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1 Introduction

With the discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2], the
Standard Model of Particle Physics (SM) is formally complete. While existing deviations
between some SM predictions and experiment, such as for the anomalous magnetic moment
of the muon (see for example [3, 4]), are not conclusive, the SM is not a complete description
of nature as it neither accounts for astrophysical phenomena such as dark matter, nor does
it incorporate gravity.

Searches for physics beyond the SM have not been successful thus far. Exclusion
limits for new particles introduced by SM extensions often exceed the TeV scale. These
results suggest that new physics either interacts weakly with the SM, or that the masses



of new particles are significantly above the electroweak scale. A well-known example is the
Minimal Supersymmetric Standard Model (MSSM) [5], which requires at least TeV-scale
stops in order to correctly predict the mass of the SM-like Higgs boson of about 125 GeV,
see for example [6, 7]. The construction and phenomenological analysis of new physics
models with heavy particles is therefore a suitable path to develop viable theories beyond
the SM that are consistent with experimental results.

The observables predicted in models with large mass hierarchies, however, usually suffer
from large logarithmic quantum corrections, which should be resummed in order to obtain
precise predictions. Effective Field Theories (EFTs) are a well-suited tool to resum these
large logarithmic corrections. Conventional matching procedures using Feynman diagrams,
however, are often cumbersome, in particular if the new physics model contains many new
heavy particles and/or complicated interactions. The Universal One-Loop Effective Action
(UOLEA) [8-10], which has been developed using functional methods [11-18], is a very
promising tool to overcome these difficulties. It represents a generic one-loop expression
for the Wilson coefficients of an effective Lagrangian for a given ultra-violet (UV) model
with a large mass hierarchy. Compared to the conventional matching using Feynman
diagrams, the calculation of the Wilson coefficients with the UOLEA is straightforward,
as it is expressed directly in terms of derivatives of the UV Lagrangian w.r.t. the fields
and simple rational functions. In particular, no loop integration is necessary and spurious
infrared (IR) divergences are absent by construction. To date, however, the UOLEA is not
completely known: only contributions from scalar particles [8, 9] as well as conversion terms
between dimensional regularization and dimensional reduction [10] have been calculated at
the generic one-loop level up to dimension 6. Whereas some contributions from fermion
loops can be calculated using these results by squaring the fermionic trace, this treatment
is incomplete when the couplings depend on gamma matrices. Furthermore, contributions
from loops containing both scalars and fermions as well as terms with open covariant
derivatives are unknown.

In this publication we present all one-loop operators of the UOLEA up to dimension
6 that involve both scalars and fermions in a generic form, excluding contributions from
open covariant derivatives. Thus, our results go beyond the scope of [8, 9] and allow for
an application of the UOLEA to a broader set of new physics models. We publish our
generic expressions in a Mathematica file UOLEA.m of the arXiv submission. Due to their
generic structure, the expressions are well suited to be implemented into generic spectrum
generators such as SARAH [19-22] or FlexibleSUSY [23, 24] or EFT codes in the spirit of
CoDEx [25, 26].

This paper is structured as follows: in section 2 we present the calculation of the
UOLEA involving both scalars and fermions. We discuss the results in section 3 and apply
our generic expressions to various EFTs of the SM and the MSSM in section 4. Our
conclusions are presented in section 5, and the appendices collect further formulae and
calculational details.



2 Calculation of the scalar and fermionic UOLEA

2.1 Functional matching in a scalar theory

In this section we briefly review the most important steps in the functional matching ap-
proach at one-loop level in a scalar theory and fix the notation for the subsequent sections.
Most of what is being discussed here is well-documented in the literature and more details
can be found in [14, 15, 17, 18]. We consider a generic UV theory that contains heavy real
scalar fields, collectively denoted by ®, with masses of the order M and light real scalar
fields, denoted by ¢, with masses of the order m. We assume that m/M < 1 such that an
EFT expansion in the mass ratio m/M is valid. To perform the functional matching the
background field method is used to calculate the generator of 1-light-particle-irreducible
(1ILPI) Green’s functions in the UV-theory, I't, uv[¢q], and the generator of 1-particle-
irreducible (1PI) Green’s functions in the EFT, I'grr[¢c], where ¢ are light background
fields which obey the classical equation of motion. For the determination of these gen-
erating functionals beyond tree-level a regularization scheme must be specified, which is
chosen to be dimensional regularization.! This introduces a dependence on the unphysical
renormalization scale p in both generating functionals, and the matching condition becomes

I'vuvi(éa] = Terr[@dl, (2.1)

which is imposed at the matching scale u, order by order in perturbation theory. In
principle the matching scale can be chosen arbitrarily, however, in order to avoid large
logarithms the choice ¢ = M is preferred. To calculate I't, yy|[¢a] one starts from the
generating functional of Green’s functions

Zuv[Je, Jy) = / DD exp {1 / A%z [Luv[®, @] + Jo(z)@(z) + J¢(x)¢(x)]} (2.2)

with sources Jg and J and splits both the heavy and the light fields into background parts
d. and ¢, respectively, and fluctuations d® and d¢, respectively, as

¢ = ¢a + 9.
The background fields are defined to satisfy the classical equations of motion,
5£UV 5£UV
— @ = —[® =0. 2.
50 (D1, pal] + Jo =0, 56 [Pty et] +Jp =0 (2.5)

The generating functional of the 1LPI Green’s functions of the UV model, I't, yv|[¢al, is
then given by

I'yuviga) = —ilog Zuv[Je = 0, Jg] — /ddx Jp(x)ber (), (2.6)

In principle the results obtained in this paper can also be applied to a setting where dimensional
reduction is used as a regularization scheme, see [10].



where Jp = 0 since we are only interested in Green’s functions with light external par-
ticles. Expanding the Lagrangian together with the source terms around the background
fields yields

Luv[®, ] + Jo® + Js¢ = Luv[Pal, da] + Jo Pt + Jpdal

- % (5q>T 5¢T) Q (ii) +oee (2.7)

where the matrix

2L 52
o [ o el S [P, dal o3
= 2 2 .

So [P, pa] G535 [Pa, el
is referred to as the fluctuation operator and the dots indicate higher order terms in the
expansion. Through the equations of motion with Js = 0 the heavy background fields can
be expressed in terms of the light ones such that ®¢ = ®c[peq]. In general, @[] is a
non-local object and has to be expanded using a local operator expansion. The one-loop
part of I', yv[ql] is then found to be

Tiluvieal = %bg det Q. (2.9)

The above can be re-written as [17]

7 _ )
FIIfUV[de] =3 log det (Q11 — Q12955 Qa1) + 3 log det Qa. (2.10)

Using similar arguments for the Lagrangian of the EFT, Lgpr[¢], which only depends on
the light fields, the generator of 1PI Green’s functions in the EFT can be calculated at
one-loop as

; 52 Etree
Tipr(dal = / d'z Lifer[da] + 5 log det (— So00 m), (2.11)

where CI{DEFT is the effective Lagrangian whose couplings are given by the one-loop heavy
or heavy/light field contributions. The second term contains one-loop contributions con-
structed from the tree-level part of the effective Lagrangian £§¢%.. The matching condi-

tion (2.1) then implies
d 12 i -1 1
/d z Lrpr[o] = 5 logdet (Q11 — Q1295 Q21) + B log det Q29
7 62Etree
— 5 logdet | ———2EL : 2.12

The functional determinants can be calculated using the relation logdet A = Trlog A and

then calculating the trace. This includes a trace in the Hilbert space as constructed in [27].
It is convenient to calculate this trace in position space and insert the identity in terms of a
complete set of momentum eigenstates. The calculation then involves an integral over the



four-momentum, and expansion by regions [28, 29] can be applied to the integrals [17, 18].
It can then be shown [18] that
P—P—q

- dd
Lipr[¢] = ;/ (27;)]6, trlog (Qi1 — Q12Qmy Q1) |y (2.13)

where the final result is given by the hard part of the integrals, i.e. the part for which
the integrands can be expanded in the region |¢?| ~ M? > m? and where P, = iD,,
with D,, being the gauge-covariant derivative. In (2.13) the trace over the Hilbert space
has already been performed and “tr” designates a trace over all indices. To derive the
currently known form of the purely scalar UOLEA [8, 9] from (2.13), one expands the
logarithm in a power series, which is evaluated up to terms giving rise to operators of
mass dimension 6 and calculates the corresponding coefficients arising from the momentum
integral. In order to keep gauge-invariance manifest in the resulting EllfFT a covariant
derivative expansion [11, 12] is used, where P* is kept as a whole and not split into a
partial derivative and gauge fields.

2.2 Fermionic contributions to the UOLEA

In this section we consider a more general theory which contains both scalar and fermionic
fields and calculate their contributions to the UOLEA.? This extends the results provided
in [9] by including contributions to the matching from loops containing both scalars and
fermions as well as contributions from purely fermionic loops. The latter are partially
contained in the results of [9] since they can be computed by squaring the purely fermionic
trace. However, in this approach contributions are missed whenever the interaction terms
among fermions contain gamma matrices. These terms would be classified as terms with
open covariant derivatives in the language used in [9]. In our treatment no assumptions are
made about the spin structure of the fermionic interactions. In principle, the calculation
can be performed using the method of covariant diagrams introduced in [18], however, the
calculation is presented starting from first principles for the following reason. There is
some freedom in choosing the degrees of freedom to integrate over in the path integral.
For complex scalar fields, for example, these can be the real and imaginary parts of the
field. Alternatively one can choose the field and its conjugate as independent degrees of
freedom. For fermions similar choices can be made. The explicit form of the fluctuation
operator and the transformations necessary to bring the Gaussian path integral into a
form where it can be trivially performed depend on this choice. To reduce the number of
these transformations we use a formalism where Dirac and Majorana fermions are treated
together in one multiplet in the diagonalization step. Our formalism has the additional
advantage, that the resulting expressions are more compact compared to the case when
Dirac and Majorana fermions are treated separately. In the following we will present our
formalism in detail and introduce the notation of the final result.

As mentioned above, there is some freedom in the choice of degrees of freedom to
be integrated over. In order to treat real and complex scalar fields on the same footing

2As discussed in [18] and section 3.3, our final expression for the UOLEA can also be used in a more
general setting, including, for example, massive vector fields.



Multiplet Components Description

Q, Q€ heavy Dirac fermions
= (©.90,4)" Y

A: heavy Majorana fermions

>, ¥*: heavy complex scalars
o (£,27,0)" v eomp

O: heavy real scalars

C . . .

w, w": light Dirac fermions
£ (@won) ©

A: light Majorana fermions

o, o*: light complex scalars
6 (0,0%0)" S

0: light real scalars

Table 1. Contents of the different multiplets appearing in the calculation.

one could split all complex fields into a real part and an imaginary part and perform
the calculation using these as the fundamental fields. However, for scalars it is often
desirable to maintain the complex fields as they might have some physical interpretation in
the effective theory. We therefore use the field and its complex conjugate as independent
degrees of freedom. Similarly, in order to treat Dirac and Majorana fermions simultaneously
without diagonalizing the fluctuation operator among these it is convenient to treat any
Dirac fermion and its charge conjugate as independent degrees of freedom. We collect all
light and heavy scalars into the multiplets ¢ and ®, respectively, and all light and heavy
fermions into the multiplets £ and =, respectively, see table 1. The charge conjugate of
the Dirac spinor € is denoted as Q¢ = CQT, with C being the charge conjugation matrix.
Similarly, we define for a light Dirac spinor w, w® = C&T. With these definitions we may
write the second variation of the Lagrangian as follows

1 1 ~ 1 ~ 1 -
8L = 6%Lg + Q(SETAE(SE — iéETXapé(I) + 55<1>TX<1>555 — iaaTxgd,w

+ %MTXQ@SE + %5?)25555 + %(ETXEgag + %55%@5

1 - 1 - 1 ~ 1 -
- §5§TX@M> + §5<I>TX¢§5§ — EagTwa + §5¢TX¢£6§, (2.14)
where the pure scalar part is given by
1 1 1 ~ 1 -
6Ly = —55@TA¢>6<I> — §6¢TA¢6¢ — §5<I>TX¢,¢5¢ — §5¢TX¢¢6Q>. (2.15)
In egs. (2.14) and (2.15) we introduced the following abbreviations:
Xa0 C(Pagc — Mg +C 1 XpqC™h) Xoa
Az = [ C(Pq — Mg + Xq0) CXQQC_I CXan ,
Xao XpaCt C(Pa— Mpy+C 1 Xap)

(2.16)
) Xow Xozr  Xoe
X=z¢ = | CXgy, CXgyn+ CXge |, (2.17)
Xax  Xazxs Xae



XZQ XZQC_I XEA

Xoz = | Xz XgC' Xwea | (2.18)
Xoq XQQC_I Xoa
) Xow XazC' Xa
Xze = | CXg, CXquC™' CXgy |, (2.19)
Xaw  XasCb o Xpa
Xyx —Pé* + Mg + Xs5 Xso
Ag = | —P:+ M2+ Xyux Xy X0 ) (2.20)
Xox Xox+ —P3 + M3 + Xoo

with similar definitions for & — ¢ and Z — £. Here P* = iD*, with D* being the gauge-
covariant derivative, is a matrix diagonal in field space for which the subscript indicates
which gauge group generators are to be used. Furthermore we have defined

2
0“LUV,int

(Xap)ij = - 3A6B;

(2.21)
where Lyv int is the interaction Lagrangian of the UV theory and A and B designate
arbitrary (scalar or fermionic) fields, if not stated otherwise. Here the indices i and j
collectively denote all of the indices carried by the fields A and B. It shall be noted that if
PE contains generators T, of a representation r, then ch contains the generators of the
conjugate representation 7, denoted by T/. The same holds for the generators contained
in PS5 and PL,. Note also that (2.15) is in principle equivalent to the quadratic term
in (2.7) with the difference being that in (2.7) all scalar fields are assumed to be real, while
in (2.15) complex and real fields are separate. The different signs in the fermionic terms
in (2.14) result from using the anti-commutation relation between fermions and derivatives
w.r.t. fermions.

Before proceeding it is convenient to define

010
i=|10 0], (2.22)
0 01
and rewrite (2.16) as
where
Pq — Mg 0 0
P— M= = 0 Poc — Mg 0 , (2.24)
0 0 Pr— My
wa XQQC_I XQA
Xzz = [ CXqq CXouCt CXgy |- (2.25)

XAQ XAQC_l XAA



We rewrite (2.20) in a similar way as

Ay = ]~1(—P2 -+ Mc%) + Xq;.q;, (226)
with
—PZ + M3 0 0
—P? 4+ M2 = 0 —P2. + M2. 0 : (2.27)
0 0 —P3 + M§
) Xy Xox- Xse
Xoo = [ Xorx Xyewr Xyvo |- (2.28)

Xox Xox+ Xoo

The calculation now proceeds by diagonalizing the quadratic variation in terms of statistics
in order to be able to perform the (Gaussian) path integral. We first eliminate terms
that mix scalar fluctuations and fluctuations of light fermions £ by rewriting the second
variation as

8L = %&TX@(SE + %(ETXE@g + %55TA555 — %55%@@ + %5&5@@555
- %&T}N{wéqﬁ + %5¢TX¢§55 (2.29)
_ % (567 + [627 Rz + 00T R + 00X ge| A1) A
x (66 + A" | X0 — Xead® — Xepdo) )
= % (027 Xz + 007 Kape + 007 Xy | A" [Xez0Z — Xead® — Xeodg] . (2.30)

In the last step we have introduced Agl, which is the matrix-valued Green’s function of
A¢. The occurring matrix multiplication also implies an integration, that is

(A7 [Xezd= — Xead® — Xey00] ) (2)

= /ddy AN @,y) [Xez)9Z() — Xea ()00 (y) — Xeg(1)00()| . (231)

%
Similar to Agl we define Agl in such a way that

/ dy £(y) A7y, 1) Be(w) = f(2), (2.32)

— Ay
where A¢(z) = — P — M. Next, we shift the light fermion field as
66 = 8¢ + A7 [XezdZ — Xead® — Xey0) . (2.33)
56T = 667 + [52T Rz + 60T Xag + 66" X e| A, (2.34)

under which the path integral measure is invariant. Since £ is a multiplet of Majorana-
like spinors, the two shifts (2.33) and (2.34) are not independent. The required relation



between the two shifts is proven in appendix A. After the shifts have been performed we
arrive at

§°Le = %5§’TA55£’ —~ %5ETXE£A§_1X£565 + %5ETX55A£_1X5¢5®
+ %5ETXE§A£‘1X§¢5¢ + %&DTX%AnggE(SE — %&bTX@EAng@a@
— %&DTX@&A?X@M + %5¢TX¢§A§*1X5555 - %MTX(MA?X@&D
- %5¢TX¢gA51X§¢5¢. (2.35)

We proceed by eliminating terms that mix scalar fluctuations and fluctuations of heavy
fermions =. It is convenient to first introduce

Xuap =Xup — XAgAglng, (2.36)
AA =Ay— XAgAgl}N(gA, (237)

and write the second variation as
2 27 Lo rx o= lorg 1o rg —-
0“L =0"Ls + 55: A=0Z — 5(5: X=gp0d + 5(5@ Xop=0=
1 _ 1 _
- EdETX%(Sqﬁ + §5¢Tx¢555. (2.38)

In (2.38) the first term on the r.h.s., §2Lsg, is obtained by replacing Xap and Ay in 02Lg
via the relations (2.36)—(2.37). By shifting the §= in a similar way,

= =02 — AZ! [Xze6® + Xz406)] (2.39)
=T = 62" + [60" X oz + 66" X4z Zgl (2.40)
one finds
2L = — %M)T(A@ — XpeAs'Kzg)d® — %5¢T(A¢ X y2AcXay)00
— 5507 (Xay — XazAz'Xz0)00
- %5¢T(X¢¢ — X y=Az' Xzp)0® + %5£’TA56£’ + %55”55 =’ (2.41)

_ 1 <5¢)T 5¢T> Aq; — X@EAEIXE.@ Xq>¢ — X@.E A EIXqu od
N 2 X¢q> — X¢E A El}_(gcp A¢> — X(bEAElXE(ﬁ (5(;5

+ %6§’TA55§’ + %55”5555’ (2.42)
1 0P 1 1 -
- _ = T T - 1T / - ':/T _s=/
= - (507 567) Qs <5¢> + 5067 Acde’ + S0ZT A= (2.43)
= 6°Lgr + 0°Lp (2.44)



with

0P
2 _ - T T
Lor = (5 5¢)Qs<5¢>, (2.45)
52£F — %(SngAgéf/ + %55/:’1&355/. (246)

At this point there are no terms including both a scalar and a fermionic fluctuation and the
path integrals over scalars and fermions can be performed separately. As has been pointed
out in [17] it is convenient to diagonalize the scalar part such that

Qs = <A‘I’ B Xég% Koo A()¢> , (2.47)

where
Ajy=Ay—XpzAZ' Xz, (2.48)
Xap = Xap — XazAZ ' Xzp, (2.49)

with A, B € {¢, ®}. The contribution from this mixed scalar/fermionic part to the effective
action is then given by

P—P—q

~

i [ d? . A
Lifprse = B / ﬁ [tr log (A<I> - X<1>¢A¢1X¢q>> + trlog A¢}

2.50
hard ( )

and it can be calculated using a covariant derivative expansion as outlined in e.g. [18].
However, care has to be taken since A¢ contains contributions from heavy fermions and
hence does not vanish completely in the hard region of the momentum integration. The
corresponding contributions can be calculated by using

log det (A¢ — X¢EA§1XE¢) = log det (A¢) + log det (]l — A;1X¢EA£1XE¢) , (2.51)

where the first term on the right hand side vanishes in the hard region as it only contains
contributions from light fields.

Since a lot of terms are generated when re-expressing the hatted and barred quantities
in terms of the quantities arising in the original variation (2.35) we abstain from writing out
the result explicitly. It is, however, useful to consider the expansion of the hatted operators
in order to understand the ingredients entering the final result. In particular we will show
that it is possible to absorb all explicit factors of 1 and C by appropriate re-definitions of
XAB. In order to achieve that we first expand (Agl)pu_ﬂsu_qu = Agl(q) as

ict (2.53)

)= |CT(P —d — Me) + Xee| - (2.52)
1= (g = Me) e (—CTP - Xee)| (—4— Me)

[e=]

n=

i (g — M) et (—ClP - Xee)|" (~g - M) i (259)

> [ —f— M) (—P - X&E)r (—¢ — Me)"Hic, (2.55)

n=

[e=]

~10 -



where we defined

Xee = 107 X (2.56)
Then (2.36)—(2.37) become
Xap = Xap —Xae > [(—4 = M) ™ (Xee = P)| " (g = Me) ™ X, (257)
n=0
As=8s=Kae > [(—4 = Me) " (+Xee = P)| " (—g = Me) ™ Xea, (2.58)
n=0

where we introduced X¢p = C*1]~D~(E B- Next we consider
AZl(q) = [Cfl (—¢ — M=) + CLP + Xz=

— Xz Z (4= M) (+Xee = )] (—4— Me) ™ XEE] CED

m=0
KXz > (K (X - P)| K 1X§~} Kzlc i (2.60)
n=0
where
Ka=(—¢—Ma), (2.61)
Xze = C M X . (2.62)

Note that in (2.55) and (2.60) the expressions for Agl and Agl contain the factor C~'1
on the very right. This means that in the combination

Ag XE = Agl( X =B — ngAgl]ICC_l]IX§B) (2.63)
= AZMicC 1 (Xap — Xz AL ICC X ep) (2.64)
= AZ'1C(Xzp — Xz AL 1CXep), (2.65)

all appearances of C and 1 cancel once A;l and Agl are inserted and X 4 is expressed
in terms of Xap with X 5 = C'1X4p. A similar property holds for X¢p and X¢B,
which only appear as X¢p = ﬂXq> pand Xyp = ﬂX¢B. Hence, the result can be expressed
entirely through the matrices X 45 and neither 1 nor C explicitly appears in the final
operator structures.

To complete the calculation we need to compute the purely fermionic part of the second
variation (2.44), which reads

2Ly = %55”5555’ + %55’%@5’. (2.66)

- 11 -



Again, we are only interested in the contribution from the hard region where the light only
part A, does not contribute. Hence we only need to consider A=. We find

triog (Az(q) - XzeAg ' (g)Xez)
= trlog (CINUCE + CﬂP + XEE — ngAgl(q)X§E> (267)
= trlog (C1Kz=) + trlog []1 — k2! (—P — Xz= + ngAgl(q)ng)} o (2.68)

where the first term on the r.h.s. of (2.68) is absorbed in the normalization of the path
integral. Inserting Agl(q) from (2.55) yields

. OO

¢ 1 1
Liprp = B Z b

n=1

Kzt (—P — Xzz + Xz i [’CEIX§4 " IC5_1X§5>] . (2.69)

m=0

In order to obtain the final UOLEA from the sum
Lipr = ﬁllﬂgFT,SF + ﬁllaéFT,F (2.70)

one needs to expand all functional traces on the r.h.s. of (2.70) to a given mass dimension
and calculate the coefficients and operator structures. In this expansion we keep P* as
a whole to obtain a manifestly gauge-invariant effective Lagrangian. It can be shown, by
using the Baker-Campbell-Hausdorff formula, that every P, appears in commutators of
the form [P,,e] [11, 12]. To combine all P* operators into commutators one can either
explicitly use the Baker-Campbell-Hausdorff formula in the calculation as was done in [8]
or construct a basis for these commutators and then solve a system of equations to fix the
coefficients of the basis elements as was pointed out in [18]. In this publication the second
method was deployed. Our final expression for E%EZFT is contained in the file UOLEA.m of
the arXiv submission and will be described further in the next section.

3 Discussion of the result

3.1 Published operators and coefficients

In the following we describe the calculated scalar/fermionic operators, which we publish in
the file UOLEA.m of the arXiv submission. The file contains the following four lists:

e mixedLoopsNoP: mixed scalar/fermionic operators without P*.
e mixedLoopsWithP: mixed scalar/fermionic operators with PH.
e fermionicLoopsNoP: purely fermionic operators without P*.
e fermionicLoopsWithP: purely fermionic operators with P*.

For convenience, the additional list uolea is defined, which is the union of the four lists
from above. The lists contain the calculated operators in the form {F'*(M;, M;, ...), O%},
where F*(M;, Mj,...) is the coefficient of the operator Of} ., which is expressed through

- 12 —



i are expressed in

the integrals 7 [q?"] 0.0 defined in appendix B. The operators (’)Zo;
terms of the symbols X[A, B][7, j], with A, B € {S, s, F, f}, which correspond to the matrices

defined in section 2.2 as follows:

X+ XE*QC_I Xswp
X[S,Fl=Xoz=| Xsa XsqC ' Xsa |,
X@Q XGQC_l X@A
X5+ Xa*Qcil Xo*A
X[S,F] = X¢: = | Xs0 XUQC*l Xon |,
X@Q XGQC*I XgA
Xy XsaCl Xy
X[S M =Xoe=| Xzw Xs:C' Xsma |
Xow XeaC™' Xo
Xa*w Xa*wci XO'*)\
X[S,f]Equg: Xow Xoo -1 Xox 1,
Xow XoaCt Xoa
Xox X Xoe
X[F,S]=Xz¢ = | C"'Xqx C'Xqgx C'Xgqo |,
C'Xan, C'Xasr C'Xno
X[f’S]_qu)— CileE Cilez* Cile@ ,
C' Xy C' X C'Xne
X0 X Xae
X[F,s] =Xz = | C ' Xq, C ' Xqo+ C 1 Xy |,
C_lXA(r C_lXAO'* C_lXAG
Xoo  Xaow  Xo
X[f,S]:X&Zg: CileJ CileU* Cileg ,
C Xy C1X) C1Xy
Xoo  XooC™' X
X[F,F| =Xz = C ' Xaq C_lXQQC_l C'Xaa |,
C_lXAQ C_lXAQC_l C_lXAA
Xa XooCt Xz
X[f,f]EngZ Cilew Cilea,Cil Cile)\ s
C_IX)M C_IX)@C_I C_IX)\)\
Xow  XaxC' Xan
X[Ff] =Xz = | C'Xq, C'XqzCt C71Xqn
C_lXAw C_lXA@C_l C_IXA/\
Xz X oCt X5
X[f,F]:Xg:: C'Xua C_IXPWQC_1 C XA
C_IX)\Q C_IXAQC_I C_IX)\A
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Xy Xsoye Xsvo
XSS =Xoe = | Xy Xuxr Xso |,
Xox Xox+ Xoo

Xyvg Xywgr Xseg
X[S,s] =Xpp = | Xso Xsor X |,
Xos Xoor Xog

XO'*E XU*Z* XU*@
X[S, S] = X¢¢, = XUE ngj* XU@ ,
Xogn  Xoxr  Xoo
Xoro Xgrgr Xgeo
X[S, S] = X¢¢ = Xoo Xoor  Xoo

Xoo  Xoor  Xoo

The indices 7,7 € N label a specific element of the respective matrix. The full one-loop
effective action is then obtained as

Lier =rY Y F(M;,Mj,...)08 (3.1)

o qfee-

where k = 1/(47)? and the sum over a runs over all operators and their corresponding
coefficients. Several comments regarding the use of the operators of (3.1) are in order.
First, no assumptions have been made about the dependence of the second derivatives
X4p regarding gamma matrices. The result is valid for any spin 1/2 spinor structure
appearing in these derivatives. Second, care has to be taken to retain the poles of the
coefficients since the gamma algebra has to be performed in d = 4 — € dimensions, which
may generate finite contributions when combined with the poles. The function ExpandEps,
contained in the Mathematica file LoopFunctions.m of the arXiv submission, can be used
to extract these finite contributions. Third, some of the coefficients diverge in the case of
degenerate masses if the degenerate limit is not taken carefully. The most convenient way
to deal with degenerate masses may be to first set the masses equal, which modifies the
integrals appearing in the coefficients F'*(M;, Mj, ... ), and to then calculate these integrals
using the reduction algorithm implemented in the Mathematica file LoopFunctions.m of
the arXiv submission. Last, there are no ¢, or cp factors appearing in the final result, in
contrast to [8-10]. In our formulation these prefactors have been fixed by our treatment of
the different kinds of fields and are absorbed in the coefficients.

3.2 Infrared and ultra-violet divergences

It appears that the operator coefficients have infrared divergences, which might be surpris-
ing as the infrared physics should cancel in the matching. The reason for the appearance
of such poles is the fact that expansion by regions was used to perform the calculation as
discussed in section 2.1. For a heavy-light loop this means that the one-loop integral Ipy
in the full integration region is split into a part I, calculated in the soft region, and a
part Ipa.q, calculated in the hard region,

Itan = ILsofs + Ihard- (3.2)
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Only the hard part remains, since the soft part is canceled in the matching by the EFT
contribution. For the example of g, being finite, a UV-divergence in the soft part of the
integration region cancels with an IR-divergence in the hard part with the condition

= (3.3)

which assures that scaleless integrals vanish in dimensional regularization. Since the soft
part is removed in the matching, the IR-divergence of the hard part remains. However,
such an IR-divergence should be interpreted as a subtracted UV-divergence coming from
the EFT as indicated by (3.3). It is not surprising that these divergences do not cancel in
the matching since the UV behavior of the EFT is modified as compared to the UV-theory.
However, since these genuine UV-divergences may still combine with an ¢ from the gamma
algebra to yield finite contributions they must be treated in the same way as 1/e poles
stemming from the UV behavior of the UV-theory. After performing the trace and the
gamma algebra, remaining terms containing 1 /e poles can be discarded, which amounts to
performing a matching calculation in the MS scheme.

3.3 Application to models with massive vector fields

The operators calculated in this paper can be used to treat massive vector fields in Feynman
gauge as described in [18]. Furthermore, couplings of fermions to massless gauge bosons can
be correctly accounted for as well using the same technique and the treatment is complete
when the UV-theory is renormalizable. This follows from the fact that the gauge-kinetic
term of a fermion ¢ is linear in the covariant derivative so that X4, is independent of
P,. This is not the case for scalar fields, since the kinetic term is quadratic in P,, which
means that even for a renormalizable UV-theory there are further operators stemming from
the coupling of scalar fields to massless gauge bosons. Of course, once one considers the
matching of a UV-theory that already contains higher dimensional operators with covariant
derivatives to an EFT, further operators arise also for fermions. These missing operators
all stem from open covariant derivatives and are currently unknown.

3.4 Extraction of 3-functions

As was pointed out in [15] functional methods can be used to calculate S-functions since
they allow for the computation of the loop-corrected generator of 1PI Green’s functions.
To one-loop we have

[[®] = I'°[®] 4 T [P, (3.4)

where I'"¢[®] = S[®] is the tree-level generator of 1PI Green’s functions, which is simply
the classical action. Assume that T'™°®[®] contains a kinetic term Ok [®] and an interaction
term gO,4[®]. Then, in general, the one-loop contribution will contain corrections to these,
which depend on the renormalization scale p, so that

M) > [t {ax (0O (0] +ay(1)0,(]} (3.5)
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Canonically normalizing the kinetic term for the field ® yields

T[] 5 / Az {0k (@] + d) (1)O,[2]}, (3.6)
where
pay ) =0 (3.7)

due to the Callan-Symanzik equation [30, 31]. Eq. (3.7) can be solved for the one-loop
B-function of the coupling g.

In a specific sense, the UOLEA represents an expression for '™ of a model with
operators up to dimension 6, and it can thus be used to calculate the one-loop S-functions
of all dimension 6 operators for any given Lagrangian as described above. In order to
calculate I''Y, the UOLEA operators (3.1) must be re-interpreted as follows: since one is
interested in the full T'¢, a distinction between heavy and light fields must not be made
and all fields shall be treated as “heavy” fields. As a consequence, the one-loop effective
action of a scalar theory is given by

T[®] = S[®] + - log det <— ‘Wmt) (3.8)
2 3D )’

where ® represents the collection of all scalar fields contained in the model. The expression
on the r.h.s. of (3.8) can be expanded as outlined e.g. in [8, 15, 17] and one arrives at the
heavy-only part of the UOLEA (3.1), which contains only operators built out of derivatives
of the Lagrangian with respect to “heavy” ® fields. This procedure is not restricted to a
theory with only scalars and can also be applied to models with both scalars and fermions
using the heavy-only part of (3.1). However, higher-dimensional operators with covariant
derivatives have not been treated in this work and hence their influence on the running of
the couplings cannot be determined using our result.

4 Applications

4.1 Integrating out the top quark from the Standard Model

As a simple first example we consider the corrections to the Higgs tadpole and mass pa-
rameter that arise when integrating out the top quark from the Standard Model. The
considered interaction Lagrangian shall contain only one coupling

9

V2

where h denotes the physical Higgs field, t is the top quark and g¢; is the top Yukawa

Lsn D ——=hit, (4.1)

coupling. The relevant operators of the UOLEA (2.70) are given by

— ST 1P (=)l [P, (=),
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1 -
+ §m:zzil (XEE)’L’L

1 .
— Ems T} (Xzz)ij(Xez)ji

1-
- 4I[q2]z'1]1’YM(XEE)z’j'Y;L(XEE)ji}7 (4.2)

where mz; denotes the mass of the ith component of Z. The matrix (Xz=) is given by

_ [ (Xit)asis 0 g
(Xz2)agij = ( 0 C(;pl(Xtt_)paijCo-ﬂ1> = —ﬁhéalgéljhxz, (4.3)
with o, 5 = 1,...,4 being spinor indices and 4,j = 1, 2,3 being color indices. In (4.2) we
included terms with two covariant derivatives in order to obtain the field-redefinition of
the Higgs field that is necessary to canonically normalize the corresponding Higgs field h
in the effective theory. Since this redefinition arises from the correction to the kinetic term
only, we can set P* = i0". Inserting (4.3) into (4.2) and calculating the trace yields

1 ~ ~ -
~Clor = — 3¢} (m{Z - 2aZlg']} - 4Zlg"]!) (9uh)(9"h)
~ ~ 12 ~
— 397 (Ifmf + dI[q2]§> h% — \ﬁgtmtltlh, (4.4)

where d = 4 — ¢ = g/, has to be retained since the integrals contain poles in 1/e. The
loop functions Z are defined in appendix B. It is customary to introduce the canonically
normalized field i which is related to h through

~ 1
h= (1 + 252h> h. (4.5)
From (4.4) one can read off 67, to be
~ ~ ~ ~ ~ 1
o2 = ~6gt (mifi — 2allg't — aZla')t) = —ogt (miZt —122la'%i + §). 40

The loop functions that appear in (4.4) and (4.6) can be calculated with the Mathematica
file LoopFunctions.m and read

~ 2 m2
) = 22l =t (2411088 (47)
2
~ ~ m
T = 2470g')} = Z ~log " (48)
P (4.9)
= .

4.2 MSSM threshold correction to the quartic Higgs coupling

As a first nontrivial application and a check we reproduce the one-loop threshold correction
of the quartic Higgs coupling A when matching the MSSM to the SM at one-loop [32] in
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the unbroken phase. As discussed in [32] there are several contributions of distinct origins.
The scalar contribution AN arises from interactions of the SM-like Higgs with heavy
Higgs bosons, squarks and sleptons, and the relevant interaction Lagrangian is given by

1 -~ -
Tthth(tztR +trty)
1 g 4 g3 2 5+ =
- §C2Bh2 Z Kgg 51> Ui + 5gluRzuRZ <92 5 ) djdri — 5g%dRidRi]
i

~% ~ 3 ~% ~ 6 ~%  ~
- *C%h Z [(92 + 91 > ViiVLi — (9% - 9%5> €ri€Li — 59%631'61%]

1 3 1 3
+ Ecgﬁ (59% + 9%) h?A? — 3 ((1 +555)93 — 591025) hH H*

2
Ly=— %iﬂ(tm +4TR) —

1 /3 1/3
< g1+ 92) (3s35 — 1)h*H? — 3 <59% + 9%) sapcaph®H

16 \5
1/3 1/3
+ 3 <5g% + g%) SQBCQﬁhQ(G_H+ + H_G+) + 3 <59% + g%) 52B02Bh2G0A‘ (4.10)

Here g; and g9 are the GUT-normalized electroweak gauge couplings, X; is the stop mixing
parameter, and g = y;53 with y; being the MSSM top Yukawa coupling and sg = sin(f).
The three generations of left- and right-handed squarks and sleptons are denoted as iy,
ﬂRZ‘, CiLz} dRia éLi; éRia I;Li (Z = 1,2,3), respectively, where I?L = ﬁL3 and LZR = ﬁR3 are the
left- and right-handed stops. Furthermore we have defined h = /2 Re(H?), where H is
the neutral component of the SM-like Higgs doublet H related to the Higgs doublets H,,
and Hy through

H = —CﬁéH;lk + sgHy, (4.11)

where ¢ is the antisymmetric tensor with e1o = 1 and ¢g = cos(f), sop = sin(28) and
cop = cos(2f3). The fields GY and G* are Goldstone bosons arising from the same Higgs
doublet. The heavy Higgs bosons H, A and H* arise from the heavy doublet A, which is
related to the MSSM doublets through

A=sgeHj + cgH,y. (4.12)

Note, that since we work in the unbroken phase, § should not be regarded as a ratio
of vacuum expectation values, but as the fine-tuned mixing angle which rotates the two
MSSM Higgs doublets H, and Hg into H and A as given in (4.11)-(4.12) [32]. The
fermionic contribution AX4X to the threshold correction of A originates from interactions
of the Higgs boson with charginos ;" (i = 1,2) and neutralinos ¥? (i = 1,...,4) described
by the interaction Lagrangian

g2 ~Fp.o 92 YT Pext + xTPrx
Ly = — %hcﬁ(XfPsz + X3 PLxy) — ﬁhsﬁ(XJPRXIL +X{ PLXz)

9y ~0.5-0 9y =00

+9 cg — Sg)h — cg+ sg)h
2\@( 5 — s8)hX17°X3 2ﬂ( 5+ sg)hX1X4

—i—_(c5 — s5)h {0 5~0+972 cg+s hT(“O, 4.13
2\[( 5)hX27°X3 2\/5( 5+ 58)hX5X4 (4.13)

where )27? = (NTC and gy = \/3/5 1.
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To calculate the one-loop threshold correction for A, the following contributions with
purely scalar and purely fermionic operators from our generic UOLEA (2.70) are relevant,

el = 0 {321 Kawi + ST B (o) (Xao)s)

1.
+ 12 (Xaa)ij(Xaw)ji + I}Jlkl(Xw)z’j(X@@)jk(X@b)ki

6
1.
8Izlylklzl(chrb)ij(Xéé)jk(X@)m(Xw)h + 511-1 (Xap)ij(Xga)ji
1
- gmsims;mexmz L (Xz2)ij (Xzz) ji(Xez)u(Xez)u

1 .
B imEimEjI[QZ]zla'liglzl(XEE)ij(XEE)jk’Y” (Xzz) kv (Xez)u

1 _
- *mEimEkI[QQ]gjlklzl(XEE)ij'YM(XEE)jk(XEE)kl’M(XEE)li

4
— <ol P (Xzz) " (Xez) i (Xezen” (s
+ imam_]zsﬁ [Py, (Xz2)3][P", (Xzz);]
—51[ 017" [P (Xz2)ijw [P, (Xzz)j4)
- T IR (Rl (a2 (4.14)

where x = 1/(47)2. The operators containing covariant derivatives can be removed by a
field-strength renormalization of the Higgs field to canonically normalize the kinetic term.
This field renormalization propagates into every Higgs coupling that has a non-vanishing
tree-level contribution and hence also into the quartic coupling.

Next, we compute the X 4p matrices as the second derivatives of the Lagrangian with
respect to the different kinds of fields. We start with

Xy Xyooyor Xyeg
X = | Xxxy Xox+ Xye (4.15)
Xox Xox+ Xoo

and define
. T T
Y= (ﬂLi URi dri dri €ri €Rri VLi H+> , 0= (A H) ; (4.16)

where ¢ = 1,2, 3 denotes the generation index. The non-vanishing derivatives with respect
to two heavy scalar fields read

1 1 2
Xay gy = Xauaz]. = gczb’hz%‘ <9§ - 59%) + 53i53j%h2, (4.17)
1 g2
Xﬁ}%ﬂ}zj = XﬁRiﬁ}‘? 1062511 (52]91 + (53,(53J 9 h , (4,18)
Lo o 1
Xd* 1 Xdle* = —§C2ﬁh 5ij (92 + 591) ) (4,19)
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1
X(i* 7 X f62/3h25ijg%, (420)

widr; CzRiCZ}}j - 20
L 2 5 3o
Xeyer; = Xepiey, = ge26h70ij (92 — £ ) (4.21)
1
Xepeny = Xepiey, = —502/3]125@9%’ (4.22)
1 3
Xf’Zif’Lj = Xf’LiDzj = §025h26ij <g§ + 59%) ) (4.23)
Lo 5y 2 3 99
Xpgrg-=Xg-pg+ = §h (1+s35)95 — =91¢28 (4.24)
Lo (39 o),2
Xaa=—qgc |91+ 92 ) 1% (4.25)
Lo 3o 2\,
Xnn = E@S?ﬁ -1 5911 92 h7, (4.26)
1
Xy iy = Xapiay, = 5532‘533‘97&)@:71- (4.27)

Given these derivatives we find that Xgg is block-diagonal with the blocks being

ar gy Xatap; 01x6

Xyow = | Xaza,; Xa,an; O1x6 | (4.28)
Osx1 Opx1  Xmem
XH*H - diag(XJ]tiCZLj ’ XJ*RiCZRj ’ XéziéLj ’ Xé;aiéRj ’ XDZiDLj ’ XH+H7 )’ (4'29)

Xagay, Xagsiy, O1x6

Xyyr = Xapsay, Xapiay, Oix6 | (4.30)
O6x1 Opx1 X+

X+ = diag(X; X; Xepiey ) Xepiey, Xopg,» Xu-p+), (4.31)

LiJZj7 RiJ*Rj7
Xoo = diag(Xaa, XunH), (4.32)

where 0y, denotes the m x n matrix of only zeros. We next calculate Xse and Xgg,
which contain derivatives with respect to one heavy and one light scalar field. We define
the light scalar field multiplets as

o= (GV), 0=(nc) . (4.33)

As discussed in section 2.1 the derivatives w.r.t. the fields are evaluated at the background
field configurations, and the heavy background fields are expressed in terms of the light
ones using a local operator expansion.® This corresponds to an expansion in [J/M? for a
heavy scalar field of mass M and hence it leads to contributions suppressed by at least
1/M?. Since we are not interested in these suppressed contributions here, we only consider
derivatives of the Lagrangian which exclusively contain light background fields and set all
other derivatives to zero. The non-vanishing derivatives are given by

3/(3
XHh, = XhH = g <5g% + g%) SQBCQBhQ, (434)

3 An explicit example is given in section 4.4 in the treatment of dimension 5 operators.
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1/3
Xago = Xgog = —g (5g% + g%) SQﬂCQﬁhZ, (4.35)
X =X 131 h? 4
HYG= = 4AH-Gt = —¢ 591 + g2 | S2pC2pN". (4.36)
We then find that Xg,4 is block-diagonal with the blocks being

07x1
X *o p— B 437
5 < XH—G+) (4.37)

07x1
Xyor = , 4.38
5 < XH"'G—) (4.38)

0 XAGO
Xop = . 4.39
LY < X 0 ) (4.39)
Similarly, X44 is block-diagonal with diagonal entries
Xory = (01><7 XG—H+) ) (4.40)
Xonx = (01><7 XGJrH*) ; (4.41)
X
Xpo = ( 0 Xnn ) . (4.42)
XGOA O

Finally, we need the derivatives with respect to two heavy fermions to construct the matrix
Xz=. We define

T T
0= (3 &) A= (%038 ) (4.43)
and the matrix Xgz= is again block-diagonal with the non-vanishing entries
_ _ 0 cgPr + sgPr
Xon =C1xT 1= 92 g pELY 4.44
Qa2 QQ Vﬂj Cﬁf&,%-Sﬁfﬁ{ 0 ( )
0 0 igy(cg — 58)7° —gv(cs + sp)
Clxg = |0 . i —ig2(cs —sp)7° galcs+sp) |
2V2 | igy(cs — sp)7° —iga(cs — sp)v 0 0
—gv(cg+s5)  g2(cs +s5) 0 0
(4.45)

where the relations of appendix C were used to simplify the expressions. Note, that in
the calculation of Xa, for a given Majorana fermion \ the two fields A and A are not
independent, but are related via A = M'C. Inserting all of the derivatives into (4.14),
summing over all indices and canonically normalizing the kinetic term for the SM-like
Higgs boson as

1 .
h= (1 - 252h> h, (4.46)
~ So ~ ~ ~ ~
6Zn = — 6 XPLI)Z + o (g3 Mus®TE] + g} MYTS) — 33 Mop T3 — 363 MBI )
+2(2+d) (~g3 Zla"[E2 + 303710132 ) (4.47)
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one finds the following effective Lagrangian

with
3
\ = 1 <5g% + g2> cgﬁ + kAN, (4.49)
A)\M _ A/\lﬁ,reg +A/\1€,¢ + A)\M’X, (4.50)
and

AN — gt | -3 X T — 6x7 (T3 + TidL) - 3 (Tha + 43 )|
3 ~
+ sooPeas { X7 2025 (397 +593) ZlqY12 + (97 — 593) Tiat — 4932181

+ (97 — 593) I3s — 4 ff}n%}
25 3
2
TE_ [ (91 +2593) I3}, + 2491T8 )5, + 691Z};

+ (991 +25g3) T11 + 189172 |

1 9 ~
+ 505685 (B — 1) (367 +58)° T8 — 9 (3eky — 3635 + 1) of (451)
+30 (3cks — Acks + 1) 9303 + 25 (3cky — 535 + 3) 08| ThL },
1 = ~
AN = - Z{ —d(2gy MPZ(¢*)T), + 292 MFT[4* 3] + gy T[4 ]3],

— gy 1P capZI1T + a1’ Lle’Tsn — ganeasZq’5
+ 49y g5 My Mo Z[qP)155, + 295 95 1°L(a% 5y, — 205 931 capZla’113,)
—d(2+ d) 20y Z[q" 132 + 2052145, + 49795 Z1q" 13,
— 95 [2d(2 + d)(3 + c4p)Z[q" T3, + 16¢s55(dMaZ[q*)5, (1 + Macgsp)
+ u{ M5 pcsZsns s + dI[q*)5,(Ma + pcpsp)})]
— ddp 29y MiZ[g°T3, + 205 MoZ(q’ 1, + 29595 Mi Z[q 13,
+ QQYQQMQI[ H%i)‘s%’
— 2% (9y MTE, + g5 Mo (g5 Mo T5,: + g5 Mi2T150+)) 535
—2g3(g% + 93)c3p( — A2+ A)I[q"]3, + Mop(pTy; + M3T3))s05)
— (9% + 93) 55 ( — 42+ D)y Z[¢")T, — 42 + d)g5Z1q"]5;, (4.52)

+ ,u,{g%MLu,QIN’ + gYM3I31 + gQMg( 27:’5’; + Mgfg’i)}szﬁ) }
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The subscripts 1 and 2 of the loop functions are shorthand for M; and Ms, respectively.
The terms involving d = 4 — € originate from contractions of gamma matrices and metric
tensors, see appendix D. Note, that A is expressed entirely in terms of the MSSM gauge
couplings, in contrast to [32].

It is sensible to regularize the MSSM using dimensional reduction (DRED) [33],
whereas the SM is more naturally regularized in dimensional regularization (DREG) [34—
38]. Such a regularization scheme change leads to further contributions to the threshold
correction denoted by AX™8 which can be obtained using the DRED-DREG regulariza-
tion scheme translating operators presented in [10]. This contribution originates from the
operator

1 oy
76£EFT € 5 tr{ngyXee,uu}, (453)
where on the r.h.s. € denotes all epsilon scalars that couple to the Higgs and
X1 = ghgy X5 (4.54)

is the projection of the 4-dimensional X" onto the e-dimensional QeS space [10, 39] with
" G, = €, see appendix D. In the MSSM we have the following couplings to epsilon scalars
to the SM-like doublet H,

3 3
Ly =M ( STATha™ a® + \[Sglggzrg;awb” + mg%bub”5ﬂ> H,, (4.55)
where the indices i,j,] are SU(2);, indices of the fundamental representation with the

generators ;7. The fields a®* and b* denote the epsilon scalars corresponding to SU(2)r
and U(1)y, respectively. One obtains the derivative

BT Tty /2100 TgH,

X = —g (4.56)
\/291927'[1 ToH, 2 9IHIH;
Inserting this into (4.53) we obtain
9 3 3
A Wreg . 7 4 4.
A 10091 109192 49 (4.57)

We do not find the term proportional to cgﬂ given in [32] since this term only arises once
the tree-level expression for A is expressed in terms of SM gauge couplings, as opposed to
MSSM parameters as in our case. Up to terms arising from this conversion the one-loop
threshold corrections agree with the results of [32].

4.3 Integrating out stops and the gluino from the MSSM

As a second nontrivial application we reproduce known threshold corrections from the
MSSM to the Standard Model Effective Field Theory (SMEFT) from heavy stops and
the gluino in the gaugeless limit (g1 = g2 = 0) in the unbroken phase and for vanishing
Yukawa couplings, except for the one of the top quark. In particular we reproduce the
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Wilson coefficient of the higher-dimensional RS operator calculated in [8, 40]. Furthermore,
this example application again represents a scenario, where a heavy Majorana fermion is
integrated out and the formalism introduced in section 2 must be carefully applied.

We consider the following part of the MSSM Lagrangian

+ 1<~a>Tc<z'fz7 — mg)g"

Lavssm D \6EL|2 — m%|£L|2 + |6£R|2 — m%|fR’2 5

ytsﬁ yt ﬁ 2 2 56Xt , (moz

hit — h t + t h(titr + h.c.
— \/§g3 [fPRgaTaEL —tPLG T R + 15,(§*) ' T°CPLt — T5,(*) ' T*CPgt]
(4.58)

where we use the same notation as in section 4.2 and g3 is the strong gauge coupling. The
top quark is denoted as t and is defined as a Dirac fermion built from the upper component
of the left-handed quark-doublet g; and the right-handed top tg. The gluino is denoted
as §* and we have used the relation g% = ((§%)°)7C = (§*)7C to express (4.58) in terms of
the gluino Majorana spinor g°.

Upon integrating out the heavy stops and the gluino the Lagrangian of the effective
theory becomes

LSMEFT D — \[ OB pit 4 L& ErT- (4.59)

In our limit the one-loop term Eéﬁ/IEFT receives contributions from the following generic
operators from (2.70)

1-
gzlli}fl (Xod)ik(Xoao )k (Xod )i

~ T (Xow) ik (Xoo )k (Xoo ) in(Xow )ni

1
EﬁllaepT D *Il(Xq@)u + I ' (Xoa)ik(Xoa) i +

mleklﬁllpl (Xoa)ik(Xoo )kl (Xod ) in(Xod ) np(Xod)pi

1 -
+ —Limpr (Xoo)it(Xoo) it (Xeoo)in (Xoo )np(Xoo)pr(Xoo )ri

Smz, L (Xez) i (Xza)u(Xow )i (4.60)

We furthermore set P, = i0, to omit contributions from gauge bosons. In our scenario
we identify ¥ = (#1,r) as the vector of (complex) heavy stops and A = §* as the heavy
gluino. From (4.58) we then obtain the following non-vanishing derivatives

1
(X7, )is = (Xgp )ig = (X )ig = (X )ig = i(ytsﬁh)25ijy (4.61)
1
(Xt = Ky )i = Ky )is = Xiggy Jis = 500950 Xedis, (4.62)
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(Xi,50)a = (Xgo, )ia = —V293(L; Pr)a T, (4.63)

gtr,
(X750)0 = (Xger, ) = V203(8; PL)o TS, (4.64)
(Xgos )i = (Xp; ga)ia = V203155 (CPLE s (4.65)
(Xgoz Vo = (Xz ga)io = —V295T5(CPR; ) (4.66)
where 4,7 = 1,2,3 and @ = 1,...,8 are color indices and o« = 1,...,4 is a 4-component

spinor index. Note the flipped sign in egs. (4.63)—(4.64) due to one anti-commutation of the
spinor ¢ with the derivative w.r.t. the spinor g%. The bold derivative matrices thus become

(X g )is Kgp)is O 0
Xap — [ X5 Xem ) _ (Xpe)ig (Xp)is 0 0 (4.67)
Xyy Xyy- 0 0 (X )i (X )i
0 0 (Xipis )is (Xgpin )i
1 2 1
s(yrsgh)® —=yrsgh Xy
= 0ij Lax2 ® ?( ’ V2 o 5 | (4.68)
ﬁytSBhXt §(yt56h)
(Xf*g )ia TE(CPLtj)a
X —T4(CPgt;)a
Xoz = 4] = S V2g3 lz(c ¢ ])a ; (4.69)
XEA (XtLg )’(Ll _gtjPR)aj}i
(Xipg0)5 (t;jPL)aTy;
Xzg = (c 1 Xps, C™ XA2*> (4.70)
= (C agp (( goi)ip (Xgaip)ipy (Xgap )iss (Xgaf;%)?ﬁ) (4.71)

= V205(C ) (%@PR)BTW (5PL)sTS, T4(CPuty)s, —T4(CPat)s)  (472)

= V295 (~(5PR(C )T )aTy (GPLCHT)aTh T4(Put)as —T5(Prt;)a)
(4.73)

By inserting the X 45 operators into (4.60) and summing over all fields and colors we obtain

Lt = cihtt + cptidPpt + crtid Prt + cy(0h)? + coh® + cah® + ¢6hS + -+, (4.74)
where

c = —4\35/{93%357719)(,5191;}“ (4.75)

cr = < ng T, (4.76)

cr = cLlg—a, (4.77)

chy = —3r(pss)’ X7 L[¢*] 2, (4.78)

cy = gﬁ(yt85)2 fql —|—fl~1t + Xffl%flé , (4.79)
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3 . . . . .
c1 = Sr(yrsg)t [Igg + 7 4 ox (UL 4 711y szlm} : (4.80)

) U qqu qut qquu
1 - - - - -

c6 = gﬁ;(ytsﬁ)ﬁ [Z3aq + Zans + 3X7 (Thaaa + Lagus + Laiss) s
XTI+ THIL) + XPTHALL)

To canonically normalize the kinetic terms of LgygrT We re-define the Higgs and the top
quark field as

1 .

h= <1 - 252h> h, (4.82)
1 .

tp = <1 - 252L> ir, (4.83)
1 .

tp = (1 - 25ZR> iR, (4.84)

where the field renormalizations dZ,,1,/r are given by

875, = 2ch, (4.85)
(5ZL =CL, (486)
6Zr = cg. (4.87)

If we parameterize the SMEFT Lagrangian as

2 ~
9 172 MTay  Asy Coig
L D —==htt+ —h"— —h* — —h°, 4.88
SMEFT 2 + 5 3 3 (4.88)
then the SMEFT parameters g;, A and m? are given by
1 V2¢
gt = s |l — 5(cL +cr) —ch— L, (4.89)
YtSp
m? = 2¢y, (4.90)
A = —8cq, (4.91)
Ce = —8¢s, (4.92)

which agrees with the results calculated in [8, 32, 40, 41].4

4.4 Integrating out the gluino from the MSSM with light stops

In this section we calculate some of the terms that arise when integrating out the gluino
from the MSSM. This EFT scenario is relevant when there is a large hierarchy between the
gluino mass and the stop masses in the MSSM. This example is also a direct application
of most of the operators calculated in section 2.2, in particular operators where Majorana
and Dirac fermions appear in loops at the same time.

Tt was noted in [40] that the logarithmic term in the last line of eq. (D.4) in [8] should come with a
minus sign.
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We consider the following part of the MSSM Lagrangian

£MSSM D ’85[,‘2 - m§|t~L\2 + |8LZR’2 - m%’LZR’Q + 5(§Q)TC(7,(? - mg)ga

—V2g5 (IPrg* Tt — tPLG"T R + 5 (§°) ' TCPpt — T5(§") " T*CPgt)
+ (ot + ) @t iniz) - Dalial (4.93)

where we use the same notation as in section 4.4 with ¢ being the top quark, defined as
a Dirac fermion, and §® = (§%)¢ denotes the gluino, which is a Majorana fermion. The
complex scalar fields 7, and tg represent the stops. In the following we determine the
one-loop Wilson coefficients of the following operators in the EFT:

Lhpr D e tLidts + ciptridtn + ¢z, 0,870 — SmiltL]® + c7, 0utR0" R — omy |tR|?
+ (EzifL,-)Q +ch (fzizw) (f;jfu) + & (Fir)?
+ el (Fritei) (Frjtry) + cliat (F1itey) (Frjtri) + caGo,GR
+ (b (BTt (Tt n) + ch (thE(;t%J)(thTkltLl) + (L < R)]
+ [ei (triT5te) T Titr) + ety (Eriths) (ELjtrs) + (L < R)] + gy (3ti)°
+ C6z(th‘tLi)(tthLk:)(thtLj) + CGS(tLitLj)(tthLk)(fzkgLi) + i (Tritri)®
+ (e (Tt a)* (Fritre) + b (Eratra) (B jELk) (Frutry) + b (Eritry ) (05 i 1i) (Crit i)
+ g4 (thtLj)(tthLk)(tRktRl>+Cﬁl (tthRz) (Tritre) +cby (tTritri) (Critre) (FLatLs)]
+legy ™ (ELiv"tei) (ELjvutey) + cey " (Frivtiy) (Frjvutri) + (L < R)]
el (s ) Ertas) + el (6500 e (Frivt)
|kt (5t ) (EstGy) + el (1Gtrs) (Fuits) + (L < R)|

n éLR)(R )(tthL]) (Fritr:) +c(LR)( )(ijtLi) (TLjtri) - (4.94)

These operators represent all derived one-loop stop interactions in the gaugeless limit and
in the unbroken phase, without contributions from higher-dimensional operators with co-
variant derivatives. Terms which involve SUSY particles beyond the stop are omitted for
brevity. In (4.94) the color indices 7,5,k = 1,2,3 and a = 1,...,8 are written out ex-
plicitly. Note that in general £1% contains SU(2);, and SU(3)¢ invariant terms of the
form (qziqLZ)(qzquJ) and (qTLiqLJ)(qzj(jLi), where the SU(2), indices are contracted within
parentheses, but the color indices are contracted differently among the terms. In (4.94),
however, the corresponding terms with the couplings cfl and c£2 have the same structure,
because we have omitted the sbottom quark.

The dimension 5 operators have contributions already at tree-level, which stem from
the insertion of the gluino background field g into the Lagrangian of the MSSM. The
necessary part of the gluino background field can be extracted from the equation of motion

[C(Za - Mg)]aﬁ(écl)% = \/593 (—ELQTQEL + ERQTGER + sza(CtL)a — L:ETCL(CtR)a) , (4.95)
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which yields
(Ge)§ = V205(id — mg) 52 [—(ELC)aT TL + (ERC)aT TR + 15 Tt 1o — TRT tRa]  (4.96)
\[93

mg
where the ellipsis designate higher order terms of O(0/mg) with at least one derivative.
Inserting (4.97) into both the kinetic term of the gluino and the interaction Lagrangian
one finds the tree-level values of c£? (A, B € {L, R}) to be

[(tLC)gT tr — (tRC)ﬁT tph — tLTatLg + tRTatRﬁ + - ] (4.97)

2
LLtree _ LLtree _ RRtree _ RRtree _ Y3
€51 = C52 =51 = Cx52 =" (4.98)
mg
LR tree RL tree 29?2,
51 =c5 =", (4.99)
mg
LR, tree RL,tree __
Csy = Cay = 0. (4.100)

At one-loop the relevant contributions from the UOLEA are

~chfer = oo { (= T35+ SETR )l (Xee P (Xe2)]

2
+ (= 2l + TP )P, (Xt 1P (e

+ (~Za*)5 — 2m3 Z[4*)50) (Ko=) i7" [Py (X2)i]

T TR (X )i (Xao)s (Xom) 1 (Xz):

4
1 712
= 5M5750(Xe)ij(Xgz);(Xzo)i
1 ~ 1-
+ 1m5T50(Xe2)i(Xzo)(Xoz);(Xzo)i — 52101507 (Xze)ivu(Xez):
1 T a a
- EWEI[QQ]?J%(XEOH“ (Xez)? (Xze)5vu(Xez)]
1- a v a.o
- ZI[q4]g27%guVPU(XE§)i7M (Xez)i" (Xze) i7" (Xez) 4y
1 T a v c c. .o a
- ngz[q4]2%9uVPo(XE§)iWM(Xéa)?(XE )?’Y (XEE)]"YP(XE )i (Xez)i
1- 6133 a, i b v b.p C.0 Cc K a A
— 201509 ponr (Xze)in" (Xez)in” (Xzg) i7" (Xez) 77 (Xze)in™ (Xez)iy
1~
+ ézg[P,“ P,][P*, P”}}, (4.101)

where g,,,... is the combination of metric tensors which is totally symmetric in all indices,
see appendix B. The derivatives with respect to the stops and the gluino have already been
calculated in section 4.3 and are given by

(X go )i T3 (CPLEj)a
XoeA (X @)ia —T5(CPrtj)a
Xyz = = =/2¢3 2 ol I (4.102)
’ (X) (X )e ~GPR)aT;
(X5,50)% (tjPr)aTy;

~ 98 —



Xz = (cflxm, cflea*) (4.103)
= (€ Mas ((X i (Xgor)ir (Xgar: Vi (Xgazs ) B) (4.104)
:\@gg,( (;PRC)aTS, (1;PLC)aTS, TE(Prt;)a, T;;(PRtj)a), (4.105)

the difference being that the stops are now considered to be light fields. For the purpose of
this application we also need the derivatives with respect to a top and a gluino, which read

(X a)laﬁ - \/>g3 ‘a' [(PR)a,Bij - (PL>a5£Rj] ) (4106)
(Xige)ing = —V2g3T5% [—15,(CPL) ga + Th;(CPR)ga) , (4.107)
(Xget)iag = V29575 [(PR)ﬂaELj — (PL)patrj] (4.108)
(Xgor)fng = V20315 [—11,;(CPL)ag + tRj(CPR)ag) » (4.109)
and are collected into
Xz = (€7 Xaw, €' XpsC ) (4.110)

= (€ Xge0)up (€7 XuaCNEs) (4.111)
= (—ﬁggTﬁ [t*Lj(PL)ozﬁ - t}‘gj(PR)ag} , —V293T% [(Pr)agtr; — (Pr) aﬁtRa]) )
(4.112)
X = [ Xen ) _ (th Jiap | _ —V203T [(PR)agtry — (Pr)astr;]
¢= C1X,a (c~ th )mg \[93 i [tzj<PL>aﬁ - t}ﬂ%j(PR)aﬁ} .
(4.113)
Finally we give the derivatives with respect to two stops
Yo 02x2
Xpp = , 4.114
0 (02><2 (Ygg)" ()
Tx T 92 T* 7 ey g
it tr — Glril]; @it it — tLtL(SU

where we have introduced the abbreviation z; = y? — g§ /2. Substituting these derivatives
into (4.101) and summing over all indices one finds

16 ,

e, = =93 (Z1a?I53 +2m2ZI133) (4.116)
16 . /-~
cin = 5 9% (TIP3 + 2m3 2?33 (4.117)
2
S 2(d+2) | —T[q 25 + =274 % (4.118)
tL_tR_ggB q 150 q 150 | > .
LiL, _ R'R 7
Cor | =Cq | = 6 §I[ ]gO? (4.119)
LML RMR 1
Cop = = Cor | = nggz[QQ]?}%a (4.120)
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EP D = DT,
el = 3g§1[q2]§%,
i = o = 2 ghm3TIP1Z,
ok = i = g2 I,
gy = ggémzi[qﬂ%;%,
o = oim2 T3,

S = b = <L AgRTIP ),

ch =~ M3 — sd(d + 20Tl %,
of = — AT — d(d + eI,

chy = S22 — Sd(d + 26Tl

Kt = 2TV — 2 dd + DT,
it = 2T + Sd(d + s 11412,

chy = oyl + 2g8m2 T % + o d(d + 6d + 8)g8T1g°1%%,
Chy = —%d(d + 2)9§m21[q ]go - §d(d2 +6d + 8)g5Z[¢° ]go
chy = yald + Dgm2 Tl 5 — S + 6d + )68 TIa"%,
= —%du +2)gfm2Tig B — ol + 6d + 8)3TIa L
o1 = §d<d +2)g5miZla" 150 + fd<d2 +6d + 8)g5 (g0,
chft =~ d(d+ 2) g2 Tig B — -l + 64+ 8)g8 T,
' = — L d(d+ 2)g§m2 Tl — ol + 6+ 8)g8T1a"TEh
cor = §d<d2 + 6d + 8)9571¢° )50,
ol = — gald + 2gm2 Tl — a(d + 6+ 8)g§Ta %,
ol = Sl + 2)gm? T + cdld? + 6+ 8)g3TIa"1%,

LR1¢ _ RL1L 93 a1

€51 =61 = _gmg 50>
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(4.121)
(4.122)
(4.123)
(4.124)
(4.125)
(4.126)
(4.127)
(4.128)
(4.129)
(4.130)
(4.131)
(4.132)
(4.133)
(4.134)
(4.135)
(4.136)
(4.137)
(4.138)
(4.139)
(4.140)
(4.141)

(4.142)

(4.143)



8 4
cEIt = R — g gsrmg L. (4.144)

cq = —%ig. (4.145)

In the calculation of these corrections the relations g"”g,, = d = 4—¢ and (C.12) were used
repeatedly. The one-loop corrections 6mg~ and 5m% to the third generation squark mass
parameters have already been calculated in [42] and our results agree with the expressions
found there.

Since supersymmetry is only softly broken in the MSSM it is convenient to use DRED
as a regulator. Once the gluino is integrated out from the theory, supersymmetry is ex-
plicitly broken and it is natural to regularize the EFT in DREG. This switch in the
regularization scheme introduces further contributions to the couplings of the EFT coming
from the epsilon scalars. In the formalism of the UOLEA the relevant operators which
contribute here are given by [10]

. 1 o Y
7£3§g = Z(mz)Z(Xyeu>ZZ + 9 Z(Xeeu) (Xeeu)
+ ZQCFJ' {2mwj(5f“ )ii (Xge)si + (Xh)i” [Pm ()Vﬁzw)ji]}
(4.146)

- Z 2% e )1]7 (wa)jk'YV(X@be,u)
ijk

€ v
+ E tr [G;LVG,M ] s

The X operators are projections of the corresponding 4-dimensional ones X onto the e
dimensional Q¢S space, i.e.

XH=ghxe, (4.147)
XM = ghgh XP, (4.148)

see appendix D. Furthermore, G’W = —igsG}, T" is the gluon field strength tensor. For
the top quark (a Dirac fermion) we have ¢y = 0, and for the gluino (a Majorana fermion)
cp = 1. From (4.146) we obtain the following additional contributions to the couplings of
the EFT

(6m3)e = (om3) = —%g%m?, (4.149)
(ctr)e = (Cip)e = %g;?, (4.150)
(chh)e = 71293, (4.151)
(cho)e = 27493’ (4.152)
(ef)e = %gé (4.153)

(cif)e = %gé‘, (4.154)
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7oy

(ci3')e = 1593, (4.155)
4
(cB). = (cHE)e = (cBR), = (cf2F), = 2%, (4.156)
2m§
LR RL 395
(c51%)e = (e527)e = ——=d, (4.157)
mg
g2
(ca)e = =7 (4.158)

The term o m? on the r.h.s. of (4.149) can be removed by switching from the DR to
the DR scheme [43], which involves shifting mg and m% by finite terms. Notice also that
the one-loop DRED-DREG conversion corrections to the coefficients of the dimension 5
operators arise from the third line of (4.146), which among other terms contains the term

(I (X (K ) (4.159)
Here (X 5eu) has an explicit dependence on the gluino spinor g,
5 193 . _
(Xée,u)ba - 7,yufabcgc’ (4160)

which must be eliminated by inserting the background field from (4.97). As noted above
the threshold corrections for the two stop masses agree with the results derived in [42]
when the effect of the sbottom quarks is neglected.

5 Conclusions

In this paper we have presented an extension of the Universal One-Loop Effective Action
(UOLEA) by all one-loop operators up to dimension 6 for generic theories with scalar
and fermionic fields, excluding operators stemming from open covariant derivatives in the
UV Lagrangian. Our generic results can be used to derive the analytic expressions of all
one-loop Wilson coefficients up to dimension 6 of an effective Lagrangian from a given UV
theory with heavy scalar or fermionic particles, as long as second derivatives of the UV
Lagrangian w.r.t. the fields do not contain covariant derivatives. Thus, our new results
allow for an application of the UOLEA to a broader class of UV models than before.

To illustrate and test our generic results we have applied the UOLEA to different
EFTs of the SM and the MSSM, where parts of the spectrum are heavy. We were able
to reproduce known results from the literature, including the prediction of some one-loop
Wilson coefficients of higher-dimensional operators of the SMEFT.

We have published our results in form of the two Mathematica files UOLEA.m and
LoopFunctions.m provided in the arXiv submission, which allow for a direct use of our
expressions and a potential implementation into generic tools such as CoDEx or spectrum
generator generators such as SARAH and FlexibleSUSY.
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A Fermionic shifts

In this section we discuss the consistency of the shift (2.33). The treatment of the shift given
in (2.40) is analogous but somewhat more involved. Since ¢ is a multiplet of Majorana-like

component spinors, for the shift
66’ = 3¢ + A7 [Xez0Z — Xead® — Xey9| (A1)
to be consistent it is necessary and sufficient that
~ ~ ~ T ~ ~ ~
(As" [Xez0= — Xead® — Xeod6] ) = [027Kze + 607 X + 66" Xe| AL (A2)

In the following we show that (A.2) holds. We first construct Agl in position space through

its Neumann series®

o0

Ag_l(wvy) - Z

n=0

/dd{L'Z' S(a:i_l,xi) (—ng(l‘i)) S(a:n,y)]lcfl

=T

Sﬂ?i—l%‘ (_Xféxi) anyﬂc_ly (A3)

=

0o
n=0

SIEN
\Vall
o

where xg = z and S(z, y) is the matrix-valued Green’s function for (J— M), which itself can
be expressed through a Neumann series. To keep expressions short we also introduced the
convention of denoting space-time points by indices, where repeated indices are integrated
over. We may write (P — M) = (id — Mg — A) with

A=iY g AiTY, (A.4)
J
where we sum over all factors of the gauge group for a direct product group and T is a

block-diagonal matrix which generates the reducible representation of £&. Due to the fact
that ¢ contains w, w® and A (see table 1), the generator is of the form

T4, 0 0
= 0 Tg, 0 | (A.5)

0 0 Tgy

5In what follows we always write the whole series. In practice, however, we are only ever interested in a
finite number of terms with all higher order terms being suppressed by higher powers of couplings.

— 33 —



where R(w) is the representation under which w transforms, R(w) its conjugate represen-
tation and R(\) is the representation of A\, which is necessarily real. We then have

00 k
Say = Z H Stai-rwiBai | Stany, (A.6)
0 \iS

where again x9 = x and Sy, is the matrix containing the Green’s function of the free
Dirac equation on its diagonal. It can be verified by explicit calculation that

<_
Suy (—idy — Me = Ay ) = by, (A7)
which means that
1
AaiyAé,y = Oy (A.8)
and therefore Zgzlw = Ag;x Hence (A.2) reads
~ ~ ~ T ~ ~ ~
(A;;y [X@E — Xepd® — X5¢5¢] y) - [(5ETX55 + 00T Xge + 5¢TX¢5] A
(A.9)
It is then useful to calculate
00 1
QT ~ T T T
cisl, =cid> st ., [ [IALST.. ... (A.10)
k=0 i=k
k>0
00 1
=C1) CSfya,C ' | [] ALCSfaia . CT" (A.11)
k=0 i=k
k>0
00 1
==Y 1Ssy, 1 | [J(-AL)11Ss 00, 11 | C7F (A.12)
k=0 i=k
k>0
00 1
== Siye | [[(-1ALD)Ss 0, , | 1T (A.13)
k=0 i=k
k>0
00 1
== Z Sy, H A Stz ic! (A.14)
k=0 i=k
k>0
= -S,.1c, (A.15)

where A’ means taking the transpose of the gauge group generators only and we used that

A0 0 B 0 0
1o B olJi=]|0 4 0. (A.16)
00 C 00 C
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We then find

T oo n
—1 5 T T QT
(Awy) =ci) sl | I (—XKeew)" ST (A.17)
n=0 Z:>%)
n=0 ’L:>%)
= Sye, 1C | [ (-Xeen,)" 17 Mes], |, dc7'iC (A.19)
n=0 Z=>%)
= Sye, 1C | [] (-Xeew,)" 1€ 'Sp 0, 1C (A.20)
n=0 Z=>%)
- Z Syx” H ngvxz TiTq—1 ﬂc_l (A21)
=-A, (A.22)
where we used that
CIXICT" = X (A.23)
Noting that
Xz = —Xz, (A.24)
Xio = Xog, (A.25)
Xy = Xoe, (A.26)
the validity of (A.2) follows immediately.
B Loop functions
The integrals 7 [QQ”C]ZZ'_%“%L are defined as in [18], that is
d’g R R s i — onminy.n
= H1p2---Hone T 2ne)ilty - NL B.1
| o i = e s (B

where gHi#2--H2ne ig the completely symmetric combination of metric tensors with 2n.
indices, for instance gt?? = g*” gP? 4 g ¢g*? + g ¢*P. For n. = 0 we define the shorthand
notation I[ ]nm% = Inm] "L The integrals can be reduced to basis integrals using
the reduction relations [18]

~ — 1 ~ i— = ni—1n;

I[ an],?:;n% nrL — AT (Z[anc]nlnj 1...7’LL _I[qQH(,]le 177,]...71[,) , (B2)
ij

i[ an]ZmJOnL _ ML (i[ 2nec ]nmj...nL—l —i[QQ”C]"i—ln]u-.nL) ’ (B.3)
K3
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where A?j = MZ»2 -M ]2 For convenience we have included the reduction algorithm and the
basis integrals in the Mathematica file LoopFunctions.m of the arXiv submission with the
correspondence

g™ 15" = Jlne, {{Mi, i} {Mj, 3}, .} ] (B.4)

C Useful relations for spinors and SU(IN) groups
We define the charge conjugate ¢ of a 4-spinor ¢ as
v =cyl, v =v'c, (C.1)

where C is the charge conjugation operator and 1) = 149, It follows from this definition
that

(r)" =Cor, (r)C =C¥r' . (C.2)

The following properties of C hold in the Dirac and Weyl representation:

C =iy, (C.3)
C=-C'=—Cl=-C", (C.4)
Cret = —(v7, (C.5)
Cy’ct = (") =4, (C.6)
CYP e = ()T = ()T, (C.7)
crct = (Pt = PL, (C.8)
CPrC™" = (Pp)" = (C.9)

In our formalism we require that if a model contains Dirac spinors 1, then the Lagrangian
is expressed in terms of ¢ and . If the model contains Majorana spinors \, we require
that the Lagrangian is expressed only in terms of )\, but not in terms of A\. Note that \
can always be rewritten as

A=0\9Te=\T¢c (C.10)

because for Majorana fermions A = X\. When contracting spinor indices the following
identity may be used

PITTYT = —yIop. (C.11)

A useful relation for the generators T of the fundamental representation of SU(N) is

1 1
T5Ta = 5 ((5il5jk - N5ij5kz> : (C.12)
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D Dimensional regularization and dimensional reduction

Throughout this publication we have assumed that the models are regularized in dimen-
sional regularization (DREG) [37], where loop calculations are performed in a quasi-d-
dimensional space Qd.S with the metric tensor g"” with the property

9" g =d=4—¢€ (D.1)

Although DREG is suited for non-supersymmetric models, it is cumbersome to use in
supersymmetric models, as it explicitly breaks supersymmetry [44]. For supersymmetric
models regularization by dimensional reduction (DRED) [33] is more suited, because it
is currently known to not break supersymmetry up to the three-loop level [39, 45, 46].
In DRED the quasi-4-dimensional space, denoted as @45, is decomposed into a quasi-d-
dimensional space QdS and a quasi-e-dimensional space QeS, as Q4S = QdS @ QeS [39].
The corresponding 4- and e-dimensional metrics are denoted as ¢g*” and g"”, respectively,
and the following properties hold:

g =g" +g", (D.2)
959" = 9", (D-3)
96597 = 9", (D.4)

" g =4, (D.5)
9" g = d, (D.6)
" G = €, (D.7)
" g =0, (D.8)
tr(yH ) = 4d. (D.9)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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