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1 Introduction

The classical actions of field theories may easily have certain global symmetries depending

on the field content and on the particular form of the constants coupling the various fields.

Discovering emergent non-perturbative symmetries in quantum field theories acting also

in their coupling space can be of major importance. These may arise unexpectedly and

can provide strict constraints on the observables of the theory. An important example of

the above is the maximally supersymmetric field theory, N = 4 SYM, which possesses a

remarkable non-perturbative symmetry, similar in a sense to the exact symmetry presented

in this work, called S-duality [1–3], i.e. for zero theta angle this reads gYM → 1/gYM.

There is a certain class of quantum field theories where one may test these ideas and

which in recent years have been intensively explored. In particular, consider a current

algebra theory at level k realized by a two-dimensional σ-model action, e.g. a WZW model

theory [4] perturbed by current bilinear terms of the form λabJ
a
+J

b
−. Here, the λab’s are

couplings and elements of a matrix and a, b run over the dimensionality of the Lie-algebra

of a semisimple group G. As it stands the action may have certain global symmetries

depending on the particular form of λab. However, another symmetry appears at the quan-

tum level. Specifically, it was argued using path integrable techniques [5], that the theory
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is quantum mechanically invariant under an additional remarkable master symmetry. In

the space of couplings this acts as λ → λ−1 and k → −k, where for the purposes of our

introduction we have presented it for k � 1. This is a non-perturbative symmetry, not

valid at any finite order in perturbation theory in the couplings λab.

The first class of theories where the above symmetry was explicitly realized classically

in a σ-model was constructed in [6], whereas the symmetry itself was noticed and demon-

strated in [7, 8]. This action captures all loop effects in the deformation matrix λ and is

valid to leading order for large k. This effective action, in conjunction with results from

conformal perturbation theory and the above symmetry has been instrumental in extract-

ing vast information at the quantum regime of the theory [9]. This includes the β-function

and the anomalous dimensions of current, primary [10] and composite operators [11]. The

prototype λ-deformed σ-model action of [6] represents the exact deformation of a single

WZW current algebra theory due to the interactions of currents belonging to the theory,

i.e. self-interactions. Since then, this construction has been extended to cover cases with

more than one current algebra theories, mutually and/or self-interacting [12–15].1 Com-

pared to the single λ-deformed model these models involve several deformation parameters

and their renormalization group has a very rich structure, namely their RG flow possesses

several fixed points. The use of non-trivial outer automorphisms in this context was put

forward in [27] for the case of a single group G. Outer automorphisms for the product

group G × G was considered earlier in [12]. In all cases there is an analog of the above

mentioned master symmetry involving the levels of the current algebra and the various

deformation matrices [5].

The next crucial question is how to proceed deeper into the quantum regime of these

theories by going beyond the leading expressions for large k, that is go higher in the 1/k

expansion. Experience shows that perhaps we may progress in computing by brute force the

β-function to two-loops, but unless we understand the fate of the above master symmetry

when such corrections are taken into account, the progress will stay minimal. The major

purpose of the present paper is to precisely make progress along the above line of research.

The outline of this paper is as follows: in section 2, we review the λ-deformed models

constructed in [13], which has two interesting limits — the PCM and the pseudo-chiral

model. In section 3 we present the two-loop RG flows in the group case for an isotropic

coupling. We present a symmetry of the β-functions in the coupling space (λ, k) (sec-

tion 3.1). Using the symmetry and CFT input we determine the Zamolodchikov metric of

the current bilinear driving the conformal perturbation (section 3.2). Then we work out

the Zamolodchikov C-function and the anomalous dimension of the current bilinear (sec-

tion 3.3). Using the above we determine the Zamolodchikov C-function for the λ-deformed

1We mention in passing that perhaps the major reason these models have attracted attention is inte-

grability. Such cases exist first for isotropic deformation matrices [6, 13–15] (for the SU(2) group case,

integrability has been demonstrated in [16]). Nevertheless integrability holds for some anisotropic mod-

els as well. In particular, for the λ-deformed SU(2) based models in [17, 18], as well as for subclasses of

those in [14, 15]. Integrable deformations based on cosets, symmetric and semi-symmetric spaces have also

been constructed in [6, 19, 20] and [21], respectively. Finally, deformed models of low dimensionality were

promoted to solutions of type-II supergravity [22–26].
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Gk (section 3.4). In section 4, we generalize the above for the coset space SU(2)k×SU(2)k
U(1)k

,

working out the two-loop β-function and the corresponding symmetry in the coupling space

(λ, k). Using the symmetry and CFT data we determine the Zamolodchikov metric of the

parafermionic bilinear driving the conformal perturbation (section 4.1), the Zamolodchikov

C-function and the anomalous dimension of the parafermionic bilinear (section 4.2). Using

the above we work out the Zamolodchikov C-function for the λ-deformed SU(2)k/U(1)k
(section 4.3). In section 5, contains some concluding remarks. In appendix A we compute

the two-loop RG flows for the group case at unequal levels. At equal levels it yields the

result analyzed in section 3 and agreement with the corresponding limits already described

in section 2 is found for the PCM and pseudo-chiral model (section A.1).

Note added. Extensive parts of this work, including the β-function equations for the

group and coset cases (3.1) and (4.2) below, have been presented in talks by one of the

authors (K. Siampos), at the Recent Developments in Strings and Gravity (Corfu, Greece,

10–16 September 2019) [28] and at the 10th Crete regional meeting in String Theory

(Kolymbari, Greece, 15–22 September 2019) [29]. Towards the completion of the present

work, the work of [30] appeared where similar issues concerning the two-loop β-function in

λ-deformed models, are discussed.

2 The λ-deformed models

Consider the following deformed single-level action [12, 13]

S = Sk(g1) + Sk(g2) +
kλab
π

∫
d2σ Ja1+ J

b
2− . (2.1)

We have denoted by Sk(g) the WZW action at level k [4]

Sk(g) =
k

2π

∫
d2σTr(∂+g

−1∂−g) + SWZ,k(g) , SWZ,k(g) =
k

12π

∫
B

Tr(g−1dg)3 , (2.2)

where g ∈ G, with G being a semi-simple group of dimension dimG. The ta’s are Hermitian

matrices normalized to Tr (tatb) = δab, [ta, tb] = ifabctc with a = 1, . . . , dimG, where the

structure constants fabc are taken to be real. The currents Ja± are given by

Ja+ = −iTr
(
ta∂+gg

−1
)
, Ja− = −iTr

(
tag
−1∂−g

)
. (2.3)

We also define the orthogonal matrix Dab = Tr
(
tagtbg

−1
)
. All these may appear with an

extra index 1 or 2 depending on which group element g1 or g2 will be used in the particular

expressions.

The above model can be obtained as a limit of the doubly λ-deformed models con-

structed in [12] — see also [13] for the unequal level case- by setting one of the deformation

parameters to zero. In the same works it was also stressed that the linearized action (2.1)

is, in fact, the effective action incorporating all loop effects in the deformation parameter

λab, that is it does not receive further λ-dependent corrections. This is the first reason for

using (2.1), instead of the prototype λ-deformed model. The second reason is that, as was
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shown in [31] by using CFT arguments, both actions share the same β-function for the

deformation parameter λab to all orders not only in the λab, but also in the 1/k expansion.

This is strictly true only when we choose the chiral anti-chiral current two-point function

to vanish. It is important to note that this is precisely the choice in which the symmetry

of [5] is realized. The third reason is that, the σ-model (2.1) does not receive quantum

corrections in contradistinction to the action of the single λ-deformed model.

The action (2.1) has two interesting limits for λab → ±δab. They will give rise to

the PCM and pseudo-chiral models, respectively. To analyze the limit λab → δab we

rewrite (2.1) as

S = Sk (g2g1) + (λab − δab)
∫

d2σJa1+J
b
2− , (2.4)

where we made use of the Polyakov-Wiegmann (PW) identity [32].2 Then we perform the

following zoom-in limit

λab = δab −
Eab
k

, k � 1 , g1 = g−1
2

(
I + i

uata√
k

)
+ · · · . (2.5)

Then, the action (2.4) takes the form of a PCM model, with the dimG additional spectators

bosons ua

SPCM = −Eab
π

∫
d2σTr(tag−1

2 ∂+g2)Tr(tbg−1
2 ∂−g2) +

1

2π

∫
d2σ ∂+u

a∂−u
a . (2.6)

We note here that similar to (2.5) a zoom-in limit to the prototype λ-deformed action

of [6] gives rise to the non-Abelian T-dual of the PCM σ-model. This fact is not a surprise

since (2.1) is canonically equivalent [33] to the sum of a WZW action and the λ-deformed

action of [6]. The two zoom-in limits simply relate the PCM model and its non-Abelian

T-dual which are also known to be canonically equivalent as well [34, 35]. This limit is a

way to make sense of the theory in the IR when λ approaches unity and strong coupling

effects prevail.

To analyze the limit λab → −δab we rewrite (2.1) by making use of the PW identity, as

S = Sk
(
g2g
−1
1

)
+ 2SWZ,k (g1) +

k

π

∫
d2σ (D1 + λ)ab J

a
1+J

b
2− . (2.7)

Next, we perform the following slightly different zoom-in limit

λab = −δab +
Eab
k1/3

, k � 1 ,

g1 = I + i
vata

2k1/3
− i u

ata

2k1/2
+ · · · , g2 = I + i

vata

2k1/3
+ i

uata

2k1/2
+ · · · .

(2.8)

2In our conventions the PW identity reads

Sk(g2g1) = Sk(g1) + Sk(g2) +
k

π

∫
d2σ Ja1+J

a
2− .
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Then, the action (2.7) takes the form of the generalized pseudo-chiral model found in [10]

by performing in the prototype λ-deformed action a similar to (2.8) zoom-in limit plus the

dimG spectator bosons ua

Spseudo =
1

4π

∫
d2σ

(
Eab +

1

3
fab

)
∂+v

a∂−v
b +

1

2π

∫
d2σ ∂+u

a∂−u
a , (2.9)

where fab = fabcv
c. For diagonal Eab the first term is the prototype pseudo-dual model

studied in [36]. These limits should be well defined at the level of the physical quantities

of the theory, such as for the β-functions and the operator’s anomalous dimensions.

3 The group space

We would like to compute the RG flow equations of (2.1) at two-loop order in the 1/k

expansion for isotropic coupling λab = λδab. This is a rather long but quite standard

computation that is performed in the appendix A. The end result is that the model is

renormalizable at order 1/k2 and that there is no need for a diffeomorphism or an addition

of a counter term. The β-function for λ reads (A.22)

βλ(λ) =
dλ

dt
= −cG

2k

λ2

(1 + λ)2
+

c2
G

2k2

λ4(1− 2λ)

(1− λ)(1 + λ)5
, (3.1)

where t = lnµ2, µ is the RG scale and cG is the quadratic Casimir in the adjoint rep-

resentation of the semi-simple group G, i.e. facdfbcd = cGδab. The level k does not run,

thus retaining its topological nature (also) at two-loop order. The above β-function is well

defined in the two interesting zoom-in limits around λ = ±1 performed in the previous

section. These are studied in section A.1.

3.1 Symmetry

It has been conjectured [5] that beyond the leading in the 1/k-expansion, the theory is

invariant under the symmetry

λ→ λ−1 , k → −k − cG . (3.2)

It can be easily checked that (3.1) is not invariant under this to order 1/k2. However, con-

trary to the one-loop result the two-loop result is scheme dependent. Furthermore, as was

mentioned in [5], the symmetry (3.2) is realized only when we choose the chiral anti-chiral

current two-point function to vanish. The fact that the symmetry (3.2) is not respected

by our two-loop β-function indicates that the scheme used in gravity calculations is not

compatible with the left-right symmetric scheme of the CFT. However, it is possible to

redefine the coupling λ in such a way that the resulting β-function respects the aforemen-

tioned symmetry (3.2). Based on the general structure of the one-loop in 1/k results for the

β-function, as well for the anomalous dimensions of current operators [9], we redefine λ as

λ = λ̃

(
1 +

cG
k

P (λ̃)

(1− λ̃)(1 + λ̃)3

)
, (3.3)
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where P (λ̃) is an analytic function of λ̃. Subsequently, we demand that the symmetry of

the β-function becomes

λ̃→ λ̃−1 , k → −k − cG . (3.4)

This enforces P (λ̃) to satisfy the first-order differential equation

λ̃3P ′(λ̃−1)− λ̃P ′(λ̃) +
λ̃4(λ̃2 − 3)

1− λ̃2
P (λ̃−1) +

1− 3λ̃2

1− λ̃2
P (λ̃) + 1− λ̃4 = 0 . (3.5)

This has as a solution the fourth order polynomial

P (λ̃) = (1− λ̃2)
[
(1 + d0)λ̃2 + d1λ̃+ d0

]
, (3.6)

where d0,1 are two arbitrary constants (one is due to the fact that the differential equation

involves λ̃ as well 1/λ̃ as arguments in P (λ̃)). Using the above reparametrization into (3.1),

we find that

βλ̃(λ̃) = − cGλ̃
2

2k(1 + λ̃)2
−
c2
Gλ̃

2
[
d0(1− λ̃2)2 + λ̃2(λ̃2 + 2λ̃− 2)

]
2k2(1− λ̃)(1 + λ̃)5

. (3.7)

Note that the constant d1 does not appear in this expression, while d0 does so and it

remains to be determined. To do so first recall again the scheme dependence of the above

result concerning the level k. We would like to match this scheme to that corresponding to

the conformal perturbation theory. Using the latter, for small λ̃ the contribution to the β-

function can only be of O(λ̃2/k) and a term of O(λ̃2/k2) should be absent. Alternatively, one

may establish that by the fact that the anomalous dimension of the composite operators

JaJ̄a is of order one less than the corresponding order of the β-function (see (3.15) below).

This anomalous dimension cannot have a term of O(λ̃/k2) since, a linear in λ̃ term arises

from a single insertion operator giving rise to an integral involving the product of a three-

point function of holomorphic currents with a similar one with just anti-holomorphic ones.

In our normalizations each one of the two correlators contributes a factor of O(1/
√
k). This

computation was performed in [9, 11]. Therefore, one must require the vanishing of the

term of O(λ̃2/k2) in (3.7). This can be achieved, for instance, by choosing d0 = 0 in

which case the contribution of the second term in (3.7) becomes of O(λ̃4/k2). This choice

is problematic since it will give rise to non-analytic terms with branch cuts, i.e. ln 1−λ
1+λ ,

in the C-function as it will be discussed in the section 3.3. Their absence implies that

d0 = −1/2 which is the choice we make. Then, the β-function (3.7) of course contains a

term of O(λ̃2/k2). To get rid of it we redefine the perturbative parameter from 1/k to 1/kG,

where kG is k shifted by a constant proportional to cG. It turns out that the correct such

redefinition is

kG = k +
cG
2
. (3.8)

Notably, this is the right combination of k and cG appearing in the Sugawara construction

of the energy-momentum tensor in current algebra CFTs and in the conformal dimension

of the corresponding primary fields. Then (3.7) simplifies to

βλ̃(λ̃) = − cGλ̃
2

2kG(1 + λ̃)2
−

c2
Gλ̃

3(1− λ̃+ λ̃2)

2k2
G(1− λ̃)(1 + λ̃)5

. (3.9)
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The above is covariant under (3.4) or equivalently in terms of kG

λ̃→ λ̃−1 , kG → −kG . (3.10)

We, thus, see that the perturbation theory is naturally organized around the CFT with

level kG deformed by the term kGλ̃
π J+J−. In fact its covariance is achieved for the two

term separately. We expect that this is an exact symmetry to all order in the large kG
expansion. This can be very useful in trying to extend the β-function to O(1/k3G) or even

to higher ones.

3.2 Zamolodchikov metric

Let us consider the two-point correlation function3

Gλ̃(z1, z̄1; z2, z̄2) = 〈O(z1, z̄1)O(z2, z̄2)〉λ̃ , (3.11)

where the perturbing current bilinear operator is

O(z, z̄) = Ja(z)J̄a(z̄) . (3.12)

The currents Ja satisfy a current algebra at level kG with OPEs (operator product

expansions)4

Ja(z1)Jb(z2) =
δab
z2

12

+
i√
kG

fabcJ
c(z2)

z12
, z12 = z1 − z2 , (3.13)

while the OPE of Ja with J̄a is regular.

From (3.12) we can read off the Zamolodchikov metric as

g(λ̃; k) = |z12|2(2+γ(O))Gλ̃(z1, z̄1; z2, z̄2) , (3.14)

where γ(O) is the anomalous dimension of O that is given by [9, 37]

γ(O) = 2∂λ̃β
λ̃(λ̃) + βλ̃(λ̃)∂λ̃ ln g(λ̃; kG) . (3.15)

The finite part of the two-point function should behave as

g(λ̃; kG) =
1

2

dimG

(1− λ̃2)2

(
1 +

cG
kG

Q(λ̃)

(1− λ̃)(1 + λ̃)3

)
, (3.16)

where the zeroth order in the 1/k expansion was computed in [9, 37]. The poles on the

sub-leading part in λ̃ = ±1 and their order, are chosen such that the line element

d`2 = g(λ̃; kG)dλ̃2 , (3.17)

is finite at the PCM and pseudo-dual limits (A.23) and (A.24) respectively. The function

Q(λ̃) is everywhere analytic with Q(0) = 0, so that it agrees with the CFT result [38]

g(0; kG) =
1

2
dimG . (3.18)

3We pass to the Euclidean regime with complex coordinate z = 1√
2

(τ + i σ).
4Note that we have rescaled the currents as Ja → Ja

/
√
kG.
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Demanding that (3.17) is invariant under the symmetry (3.10) leads to the condition

λ̃4Q(λ̃−1) = Q(λ̃) , (3.19)

having as a solution a quartic polynomial of the form

Q(λ̃) = λ̃
(
c1 + c2λ̃+ c1λ̃

2
)
, (3.20)

where we have used (3.18). To proceed we note that the Zamolodchikov metric receives no

finite contribution up to O(λ̃2) [9, 11], fixing c1,2 = 0, Then (3.16) simplifies as

g(λ̃; kG) =
1

2

dimG

(1− λ̃2)2
, (3.21)

that is, the possible O(1/kG)-correction vanishes.

3.3 C-function and the anomalous dimension of the current bilinear

Next we compute the C-function from Zamolochikov’s c-theorem [39] by following the

procedure introduce in the present context in [38]. We have that [39]

dC

dt
= βi∂iC = 24gijβ

iβj > 0 . (3.22)

For a single coupling λ̃, the above simplifies to the first order ordinary differential equation

∂λ̃Csingle(λ̃; k) = 24gλ̃λ̃β
λ̃(λ̃) , gλ̃λ̃ = g(λ̃; kG) , (3.23)

with solution

Csingle(λ̃; kG) = cUV + 24

∫ λ̃

0
dλ̃1 g(λ̃1; kG)βλ̃(λ̃1) , (3.24)

where cUV is the central charge at the UV CFT Gk ×Gk, namely that

cUV = 2
2kdimG

2k + cG
= dimG

(
2 − cG

kG

)
. (3.25)

Integrating (3.24), we find that

Csingle(λ̃; kG) = 2dimG− cGdimG

kG

1 + 2λ̃

(1− λ̃)(1 + λ̃)3
−

3c2
GdimG

2k2
G

λ̃4

(1− λ̃)2(1 + λ̃)6
. (3.26)

This is in agreement with the results of [38] to leading order in 1/kG. In addition, (3.26) is

invariant under (3.10) to order 1/k2G, up to a constant

Csingle(λ̃
−1;−kG) = Csingle(λ̃; kG) +

cG dimG

kG
. (3.27)

Note the absence of non-analytic terms with branch cuts, i.e. ln 1−λ
1+λ , in the expression of

the C-function. This is due to the choice of the parameter d0 = −1/2 in (3.7) as it has been

already noted. Such terms cannot appear, as it can be seen from a free field expansion

around the identity group element [40].
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Finally, we compute the anomalous dimension of O to order 1/k2G. Plugging (3.9), (3.21)

into (3.15), we find that

γ(O) = −2cG
kG

λ̃(1− λ̃+ λ̃2)

(1− λ̃)(1 + λ̃)3
−
c2
G

k2
G

λ̃2(3− 2λ̃+ λ̃2)(1− 2λ̃+ 3λ̃2)

(1− λ̃)2(1 + λ̃)6
. (3.28)

This is in agreement with the results of [38] to leading order in 1/k [9]. In addition, (3.28) is

invariant under the symmetry (3.10) to order 1/k2G. Again, invariance is achieved for each

term separately.

3.4 Connection with the λ-deformed Gk

Let us now consider the λ-deformed σ-model of Gk [6]. This model shares the same β-

function, Zamolodchikov metric and anomalous dimension as the λ-deformed Gk×Gk. The

equivalence is based on the perturbation of current algebra CFTs is driven by the same

current bilinears [31]. However, the UV fixed point differs and its central charge is given by

cUV =
2kdimG

2k + cG
= dimG

(
1− cG

2kG

)
. (3.29)

Thus, the corresponding C-function will be different than (3.26). It can be found

through (3.9), (3.21) and (3.24) and reads

C(λ̃; kG) = dimG− cGdimG

2kG

1 + 2λ̃+ 2λ̃3 + λ̃4

(1− λ̃)(1 + λ̃)3
−

3c2
GdimG

2k2
G

λ̃4

(1− λ̃)2(1 + λ̃)6
. (3.30)

Note that, this is invariant under the symmetry (3.2).

4 The coset space

We now turn to the discussion of the coset case. Let us consider the single level action (2.1)

for an anisotropic coupling λab where now we take the group elements g1,2 ∈ SU(2) and

λab = diag(λ, λ, λ3). We would like to compute its RG flow equations at two-loop order

in the 1/k expansion. It is a tour de force computation, analogue to the one performed in

appendix A. The end result is that the model is renormalizable at order 1/k2, there is no

need for a diffeomorphism or an addition of a counter term, and its β-functions read

dλ

dt
= − 2λ(λ3 − λ2)

k(1 + λ3)(1− λ2)
− 4λ3(3λ2 + 4λ4 − 2λ3 − 10λ2λ3 + 5λ2

3 − λ2λ2
3 + λ4

3)

k2(1 + λ3)2(1− λ2)3
,

dλ3

dt
= −2λ2(1− λ3)2

k(1− λ2)2
+

8λ2(1− λ3)2(λ4 − (3− λ3)λ3λ
2 + λ2

3)

k2(1 + λ3)(1− λ2)4
. (4.1)

As a consistency check the above result agrees with (3.1), in the isotropic limit λ3 = λ and

cG = 4 for SU(2) in our normalizations.

Let us now consider λ3 = 1, which is a consistent truncation of the RG flows (4.1)

βλ(λ) =
dλ

dt
= −λ

k
− 4

k2

λ3

1− λ2
. (4.2)

– 9 –



J
H
E
P
0
1
(
2
0
2
0
)
0
8
3

It can be easily seen that (4.2) is invariant under the symmetry (3.2) (cG = 4)

λ→ λ−1 , k → −k − 4 , (4.3)

to order 1/k2. This β-function is describing the RG flow between the UV λ = 0 towards a

strongly coupled model at the IR λ → 1−.5 In what follows, we shall show that λ3 = 1

corresponds to a parafermionic perturbation of the coset CFT SU(2)k×SU(2)k
U(1)k

, a member of

a class of coset CFTs discussed extensively in [41]. Let us parametrize the group elements

g1,2 as

gi = eiσ3
ϕi
2 e−iσ2

ϑi
2 eiσ3

ψi
2 , i = 1, 2 , (4.4)

where σa are the Pauli matrices traced normalized to Tr(σaσb) = 2δab. Using the above

parameterization and eqs. (2.2) and (2.3) (with ta = σa/
√

2) into (2.1) for λab = diag(λ, λ, 1),

we find a five dimensional target space σ-model since its metric possesses the eigenvector

X = ∂ϕ1 − ∂ψ2 , which has vanishing eigenvalue. To identify the corresponding isometry,

we define ψ = ϕ1 + ψ2 and we also relabel ψ1 → ϕ1, leading to the σ-model

Scoset = SCFT +
kλ

4π

∫
d2σ

(
ΨΨ̄ + Ψ†Ψ̄†

)
. (4.5)

In the above expression the coset CFT is SU(2)k×SU(2)k
U(1)k

, whose metric and the two-form

field read [42]

d`2 = (dψ + cosϑ1dϕ1 + cosϑ2dϕ2)2 + dϑ2
1 + sin2 ϑ1dϕ2

1 + dϑ2
2 + sin2 ϑ2dϕ2

2 (4.6)

and

B = (dψ + cosϑ1dϕ1) ∧ (dψ + cosϑ2dϕ2) , (4.7)

where we have ignored an overall factor of k/4π. The (Ψ, Ψ̄) are classical expressions for

parafermionic operators given by

Ψ = (∂+ϑ1 + i sinϑ1 ∂+ϕ1) e−i(ψ/2+ψ̄) , Ψ̄ = (∂−ϑ2 + i sinϑ2 ∂−ϕ2) e−i(ψ/2−ψ̄) , (4.8)

and their complex conjugates Ψ† and Ψ̄† respectively.6 Here ψ̄ represents a non-local

function of the angles. This effectively dresses the operators to ensure conservation

∂−Ψ = 0 = ∂+Ψ̄.7 As a consistency check we have used the action (4.5) and the two-

loop RG flows (A.16), (A.17) and derived the β-functions of eq. (4.2). There is no need

5Analyzing the β-function (4.2) near λ = 1, we obtain that

λ = 1− κ2

k
, k � 1 ,

dκ2

dt
= 1 +

2

κ2
,

which matches the two-loop β-function (A.25) for the PCM on S2, i.e. d`2 = κ2
(
dϑ2 + sin2 ϑdϕ2

)
. There

is of course an associated limit taken in (4.5) which gives the PCM for S2 and three spectator bosons. This

is most easily seem when one goes back to (2.6) and sets E33 = 0 since this corresponds to setting λ3 = 1

as well as E11 = E22 = κ2 and E12 = E21 = 0. Obviously one may, more generally, have a symmetric space

G/H by choosing appropriately the matrix E = diag(IH , κ2IG/H) in (2.6).
6Note that the σ-model (4.5), is invariant under the symmetry: λ→ −λ, ψ → π + ψ.
7In particular, employing the equations of motion (4.5) leads for to the non-local function ψ̄ to satisfy

∂−ψ̄ =
1

2
∂−ψ + cosϑ2∂−ϕ2 , ∂+ψ̄ = −1

2
∂+ψ − cosϑ1∂+ϕ1 .
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for a diffeomorphism or a counter term. Finally, we note the similarity of the (4.8) to the

classical parafermions [43, 44] corresponding to the exact coset SU(2)k/U(1)k CFT [45].

4.1 The Zamolodchikov metric

Similarly to (3.16), the finite part of the two-point function should behave as

g(λ; k) =
1

(1− λ2)2

(
1 +

1

k

Q(λ)

1− λ2

)
, (4.9)

where the pole structure in (4.9), is inspired from the β-function in (4.2). Demanding that

the line element

d`2 = g(λ; k)dλ2 , (4.10)

is invariant under the symmetry (3.2), leads to the second degree polynomial

Q(λ) = c0 + c1λ+ c0λ
2 . (4.11)

The constant c0 = 0 since the unperturbed Zamolodchikov metric is k-independent. The

order-λ term also vanishes since it is proportional to correlators involving and off (three)

number of parafermions. Therefore c1 = 0 as well. Therefore (4.9), is simply given by the

k-independent part

g(λ; k) =
1

(1− λ2)2
. (4.12)

4.2 C-function and the anomalous dimension of the parafermionic bilinear

Similarly to section 3.3, cUV is the central charge of the coset CFT SU(2)k×SU(2)k
U(1)k

at λ = 0,

namely

cUV =
6k

k + 2
− 1 = 5− 12

k
+

24

k2
+O

(
1

k3

)
, (4.13)

and the C-function can be found through (3.24)

Csingle(λ, k) = 5− 12

k

1

1− λ2
+

24

k2

1− 2λ2

(1− λ2)2
, (4.14)

where we have used (4.2), (4.12). It is invariant under the symmetry (4.3) to order 1/k2,

up to an additive constant

Csingle(λ
−1,−k) = Csingle(λ, k) +

12

k
− 24

k2
. (4.15)

We are now in position to compute the anomalous dimension of the parafermionic bilinear

O, that was given in (3.15). The end result reads

γ(O) = −2

k

1 + λ2

1− λ2
− 8

k2

λ2(3 + λ2)

(1− λ2)2
, (4.16)

which is invariant under the symmetry (3.2), to order 1/k2. There is a non-trivial check of

the above result. Namely that, at the UV CFT point λ = 0 one should obtain the exact

conformal dimension of the parafermionic bilinear ∆ = 2 + γ(O) = 2− 2/k, which is indeed

the case.
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4.3 Connection with the λ-deformed SU(2)k/U(1)k

Let us now consider the λ-deformed σ-model of SU(2)k/U(1)k [6].8 This model shares

the same β-function, Zamolodchikov metric and anomalous dimension as the λ-deformed
SU(2)k×SU(2)k

U(1)k
. The reason is essentially that the perturbation in both cases is driven by

parafermion bilinears which have the same quantum properties, i.e. the same OPE’s. The

proof goes along the lines of the similar case in which the perturbation of current algebra

CFTs is driven by the same current bilinears [31]. However, the UV fixed point differs, so

that its central charge is given by

cUV =
3k

k + 2
− 1 = 2− 6

k
+

12

k2
+O

(
1

k3

)
. (4.17)

Hence, the corresponding C-function will be different than (4.14). It can be found

through (4.2), (3.21) and (3.24) and reads

C(λ, k) = 2− 6

k

1 + λ2

1− λ2
+

12

k2

1− 2λ2 − λ4

(1− λ2)2
. (4.18)

Note that, this is invariant under the symmetry (4.3).

5 Concluding remarks

In this paper we have uncovered an exact symmetry in the space of couplings of the λ-

deformed σ-models constructed in [6]. This goal was achieved by making use of one of the

models constructed in [12, 13]. More precisely is due to the fact that the single λ-deformed

model and the doubly λ-deformed model with one of the deformation parameters set to

zero share the same β-functions to all orders in both the λ and 1/k expansions [31]. For the

group case this symmetry is simply stated by (3.10), with the definition (3.8). Due to its

simplicity it is conceivable that we may use it to push the computation of loop-corrections

to the β-function, operator anomalous dimensions and Zamolodchikov’s C-function even

further. This will be done using also some minimal input form conformal perturbation

theory. This approach seems to be the most promising way to make progress in this

direction since attempting to use the gravitational approach in obtaining loop-corrections

higher than two is really cumbersome. Another promising approach could be to use the free

field expansion of the λ-deformed action in [40] and study using standard field theoretical

methods the renormalization of the interaction vertices. An advantage of this approach is

that all the dependence on the deformation parameter λ is already encoded in the vertices.

Note that, similar comments hold for the symmetric coset case as well.

We have calculated the anomalous dimensions as exact function of λ and at two-loops

in the 1/k expansion for the JJ̄ composite operator that drives the perturbation away of

the conformal point. We have also calculated Zamolodchikov’s C-function at the same

order. It will be very interesting to extend our results for the single current as well as for

composite current operators of higher rank. In this direction the method developed in [47]

should be useful.
8The two-loop RG equation of this model was also recently considered in [46]. The background metric

was modified by a quantum correction (determinant) arising from the integration of the gauge fields. It

was found that the level k runs with the RG scale.
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An important comment is in order. One may wonder if the relation (3.8) may get

further 1/k-correction with coefficients that may be λ-dependent. Recalling that kG will

be the coefficient in the topological WZ term, for a well defined theory it has to be an

integer. Therefore, since k is an integer itself such corrections are not expected/allowed.

To conclude, we conjecture that there exists a scheme where the symmetry (3.8) persists

to all orders in the 1/k expansion.

We have also seen that the σ-model (2.1) is renormalizable without the need to correct

the target space geometry, for the case of an isotropic coupling matrix and of an anisotropic

coupling for the SU(2) case. For an isotropic coupling matrix this fact was also observed

in [30].

Finally, we quote some a partial result concerning the isotropic deformation of the

two-level action [13]

Sk1,k2(g1, g2) = Sk1(g1) + Sk2(g2) +
kλ

π

∫
d2σO , O = Ja1+ J

a
2− , (5.1)

in which in contrast to (2.1) the two levels k1 and k2 are not equal. In the above action

k =
√
k1k2 and we also define the parameter λ0 =

√
k1
k2
< 1. These models interpolate

between two exact CFTs, namely Gk1 × Gk2 at λ = 0 and Gk2−k1 × Gk1 at λ = λ0

respectively [13]. The computation performed in appendix A reveals that the model is

renormalizable at order 1/k2 and there is no need for a diffeomorphism or an addition of a

counter term. Its β-functions reads

βλ(λ;λ0) =
dλ

dt
= −cGλ

2(λ− λ0)(λ− λ−1
0 )

2k(1− λ2)2

+
c2
Gλ

4(λ− λ0)(λ− λ−1
0 )((λ0 + λ−1

0 )(1 + 5λ2)− 8λ− 4λ3)

4k2(1− λ2)5
.

(5.2)

The levels k1,2 do not run, thus retaining their topological nature (also) at two-loop order.

For equal levels (5.2) coincides with (3.1). Up to O(1/k) the above expression is invariant

under the symmetry k1,2 → −k2,1 and λ→ λ−1. Extending this symmetry up to two-loops

along the lines of section 3 presents some technical challenges and work in direction is

in progress.
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A Renormalization group flow at two-loops

The scope of this appendix is to work out the RG flow equations of the action

Sk1,k2(g1, g2) = Sk1(g1) + Sk2(g2) +
kλ

π

∫
d2σJa1+J

a
2− , k =

√
k1k2 , (A.1)

which is nothing else but the action (5.1). From the above we find the line element

ds2 = RaRa + λ−2
0 LâLâ + 2λ−1

0 λRaLâ , λ0 =

√
k1

k2
, (A.2)

and the two-form

B = B0 + λ−1
0 λRa ∧ Lâ , (A.3)

where B0 is the two-form which corresponds to the two WZW models at levels k1,2 with

H0 = dB0 = −1

6
fabc

(
Ra ∧Rb ∧Rc + λ−2

0 Lâ ∧ Lb̂ ∧ Lĉ
)
. (A.4)

In the above we have disregarded an overall k1
2π factor and the Maurer-Cartan one forms

are given by

Ra = −iTr(tadg1g
−1
1 ), Lâ = −iTr(tag−1

2 dg2) ,

dRa = −1

2
fabcR

b ∧Rc, dLâ =
1

2
fabcL

b̂ ∧ Lĉ .
(A.5)

Here, the unhatted and hatted indices denote the Maurer-Cartan one forms evaluated at

the group elements g1 and g2 respectively. By introducing the vielbeins

ea = Ra, eâ = λRa + λ−1
0 Lâ (A.6)

and the double index notation A = (a, â), the line element can be written as

ds2 = (1− λ2)eaea + eâeâ = GAB eAeB . (A.7)

The spin connection and the torsion for the action (5.1) have been found in eqs. (2.14)

and (2.16) of [55]. For an isotropic coupling λab = λδab read

ωab = −1

2
(1− λ2)fabce

c +
λ

2
(1− λ0λ)fabce

ĉ ,

ωâb = ωab̂ =
λ

2
(λ0λ− 1)fabce

c ,

ωâb̂ = −λ0λfabce
c +

λ0

2
fabce

ĉ ,

(A.8)

where we note that, since the metric (A.7) is constant, ωAB is antisymmetric. Also

H = −1

6

(
1− λ2(3− 2λ0λ)

)
fabc ea ∧ eb ∧ ec

− λ

2
(1− λ0λ)fabc eâ ∧ eb ∧ ec − λ0

6
fabc eâ ∧ eb̂ ∧ eĉ .

(A.9)
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For the two-loop computation, we are going to need the torsionfull spin connection ω−AB

ω−AB = ω−AB|CeC =

(
ωAB|C −

1

2
HABC

)
eC (A.10)

and in terms of components is given by [55]

ω−ab = λ2(λ0λ− 1)fabce
c + λ(1− λ0λ)fabce

ĉ ,

ω−âb = ω−
ab̂

= 0 ,

ω−
âb̂

= −λ0λfabce
c + λ0fabce

ĉ .

(A.11)

We can now compute the torsionfull Riemann two-form Ω−AB reads

Ω−AB =
1

2
R−ABCD eC ∧ eD = dω−AB + ω−AC ∧ ω

−C
B (A.12)

and the corresponding components read

R−ABCD =
(
ωKC|D − ωKD|C

)
ω−AB|K + ω−AK|Cω

−K
B|D − ω−AK|Dω

−K
B|C , (A.13)

where we have used that ωAB|C ’s are constants. Employing the above and (A.13), we find

the components of the torsionfull Riemann tensor

R−abcd =R1fabefcde , R−
abcd̂

=R2fabefcde , R−
abĉd̂

=R3fabefcde ,

R1 =λ3Λ ,R2 =−λ2Λ , R3 =λΛ , Λ =
(λ−λ0)(λ0λ−1)

1−λ2
.

(A.14)

While the other components identically vanish. We are also going to need H2
AB=HACDHB

CD,

where

(H2)ab = cGH1δab , H1 =
1− 4λ2 + λ4

(
7 + 2λ0

(
λ0 − λ(4− λ0λ)

))
(1− λ2)2

,

(H2)âb = cGH2δab , H2 =
λ(1− λ0λ)

(
1− λ2(3− 2λ0λ)

)
(1− λ2)2

,

(H2)âb̂ = cGH3δab , H3 =
λ2(1− λ0λ)2 + λ2

0(1− λ2)2

(1− λ2)2
.

(A.15)

We are now in position to compute the two loop β-functions of (5.1). These were given by

d

dt
(GMN +BMN ) =

(
β

(1)
AB + β

(2)
AB

)
eAMeBN , (A.16)

where t = lnµ2, µ is the RG scale and [48–54]9

β
(1)
AB = R−AB , β

(2)
AB = R−ACDE

(
R−CDEB −

1

2
R−DECB

)
+

1

2
(H2)CDR−CABD . (A.17)

9We are using eq. (7) in Hull-Townsend [50] or equivalently eq. (4.26) in Osborn [54]. Note that in our

conventions of the generalized Riemann tensor we replace + → − and we also rescale H → 1/2H, due to

our different normalization of the H = dB field.
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To proceed we analyze the left-hand side of (A.16), which equals to

d

dt
(GMN +BMN ) = 2

dλ

dt

(
eaMeâN − λ eaMeaN

)
. (A.18)

The one-loop contribution β(1) was analyzed in [55] and we shall present the end result

β
(1)
ab = cGδab

R1

1− λ2
, β

(1)
âb = β

(1)

âb̂
= 0 , β

(1)

ab̂
= cGδab

R2

1− λ2
, (A.19)

with β
(1)
ab = −λβ(1)

ab̂
. Then, we move to the two-loop contribution β

(2)
AB. Employing the

above results we find10

β
(2)
ab = c2

Gδab

(
R2

1

(1− λ2)3
+

1

2

R2
2 −H1R1

(1− λ2)2
− 1

2

H2R2

1− λ2

)
,

β
(2)
âb = β

(2)

âb̂
= 0 ,

β
(2)

ab̂
= c2

Gδab

(
R1R2

(1− λ2)3
+

1

2

R2R3 −H1R2

(1− λ2)2
− 1

2

H2R3

1− λ2

)
,

(A.20)

where β
(2)
ab = −λβ(2)

ab̂
. Employing (A.18), (A.19), (A.20) into (A.16) and reinserting the

overall k1 factors on the line element and two-form field, one finds

βλ(λ;λ0) =
dλ

dt
= −cG

2k

λ2(λ− λ0)(λ− λ−1
0 )

(1− λ2)2

+
c2
G

4k2

λ4(λ− λ0)(λ− λ−1
0 )
(
(λ0 + λ−1

0 )(1 + 5λ2)− 8λ− 4λ3
)

(1− λ2)5

(A.21)

and the levels k1,2 do not flow.

A.1 Equal levels

For equal levels k1 = k = k2, (A.21) drastically simplifies to

βλ(λ) =
dλ

dt
= −cG

2k

λ2

(1 + λ)2
+

c2
G

2k2

λ4(1− 2λ)

(1− λ)(1 + λ)5
. (A.22)

Let us now analyze two interesting limits of the above expression around λ = 1 and

λ = −1 for k →∞ — retaining its topological nature at two-loop in 1/k expansion. These

limits were studied in detail in section 3 and they correspond to the isotropic PCM and

the pseudo-dual chiral model respectively.11 In particular, expanding around λ = 1 and

λ = −1 one finds

λ = 1− κ2

k
, k � 1 ,

dκ2

dt
=
cG
8

+
c2
G

64κ2
(A.23)

and

λ = −1 +
1

b2/3k1/3
, k � 1 ,

db

dt
=

3

4
cGb

3 − 9

8
c2
Gb

5 . (A.24)

10Where we have used the identity faa1a2fba2a3fca3a1 = cG
2
fabc, easily proved using the Jacobi identity.

11Analogue limits exist for the single λ-deformed model [6, 10], corresponding to the non-abelian T-dual

of the isotropic PCM and the pseudo-dual chiral model respectively.
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In what follows, we shall prove that the above limiting expressions are in agreement with

those found from the PCM and the pseudo-dual chiral model: let us consider the ac-

tion (2.6) for an isotropic PCM with Eab = 2κ2δab, where κ is a coupling constant. This is

a pure metric non-linear σ-model, whose β-functions drastically simplify to [56–59]:

dGµν
dt

= Rµν −RµκρσRρσκν , (A.25)

where Gµν = 2κ2RaµR
a
ν . Using of the above we easily find

dκ2

dt
=
cG
8

+
c2
G

64κ2
, (A.26)

which is in agreement with (A.23).

Let us now consider the action (2.9) for the pseudo-dual chiral model [36], with

Gab = δab
2b2/3

and Bab = 1
6fabcv

c. This is a torsionfull σ-model whose β-functions were

given in (A.16), (A.17). Using the above, one finds

db

dt
=

3

4
cGb

3 − 9

8
c2
Gb

5 , (A.27)

which is in agreement with (A.24).
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