,− iν2

2
;
d

4
+
iν1

2
−w, d

4
− iν1

2
−w;

k2

k1

)
×Γ

(
w̄+

iν

2

)
Γ

(
w̄− iν

2

)(
kI
k3

)−2w̄

I

(
iν4

2
,− iν4

2
;
d

4
+
iν3

2
− w̄, d

4
− iν3

2
− w̄;

k4

k3

)
, (4.30)

where w = d
4 − s1, w̄ = d

4 − s3, and integrals in s2 and s4 have factorised into the two

Mellin integrals I (a, b; c, d; z), which were defined in (B.3) and are each given by a Gauss

Hypergeometric function:

I

(
iν2

2
,− iν2

2
;
d

4
+
iν1

2
− w, d

4
− iν1

2
− w;

k2

k1

)
=

1

Γ
(
d
2 − 2w

) ∏
±,±̂

Γ

(
d

4
− w ± iν1

2
±̂ iν2

2

)

×
(
k2

k1

)iν2

2F1

(
d

4
− w +

i(ν1 + ν2)

2
,
d

4
− w − i(ν1 − ν2)

2
;
d

2
− 2w; 1−

(
k2

k1

)2
)
. (4.31)

See equation (B.7).

25Note that here we are referring to the Operator Product Expansion on the d-dimensional boundary at

η0 = 0, not in the (d+ 1)-dimensional bulk.

– 36 –



J
H
E
P
0
1
(
2
0
2
0
)
0
9
0

There are four factorised contributions to the exchange diagram, which are encoded in

the four series of poles (4.25) — two for each of the Mellin variables w and w̄. As discussed

around (4.27a), the following combinations generate non-analytic terms in kI :

w =
iν

2
− n, w̄ =

iν

2
−m, (4.32a)

w = − iν
2
− n, w̄ = − iν

2
−m, (4.32b)

while the combinations

w =
iν

2
− n, w̄ = − iν

2
−m, (4.33a)

w = − iν
2
− n, w̄ =

iν

2
−m, (4.33b)

generate the accompanying analytic terms (4.27b) required for the absence of unphysical

singularities. Evaluating the residues gives the expansion

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′
∣∣∣
factorised

=N4 (η0,ki)
L2(d+1)

4π

(
k1k3

4

)− d
2

×sinπ

(
d

4
+
i(ν1 +ν2 +ν)

2

)
sinπ

(
d

4
+
i(ν3 +ν4 +ν)

2

)
×

[(
k2
I

k1k3

)iν ∞∑
n,m=0

c(ν1,ν2,ν)
n c(ν3,ν4,ν)

m

(
k2
I

k2
1

)n(
k2
I

k2
3

)m

+

∞∑
n,m=0

c(ν1,ν2,ν)
n c(ν3,ν4,−ν)

m

(
k2
I

k2
1

)n(
k2
I

k2
3

)m]
+ν→−ν, (4.34)

with coefficients:

c(ν1,ν2,ν)
n =

(−1)n

n!

Γ(−iν−n)

Γ
(
d
2 + iν+2n

) ∏
±,±̂

Γ

(
d

4
+
iν

2
+n± iν1

2
±̂ iν2

2

)
(4.35)

×
(
k2

k1

)iν2

2F1

(
d

4
+
iν

2
+n+

i(ν1 +ν2)

2
,
d

4
+
iν

2
+n− i(ν1−ν2)

2
;
d

2
+ iν+2n;1−

(
k2

k1

)2
)
.

The leading terms in OPE limit kI → 0 are given by the n = m = 0 contributions and

focusing on the non-analytic terms:
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OPE limit of a general scalar exchange

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′ ∼ L2(d+1)

4π

(
k12k34

16

)− d
2

N4 (η0, ki)

×

[(
4k2

I

k12k34

)iν
Γ(−iν)2

Γ
(
d
2 + iν

)2 sin

(
π

(
d

4
+

(ν + ν1 + ν2)i

2

))
sin

(
π

(
d

4
+

(ν + ν3 + ν4)i

2

))
×
∏
±,±̂

Γ

(
d

4
+
iν

2
± iν1

2
±̂ iν2

2

)
Γ

(
d

4
+
iν

2
± iν3

2
±̂ iν4

2

)

+ ν → −ν

]
, (4.36)

where we used that k1 ∼ k2 and k3 ∼ k4 as kI → 0. This expression agrees with, and

generalises to general external scalars and general boundary dimension d, the existing

results [11] available in d = 3 for the OPE limit of exchange four-point correlators with

external conformally coupled scalars νj = i
2 and external massless scalars νj = 3i

2 .

Note that the above expression contains oscillatory terms in log
(
k2
I/ (k12k34)

)
for a

massive exchanged particle on the Principal Series, ν ∈ R, where the phase of the oscillation

depends on the scaling dimensions of the fields participating in the interaction and in

particular on the interference factor (4.26) (which in turn is fixed by the interference factors

of the corresponding three-point correlators (3.11)). This property was observed in [11]

(see also [113]) in d = 3 for equal external conformally coupled or massless scalars.

4.3 EFT expansion from Mellin

Similarly we can extract the EFT expansion of the exchange four-point from the Mellin-

Barnes representation (4.20), which is encoded in the poles (4.23a) of the cosecant function.

For ease of presentation we shall consider the case where all external scalars are conformally

coupled where, by virtue of the mechanism detailed at the beginning of section 3.3, two of

the four Mellin-Barnes integrals can be lifted:

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4 (η0, ki)

L2(d+1)

8π

∫ i∞

−i∞

dw

2πi

dw̄

2πi
cosec (π(w + w̄)) δ (w, w̄)

× I(i/2,i/2,ν)
~k1,~k2,~kI

(
d

4
− w

)
I

(−ν,i/2,i/2)

−~kI ,~k3,~k4

(
d

4
− w̄

)
, (4.37)

recalling the Mellin representation (3.24b) for the three-point conformal structure involving

two conformally coupled scalars and a general scalar. This expression is a function of two

variables:

u =
kI
k12

, v =
kI
k34

. (4.38)

It is useful to make the change of variables w → w−w̄, for which the poles (4.23) of the

cosecant function are in the variable w only and the two Mellin-Barnes integrals in (4.37)
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become functions of u and u/v respectively. Equivalently we could have sent w̄ → w̄ − w,

which would instead give an expansion in v and v/u. The expansion in u is obtained by

closing the integration contour for w to the left of the imaginary axis, which selects the

residues of the poles (4.23a). This gives:

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
EFT

= N4 (η0, ki)L
2(d+1) sin

(
πd

2

)
u
d
2
−1v

d
2
−1

2d−3
√
k1k2k3k4

(
kI
2

)2−d

×
∫ i∞

−i∞

dw̄

2πi
(cos(2πw̄)− cosh(πν))Γ

(
w̄ − iν

2

)
Γ

(
w̄ +

iν

2

)
Γ

(
d

2
− 1− 2w̄

)(u
v

)2w̄

×
∞∑
m=0

Γ

(
d

2
− 1 + 2m+ 2w̄

)
Γ

(
−m− w̄ − iν

2

)
Γ

(
−m− w̄ +

iν

2

)(u
2

)2m
. (4.39)

Similarly, we can evaluate the remaining w̄-integral as an expansion in u/v. To obtain an

expansion which is valid, say, for u < v, we must close the Mellin-Barnes contour to the

right of the imaginary axis. This encloses the following series of poles:26

w̄ =
d− 2

4
+m+

n

2
, n ∈ N≥0, (4.41)

which gives:

EFT expansion of the exchange 4pt function with external conformally coupled scalars

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
EFT

= −4π2L2(d+1) sin

(
πd

2

)
N4 (η0, ki)√
k1k2k3k4

(
kI
2

)2−d ∞∑
m,n=0

cmnu
2m+d−2

(u
v

)n
, (4.42)

where the series coefficients are given by

cmn =
(−1)n

22m+d−1n!

(d+ n+ 2m− 3)!(
d
4 + n+iν−1

2

)
m+1

(
d
4 + n−iν−1

2

)
m+1

. (4.43)

Setting d = 3 these reduce to

cmn =
(−1)n (n+ 1) (n+ 2) . . . (n+ 2m)[(

n+ 1
2

)2
+ ν2

] [(
n+ 5

2

)2
+ ν2

]
. . .
[(
n+ 1

2 + 2m
)2

+ ν2
] , (4.44)

26Naively one would also expect the following sequences of poles:

w̄ = −m± iν

2
+ n′, n′ ∈ N≥0 (4.40)

to contribute, which would in addition generate non-analytic terms in the exchanged momentum kI . These

are however cancelled by the zeros of the factor (cos(2πw̄)−cosh(πν)) which originates from the interference

factor (4.21). This is consistent with the observation that the cosecant factor generates only contact

contributions to the exchange diagram, as discussed below equation (4.22).
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which recovers equation (3.24) in [17]. In the above we derived the series expansion in

the variables u and u/v, but we could have also obtained an expansion in v and v/u

by instead making the change of variables w̄ → w̄ − w at the level of the Mellin-Barnes

representation (4.37). The resulting expression would be the same as (4.42) but with u↔ v,

as required by conformal invariance of four-point interactions.

Notice that there is a curious overall factor of sin
(
πd
2

)
in (4.42), which is vanishing in

even dimensions. This is consistent with the expression (3.28) for the four-point function

generated by the φ4 contact interaction of conformally coupled scalars which, upon com-

bining the contributions from the + and − branches of the in-in contour, is vanishing in

even dimensions by virtue of the same sinusoidal factor.

The non-perturbative corrections to the EFT expansion are given by the factorised

contributions (4.34). For external conformally coupled scalars, as we saw in section 3.3

the three-point factors in each contribution are given by Gauss Hypergeometric func-

tions (3.25). In particular, in this case we have:

∞∑
n=0

c
( i2 ,

i
2
,±ν)

n

(
k2
I

k2
1

)n
= π3/2

(
kI
k1

)1− d
2
∓iν β0

α±
F± (u) , (4.45)

where (extending the d = 3 notation [17] to general d):

F± (u) =

(
iu

2ν

) d
2
−1±iν

2F1

(
d

4
± iν

2
,
d

4
± iν

2
− 1

2
; 1± iν;u2

)
, (4.46a)

α± = −
(
i

2ν

) d
2
−1±iν Γ (1± iν)

Γ
(
d
4 ±

iν
2

)
Γ
(
d
4 ±

iν
2 −

1
2

) , (4.46b)

β0 =
1

i sinhπν
, (4.46c)

so that

Non-perturbative correction to the EFT expansion

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′
∣∣∣
factorised

=π2N4(η0,ki)

(
kI
2

)2−d L2(d+1)

2
√
k1k2k3k4

(4.47)

× β2
0

α+α−

[(
cosπ

(
d

2
−iν

)
+1

)
β0α+

α−
F−(u)F−(v)+

(
cosπ

(
d

2
+iν

)
+1

)
β0α−
α+

F+(u)F+(v)

−
(

cosπ

(
d

2
+iν

)
+1

)
β0F+(u)F−(v)−

(
cosπ

(
d

2
−iν

)
+1

)
β0F−(u)F+(v)

]
.

Setting d = 3 this recovers equation (3.37) of [17].

The EFT expansion (4.42) and non-perturbative corrections (4.47) are valid for generic

values of ν and d where the integration contour in the Mellin-Barnes representation (4.37)

for the exchange four-point function is un-pinched. This is always the case when ν is on the
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Principal Series (2.5), while away from the Principal Series extra care needs to be taken for

the specific values of ν and d for which pinching occurs. This is discussed in more detail

in the following.

Contour pinching. The case of external conformally coupled scalars considered above

provides another interesting and moreover simple example of contour pinching discussed

at the end of section 3.1.

Recall that the exchange four-point function (4.37) is an integrated product of the

three-point structures (3.24b) for two conformally coupled scalars and a general scalar,

which are weighted by the cosecant factor (4.22). Therefore, the integration contour for

the exchange (4.37) becomes pinched for the same values of ν as for the Mellin-Barnes

integral for the three-point structures (3.24). The simplest example is the conformally

coupled scalar in d = 3, which for the three-point structures (4.37) was discussed at the

end of section 3.3.

To study the pinching for the exchange four-point function (4.37) it is useful to return

to the representation (4.13) of the ++ and −− contributions along the in-in contour.27

For the conformally coupled scalar, following the same steps as in section 3.3 we have

I
(i/2,i/2,i/2)
~k1,~k2,~k3

(u) = 4
π

3
2

√
k1k2

(
k3

2

)1− d
2
(

2
k1 + k2 + k3

k3

) 3−d
2

Γ

(
d− 4u− 3

2

)
×
(

2
k1 + k2 + k3

k3

)2u

, (4.48)

so that

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,< = −N4 (η0, ki)L

2(d+1) π2

√
k1k2k3k4

(
kI
2

)2−d

×
(

2
kI − k1 − k2

kI

) 3−d
2
(

2
k3 + k4 + kI

kI

) 3−d
2

(4.49a)

×
∫ i∞

−i∞

du

2πi

e∓2uπi

u+ ε̄
Γ

(
d− 3− 4u

2

)
Γ

(
d− 3 + 4u

2

)(
kI − k1 − k2

k3 + k4 + kI

)2u

,

and

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,> = −N4 (η0, ki)L

2(d+1) π2

√
k1k2k3k4

(
kI
2

)2−d

×
(

2
k1 + k2 + kI

kI

) 3−d
2
(

2
kI − k3 − k4

kI

) 3−d
2

(4.49b)

×
∫ i∞

−i∞

du

2πi

e∓2uπi

u+ ε̄
Γ

(
d− 3− 4u

2

)
Γ

(
d− 3 + 4u

2

)(
kI − k3 − k4

k1 + k2 + kI

)2u

.

Note that above we used ε̄ > 0 for the prescription of the u-integration contour, to dis-

tinguish it from the regulator ε for the contour pinching that we use in the following. For

27Since the +− and −+ contributions are factorised (4.5) they are given by (3.35).
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both integrals, the sequences Γ-function poles are

u =
d− 3

4
+
n

2
, n ∈ N0, (4.50a)

u = −d− 3

4
− m

2
, m ∈ N0, (4.50b)

which, as anticipated, overlap only when d = 3. As in section 3.3, the contour pinching

can be regulated by setting d → 3 + ε, with ε > 0. We then evaluate the u-integrals by

closing the integration contour to the right of the imaginary axis, which is more convenient

as it avoids the single pole at u = −ε̄ and just enclosed the poles (4.50a). Re-summing the

residues, this gives

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,< = −N4 (η0, ki)

π2L8

√
k1k2k3k4

(
kI
2

)−1

×
[

2

ε2
+

1

ε

(
2 log

(
kI

kI + k3 + k4

)
− 2γ − log (4)± iπ

)
+ Li2

(
kI − k1 − k2

k3 + k4 + kI

)
+ log

(
kI

kI + k3 + k4

)(
− log (4) + log

(
kI

kI + k3 + k4

)
− 2γ ± iπ

)
+γ2 − π2

12
∓ iπ (γ + log 2) + (log 2)2 + γ log 4 +O (ε)

]
, (4.51a)

and

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,> = −N4 (η0, ki)

π2L8

√
k1k2k3k4

(
kI
2

)−1

×
[

2

ε2
+

1

ε

(
2 log

(
kI

kI + k1 + k2

)
− 2γ − log (4)± iπ

)
+ Li2

(
kI − k3 − k4

k1 + k2 + kI

)
+ log

(
kI

kI + k1 + k2

)(
− log (4) + log

(
kI

kI + k1 + k2

)
− 2γ ± iπ

)
+γ2 − π2

12
∓ iπ (γ + log 2) + (log 2)2 + γ log 4 +O (ε)

]
. (4.51b)

The poles in ε cancel upon including the contributions (4.5) from the +− and −+ branches

of the in-in contour, which are:

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′+−+ (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′−+ = 2N4 (η0,ki)

π2L8

√
k1k2k3k4

(
kI
2

)−1

×
[

4

ε2
− 1

ε

(
2log

(
4(k1 +k2 +kI)(k3 +k4 +kI)

k2
I

)
+4γ

)
−2log(kI)(log(4(k1 +k2 +kI)(k3 +k4 +kI))+2γ)+2log2 (kI)

+
1

2
log((k1 +k2 +kI)(k3 +k4 +kI))(log(16(k1 +k2 +kI)(k3 +k4 +kI))+2log(4)+4γ)

+
π2

6
+2log2(2)+2γ2 +2γ log(4)+O (ε)

]
, (4.52)
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where we used (4.48) with u = 0 and sent d→ 3 + ε. Combined with (4.51), this gives the

following expression for the exchange four-point function of conformally coupled scalars in

d = 3:

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4 (η0, ki)

4π2L8

kI
√
k1k2k3k4

(4.53)

×
[
π2

3
− Li2

(
kI − k3 − k4

kI + k1 + k2

)
− Li2

(
kI − k1 − k2

kI + k3 + k4

)
− 1

2
log2

(
kI + k3 + k4

kI + k1 + k2

)]
,

which recovers equation (5.74) of [11].

It is interesting to note that for general d > 3 the integrals (4.49) give Gauss Hyper-

geometric functions:

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,< = ±i e∓

1
2
iπdN4 (η0, ki)

4π2L2(d+1)

kI
√
k1k2k3k4

× (k3 + k4 + kI)
3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k1 − k2

k3 + k4 + kI

)
, (4.54a)

and

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′±±,> = ±i e∓

1
2
iπdN4 (η0, ki)

4π2L2(d+1)

kI
√
k1k2k3k4

× (k1 + k2 + kI)
3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k3 − k4

k1 + k2 + kI

)
, (4.54b)

which can be obtained simply closing the integration contour on the poles (4.50a). This

gives the following expression for the exchange of a conformally coupled scalar for general

d > 3:

Exchange four-point function for internal and external conformally coupled scalars

(s)〈φ(i/2)
~k1

φ
(i/2)
~k2

φ
(i/2)
~k3

φ
(i/2)
~k4
〉′ = N4 (η0, ki)

4π2L2(d+1)

kI
√
k1k2k3k4

(4.55)

×

[
Γ

(
d− 3

2

)2

(k1 + k2 + kI)
3−d (k3 + k4 + kI)

3−d

+2 sin

(
πd

2

)
(k1 + k2 + kI)

3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k3 − k4

k1 + k2 + kI

)
+ 2 sin

(
πd

2

)
(k3 + k4 + kI)

3−d Γ(d− 3)

d− 3
2F1

(
d− 3

2
, d− 3;

d− 1

2
;
kI − k1 − k2

k3 + k4 + kI

)]
.

As anticipated, this expression is singular when d = 3. A finite expression is obtained by

setting d→ 3 + ε and expanding in ε. As we know from the above analysis, the poles in ε

arising from each term cancel to give the expression (4.53).
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A Mellin-Barnes integrals

Mellin-Barnes integrals [114, 115] are contour integrals involving products and ratios of

Gamma functions in the integrand, which have the typical form

I (z) =

∫ γ+i∞

γ−i∞

ds

2πi

Γ (a1 +A1s) . . .Γ (an +Ans) Γ (b1 −B1s) . . .Γ (bm −Bms)
Γ (c1 + C1s) . . .Γ (cp + Cps) Γ (d1 −D1s) . . .Γ (dq −Dqs)

zs, (A.1)

where γ ∈ R and Ai, Bi, Ci, Di > 0.28 The integration contour, which intersects the real

axis at γ, runs parallel to the imaginary axis except when it is indented to separate the

poles of the Gamma functions Γ (ai +Ais) from the Gamma functions Γ (bi −Bis). See

e.g. figure 9.

A well known and simple example is given by Barnes’ first lemma:∫ γ+i∞

γ−i∞

ds

2πi
Γ (a+ s) Γ (b+ s) Γ (c− s) Γ (d− s) =

Γ (a+ c) Γ (a+ d) Γ (b+ c) Γ (b+ d)

Γ (a+ b+ c+ d)
,

(A.2)

which we employ often in this work. The integration contour is displayed in figure 9. To

obtain the r.h.s. of the above equality we complete the integration contour with a circular

arc of radius R → ∞ and apply Cauchy’s residue theorem. The arc at infinity does not

contribute regardless of the side of the imaginary axis we close the contour, since the

modulus of the integrand decays exponentially as:

|Γ(a+s)Γ(b+s)Γ(c−s)Γ(d−s) |=O
(
e−2πR|sin(θ)|e−θIm[a+b+c+d]+log(R)Re[a+b+c+d−2]

)
,

(A.3)

where s = Reiθ and we used Stirling’s formula:

Γ (z) =
√

2πe−zzz−
1
2 (1 +O (1/z)) , |z| → 0, | arg z| < π. (A.4)

Note that technically we require Re [a+ b+ c+ d] > 1 in order to neglect the arc at

infinity, but this condition can be lifted afterwards by analytic continuation. The Gamma

28When Ai = Bi = Ci = Di = 1 Barnes integrals of the form (A.1) are referred to in the Mathematics

literature as Meijer-G functions [108].
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Figure 9. Integration contour (Green) for the Mellin-Barnes integral (A.2). This is chosen to

separate the poles of the Γ functions Γ (a+ s) and Γ (b+ s) (the red dots) which extend along the

negative real axis from the sequences of poles of Γ (c− s) and Γ (d− s) (the blue dots) which extend

along the positive real axis.

function poles in the r.h.s. of (A.2) occur for the values of a, b, c, and d where poles of

Γ (a+ s) Γ (b+ s) overlap with poles of Γ (c− s) Γ (d− s), which pinches the integration

contour.

The above outlines the general approach for evaluating Mellin-Barnes integrals. In the

following we give some explicit examples which cover the integrals we encounter in this

work.

A.1 Correlators with a conformally coupled scalar

As explained in section 3.3, when a correlator involves a conformally coupled scalar, the

corresponding Mellin integral can be lifted using the formula:∫ i∞

−i∞

ds

2πi
Γ

(
2s− 1

2

)
Γ (t− 2s) z2s =

√
z + 1

2
Γ

(
t− 1

2

)(
1

z
+ 1

)−t
. (A.5)

To prove this formula, as before we completing the integration contour with a circular arc

of radius R. As R→∞, the modulus of the integrand decays exponentially:∣∣∣∣Γ (t− 2s) Γ

(
2s− 1

2

)
z2s

∣∣∣∣ = O
(
e−2πR|sin(θ)|e2R cos(θ) log(z)e−θIm[u]+log(R)[Re[u]− 3

2 ]
)
,

(A.6)

provided that we take z > 1 if we close the contour to the left, and 0 < z < 1 if we close to

the right. In closing the contour, say, to the left, Cauchy’s residue theorem evaluates the
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integral as a series expansion in 1/z, which can be re-summed to obtain the r.h.s. of the

formula (A.5):29

∫ i∞

−∞

ds2

2πi
Γ (t− 2s) Γ

(
2s− 1

2

)
z2s =

√
z

2

∑
n=0

1

n!

(
−1

z

)n
Γ

(
t− 1

2
+ n

)
,

=

√
z + 1

2
Γ

(
t− 1

2

)(
1

z
+ 1

)−t
. (A.7)

A.2 Exchange diagrams

In this appendix we show how to lift the integral in the Mellin variable associated to

the bulk-to-bulk propagator in the ++ and −− contributions to the exchange four-point

function. In equation (4.13) this is the u-integral.

To this end it is useful to combine the various contributions. As we shall see in the

following, the interference between the different processes manifest in simplifications to the

Mellin integrand. We first combine the contributions for the different orderings of η1 and

η2 along the same branch of the in-in contour:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±= (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,<+ (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>,

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,<+ (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>

=−e±(ν1+ν2+ν3+ν4−di)π2
L2(d+1)

16π
N4 (η0,ki)

×
∫ i∞

−i∞

du

2πi

∫
[ds]4 I

(ν1,ν2,ν)
~k1,~k2,~kI

(s1,s2,w−u)I
(ν3,ν4,ν)
~k3,~k4,~kI

(s3,s4, w̄+u)

×

[
e∓2(u−w)πi

u+ε
+
e±2(u+w̄)πi

−u+ε

]∣∣∣w= d
4−s1−s2

w̄= d
4−s3−s4

, (A.8)

which we gave in terms of the Mellin-Barnes representation (3.9b) of the general three-point

conformal structure. To obtain this expression we made the change of variables u→ −u in

the contribution from the ordering η2 > η1, so the u-integration contour for the combined

contributions is restricted by −ε < Re [u] < ε.30 Either of these bounds can be lifted by

shifting the integration contour past either of poles at u = ±ε. Shifting the contour past

29Conversely, closing to the right gives the result as a series expansion in z, which re-sums to the same

expression — as expected by analytic continuation.
30Equivalently we could have also made the change of variables u → −u in the contribution from the

ordering η2 < η1.
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the pole at u = ε gives31

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±± + (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>�

= −e±(ν1+ν2+ν3+ν4−di)π2
L2(d+1)

16π
N4 (η0, ki)

×
∫ i∞

−i∞

du

2πi

∫
[ds]4 I

(ν1,ν2,ν)
~k1,~k2,~kI

(s1, s2, w − u) I
(ν3,ν4,ν)
~k3,~k4,~kI

(s3, s4, w̄ + u)

× e∓2(u−w)πi − e±2(u+w̄)πi

u+ ε

∣∣∣w= d
4−s1−s2

w̄= d
4−s3−s4

, (A.9)

where now −ε < Re [u] and we subtracted the residue of the integrand in (A.8) at u = ε:

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>�

= e±(ν1+ν2+ν3+ν4)π
2
L2(d+1)

16π
N4 (η0, ki) I

(ν1,ν2,ν)
~k1,~k2,~kI

I
(ν3,ν4,ν)
~k3e±πi,~k4e±πi,~kI

. (A.10)

The contributions from the ++ and −− contours then neatly combine as32

∑
±±

[
(s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±+ (s)〈φ(ν1)

~k1
φ

(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>�

]
=
L2(d+1)

4π
N4 (η0,ki)

×
∫ i∞

−i∞

du

2πi

∫
[ds]4

1

u+ε
sin(π(w̄−w+2u))sin

(
π

(
d+ i(ν1 +ν2 +ν3 +ν4)

2
−w− w̄

))
×I(ν1,ν2,ν)

~k1,~k2,~kI
(s1,s2,w−u)I

(ν3,ν4,ν)
~k3,~k4,~kI

(s3,s4, w̄+u)
∣∣∣w= d

4−s1−s2
w̄= d

4−s3−s4

, (A.12)

where∑
±±

(s)〈φ(ν1)
~k1

φ
(ν2)
~k2

φ
(ν3)
~k3

φ
(ν4)
~k4
〉′±±,>�

=
1

8π
L2(d+1)N4 (η0, ki)

∫
[ds]4 cos

((
d+ (ν1 + ν2 + ν3 + ν4)i

2
− 2w̄

)
π

)
× I(ν1,ν2,ν)

~k1,~k2,~kI
(s1, s2, w) I

(ν3,ν4,ν)
~k3,~k4,~kI

(s3, s4, w̄)
∣∣∣w= d

4−s1−s2
w̄= d

4−s3−s4

. (A.13)

The sinusoidal factor in the u-integrand of (A.12) provides additional zeros where in the

individual ++ and −− contributions there would be poles. Physically, this represents the

interference between processes on different branches of the in-in contour. On a practical

31Likewise, if we could instead lift the restriction −ε < Re [u] by shifting the contour past the pole at

u = −ε.
32To simplify this expression we used that:

cos (θ1)− cos (θ2) = 2 sin

(
θ1 + θ2

2

)
sin

(
θ2 − θ1

2

)
. (A.11)
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level, this makes evaluating the u-integral after combining the contributions along the in-in

contour simpler than evaluating the u-integral for each individual contribution first.33

The u-integral we have left to evaluate is:

Iexch =

∫ i∞

−i∞

du

2πi

1

u+ ε
sin(π(w̄ − w + 2u))

× Γ

(
w +

iν

2
− u
)

Γ

(
w − iν

2
− u
)

Γ

(
w̄ +

iν

2
+ u

)
Γ

(
w̄ − iν

2
+ u

)
. (A.14)

To evaluate the integral, it is simplest to close the integration contour to the right, so that it

avoids the pole at u = ε and just encloses the following two series of Gamma function poles:

u = w ± iν

2
+ n, n ∈ N. (A.15)

Re-summing the contributions from the residues in each series gives the result for the

integral as a sum of two generalised Hypergeometric functions 3F2:

Iexch = Γ (w + w̄)

[
Γ(−iν) sin (π (w + w̄ + iν)) Γ (w + w̄ + iν)

w + iν
2

(A.16)

× 3F2

(
w + w̄, w +

iν

2
, w + w̄ + iν;w +

iν

2
+ 1, iν + 1; 1

)
+ ν → −ν

]
.

Since generalised Hypergeometric functions (see (B.10)) are defined by Mellin-Barnes

integrals which, when inserted into the above equation, gives a Mellin-Barnes integral

which is more cumbersome than the original integral (A.14), naively it seems that we did

not get any further than from where we started. Quite remarkably, there is an identity

which relates precisely the above combination of 3F2 to a single term involving only

Gamma functions. This originates from the three-term relations between 3F2 series at

argument z = 1 [116]. It is:

π3Γ (1− w − w̄)

Γ
(
1− w + iν

2

)
Γ
(
1− w − iν

2

)
Γ
(
1− w̄ + iν

2

)
Γ
(
1− w̄ − iν

2

)
=

[
sin

(
π

(
w − iν

2

))
sin

(
π

(
w +

iν

2

))
Γ(−iν)Γ (w + w̄ + iν) sin (π (w + w̄ + iν))

w + iν
2

×3F2

(
w + w̄, w +

iν

2
, w + w̄ + iν;w +

iν

2
+ 1, iν + 1; 1

)
+ ν → −ν

]
. (A.17)

33Evaluating the u-integral for each individual contribution first is still straightforward, just the resulting

expressions generated by each contribution are more involved — making it harder to combine them and to

study how they interfere among each other.
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This gives us:

Iexch = Γ

(
w +

iν

2

)
Γ

(
w − iν

2

)
Γ

(
w̄ +

iν

2

)
Γ

(
w̄ − iν

2

)
× cosec ((w + w̄)π) cosec

(
π

(
w̄ − iν

2

))
cosec

(
π

(
w̄ +

iν

2

))
, (A.18)

whose definition does not involve any Mellin-Barnes integral.

B Mellin-Barnes representation of hypergeometric functions

B.1 Gauss hypergeometric function 2F1

The Mellin-Barnes representation of the Gauss Hypergeometric function

2F1 (a, b; c; z) =
Γ (c)

Γ (a) Γ (b)

∫ i∞

−∞

ds

2πi

Γ (a+ s) Γ (b+ s) Γ (−s)
Γ (c+ s)

(−z)s , (B.1)

is the analytic continuation of the Gauss Hypergeometric series

2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!
, |z| < 1, (B.2)

to any closed domain of the entire z-plane, which is cut along the real axis from 0 to ∞.

There are linear relationships between Hypergeometric series with different domains

of validity, which are straightforwardly proved using Mellin-Barnes integrals. Consider the

integral

I (a, b; c, d; z) =

∫ i∞

−i∞

ds

2πi
Γ (s+ a) Γ (s+ b) Γ (c− s) Γ (d− s) z−2s, (B.3)

which is a generalisation of Barnes’ first lemma (A.2) to include a variable z. This type of

integral (and minimal variations thereof) appears often in this work. The integral can be

evaluated in the usual way by closing the integration contour either side of the imaginary

axis and applying Cauchy’s residue theorem, since on a circular arc of radius R→ 0 we have

|Γ (s+ a) Γ (s+ b) Γ (c− s) Γ (d− s) z−2s|

= O
(
e−2πR|sin(θ)|−R cos(θ) log(z2)e−θIm[a+b+c+d]+log(R)Re[a+b+c+d−2]

)
, (B.4)

which requires z2 > 1 if we close to the right and z2 < 1 if we close to the left. Let us

choose to close the contour to the left. This encloses the poles of the Gamma functions

Γ (s+ a) and Γ (s+ b). Summing over the residues of each series of poles gives a sum of

two Gauss Hypergeometric functions:

I (a, b; c, d; z) = z2aΓ(a+ c)Γ(d+ a)Γ(b− a) 2F1

(
a+ c, d+ a; a− b+ 1; z2

)
+ z2bΓ(c+ b)Γ(b+ d)Γ(a− b) 2F1

(
c+ b, b+ d;−a+ b+ 1; z2

)
, (B.5)
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one for each series of Gamma function poles. This combination can be identified with a

single Gauss Hypergeometric function of argument 1−z2. To obtain such a transformation

of the variable z, we consider the expansion of (B.3) as a power series in z2 − z0 for some

z0 6= 0:34

z−2aI (a, b; c, d; z) =

∫ i∞

−∞

ds

2πi
Γ (a+ c− s) Γ (d+ a− s) Γ (s) Γ (s+ b− a)

×
∞∑
n=0

(−1)n

n!

Γ (s+ n)

Γ (s)

(
z2 − z0

)n
z−s−n0 . (B.6)

By choosing z0 = 1 and inverting the order of integration and summation, we can evaluate

the s-integral by applying Barnes’ first lemma (A.2) to each term in the sum:35

z−2aI (a, b; c, d; z) = Γ (c+ b) Γ (b+ d)
∞∑
n=0

(−1)n

n!

Γ (a+ c+ n) Γ (d+ a+ n)

Γ (a+ b+ c+ d+ n)

(
z2 − 1

)n
=

Γ (c+ b) Γ (b+ d) Γ (a+ c) Γ (d+ a)

Γ (a+ b+ c+ d)

× 2F1

(
a+ c, d+ a; a+ b+ c+ d; 1− z2

)
, (B.7)

which is a single Gauss Hypergeometric function as advertised.

A special case of the integral (B.3) occurs when two of the four Gamma functions

collapse into a single Gamma function via the Legendre duplication formula (when e.g.

a = b− 1
2), so that the integral reduces to the form:

I (a, b; c, d; z) = 21−2a√π
∫ i∞

−i∞

ds

2πi
Γ (c− s) Γ (d− s) Γ (2s+ 2a) (2z)−2s , (B.8)

which we encounter in contact diagrams (3.24) in which all but one scalar is conformally

coupled. Redefining s → s + a and expanding the integral around z = 2, we can identify,

in the same way as above, the sum of Gauss Hypergeometric functions (B.5) (and hence

also (B.7)) with a single Gauss Hypergeometric function of argument 1−z
2 :

I (a, b; c, d; z) = z2a2−2(2a+c+d−1)πΓ (2c+ 2a) Γ (2d+ 2a)

Γ
(
c+ d+ 2a+ 1

2

)
× 2F1

(
2c+ 2a, 2d+ 2a; c+ d+ 2a+

1

2
;

1− z
2

)
. (B.9)

B.2 Generalised hypergeometric functions

Mellin-Barnes integrals define generalised Hypergeometric functions [117]. For example,

the generalised Hypergeometric function 3F2 is given by

3F2 (a, b; c, d; z) =
Γ (c) Γ (d)

Γ (a) Γ (b)

∫ i∞

−∞

ds

2πi

Γ (a+ s) Γ (b+ s) Γ (−s)
Γ (c+ s) Γ (d+ s)

(−z)s . (B.10)

34Here it was convenient to re-define s → s + a before expanding, so that each term in the expansion

involves a product of four Gamma functions in s from the resultant cancellation of the Γ (s).
35For other choices of z0, each term is an s-integral of the same form as (B.3) with z → z0.
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As well as generalising Hypergeometric functions by increasing the number of param-

eters as above, we can also increase the number of variables. An example is the Appell

function [93, 94], which is a generalised Hypergeometric function of two variables. In this

work we often encounter the Appell function F4:

F4 (a1, a2, b2, b2;x, y) =
Γ (b1) Γ (b2)

Γ (a1) Γ (a2)

∫ i∞

−∞

ds

2πi

dt

2πi

Γ (s+ t+ a1) Γ (s+ t+ a2)

Γ (s+ b1) Γ (t+ b2)

× Γ (−s) Γ (−t) (−x)s (−y)t . (B.11)

The late time three-point correlation function (3.1) for generic external scalars is given

by the above Appell function. This can be seen by noting that

Γ

(
s1 +

iν1

2

)
Γ

(
s1 −

iν1

2

) ∣∣∣
s1→−(s1+

iν1
2

)
= Γ (−iν1) Γ (iν1 + 1) (−1)−s1

× Γ (−s1)

Γ (s1 + iν1 + 1)
, (B.12a)

Γ

(
s2 +

iν2

2

)
Γ

(
s2 −

iν2

2

) ∣∣∣
s2→−(s2+

iν2
2

)
= Γ (−iν2) Γ (iν2 + 1) (−1)−s2

× Γ (−s2)

Γ (s2 + iν2 + 1)
. (B.12b)

C Pole generation in multiple-Mellin-Barnes integrals

Since late-time correlators are in general given by multiple Mellin-Barnes integrals, the

entire pole structure of the integrand in a given Mellin variable may not be manifest.

It can however in general be determined without the need to evaluate any of the Mellin

integrals, as we describe in the following. There are two mechanisms through which poles in

a given Mellin variable, say u, can be generated by an integral in a second Mellin variable,

say s, with which it is entangled:

1. Collision of poles. Poles at the values of u for which series of poles in the second

Mellin variable s collide. For a simple example of this mechanism consider the double

Mellin-Barnes integral:

I1 =

∫ i∞

−i∞

du

2πi

ds

2πi
Γ(b+ s)Γ(a− s+ u)Γ (−u) εu. (C.1)

We would like to determine the poles in the Mellin variable u. While the poles of the

Gamma function Γ (−u) are manifest, there may be poles generated by the Mellin integral in

the variable s since the two integrals are entangled through the Gamma function Γ(a−s+u).

Considering u fixed, the s-integrand has the following two series of poles:

s = − (b+ n) , n ∈ N0, (C.2a)

s = a+ u+m, m ∈ N0, (C.2b)
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which overlap by n′ poles when u = − (a+ b+ n′). From this we can infer that the u-

integrand has poles precisely at those values. This can be easily verified in the current

example because the s integral is simple to evaluate:

I1 = 2−(a+b)

∫ i∞

−i∞

du

2πi
Γ(a+ b+ u)Γ (−u)

( ε
2

)u
, (C.3)

which can be obtained by closing the contour on either series of Gamma function poles.

The poles at u = − (a+ b+ n′) for n′ ∈ N0 are now manifest as anticipated, where they

are encoded in the Gamma function Γ(a+ b+ u).

2. Divergences. Poles at the values of u for which the integral in the second Mellin

variable s diverges. Consider the integral:

I2 =

∫ i∞

−i∞

du

2πi

ds

2πi

Γ(−2s)Γ(2s− a)Γ(u− 2s)Γ (−u)

Γ(a− 2s)
(−1)2sεu. (C.4)

Using Stirling’s formula, we have that:

Γ(−2s)Γ(2s− a)Γ(u− 2s)

Γ(a− 2s)
(−1)2s ∼ |Im [s] |Re[u]−1−2a, (C.5)

as Im [s] → −∞, so the integral in s diverges for Re [u− 2a] ≥ 0. This translates into a

series of poles at u = 2a+ n for n ∈ N0, as can be verified upon evaluating the s-integral:

I2 =
eiπa

2

∫ i∞

−i∞

du

2πi

Γ(1− a)Γ(2a− u)Γ(−a+ u+ 1)Γ (−u)

Γ(a+ 1)Γ(a− u+ 1)
εu. (C.6)

where the anticipated poles are now manifest, where they are encoded in the Gamma

function Γ(2a−u). Instead the poles at u = a−n− 1 for n ∈ N0 are generated by the first

mechanism — i.e. due to the collision of poles in the Mellin variable s at those values of u.
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