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1 Introduction

With the discovery of the Higgs boson at the Large Hadron Collider (LHC) [1, 2], the

Standard Model of Particle Physics (SM) is formally complete. While existing deviations

between some SM predictions and experiment, such as for the anomalous magnetic moment

of the muon (see for example [3, 4]), are not conclusive, the SM is not a complete description

of nature as it neither accounts for astrophysical phenomena such as dark matter, nor does

it incorporate gravity.

Searches for physics beyond the SM have not been successful thus far. Exclusion

limits for new particles introduced by SM extensions often exceed the TeV scale. These

results suggest that new physics either interacts weakly with the SM, or that the masses
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of new particles are significantly above the electroweak scale. A well-known example is the

Minimal Supersymmetric Standard Model (MSSM) [5], which requires at least TeV-scale

stops in order to correctly predict the mass of the SM-like Higgs boson of about 125 GeV,

see for example [6, 7]. The construction and phenomenological analysis of new physics

models with heavy particles is therefore a suitable path to develop viable theories beyond

the SM that are consistent with experimental results.

The observables predicted in models with large mass hierarchies, however, usually suffer

from large logarithmic quantum corrections, which should be resummed in order to obtain

precise predictions. Effective Field Theories (EFTs) are a well-suited tool to resum these

large logarithmic corrections. Conventional matching procedures using Feynman diagrams,

however, are often cumbersome, in particular if the new physics model contains many new

heavy particles and/or complicated interactions. The Universal One-Loop Effective Action

(UOLEA) [8–10], which has been developed using functional methods [11–18], is a very

promising tool to overcome these difficulties. It represents a generic one-loop expression

for the Wilson coefficients of an effective Lagrangian for a given ultra-violet (UV) model

with a large mass hierarchy. Compared to the conventional matching using Feynman

diagrams, the calculation of the Wilson coefficients with the UOLEA is straightforward,

as it is expressed directly in terms of derivatives of the UV Lagrangian w.r.t. the fields

and simple rational functions. In particular, no loop integration is necessary and spurious

infrared (IR) divergences are absent by construction. To date, however, the UOLEA is not

completely known: only contributions from scalar particles [8, 9] as well as conversion terms

between dimensional regularization and dimensional reduction [10] have been calculated at

the generic one-loop level up to dimension 6. Whereas some contributions from fermion

loops can be calculated using these results by squaring the fermionic trace, this treatment

is incomplete when the couplings depend on gamma matrices. Furthermore, contributions

from loops containing both scalars and fermions as well as terms with open covariant

derivatives are unknown.

In this publication we present all one-loop operators of the UOLEA up to dimension

6 that involve both scalars and fermions in a generic form, excluding contributions from

open covariant derivatives. Thus, our results go beyond the scope of [8, 9] and allow for

an application of the UOLEA to a broader set of new physics models. We publish our

generic expressions in a Mathematica file UOLEA.m of the arXiv submission. Due to their

generic structure, the expressions are well suited to be implemented into generic spectrum

generators such as SARAH [19–22] or FlexibleSUSY [23, 24] or EFT codes in the spirit of

CoDEx [25, 26].

This paper is structured as follows: in section 2 we present the calculation of the

UOLEA involving both scalars and fermions. We discuss the results in section 3 and apply

our generic expressions to various EFTs of the SM and the MSSM in section 4. Our

conclusions are presented in section 5, and the appendices collect further formulae and

calculational details.
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2 Calculation of the scalar and fermionic UOLEA

2.1 Functional matching in a scalar theory

In this section we briefly review the most important steps in the functional matching ap-

proach at one-loop level in a scalar theory and fix the notation for the subsequent sections.

Most of what is being discussed here is well-documented in the literature and more details

can be found in [14, 15, 17, 18]. We consider a generic UV theory that contains heavy real

scalar fields, collectively denoted by Φ, with masses of the order M and light real scalar

fields, denoted by φ, with masses of the order m. We assume that m/M � 1 such that an

EFT expansion in the mass ratio m/M is valid. To perform the functional matching the

background field method is used to calculate the generator of 1-light-particle-irreducible

(1LPI) Green’s functions in the UV-theory, ΓL,UV[φcl], and the generator of 1-particle-

irreducible (1PI) Green’s functions in the EFT, ΓEFT[φcl], where φcl are light background

fields which obey the classical equation of motion. For the determination of these gen-

erating functionals beyond tree-level a regularization scheme must be specified, which is

chosen to be dimensional regularization.1 This introduces a dependence on the unphysical

renormalization scale µ in both generating functionals, and the matching condition becomes

ΓL,UV[φcl] = ΓEFT[φcl], (2.1)

which is imposed at the matching scale µ, order by order in perturbation theory. In

principle the matching scale can be chosen arbitrarily, however, in order to avoid large

logarithms the choice µ = M is preferred. To calculate ΓL,UV[φcl] one starts from the

generating functional of Green’s functions

ZUV[JΦ, Jφ] =

∫
DΦDφ exp

{
i

∫
ddx

[
LUV[Φ, φ] + JΦ(x)Φ(x) + Jφ(x)φ(x)

]}
(2.2)

with sources JΦ and Jφ and splits both the heavy and the light fields into background parts

Φcl and φcl, respectively, and fluctuations δΦ and δφ, respectively, as

Φ = Φcl + δΦ, (2.3)

φ = φcl + δφ. (2.4)

The background fields are defined to satisfy the classical equations of motion,

δLUV

δΦ
[Φcl, φcl] + JΦ = 0,

δLUV

δφ
[Φcl, φcl] + Jφ = 0. (2.5)

The generating functional of the 1LPI Green’s functions of the UV model, ΓL,UV[φcl], is

then given by

ΓL,UV[φcl] = −i logZUV[JΦ = 0, Jφ]−
∫

ddxJφ(x)φcl(x), (2.6)

1In principle the results obtained in this paper can also be applied to a setting where dimensional

reduction is used as a regularization scheme, see [10].
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where JΦ = 0 since we are only interested in Green’s functions with light external par-

ticles. Expanding the Lagrangian together with the source terms around the background

fields yields

LUV[Φ, φ] + JΦΦ + Jφφ = LUV[Φcl, φcl] + JΦΦcl + Jφφcl

− 1

2

(
δΦT δφT

)
Q

(
δΦ

δφ

)
+ · · · , (2.7)

where the matrix

Q ≡ −

 δ2LUV
δΦδΦ [Φcl, φcl]

δ2LUV
δΦδφ [Φcl, φcl]

δ2LUV
δφδΦ [Φcl, φcl]

δ2LUV
δφδφ [Φcl, φcl]

 (2.8)

is referred to as the fluctuation operator and the dots indicate higher order terms in the

expansion. Through the equations of motion with JΦ = 0 the heavy background fields can

be expressed in terms of the light ones such that Φcl = Φcl[φcl]. In general, Φcl[φcl] is a

non-local object and has to be expanded using a local operator expansion. The one-loop

part of ΓL,UV[φcl] is then found to be

Γ1`
L,UV[φcl] =

i

2
log detQ. (2.9)

The above can be re-written as [17]

Γ1`
L,UV[φcl] =

i

2
log det

(
Q11 −Q12Q−1

22 Q21

)
+
i

2
log detQ22. (2.10)

Using similar arguments for the Lagrangian of the EFT, LEFT[φ], which only depends on

the light fields, the generator of 1PI Green’s functions in the EFT can be calculated at

one-loop as

Γ1`
EFT[φcl] =

∫
ddxL1`

EFT[φcl] +
i

2
log det

(
−
δ2Ltree

EFT

δφδφ
[φcl]

)
, (2.11)

where L1`
EFT is the effective Lagrangian whose couplings are given by the one-loop heavy

or heavy/light field contributions. The second term contains one-loop contributions con-

structed from the tree-level part of the effective Lagrangian Ltree
EFT. The matching condi-

tion (2.1) then implies∫
ddxL1`

EFT[φ] =
i

2
log det

(
Q11 −Q12Q−1

22 Q21

)
+
i

2
log detQ22

− i

2
log det

(
−
δ2Ltree

EFT

δφδφ
[φcl]

)
. (2.12)

The functional determinants can be calculated using the relation log detA = Tr logA and

then calculating the trace. This includes a trace in the Hilbert space as constructed in [27].

It is convenient to calculate this trace in position space and insert the identity in terms of a

complete set of momentum eigenstates. The calculation then involves an integral over the
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four-momentum, and expansion by regions [28, 29] can be applied to the integrals [17, 18].

It can then be shown [18] that

L1`
EFT[φ] =

i

2

∫
ddq

(2π)d
tr log

(
Q11 −Q12Q−1

22 Q21

)∣∣P→P−q
hard

, (2.13)

where the final result is given by the hard part of the integrals, i.e. the part for which

the integrands can be expanded in the region |q2| ∼ M2 � m2 and where Pµ = iDµ

with Dµ being the gauge-covariant derivative. In (2.13) the trace over the Hilbert space

has already been performed and “tr” designates a trace over all indices. To derive the

currently known form of the purely scalar UOLEA [8, 9] from (2.13), one expands the

logarithm in a power series, which is evaluated up to terms giving rise to operators of

mass dimension 6 and calculates the corresponding coefficients arising from the momentum

integral. In order to keep gauge-invariance manifest in the resulting L1`
EFT a covariant

derivative expansion [11, 12] is used, where Pµ is kept as a whole and not split into a

partial derivative and gauge fields.

2.2 Fermionic contributions to the UOLEA

In this section we consider a more general theory which contains both scalar and fermionic

fields and calculate their contributions to the UOLEA.2 This extends the results provided

in [9] by including contributions to the matching from loops containing both scalars and

fermions as well as contributions from purely fermionic loops. The latter are partially

contained in the results of [9] since they can be computed by squaring the purely fermionic

trace. However, in this approach contributions are missed whenever the interaction terms

among fermions contain gamma matrices. These terms would be classified as terms with

open covariant derivatives in the language used in [9]. In our treatment no assumptions are

made about the spin structure of the fermionic interactions. In principle, the calculation

can be performed using the method of covariant diagrams introduced in [18], however, the

calculation is presented starting from first principles for the following reason. There is

some freedom in choosing the degrees of freedom to integrate over in the path integral.

For complex scalar fields, for example, these can be the real and imaginary parts of the

field. Alternatively one can choose the field and its conjugate as independent degrees of

freedom. For fermions similar choices can be made. The explicit form of the fluctuation

operator and the transformations necessary to bring the Gaussian path integral into a

form where it can be trivially performed depend on this choice. To reduce the number of

these transformations we use a formalism where Dirac and Majorana fermions are treated

together in one multiplet in the diagonalization step. Our formalism has the additional

advantage, that the resulting expressions are more compact compared to the case when

Dirac and Majorana fermions are treated separately. In the following we will present our

formalism in detail and introduce the notation of the final result.

As mentioned above, there is some freedom in the choice of degrees of freedom to

be integrated over. In order to treat real and complex scalar fields on the same footing

2As discussed in [18] and section 3.3, our final expression for the UOLEA can also be used in a more

general setting, including, for example, massive vector fields.
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Multiplet Components Description

Ξ
(
Ω,ΩC ,Λ

)T Ω, ΩC : heavy Dirac fermions

Λ: heavy Majorana fermions

Φ
(
Σ,Σ∗,Θ

)T Σ, Σ∗: heavy complex scalars

Θ: heavy real scalars

ξ
(
ω, ωC , λ

)T ω, ωC : light Dirac fermions

λ: light Majorana fermions

φ
(
σ, σ∗, θ

)T σ, σ∗: light complex scalars

θ: light real scalars

Table 1. Contents of the different multiplets appearing in the calculation.

one could split all complex fields into a real part and an imaginary part and perform

the calculation using these as the fundamental fields. However, for scalars it is often

desirable to maintain the complex fields as they might have some physical interpretation in

the effective theory. We therefore use the field and its complex conjugate as independent

degrees of freedom. Similarly, in order to treat Dirac and Majorana fermions simultaneously

without diagonalizing the fluctuation operator among these it is convenient to treat any

Dirac fermion and its charge conjugate as independent degrees of freedom. We collect all

light and heavy scalars into the multiplets φ and Φ, respectively, and all light and heavy

fermions into the multiplets ξ and Ξ, respectively, see table 1. The charge conjugate of

the Dirac spinor Ω is denoted as ΩC = CΩ̄T , with C being the charge conjugation matrix.

Similarly, we define for a light Dirac spinor ω, ωC = Cω̄T . With these definitions we may

write the second variation of the Lagrangian as follows

δ2L = δ2LS +
1

2
δΞT∆ΞδΞ−

1

2
δΞT X̃ΞΦδΦ +

1

2
δΦT X̃ΦΞδΞ−

1

2
δΞT X̃Ξφδφ

+
1

2
δφT X̃φΞδΞ +

1

2
δξT X̃ξΞδΞ +

1

2
δΞT X̃Ξξδξ +

1

2
δξT∆ξδξ

− 1

2
δξT X̃ξΦδΦ +

1

2
δΦT X̃Φξδξ −

1

2
δξT X̃ξφδφ+

1

2
δφT X̃φξδξ, (2.14)

where the pure scalar part is given by

δ2LS = −1

2
δΦT∆ΦδΦ−

1

2
δφT∆φδφ−

1

2
δΦT X̃Φφδφ−

1

2
δφT X̃φΦδΦ. (2.15)

In eqs. (2.14) and (2.15) we introduced the following abbreviations:

∆Ξ =

 XΩΩ C(/PΩC −MΩ + C−1XΩΩ̄C−1) XΩΛ

C(/PΩ −MΩ +XΩ̄Ω) CXΩ̄Ω̄C−1 CXΩ̄Λ

XΛΩ XΛΩ̄C−1 C(/PΛ −MΛ + C−1XΛΛ)

 ,

(2.16)

X̃ΞΦ =

 XΩΣ XΩΣ∗ XΩΘ

CXΩ̄Σ CXΩ̄Σ∗ CXΩ̄Θ

XΛΣ XΛΣ∗ XΛΘ

 , (2.17)
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X̃ΦΞ =

XΣΩ XΣΩ̄C−1 XΣΛ

XΣ∗Ω XΣ∗Ω̄C−1 XΣ∗Λ

XΘΩ XΘΩ̄C−1 XΘΛ

 , (2.18)

X̃Ξξ =

 XΩω XΩω̄C−1 XΩλ

CXΩ̄ω CXΩ̄ω̄C−1 CXΩ̄λ

XΛω XΛω̄C−1 XΛλ

 , (2.19)

∆Φ =

 XΣΣ −P 2
Σ∗ +M2

Σ +XΣΣ∗ XΣΘ

−P 2
Σ +M2

Σ +XΣ∗Σ XΣ∗Σ∗ XΣ∗Θ

XΘΣ XΘΣ∗ −P 2
Θ +M2

Θ +XΘΘ

 , (2.20)

with similar definitions for Φ → φ and Ξ→ ξ. Here Pµ ≡ iDµ, with Dµ being the gauge-

covariant derivative, is a matrix diagonal in field space for which the subscript indicates

which gauge group generators are to be used. Furthermore we have defined

(XAB)ij ≡ −
δ2LUV,int

δAiδBj
, (2.21)

where LUV,int is the interaction Lagrangian of the UV theory and A and B designate

arbitrary (scalar or fermionic) fields, if not stated otherwise. Here the indices i and j

collectively denote all of the indices carried by the fields A and B. It shall be noted that if

PµΩ contains generators T ar of a representation r, then Pµ
ΩC

contains the generators of the

conjugate representation r̄, denoted by T ar̄ . The same holds for the generators contained

in PµΣ and PµΣ∗ . Note also that (2.15) is in principle equivalent to the quadratic term

in (2.7) with the difference being that in (2.7) all scalar fields are assumed to be real, while

in (2.15) complex and real fields are separate. The different signs in the fermionic terms

in (2.14) result from using the anti-commutation relation between fermions and derivatives

w.r.t. fermions.

Before proceeding it is convenient to define

1̃ ≡

0 1 0

1 0 0

0 0 1

 , (2.22)

and rewrite (2.16) as

∆Ξ = C1̃(/P −MΞ) + X̃ΞΞ, (2.23)

where

/P −MΞ =

/PΩ −MΩ 0 0

0 /PΩC −MΩ 0

0 0 /PΛ −MΛ

 , (2.24)

X̃ΞΞ =

 Xωω XΩΩ̄C−1 XΩΛ

CXΩ̄Ω CXω̄ω̄C−1 CXΩ̄Λ

XΛΩ XΛΩ̄C−1 XΛΛ

 . (2.25)
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We rewrite (2.20) in a similar way as

∆Φ = 1̃(−P 2 +M2
Φ) + X̃ΦΦ, (2.26)

with

−P 2 +M2
Φ =

−P 2
Σ +M2

Σ 0 0

0 −P 2
Σ∗ +M2

Σ∗ 0

0 0 −P 2
Θ +M2

Θ

 , (2.27)

X̃ΦΦ =

XΣΣ XΣΣ∗ XΣΘ

XΣ∗Σ XΣ∗Σ∗ XΣ∗Θ

XΘΣ XΘΣ∗ XΘΘ

 . (2.28)

The calculation now proceeds by diagonalizing the quadratic variation in terms of statistics

in order to be able to perform the (Gaussian) path integral. We first eliminate terms

that mix scalar fluctuations and fluctuations of light fermions ξ by rewriting the second

variation as

δ2Lξ =
1

2
δξT X̃ξΞδΞ +

1

2
δΞT X̃Ξξδξ +

1

2
δξT∆ξδξ −

1

2
δξT X̃ξΦδΦ +

1

2
δΦT X̃Φξδξ

− 1

2
δξT X̃ξφδφ+

1

2
δφT X̃φξδξ (2.29)

=
1

2

(
δξT +

[
δΞT X̃Ξξ + δΦT X̃Φξ + δφT X̃φξ

]←−
∆−1
ξ

)
∆ξ

×
(
δξ + ∆−1

ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

])
− 1

2

[
δΞT X̃Ξξ + δΦT X̃Φξ + δφT X̃φξ

]
∆−1
ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

]
. (2.30)

In the last step we have introduced ∆−1
ξ , which is the matrix-valued Green’s function of

∆ξ. The occurring matrix multiplication also implies an integration, that is(
∆−1
ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

])
(x)

≡
∫

ddy ∆−1
ξ (x, y)

[
X̃ξΞ(y)δΞ(y)− X̃ξΦ(y)δΦ(y)− X̃ξφ(y)δφ(y)

]
. (2.31)

Similar to ∆−1
ξ we define

←−
∆−1
ξ in such a way that∫

ddy f(y)
←−
∆−1
ξ (y, x)

←−
∆ξ(x) = f(x), (2.32)

where
←−
∆ξ(x) = −

←−
/P −Mξ. Next, we shift the light fermion field as

δξ′ = δξ + ∆−1
ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

]
, (2.33)

δξ′T = δξT +
[
δΞT X̃Ξξ + δΦT X̃Φξ + δφT X̃φξ

]←−
∆−1
ξ , (2.34)

under which the path integral measure is invariant. Since ξ is a multiplet of Majorana-

like spinors, the two shifts (2.33) and (2.34) are not independent. The required relation
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between the two shifts is proven in appendix A. After the shifts have been performed we

arrive at

δ2Lξ =
1

2
δξ′T∆ξδξ

′ − 1

2
δΞT X̃Ξξ∆

−1
ξ X̃ξΞδΞ +

1

2
δΞT X̃Ξξ∆

−1
ξ X̃ξΦδΦ

+
1

2
δΞT X̃Ξξ∆

−1
ξ X̃ξφδφ+

1

2
δΦT X̃Φξ∆

−1
ξ X̃ξΞδΞ−

1

2
δΦT X̃Φξ∆

−1
ξ X̃ξΦδΦ

− 1

2
δΦT X̃Φξ∆

−1
ξ X̃ξφδφ+

1

2
δφT X̃φξ∆

−1
ξ X̃ξΞδΞ−

1

2
δφT X̃φξ∆

−1
ξ X̃ξΦδΦ

− 1

2
δφT X̃φξ∆

−1
ξ X̃ξφδφ. (2.35)

We proceed by eliminating terms that mix scalar fluctuations and fluctuations of heavy

fermions Ξ. It is convenient to first introduce

X̄AB ≡ X̃AB − X̃Aξ∆
−1
ξ X̃ξB, (2.36)

∆̄A ≡∆A − X̃Aξ∆
−1
ξ X̃ξA, (2.37)

and write the second variation as

δ2L = δ2L̄S +
1

2
δΞT ∆̄ΞδΞ−

1

2
δΞT X̄ΞΦδΦ +

1

2
δΦT X̄ΦΞδΞ

− 1

2
δΞT X̄Ξφδφ+

1

2
δφT X̄φΞδΞ. (2.38)

In (2.38) the first term on the r.h.s., δ2L̄S, is obtained by replacing X̃AB and ∆A in δ2LS

via the relations (2.36)–(2.37). By shifting the δΞ in a similar way,

δΞ′ = δΞ− ∆̄−1
Ξ

[
X̄ΞΦδΦ + X̄Ξφδφ

]
, (2.39)

δΞ′T = δΞT +
[
δΦT X̄ΦΞ + δφT X̄φΞ

]←−̄
∆−1

Ξ (2.40)

one finds

δ2L = − 1

2
δΦT (∆̄Φ − X̄ΦΞ∆̄−1

Ξ X̄ΞΦ)δΦ− 1

2
δφT (∆̄φ − X̄φΞ∆̄−1

Ξ X̄Ξφ)δφ

− 1

2
δΦT (X̄Φφ − X̄ΦΞ∆̄−1

Ξ X̄Ξφ)δφ

− 1

2
δφT (X̄φΦ − X̄φΞ∆̄−1

Ξ X̄ΞΦ)δΦ +
1

2
δξ′T∆ξδξ

′ +
1

2
δΞ′T ∆̄ΞδΞ

′ (2.41)

= − 1

2

(
δΦT δφT

)(∆̄Φ − X̄ΦΞ∆̄−1
Ξ X̄ΞΦ X̄Φφ − X̄ΦΞ∆̄−1

Ξ X̄Ξφ

X̄φΦ − X̄φΞ∆̄−1
Ξ X̄ΞΦ ∆̄φ − X̄φΞ∆̄−1

Ξ X̄Ξφ

)(
δΦ

δφ

)
+

1

2
δξ′T∆ξδξ

′ +
1

2
δΞ′T ∆̄ΞδΞ

′ (2.42)

≡ − 1

2

(
δΦT δφT

)
QS

(
δΦ

δφ

)
+

1

2
δξ′T∆ξδξ

′ +
1

2
δΞ′T ∆̄ΞδΞ

′ (2.43)

≡ δ2LSF + δ2LF (2.44)
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with

δ2LSF = −1

2

(
δΦT δφT

)
QS

(
δΦ

δφ

)
, (2.45)

δ2LF =
1

2
δξ′T∆ξδξ

′ +
1

2
δΞ′T ∆̄ΞδΞ

′. (2.46)

At this point there are no terms including both a scalar and a fermionic fluctuation and the

path integrals over scalars and fermions can be performed separately. As has been pointed

out in [17] it is convenient to diagonalize the scalar part such that

QS =

(
∆̂Φ − X̂Φφ∆̂

−1
φ X̂φΦ 0

0 ∆̂φ

)
, (2.47)

where

∆̂A = ∆̄A − X̄AΞ∆̄−1
Ξ X̄ΞA, (2.48)

X̂AB = X̄AB − X̄AΞ∆̄−1
Ξ X̄ΞB, (2.49)

with A,B ∈ {φ,Φ}. The contribution from this mixed scalar/fermionic part to the effective

action is then given by

L1`
EFT,SF =

i

2

∫
ddq

(2π)d

[
tr log

(
∆̂Φ − X̂Φφ∆̂

−1
φ X̂φΦ

)
+ tr log ∆̂φ

]∣∣∣P→P−q
hard

(2.50)

and it can be calculated using a covariant derivative expansion as outlined in e.g. [18].

However, care has to be taken since ∆̂φ contains contributions from heavy fermions and

hence does not vanish completely in the hard region of the momentum integration. The

corresponding contributions can be calculated by using

log det
(
∆̄φ − X̄φΞ∆̄−1

Ξ X̄Ξφ

)
= log det

(
∆̄φ

)
+ log det

(
1− ∆̄−1

φ X̄φΞ∆̄−1
Ξ X̄Ξφ

)
, (2.51)

where the first term on the right hand side vanishes in the hard region as it only contains

contributions from light fields.

Since a lot of terms are generated when re-expressing the hatted and barred quantities

in terms of the quantities arising in the original variation (2.35) we abstain from writing out

the result explicitly. It is, however, useful to consider the expansion of the hatted operators

in order to understand the ingredients entering the final result. In particular we will show

that it is possible to absorb all explicit factors of 1̃ and C by appropriate re-definitions of

X̃AB. In order to achieve that we first expand (∆−1
ξ )Pµ→Pµ−qµ ≡∆−1

ξ (q) as

∆−1
ξ (q) =

[
C1̃(/P − /q −Mξ) + X̃ξξ

]−1
(2.52)

=
[
1−

(
−/q −Mξ

)−1
1̃C−1

(
−C1̃/P − X̃ξξ

)] (
−/q −Mξ

)−1
1̃C−1 (2.53)

=

∞∑
n=0

[(
−/q −Mξ

)−1
1̃C−1

(
−C1̃/P − X̃ξξ

)]n (
−/q −Mξ

)−1
1̃C−1 (2.54)

=
∞∑
n=0

[(
−/q −Mξ

)−1 (−/P −Xξξ

)]n (
−/q −Mξ

)−1
1̃C−1, (2.55)
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where we defined

Xξξ ≡ 1̃C−1X̃ξξ. (2.56)

Then (2.36)–(2.37) become

X̄AB = X̃AB − X̃Aξ

∞∑
n=0

[(
−/q −Mξ

)−1 (−Xξξ − /P
)]n (

−/q −Mξ

)−1
XξB, (2.57)

∆̄A = ∆A − X̃Aξ

∞∑
n=0

[(
−/q −Mξ

)−1 (−Xξξ − /P
)]n (

−/q −Mξ

)−1
XξA, (2.58)

where we introduced XξB ≡ C−11̃X̃ξB. Next we consider

∆̄−1
Ξ (q) =

[
C1̃
(
−/q −MΞ

)
+ C1̃/P + X̃ΞΞ

− X̃Ξξ

∞∑
n=0

[(
−/q −Mξ

)−1 (−Xξξ − /P
)]n (

−/q −Mξ

)−1
XξΞ

]−1

(2.59)

=

∞∑
m=0

{
K−1

Ξ

(
−XΞΞ − /P

)
+K−1

Ξ XΞξ

∞∑
n=0

[
K−1
ξ

(
−Xξξ − /P

)]n
K−1
ξ XξΞ

}m
K−1

Ξ C
−11̃, (2.60)

where

KA ≡
(
−/q −MA

)
, (2.61)

XΞξ ≡ C−11̃X̃Ξξ. (2.62)

Note that in (2.55) and (2.60) the expressions for ∆−1
ξ and ∆̄−1

Ξ contain the factor C−11̃

on the very right. This means that in the combination

∆̄−1
Ξ X̄ΞB = ∆̄−1

Ξ (X̃ΞB − X̃Ξξ∆
−1
ξ 1̃CC−11̃X̃ξB) (2.63)

= ∆̄−1
Ξ 1̃CC−11̃(X̃ΞB − X̃Ξξ∆

−1
ξ 1̃CC−11̃X̃ξB) (2.64)

= ∆̄−1
Ξ 1̃C(XΞB −XΞξ∆

−1
ξ 1̃CXξB), (2.65)

all appearances of C and 1̃ cancel once ∆̄−1
Ξ and ∆−1

ξ are inserted and X̃AB is expressed

in terms of XAB with XAB = C−11̃X̃AB. A similar property holds for X̃ΦB and X̃φB,

which only appear as XΦB = 1̃X̃ΦB and XφB = 1̃X̃φB. Hence, the result can be expressed

entirely through the matrices XAB and neither 1̃ nor C explicitly appears in the final

operator structures.

To complete the calculation we need to compute the purely fermionic part of the second

variation (2.44), which reads

δ2LF =
1

2
δΞ′T ∆̄ΞδΞ

′ +
1

2
δξ′T∆ξδξ

′. (2.66)
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Again, we are only interested in the contribution from the hard region where the light only

part ∆ξ does not contribute. Hence we only need to consider ∆̄Ξ. We find

tr log
(
∆Ξ(q)−XΞξ∆

−1
ξ (q)XξΞ

)
= tr log

(
C1̃KΞ + C1̃/P + X̃ΞΞ −XΞξ∆

−1
ξ (q)X̃ξΞ

)
(2.67)

= tr log
(
C1̃KΞ

)
+ tr log

[
1−K−1

Ξ

(
−/P −XΞΞ + XΞξ∆

−1
ξ (q)X̃ξΞ

)]
, (2.68)

where the first term on the r.h.s. of (2.68) is absorbed in the normalization of the path

integral. Inserting ∆−1
ξ (q) from (2.55) yields

L1`
EFT,F =

i

2

∞∑
n=1

1

n
tr

[
K−1

Ξ

(
−/P −XΞΞ + XΞξ

∞∑
m=0

[
K−1
ξ Xξξ

]m
K−1
ξ XξΞ

)]n
. (2.69)

In order to obtain the final UOLEA from the sum

L1`
EFT = L1`

EFT,SF + L1`
EFT,F (2.70)

one needs to expand all functional traces on the r.h.s. of (2.70) to a given mass dimension

and calculate the coefficients and operator structures. In this expansion we keep Pµ as

a whole to obtain a manifestly gauge-invariant effective Lagrangian. It can be shown, by

using the Baker-Campbell-Hausdorff formula, that every Pµ appears in commutators of

the form [Pµ, •] [11, 12]. To combine all Pµ operators into commutators one can either

explicitly use the Baker-Campbell-Hausdorff formula in the calculation as was done in [8]

or construct a basis for these commutators and then solve a system of equations to fix the

coefficients of the basis elements as was pointed out in [18]. In this publication the second

method was deployed. Our final expression for L1`
EFT is contained in the file UOLEA.m of

the arXiv submission and will be described further in the next section.

3 Discussion of the result

3.1 Published operators and coefficients

In the following we describe the calculated scalar/fermionic operators, which we publish in

the file UOLEA.m of the arXiv submission. The file contains the following four lists:

• mixedLoopsNoP: mixed scalar/fermionic operators without Pµ.

• mixedLoopsWithP: mixed scalar/fermionic operators with Pµ.

• fermionicLoopsNoP: purely fermionic operators without Pµ.

• fermionicLoopsWithP: purely fermionic operators with Pµ.

For convenience, the additional list uolea is defined, which is the union of the four lists

from above. The lists contain the calculated operators in the form {Fα(Mi,Mj , . . . ),Oαij···},
where Fα(Mi,Mj , . . . ) is the coefficient of the operator Oαij···, which is expressed through
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the integrals Ĩ[q2nc ]
ninj ...nL
ij...0 defined in appendix B. The operators Oαij··· are expressed in

terms of the symbols X[A,B][i, j], with A,B ∈ {S, s,F, f}, which correspond to the matrices

defined in section 2.2 as follows:

X[S,F] ≡ XΦΞ =

XΣ∗Ω XΣ∗Ω̄C−1 XΣ∗Λ

XΣΩ XΣΩ̄C−1 XΣΛ

XΘΩ XΘΩ̄C−1 XΘΛ

 ,

X[s,F] ≡ XφΞ =

Xσ∗Ω Xσ∗Ω̄C−1 Xσ∗Λ

XσΩ XσΩ̄C−1 XσΛ

XθΩ XθΩ̄C−1 XθΛ

 ,

X[S, f] ≡ XΦξ =

XΣ∗ω XΣ∗ω̄C−1 XΣ∗λ

XΣω XΣω̄C−1 XΣλ

XΘω XΘω̄C−1 XΘλ

 ,

X[s, f] ≡ Xφξ =

Xσ∗ω Xσ∗ω̄C−1 Xσ∗λ

Xσω Xσω̄C−1 Xσλ

Xθω Xθω̄C−1 Xθλ

 ,

X[F, S] ≡ XΞΦ =

 XΩ̄Σ XΩ̄Σ∗ XΩ̄Θ

C−1XΩΣ C−1XΩΣ∗ C−1XΩΘ

C−1XΛΣ C−1XΛΣ∗ C−1XΛΘ

 ,

X[f, S] ≡ XξΦ =

 Xω̄Σ Xω̄Σ∗ Xω̄Θ

C−1XωΣ C−1XωΣ∗ C−1XωΘ

C−1XλΣ C−1XλΣ∗ C−1XλΘ

 ,

X[F, s] ≡ XΞφ =

 XΩ̄σ XΩ̄σ∗ XΩ̄θ

C−1XΩσ C−1XΩσ∗ C−1XΩθ

C−1XΛσ C−1XΛσ∗ C−1XΛθ

 ,

X[f, s] ≡ Xξφ =

 Xω̄σ Xω̄σ∗ Xω̄θ

C−1Xωσ C−1Xωσ∗ C−1Xωθ

C−1Xλσ C−1Xλσ∗ C−1Xλθ

 ,

X[F,F] ≡ XΞΞ =

 XΩ̄Ω XΩ̄Ω̄C−1 XΩ̄Λ

C−1XΩΩ C−1XΩΩ̄C−1 C−1XΩΛ

C−1XΛΩ C−1XΛΩ̄C−1 C−1XΛΛ

 ,

X[f, f] ≡ Xξξ =

 Xω̄ω Xω̄ω̄C−1 Xω̄λ

C−1Xωω C−1Xωω̄C−1 C−1Xωλ

C−1Xλω C−1Xλω̄C−1 C−1Xλλ

 ,

X[F, f] ≡ XΞξ =

 XΩ̄ω XΩ̄ω̄C−1 XΩ̄λ

C−1XΩω C−1XΩω̄C−1 C−1XΩλ

C−1XΛω C−1XΛω̄C−1 C−1XΛλ

 ,

X[f,F] ≡ XξΞ =

 Xω̄Ω Xω̄Ω̄C−1 Xω̄Λ

C−1XωΩ C−1XωΩ̄C−1 C−1XωΛ

C−1XλΩ C−1XλΩ̄C−1 C−1XλΛ

 ,
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X[S, S] ≡ XΦΦ =

XΣ∗Σ XΣ∗Σ∗ XΣ∗Θ

XΣΣ XΣΣ∗ XΣΘ

XΘΣ XΘΣ∗ XΘΘ

 ,

X[S, s] ≡ XΦφ =

XΣ∗σ XΣ∗σ∗ XΣ∗θ

XΣσ XΣσ∗ XΣθ

XΘσ XΘσ∗ XΘθ

 ,

X[s, S] ≡ XφΦ =

Xσ∗Σ Xσ∗Σ∗ Xσ∗Θ

XσΣ XσΣ∗ XσΘ

XθΣ XθΣ∗ XθΘ

 ,

X[s, s] ≡ Xφφ =

Xσ∗σ Xσ∗σ∗ Xσ∗θ

Xσσ Xσσ∗ Xσθ

Xθσ Xθσ∗ Xθθ

 .

The indices i, j ∈ N label a specific element of the respective matrix. The full one-loop

effective action is then obtained as

L1`
EFT = κ

∑
α

∑
ij···

Fα(Mi,Mj , . . . )Oαij···, (3.1)

where κ = 1/(4π)2 and the sum over α runs over all operators and their corresponding

coefficients. Several comments regarding the use of the operators of (3.1) are in order.

First, no assumptions have been made about the dependence of the second derivatives

XAB regarding gamma matrices. The result is valid for any spin 1/2 spinor structure

appearing in these derivatives. Second, care has to be taken to retain the poles of the

coefficients since the gamma algebra has to be performed in d = 4 − ε dimensions, which

may generate finite contributions when combined with the poles. The function ExpandEps,

contained in the Mathematica file LoopFunctions.m of the arXiv submission, can be used

to extract these finite contributions. Third, some of the coefficients diverge in the case of

degenerate masses if the degenerate limit is not taken carefully. The most convenient way

to deal with degenerate masses may be to first set the masses equal, which modifies the

integrals appearing in the coefficients Fα(Mi,Mj , . . . ), and to then calculate these integrals

using the reduction algorithm implemented in the Mathematica file LoopFunctions.m of

the arXiv submission. Last, there are no cs or cF factors appearing in the final result, in

contrast to [8–10]. In our formulation these prefactors have been fixed by our treatment of

the different kinds of fields and are absorbed in the coefficients.

3.2 Infrared and ultra-violet divergences

It appears that the operator coefficients have infrared divergences, which might be surpris-

ing as the infrared physics should cancel in the matching. The reason for the appearance

of such poles is the fact that expansion by regions was used to perform the calculation as

discussed in section 2.1. For a heavy-light loop this means that the one-loop integral Ifull

in the full integration region is split into a part Isoft, calculated in the soft region, and a

part Ihard, calculated in the hard region,

Ifull = Isoft + Ihard. (3.2)
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Only the hard part remains, since the soft part is canceled in the matching by the EFT

contribution. For the example of Ifull being finite, a UV-divergence in the soft part of the

integration region cancels with an IR-divergence in the hard part with the condition

1

εUV
=

1

εIR
, (3.3)

which assures that scaleless integrals vanish in dimensional regularization. Since the soft

part is removed in the matching, the IR-divergence of the hard part remains. However,

such an IR-divergence should be interpreted as a subtracted UV-divergence coming from

the EFT as indicated by (3.3). It is not surprising that these divergences do not cancel in

the matching since the UV behavior of the EFT is modified as compared to the UV-theory.

However, since these genuine UV-divergences may still combine with an ε from the gamma

algebra to yield finite contributions they must be treated in the same way as 1/ε poles

stemming from the UV behavior of the UV-theory. After performing the trace and the

gamma algebra, remaining terms containing 1/ε poles can be discarded, which amounts to

performing a matching calculation in the MS scheme.

3.3 Application to models with massive vector fields

The operators calculated in this paper can be used to treat massive vector fields in Feynman

gauge as described in [18]. Furthermore, couplings of fermions to massless gauge bosons can

be correctly accounted for as well using the same technique and the treatment is complete

when the UV-theory is renormalizable. This follows from the fact that the gauge-kinetic

term of a fermion ψ is linear in the covariant derivative so that XAµψ is independent of

Pµ. This is not the case for scalar fields, since the kinetic term is quadratic in Pµ, which

means that even for a renormalizable UV-theory there are further operators stemming from

the coupling of scalar fields to massless gauge bosons. Of course, once one considers the

matching of a UV-theory that already contains higher dimensional operators with covariant

derivatives to an EFT, further operators arise also for fermions. These missing operators

all stem from open covariant derivatives and are currently unknown.

3.4 Extraction of β-functions

As was pointed out in [15] functional methods can be used to calculate β-functions since

they allow for the computation of the loop-corrected generator of 1PI Green’s functions.

To one-loop we have

Γ[Φ] = Γtree[Φ] + Γ1`[Φ], (3.4)

where Γtree[Φ] = S[Φ] is the tree-level generator of 1PI Green’s functions, which is simply

the classical action. Assume that Γtree[Φ] contains a kinetic term OK [Φ] and an interaction

term gOg[Φ]. Then, in general, the one-loop contribution will contain corrections to these,

which depend on the renormalization scale µ, so that

Γ[Φ] ⊃
∫

d4x
{
aK(µ)OK [Φ] + ag(µ)Og[Φ]

}
. (3.5)
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Canonically normalizing the kinetic term for the field Φ yields

Γ[Φ] ⊃
∫

d4x
{
OK [Φ] + a′g(µ)Og[Φ]

}
, (3.6)

where

µ
d

dµ
a′g(µ) = 0 (3.7)

due to the Callan-Symanzik equation [30, 31]. Eq. (3.7) can be solved for the one-loop

β-function of the coupling g.

In a specific sense, the UOLEA represents an expression for Γ1` of a model with

operators up to dimension 6, and it can thus be used to calculate the one-loop β-functions

of all dimension 6 operators for any given Lagrangian as described above. In order to

calculate Γ1`, the UOLEA operators (3.1) must be re-interpreted as follows: since one is

interested in the full Γ1`, a distinction between heavy and light fields must not be made

and all fields shall be treated as “heavy” fields. As a consequence, the one-loop effective

action of a scalar theory is given by

Γ[Φ] = S[Φ] +
i

2
log det

(
−δ

2Lint

δΦδΦ

)
, (3.8)

where Φ represents the collection of all scalar fields contained in the model. The expression

on the r.h.s. of (3.8) can be expanded as outlined e.g. in [8, 15, 17] and one arrives at the

heavy-only part of the UOLEA (3.1), which contains only operators built out of derivatives

of the Lagrangian with respect to “heavy” Φ fields. This procedure is not restricted to a

theory with only scalars and can also be applied to models with both scalars and fermions

using the heavy-only part of (3.1). However, higher-dimensional operators with covariant

derivatives have not been treated in this work and hence their influence on the running of

the couplings cannot be determined using our result.

4 Applications

4.1 Integrating out the top quark from the Standard Model

As a simple first example we consider the corrections to the Higgs tadpole and mass pa-

rameter that arise when integrating out the top quark from the Standard Model. The

considered interaction Lagrangian shall contain only one coupling

LSM ⊃ −
gt√

2
ht̄t, (4.1)

where h denotes the physical Higgs field, t is the top quark and gt is the top Yukawa

coupling. The relevant operators of the UOLEA (2.70) are given by

1

κ
L1`

EFT = tr

{
1

4
mΞim

3
Ξj Ĩ13

ij [Pµ, (XΞΞ)ij ][P
µ, (XΞΞ)ji]

− 1

2
Ĩ[q4]22

ij γ
ν [Pµ, (XΞΞ)ij ]γν [Pµ, (XΞΞ)ji]
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− Ĩ[q4]22
ij γ

ν [Pν , (XΞΞ)ij ]γµ[Pµ, (XΞΞ)ji]

+
1

2
mΞiĨ1

i (XΞΞ)ii

− 1

4
mΞimΞj Ĩ11

ij (XΞΞ)ij(XΞΞ)ji

− 1

4
Ĩ[q2]11

ij γ
µ(XΞΞ)ijγµ(XΞΞ)ji

}
, (4.2)

where mΞi denotes the mass of the ith component of Ξ. The matrix (XΞΞ) is given by

(XΞΞ)αβij =

(
(Xt̄t)αβij 0

0 C−1
αρ (Xtt̄)ρσijC−1

σβ

)
= − gt√

2
hδαβδij12×2, (4.3)

with α, β = 1, . . . , 4 being spinor indices and i, j = 1, 2, 3 being color indices. In (4.2) we

included terms with two covariant derivatives in order to obtain the field-redefinition of

the Higgs field that is necessary to canonically normalize the corresponding Higgs field ĥ

in the effective theory. Since this redefinition arises from the correction to the kinetic term

only, we can set Pµ = i∂µ. Inserting (4.3) into (4.2) and calculating the trace yields

1

κ
L1`

EFT = − 3g2
t

(
m4
t Ĩ4
t − 2dĨ[q4]4t − 4Ĩ[q4]4t

)
(∂µh)(∂µh)

− 3g2
t

(
Ĩ2
tm

2
t + dĨ[q2]2t

)
h2 − 12√

2
gtmtĨ1

t h, (4.4)

where d = 4 − ε = gµµ has to be retained since the integrals contain poles in 1/ε. The

loop functions Ĩ are defined in appendix B. It is customary to introduce the canonically

normalized field ĥ which is related to h through

ĥ =

(
1 +

1

2
δZh

)
h. (4.5)

From (4.4) one can read off δZh to be

δZh = −6g2
t

(
m4
t Ĩ4
t − 2dĨ[q4]4t − 4Ĩ[q4]4t

)
= −6g2

t

(
m4
t Ĩ4
t − 12Ĩ[q4]4t +

1

6

)
. (4.6)

The loop functions that appear in (4.4) and (4.6) can be calculated with the Mathematica

file LoopFunctions.m and read

Ĩ1
t = 2Ĩ[q2]2t = m2

t

(
2

ε
+ 1− log

m2
t

µ2

)
, (4.7)

Ĩ2
t = 24Ĩ[q4]4t =

2

ε
− log

m2
t

µ2
, (4.8)

Ĩ4
t =

1

6m4
t

. (4.9)

4.2 MSSM threshold correction to the quartic Higgs coupling

As a first nontrivial application and a check we reproduce the one-loop threshold correction

of the quartic Higgs coupling λ when matching the MSSM to the SM at one-loop [32] in
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the unbroken phase. As discussed in [32] there are several contributions of distinct origins.

The scalar contribution ∆λ1`,φ arises from interactions of the SM-like Higgs with heavy

Higgs bosons, squarks and sleptons, and the relevant interaction Lagrangian is given by

Lφ =− g2
t

2
h2(t̃∗Lt̃L + t̃∗Rt̃R)− 1√

2
gtXth(t̃∗Lt̃R + t̃Lt̃

∗
R)

− 1

8
c2βh

2
∑
i

[(
g2

2 −
g2

1

5

)
ũ∗LiũLi +

4

5
g2

1ũ
∗
RiũRi −

(
g2

2 +
g2

1

5

)
d̃∗Lid̃Li −

2

5
g2

1 d̃
∗
Rid̃Ri

]
− 1

8
c2βh

2
∑
i

[(
g2

2 + g2
1

3

5

)
ν̃∗Liν̃Li −

(
g2

2 − g2
1

3

5

)
ẽ∗LiẽLi −

6

5
g2

1 ẽ
∗
RiẽRi

]
+

1

16
c2

2β

(
3

5
g2

1 + g2
2

)
h2A2 − 1

8

(
(1 + s2

2β)g2
2 −

3

5
g2

1c
2
2β

)
h2H−H+

− 1

16

(
3

5
g2

1 + g2
2

)
(3s2

2β − 1)h2H2 − 1

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

3H

+
1

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

2(G−H+ +H−G+) +
1

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

2G0A. (4.10)

Here g1 and g2 are the GUT-normalized electroweak gauge couplings, Xt is the stop mixing

parameter, and gt = ytsβ with yt being the MSSM top Yukawa coupling and sβ = sin(β).

The three generations of left- and right-handed squarks and sleptons are denoted as ũLi,

ũRi, d̃Li, d̃Ri, ẽLi, ẽRi, ν̃Li (i = 1, 2, 3), respectively, where t̃L ≡ ũL3 and t̃R ≡ ũR3 are the

left- and right-handed stops. Furthermore we have defined h =
√

2<e(H0), where H0 is

the neutral component of the SM-like Higgs doublet H related to the Higgs doublets Hu

and Hd through

H = −cβεH∗d + sβHu, (4.11)

where ε is the antisymmetric tensor with ε12 = 1 and cβ = cos(β), s2β = sin(2β) and

c2β = cos(2β). The fields G0 and G± are Goldstone bosons arising from the same Higgs

doublet. The heavy Higgs bosons H, A and H± arise from the heavy doublet A, which is

related to the MSSM doublets through

A = sβεH
∗
d + cβHu. (4.12)

Note, that since we work in the unbroken phase, β should not be regarded as a ratio

of vacuum expectation values, but as the fine-tuned mixing angle which rotates the two

MSSM Higgs doublets Hu and Hd into H and A as given in (4.11)–(4.12) [32]. The

fermionic contribution ∆λ1`,χ to the threshold correction of λ originates from interactions

of the Higgs boson with charginos χ̃+
i (i = 1, 2) and neutralinos χ̃0

i (i = 1, . . . , 4) described

by the interaction Lagrangian

Lχ = − g2√
2
hcβ(χ̃+

1 PRχ̃
+
2 + χ̃+

2 PLχ̃
+
1 )− g2√

2
hsβ(χ̃+

2 PRχ̃
+
1 + χ̃+

1 PLχ̃
+
2 )

+ i
gY

2
√

2
(cβ − sβ)hχ̃0

1γ
5χ̃0

3 −
gY

2
√

2
(cβ + sβ)hχ̃0

1χ̃
0
4

− i g2

2
√

2
(cβ − sβ)hχ̃0

2γ
5χ̃0

3 +
g2

2
√

2
(cβ + sβ)hχ̃0

2χ̃
0
4, (4.13)

where χ̃0
i = (χ̃0

i )
TC and gY =

√
3/5 g1.
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To calculate the one-loop threshold correction for λ, the following contributions with

purely scalar and purely fermionic operators from our generic UOLEA (2.70) are relevant,

1

κ
L1`

EFT = tr

{
1

2
Ĩ1
i (XΦΦ)ii +

1

2
Ĩ[q2]22

ij [Pµ, (XΦΦ)ij ][P
µ, (XΦΦ)ji]

+
1

4
Ĩ11
ij (XΦΦ)ij(XΦΦ)ji +

1

6
Ĩ111
ijk (XΦΦ)ij(XΦΦ)jk(XΦΦ)ki

+
1

8
Ĩ1111
ijkl (XΦΦ)ij(XΦΦ)jk(XΦΦ)kl(XΦΦ)li +

1

2
Ĩ1
i (XΦφ)ij(XφΦ)ji

− 1

8
mΞimΞjmΞkmΞlĨ1111

ijkl (XΞΞ)ij(XΞΞ)jk(XΞΞ)kl(XΞΞ)li

− 1

2
mΞimΞj Ĩ[q2]1111

ijkl (XΞΞ)ij(XΞΞ)jkγ
µ(XΞΞ)klγµ(XΞΞ)li

− 1

4
mΞimΞkĨ[q2]1111

ijkl (XΞΞ)ijγ
µ(XΞΞ)jk(XΞΞ)klγµ(XΞΞ)li

− 1

8
gµνρσĨ[q4]1111

ijkl γ
µ(XΞΞ)ijγ

ν(XΞΞ)jkγ
ρ(XΞΞ)klγ

σ(XΞΞ)li

+
1

4
mΞim

3
Ξj Ĩ13

ij [Pµ, (XΞΞ)ij ][P
µ, (XΞΞ)ji]

− 1

2
Ĩ[q4]22

ij γ
ν [Pµ, (XΞΞ)ij ]γν [Pµ, (XΞΞ)ji]

− Ĩ[q4]22
ij γ

ν [Pν , (XΞΞ)ij ]γµ[Pµ, (XΞΞ)ji]

}
, (4.14)

where κ = 1/(4π)2. The operators containing covariant derivatives can be removed by a

field-strength renormalization of the Higgs field to canonically normalize the kinetic term.

This field renormalization propagates into every Higgs coupling that has a non-vanishing

tree-level contribution and hence also into the quartic coupling.

Next, we compute the XAB matrices as the second derivatives of the Lagrangian with

respect to the different kinds of fields. We start with

XΦΦ =

XΣ∗Σ XΣ∗Σ∗ XΣ∗Θ

XΣΣ XΣΣ∗ XΣΘ

XΘΣ XΘΣ∗ XΘΘ

 (4.15)

and define

Σ =
(
ũLi ũRi d̃Li d̃Ri ẽLi ẽRi ν̃Li H

+
)T

, Θ =
(
A H

)T
, (4.16)

where i = 1, 2, 3 denotes the generation index. The non-vanishing derivatives with respect

to two heavy scalar fields read

Xũ∗LiũLj
= XũLiũ

∗
Lj

=
1

8
c2βh

2δij

(
g2

2 −
1

5
g2

1

)
+ δ3iδ3j

g2
t

2
h2, (4.17)

Xũ∗RiũRj
= XũRiũ

∗
Rj

=
1

10
c2βh

2δijg
2
1 + δ3iδ3j

g2
t

2
h2, (4.18)

Xd̃∗Lid̃Lj
= Xd̃Lid̃

∗
Lj

= −1

8
c2βh

2δij

(
g2

2 +
1

5
g2

1

)
, (4.19)
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Xd̃∗Rid̃Rj
= Xd̃Rid̃

∗
Rj

=
1

20
c2βh

2δijg
2
1, (4.20)

Xẽ∗LiẽLj
= XẽLiẽ

∗
Lj

=
1

8
c2βh

2δij

(
g2

2 −
3

5
g2

1

)
, (4.21)

Xẽ∗RiẽRj
= XẽRiẽ

∗
Rj

= − 1

20
c2βh

2δijg
2
1, (4.22)

Xν̃∗Liν̃Lj
= Xν̃Liν̃

∗
Lj

=
1

8
c2βh

2δij

(
g2

2 +
3

5
g2

1

)
, (4.23)

XH+H− = XH−H+ =
1

8
h2

[
(1 + s2

2β)g2
2 −

3

5
g2

1c
2
2β

]
(4.24)

XAA = − 1

16
c2

2β

(
3

5
g2

1 + g2
2

)
h2, (4.25)

XHH =
1

16
(2s2

2β − 1)

(
3

5
g2

1 + g2
2

)
h2, (4.26)

Xũ∗LiũRj
= XũLiũ

∗
Rj

=
1√
2
δ3iδ3jgtXth. (4.27)

Given these derivatives we find that XΦΦ is block-diagonal with the blocks being

XΣ∗Σ =

Xũ∗LiũLj
Xũ∗LiũRj

01×6

Xũ∗RiũLj
Xũ∗RiũRj

01×6

06×1 06×1 XΠ∗Π

 , (4.28)

XΠ∗Π = diag(Xd̃∗Lid̃Lj
, Xd̃∗Rid̃Rj

, Xẽ∗LiẽLj
, Xẽ∗RiẽRj

, Xν̃∗Liν̃Lj
, XH+H−), (4.29)

XΣΣ∗ =

XũLiũ
∗
Lj
XũLiũ

∗
Rj

01×6

XũRiũ
∗
Lj
XũRiũ

∗
Rj

01×6

06×1 06×1 XΠΠ∗

 , (4.30)

XΠΠ∗ = diag(Xd̃Lid̃
∗
Lj
, Xd̃Rid̃

∗
Rj
, XẽLiẽ

∗
Lj
, XẽRiẽ

∗
Rj
, Xν̃Liν̃

∗
Lj
, XH−H+), (4.31)

XΘΘ = diag(XAA, XHH), (4.32)

where 0m×n denotes the m × n matrix of only zeros. We next calculate XφΦ and XΦφ,

which contain derivatives with respect to one heavy and one light scalar field. We define

the light scalar field multiplets as

σ = (G+), θ =
(
h G0

)T
. (4.33)

As discussed in section 2.1 the derivatives w.r.t. the fields are evaluated at the background

field configurations, and the heavy background fields are expressed in terms of the light

ones using a local operator expansion.3 This corresponds to an expansion in �/M2 for a

heavy scalar field of mass M and hence it leads to contributions suppressed by at least

1/M2. Since we are not interested in these suppressed contributions here, we only consider

derivatives of the Lagrangian which exclusively contain light background fields and set all

other derivatives to zero. The non-vanishing derivatives are given by

XHh = XhH =
3

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

2, (4.34)

3An explicit example is given in section 4.4 in the treatment of dimension 5 operators.
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XAG0 = XG0A = −1

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

2, (4.35)

XH+G− = XH−G+ = −1

8

(
3

5
g2

1 + g2
2

)
s2βc2βh

2. (4.36)

We then find that XΦφ is block-diagonal with the blocks being

XΣ∗σ =

(
07×1

XH−G+

)
, (4.37)

XΣσ∗ =

(
07×1

XH+G−

)
, (4.38)

XΘθ =

(
0 XAG0

XHh 0

)
. (4.39)

Similarly, XφΦ is block-diagonal with diagonal entries

Xσ∗Σ =
(
01×7 XG−H+

)
, (4.40)

XσΣ∗ =
(
01×7 XG+H−

)
, (4.41)

XθΘ =

(
0 XhH

XG0A 0

)
. (4.42)

Finally, we need the derivatives with respect to two heavy fermions to construct the matrix

XΞΞ. We define

Ω =
(
χ̃+

1 χ̃+
2

)T
, Λ =

(
χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

)T
(4.43)

and the matrix XΞΞ is again block-diagonal with the non-vanishing entries

XΩ̄Ω = C−1XT
ΩΩ̄C

−1 = − g2√
2
h

(
0 cβPR + sβPL

cβPL + sβPR 0

)
, (4.44)

C−1XΛΛ =
h

2
√

2


0 0 igY (cβ − sβ)γ5 −gY (cβ + sβ)

0 0 −ig2(cβ − sβ)γ5 g2(cβ + sβ)

igY (cβ − sβ)γ5 −ig2(cβ − sβ)γ5 0 0

−gY (cβ + sβ) g2(cβ + sβ) 0 0

 ,

(4.45)

where the relations of appendix C were used to simplify the expressions. Note, that in

the calculation of XΛΛ for a given Majorana fermion λ the two fields λ̄ and λ are not

independent, but are related via λ̄ = λTC. Inserting all of the derivatives into (4.14),

summing over all indices and canonically normalizing the kinetic term for the SM-like

Higgs boson as

h =

(
1− 1

2
δZh

)
ĥ, (4.46)

δZh =− 6g2
tX

2
t Ĩ[q2]22

q̃ũ +
s2β

2
µ
(
g2
YM1µ

2Ĩ13
1µ + g2

YM
3
1 Ĩ31

1µ − 3g2
2M2µ

2Ĩ13
2µ − 3g2

2M
3
2 Ĩ31

2µ

)
+ 2(2 + d)

(
−g2

Y Ĩ[q4]22
1µ + 3g2

2 Ĩ[q4]22
2µ

)
, (4.47)
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one finds the following effective Lagrangian

L1`
EFT =

1

2
(∂ĥ)2 − λ

8
ĥ4 + · · · (4.48)

with

λ =
1

4

(
3

5
g2

1 + g2
2

)
c2

2β + κ∆λ1`, (4.49)

∆λ1` = ∆λ1`,reg + ∆λ1`,φ + ∆λ1`,χ, (4.50)

and

∆λ1`,φ = g4
t

[
−3X4

t Ĩ1111
q̃q̃ũũ − 6X2

t

(
Ĩ111
q̃q̃ũ + Ĩ111

q̃ũũ

)
− 3

(
Ĩ11
q̃q̃ + Ĩ11

ũũ

)]
+

3

10
g2
t c2β

{
X2
t

[
2c2β

(
3g2

1 + 5g2
2

)
Ĩ[q2]22

q̃ũ +
(
g2

1 − 5g2
2

)
Ĩ111
q̃q̃ũ − 4g2

1 Ĩ111
q̃ũũ

]
+
(
g2

1 − 5g2
2

)
Ĩ11
q̃q̃ − 4g2

1 Ĩ11
ũũ

}
−
c2

2β

200

3∑
i=1

[
3
(
g4

1 + 25g4
2

)
Ĩ11
q̃iq̃i + 24g4

1 Ĩ11
ũiũi + 6g4

1 Ĩ11
d̃id̃i

+
(
9g4

1 + 25g4
2

)
Ĩ11
l̃i l̃i

+ 18g4
1 Ĩ11

ẽiẽi

]
+

1

200

{
6c2

2β

(
c2

2β − 1
) (

3g2
1 + 5g2

2

)2 Ĩ11
A0 −

[
9
(
3c4

2β − 3c2
2β + 1

)
g4

1 (4.51)

+ 30
(
3c4

2β − 4c2
2β + 1

)
g2

1g
2
2 + 25

(
3c4

2β − 5c2
2β + 3

)
g4

2

]
Ĩ11
AA

}
,

∆λ1`,χ = − 1

4

{
− d
(
2g4
YM

2
1 Ĩ[q2]22

1µ + 2g4
2M

2
2 Ĩ[q2]22

2µ + g4
Y µ

2Ĩ[q2]22
1µ

− g4
Y µ

2c4β Ĩ[q2]22
1µ + g4

2µ
2Ĩ[q2]22

2µ − g4
2µ

2c4β Ĩ[q2]22
2µ

+ 4g2
Y g

2
2M1M2Ĩ[q2]112

12µ + 2g2
Y g

2
2µ

2Ĩ[q2]112
12µ − 2g2

Y g
2
2µ

2c4β Ĩ[q2]112
12µ

)
− d(2 + d)

(
2g4
Y Ĩ[q4]22

1µ + 2g4
2 Ĩ[q4]22

2µ + 4g2
Y g

2
2 Ĩ[q4]112

12µ

)
− g4

2

[
2d(2 + d)(3 + c4β)Ĩ[q4]22

2µ + 16cβsβ(dM2Ĩ[q2]22
2µ(µ+M2cβsβ)

+ µ{M2
2µcβ Ĩ22

2µsβ + dĨ[q2]22
2µ(M2 + µcβsβ)})

]
− 4dµ

(
2g4
YM1Ĩ[q2]22

1µ + 2g4
2M2Ĩ[q2]22

2µ + 2g2
Y g

2
2M1Ĩ[q2]112

12µ

+ 2g2
Y g

2
2M2Ĩ[q2]112

12µ

)
s2β

− 2µ2
(
g4
YM

2
1 Ĩ22

1µ + g2
2M2(g2

2M2Ĩ22
2µ + g2

YM12Ĩ112
12µ+)

)
s2

2β

− 2g2
2(g2

Y + g2
2)c2

2β

(
− 4(2 + d)Ĩ[q4]22

2µ +M2µ(µ2Ĩ13
2µ +M2

2 Ĩ31
2µ)s2β

)
− (g2

Y + g2
2)c2

2β

(
− 4(2 + d)g2

Y Ĩ[q4]22
1µ − 4(2 + d)g2

2 Ĩ[q4]22
2µ (4.52)

+ µ{g2
YM1µ

2Ĩ13
1µ + g2

YM
3
1 Ĩ31

1µ + g2
2M2(µ2Ĩ31

2µ +M2
2 Ĩ31

2µ)}s2β

)}
.
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The subscripts 1 and 2 of the loop functions are shorthand for M1 and M2, respectively.

The terms involving d = 4 − ε originate from contractions of gamma matrices and metric

tensors, see appendix D. Note, that λ is expressed entirely in terms of the MSSM gauge

couplings, in contrast to [32].

It is sensible to regularize the MSSM using dimensional reduction (DRED) [33],

whereas the SM is more naturally regularized in dimensional regularization (DREG) [34–

38]. Such a regularization scheme change leads to further contributions to the threshold

correction denoted by ∆λ1`,reg, which can be obtained using the DRED-DREG regulariza-

tion scheme translating operators presented in [10]. This contribution originates from the

operator

1

κ
εL1`

EFT,ε =
1

2
tr{X̆µν

εε X̆εεµν}, (4.53)

where on the r.h.s. ε denotes all epsilon scalars that couple to the Higgs and

X̆µν
εε = ğµσ ğ

ν
ρX̊

σρ
εε (4.54)

is the projection of the 4-dimensional X̊σρ
εε onto the ε-dimensional QεS space [10, 39] with

ğµν ğµν = ε, see appendix D. In the MSSM we have the following couplings to epsilon scalars

to the SM-like doublet H,

LεH = H∗i ğµν

(
g2

2T
a
ijT

b
jla

aµabν +

√
3

5
g1g2T

a
ila

aµbν +
3

20
g2

1b
µbνδil

)
Hl, (4.55)

where the indices i, j, l are SU(2)L indices of the fundamental representation with the

generators T aij . The fields aaµ and bµ denote the epsilon scalars corresponding to SU(2)L
and U(1)Y , respectively. One obtains the derivative

X̆µν
εε = −ğµν

H∗i g2
2{T a, T b}ilHl

√
3
5g1g2H∗i T ailHl√

3
5g1g2H∗i T ailHl

3
10g

2
1H∗iHi

 . (4.56)

Inserting this into (4.53) we obtain

∆λ1`,reg = − 9

100
g4

1 −
3

10
g2

1g
2
2 −

3

4
g4

2. (4.57)

We do not find the term proportional to c2
2β given in [32] since this term only arises once

the tree-level expression for λ is expressed in terms of SM gauge couplings, as opposed to

MSSM parameters as in our case. Up to terms arising from this conversion the one-loop

threshold corrections agree with the results of [32].

4.3 Integrating out stops and the gluino from the MSSM

As a second nontrivial application we reproduce known threshold corrections from the

MSSM to the Standard Model Effective Field Theory (SMEFT) from heavy stops and

the gluino in the gaugeless limit (g1 = g2 = 0) in the unbroken phase and for vanishing

Yukawa couplings, except for the one of the top quark. In particular we reproduce the
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Wilson coefficient of the higher-dimensional ĥ6 operator calculated in [8, 40]. Furthermore,

this example application again represents a scenario, where a heavy Majorana fermion is

integrated out and the formalism introduced in section 2 must be carefully applied.

We consider the following part of the MSSM Lagrangian

LMSSM ⊃ |∂t̃L|2 −m2
q̃ |t̃L|2 + |∂t̃R|2 −m2

ũ|t̃R|2 +
1

2
(g̃a)TC(i/∂ −mg̃ )g̃a

−
ytsβ√

2
ht̄t−

y2
t s

2
β

2
h2
(
|t̃L|2 + |t̃R|2

)
−
ytsβXt√

2
h
(
t̃∗Lt̃R + h.c.

)
−
√

2g3

[
t̄PRg̃

aT at̃L − t̄PLg̃aT at̃R + t̃∗L(g̃a)TT aCPLt− t̃∗R(g̃a)TT aCPRt
]
,

(4.58)

where we use the same notation as in section 4.2 and g3 is the strong gauge coupling. The

top quark is denoted as t and is defined as a Dirac fermion built from the upper component

of the left-handed quark-doublet qL and the right-handed top tR. The gluino is denoted

as g̃a and we have used the relation g̃a = ((g̃a)C)TC = (g̃a)TC to express (4.58) in terms of

the gluino Majorana spinor g̃a.

Upon integrating out the heavy stops and the gluino the Lagrangian of the effective

theory becomes

LSMEFT ⊃ −
ytsβ√

2
ht̄t+ L1`

SMEFT. (4.59)

In our limit the one-loop term L1`
SMEFT receives contributions from the following generic

operators from (2.70)

1

κ
L1`

EFT ⊃
1

2
Ĩ1
i (XΦΦ)ii +

1

4
Ĩ11
ik (XΦΦ)ik(XΦΦ)ki +

1

6
Ĩ111
lik (XΦΦ)ik(XΦΦ)kl(XΦΦ)li

+
1

8
Ĩ1111
likn (XΦΦ)ik(XΦΦ)kl(XΦΦ)ln(XΦΦ)ni

+
1

10
Ĩ11111
iklnp (XΦΦ)ik(XΦΦ)kl(XΦΦ)ln(XΦΦ)np(XΦΦ)pi

+
1

12
Ĩ111111
iklnpr (XΦΦ)ik(XΦΦ)kl(XΦΦ)ln(XΦΦ)np(XΦΦ)pr(XΦΦ)ri

+
1

2
Ĩ[q2]22

ki [Pµ, (XΦΦ)ik][P
µ, (XΦΦ)ki]

− Ĩ[q2]21
il (XΦΞ)ilγ

µ[Pµ, (XΞΦ)li]

− 1

2
mΞk Ĩ

111
ikl (XΦΞ)ik(XΞΦ)kl(XΦΦ)li. (4.60)

We furthermore set Pµ ≡ i∂µ to omit contributions from gauge bosons. In our scenario

we identify Σ = (t̃L, t̃R) as the vector of (complex) heavy stops and Λ = g̃a as the heavy

gluino. From (4.58) we then obtain the following non-vanishing derivatives

(Xt̃∗L t̃L
)ij = (Xt̃L t̃

∗
L

)ij = (Xt̃∗R t̃R
)ij = (Xt̃R t̃

∗
R

)ij =
1

2
(ytsβh)2δij , (4.61)

(Xt̃∗L t̃R
)ij = (Xt̃L t̃

∗
R

)ij = (Xt̃∗R t̃L
)ij = (Xt̃R t̃

∗
L

)ij =
1√
2
ytsβhXtδij , (4.62)
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(Xt̃Lg̃a
)aiα = (Xg̃a t̃L

)aiα = −
√

2g3(t̄jPR)αT
a
ji, (4.63)

(Xt̃Rg̃a
)aiα = (Xg̃a t̃R

)aiα =
√

2g3(t̄jPL)αT
a
ji, (4.64)

(Xg̃a t̃∗L
)aiα = (Xt̃∗Lg̃

a)aiα =
√

2g3T
a
ij(CPLtj)α, (4.65)

(Xg̃a t̃∗R
)aiα = (Xt̃∗Rg̃

a)aiα = −
√

2g3T
a
ij(CPRtj)α, (4.66)

where i, j = 1, 2, 3 and a = 1, . . . , 8 are color indices and α = 1, . . . , 4 is a 4-component

spinor index. Note the flipped sign in eqs. (4.63)–(4.64) due to one anti-commutation of the

spinor t̄ with the derivative w.r.t. the spinor g̃a. The bold derivative matrices thus become

XΦΦ =

(
XΣ∗Σ XΣ∗Σ∗

XΣΣ XΣΣ∗

)
=


(Xt̃∗L t̃L

)ij (Xt̃∗L t̃R
)ij 0 0

(Xt̃∗R t̃L
)ij (Xt̃∗R t̃R

)ij 0 0

0 0 (Xt̃L t̃
∗
L

)ij (Xt̃L t̃
∗
R

)ij

0 0 (Xt̃R t̃
∗
L

)ij (Xt̃R t̃
∗
R

)ij

 (4.67)

= δij 12×2 ⊗

(
1
2(ytsβh)2 1√

2
ytsβhXt

1√
2
ytsβhXt

1
2(ytsβh)2

)
, (4.68)

XΦΞ =

(
XΣ∗Λ

XΣΛ

)
=


(Xt̃∗Lg̃

a)aiα
(Xt̃∗Rg̃

a)aiα
(Xt̃Lg̃a

)aiα
(Xt̃Rg̃a

)aiα

 =
√

2g3


T aij(CPLtj)α
−T aij(CPRtj)α
−(t̄jPR)αT

a
ji

(t̄jPL)αT
a
ji

 , (4.69)

XΞΦ =
(
C−1XΛΣ, C−1XΛΣ∗

)
(4.70)

= (C−1)αβ

(
(Xg̃a t̃L

)aiβ , (Xg̃a t̃R
)aiβ , (Xg̃a t̃∗L

)aiβ , (Xg̃a t̃∗R
)aiβ

)
(4.71)

=
√

2g3(C−1)αβ

(
−(t̄jPR)βT

a
ji, (t̄jPL)βT

a
ji, T aij(CPLtj)β , −T aij(CPRtj)β

)
(4.72)

=
√

2g3

(
−(t̄jPR(C−1)T )αT

a
ji, (t̄jPL(C−1)T )αT

a
ji, T aij(PLtj)α, −T aij(PRtj)α

)
.

(4.73)

By inserting the XAB operators into (4.60) and summing over all fields and colors we obtain

L1`
EFT = ctht̄t+ cLt̄i/∂PLt+ cRt̄i/∂PRt+ c′2(∂h)2 + c2h

2 + c4h
4 + c6h

6 + · · · , (4.74)

where

ct = −4
√

2

3
κg2

3ytsβmg̃XtĨ111
g̃ q̃ũ, (4.75)

cL =
16

3
κg2

3 Ĩ[q2]21
ũg̃ , (4.76)

cR = cL|q̃→ũ, (4.77)

c′2 = −3κ(ytsβ)2X2
t Ĩ[q2]22

q̃ũ, (4.78)

c2 =
3

2
κ(ytsβ)2

[
Ĩ1
q̃ + Ĩ1

ũ +X2
t Ĩ11

q̃ũ

]
, (4.79)
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c4 =
3

8
κ(ytsβ)4

[
Ĩ11
q̃q̃ + Ĩ11

ũũ + 2X2
t (Ĩ111

q̃q̃ũ + Ĩ111
q̃ũũ) +X4

t Ĩ1111
q̃q̃ũũ

]
, (4.80)

c6 =
1

8
κ(ytsβ)6

[
Ĩ111
q̃q̃q̃ + Ĩ111

ũũũ + 3X2
t (Ĩ1111

q̃q̃q̃ũ + Ĩ1111
q̃q̃ũũ + Ĩ1111

q̃ũũũ)

+ 3X4
t (Ĩ11111

q̃q̃q̃ũũ + Ĩ11111
q̃q̃ũũũ) +X6

t Ĩ111111
q̃q̃q̃ũũũ

]
.

(4.81)

To canonically normalize the kinetic terms of LSMEFT we re-define the Higgs and the top

quark field as

h =

(
1− 1

2
δZh

)
ĥ, (4.82)

tL =

(
1− 1

2
δZL

)
t̂L, (4.83)

tR =

(
1− 1

2
δZR

)
t̂R, (4.84)

where the field renormalizations δZh/L/R are given by

δZh = 2c′2, (4.85)

δZL = cL, (4.86)

δZR = cR. (4.87)

If we parameterize the SMEFT Lagrangian as

LSMEFT ⊃ −
gt√

2
ĥ¯̂tt̂+

m2

2
ĥ2 − λ

8
ĥ4 − c̃6

8
ĥ6, (4.88)

then the SMEFT parameters gt, λ and m2 are given by

gt = ytsβ

[
1− 1

2
(cL + cR)− c′2 −

√
2ct

ytsβ

]
, (4.89)

m2 = 2c2, (4.90)

λ = −8c4, (4.91)

c̃6 = −8c6, (4.92)

which agrees with the results calculated in [8, 32, 40, 41].4

4.4 Integrating out the gluino from the MSSM with light stops

In this section we calculate some of the terms that arise when integrating out the gluino

from the MSSM. This EFT scenario is relevant when there is a large hierarchy between the

gluino mass and the stop masses in the MSSM. This example is also a direct application

of most of the operators calculated in section 2.2, in particular operators where Majorana

and Dirac fermions appear in loops at the same time.

4It was noted in [40] that the logarithmic term in the last line of eq. (D.4) in [8] should come with a

minus sign.
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We consider the following part of the MSSM Lagrangian

LMSSM ⊃ |∂t̃L|2 −m2
q̃ |t̃L|2 + |∂t̃R|2 −m2

ũ|t̃R|2 +
1

2
(g̃a)TC(i/∂ −mg̃ )g̃a

−
√

2g3

(
t̄PRg̃

aT at̃L − t̄PLg̃aT at̃R + t̃∗L(g̃a)TT aCPLt− t̃∗R(g̃a)TT aCPRt
)

+

(
−y2

t +
g2

3

2

)
(t̃∗Lt̃R)(t̃Lt̃

∗
R)− g2

3

6
|t̃L|2|t̃R|2, (4.93)

where we use the same notation as in section 4.4 with t being the top quark, defined as

a Dirac fermion, and g̃a = (g̃a)C denotes the gluino, which is a Majorana fermion. The

complex scalar fields t̃L and t̃R represent the stops. In the following we determine the

one-loop Wilson coefficients of the following operators in the EFT:

L1`
EFT ⊃ ctL t̄Li/∂tL + ctR t̄Ri/∂tR + ct̃L∂µt̃

∗
L∂

µt̃L − δm2
q̃ |t̃L|2 + ct̃R∂µt̃

∗
R∂

µt̃R − δm2
ũ|t̃R|2

+ cL41

(
t̃∗Lit̃Li

)2
+ cL42

(
t̃∗Lit̃Lj

) (
t̃∗Lj t̃Li

)
+ cR4

(
t̃∗Rt̃R

)2
+ cLR41

(
t̃∗Lit̃Li

) (
t̃∗Rj t̃Rj

)
+ cLR42

(
t̃∗Lit̃Lj

) (
t̃∗Rj t̃Ri

)
+ cGG

a
µνG

µν
a

+ [cLL51 (t̄LiT
a
ij t̃Lj)(t

C
RkT

a
kl t̃Ll) + cLL52 (t̃∗LiT

a
ijt

C
Rj)(t̃

∗
LkT

a
kltLl) + (L↔ R)]

+ [cLR51 (t̄LiT
a
ij t̃Lj)(t̃

∗
RkT

a
kltRl) + cLR52 (t̃Lit̃

∗
Ri)(t̄LjtRj) + (L↔ R)] + cL61(t̃∗Lit̃Li)

3

+ cL62(t̃∗Lit̃Li)(t̃
∗
Lj t̃Lk)(t̃

∗
Lk t̃Lj) + cL63(t̃∗Lit̃Lj)(t̃

∗
Lj t̃Lk)(t̃

∗
Lk t̃Li) + cR6 (t̃∗Rit̃Ri)

3

+ [cLR61 (t̃∗Lit̃Li)
2(t̃∗Rit̃Ri)+cLR62 (t̃∗Lit̃Li)(t̃

∗
Lj t̃Lk)(t̃

∗
Rk t̃Rj)+cLR63 (t̃∗Lit̃Lj)(t̃

∗
Lj t̃Li)(t̃

∗
Rk t̃Rk)

+ cLR64 (t̃∗Lit̃Lj)(t̃
∗
Lj t̃Lk)(t̃

∗
Rk t̃Ri)+cRL61 (t̃∗Rit̃Ri)

2(t̃∗Lit̃Li)+cRL62 (t̃∗Rit̃Ri)(t̃
∗
Rj t̃Rk)(t̃

∗
Lk t̃Lj)]

+ [c
LµLµ
61 (t̄Liγ

µtLi) (t̄LjγµtLj) + c
LµLµ
62 (t̄Liγ

µtLj) (t̄LjγµtLi) + (L↔ R)]

+ c
(LR)µ(RL)µ
61

(
tCRiγ

µtRj

) (
t̄Rjγµt

C
Ri

)
+ c

(LR)µ(RL)µ
62

(
tCRjγ

µtRi

) (
t̄Rjγµt

C
Ri

)
+
[
cLL61

(
tCRitLi

) (
t̄Ljt

C
Rj

)
+ cLL62

(
tCRitLj

) (
t̄Ljt

C
Ri

)
+ (L↔ R)

]
+ c

(LR)(RL)
61 (t̄RitLj) (t̄LjtRi) + c

(LR)(RL)
62 (t̄RjtLi) (t̄LjtRi) . (4.94)

These operators represent all derived one-loop stop interactions in the gaugeless limit and

in the unbroken phase, without contributions from higher-dimensional operators with co-

variant derivatives. Terms which involve SUSY particles beyond the stop are omitted for

brevity. In (4.94) the color indices i, j, k = 1, 2, 3 and a = 1, . . . , 8 are written out ex-

plicitly. Note that in general L1`
EFT contains SU(2)L and SU(3)C invariant terms of the

form (q̃†Liq̃Li)(q̃
†
Lj q̃Lj) and (q̃†Liq̃Lj)(q̃

†
Lj q̃Li), where the SU(2)L indices are contracted within

parentheses, but the color indices are contracted differently among the terms. In (4.94),

however, the corresponding terms with the couplings cL41 and cL42 have the same structure,

because we have omitted the sbottom quark.

The dimension 5 operators have contributions already at tree-level, which stem from

the insertion of the gluino background field g̃cl into the Lagrangian of the MSSM. The

necessary part of the gluino background field can be extracted from the equation of motion

[C(i/∂ −mg̃ )]αβ(g̃cl)
a
β =
√

2g3

(
−t̄LαT at̃L + t̄RαT

at̃R + t̃∗LT
a(CtL)α − t̃∗RT a(CtR)α

)
, (4.95)
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which yields

(g̃cl)
a
β =
√

2g3(i/∂ −mg̃ )−1
βα

[
−(t̄LC)αT at̃L + (t̄RC)αT at̃R + t̃∗LT

atLα − t̃∗RT atRα
]

(4.96)

=

√
2g3

mg̃

[
(t̄LC)βT at̃L − (t̄RC)βT at̃R − t̃∗LT atLβ + t̃∗RT

atRβ + · · ·
]
, (4.97)

where the ellipsis designate higher order terms of O(∂/mg̃ ) with at least one derivative.

Inserting (4.97) into both the kinetic term of the gluino and the interaction Lagrangian

one finds the tree-level values of cAB5i (A,B ∈ {L,R}) to be

cLL,tree
51 = cLL,tree

52 = cRR,tree
51 = cRR,tree

52 =
g2

3

mg̃
, (4.98)

cLR,tree
51 = cRL,tree

51 = −2g2
3

mg̃
, (4.99)

cLR,tree
52 = cRL,tree

52 = 0. (4.100)

At one-loop the relevant contributions from the UOLEA are

1

κ
L1`

EFT = tr

{(
− Ĩ[q4]31

g̃0 +
m2
g̃

12
Ĩ[q2]22

g̃0

)
γµ[P ν , (XΞξ)

a
i ]γ

µ[Pν , (XξΞ)ai ]

+

(
− 2Ĩ[q4]31

g̃0 +
m2
g̃

6
Ĩ[q2]22

g̃0

)
γµ[Pµ, (XΞξ)

a
i ]γ

ν [Pν , (XξΞ)ai ]

+ (−Ĩ[q2]12
g̃0 − 2m2

φi
Ĩ[q2]13

g̃0)(XφΞ)iγ
µ[Pµ, (XΞφ)i]

+
1

4
Ĩ[q2]22

g̃0(XφΞ)iγ
µ(XΞφ)j(XφΞ)jγµ(XΞφ)i

− 1

2
mg̃ Ĩ12

g̃0(Xφφ)ij(XφΞ)j(XΞφ)i

+
1

4
m2
g̃ Ĩ22

g̃0(XφΞ)i(XΞφ)j(XφΞ)j(XΞφ)i −
1

2
Ĩ[q2]11

g̃0γ
µ(XΞξ)iγµ(XξΞ)i

− 1

4
m2
g̃ Ĩ[q2]22

g̃0(XΞξ)
a
i γ

µ(XξΞ)bi(XΞξ)
b
jγµ(XξΞ)aj

− 1

4
Ĩ[q4]22

g̃0gµνρσ(XΞξ)
a
i γ

µ(XξΞ)biγ
ν(XΞξ)

b
jγ
ρ(XξΞ)ajγ

σ

− 1

2
m2
g̃ Ĩ[q4]33

g̃0gµνρσ(XΞξ)
a
i γ

µ(XξΞ)bi(XΞξ)
b
jγ
ν(XξΞ)cjγ

ρ(XΞξ)
c
kγ

σ(XξΞ)ak

− 1

6
Ĩ[q6]33

g̃0gµνρσκλ(XΞξ)
a
i γ

µ(XξΞ)biγ
ν(XΞξ)

b
jγ
ρ(XξΞ)cjγ

σ(XΞξ)
c
kγ

κ(XξΞ)akγ
λ

+
1

6
Ĩ2
g̃ [Pµ, Pν ][Pµ, P ν ]

}
, (4.101)

where gµν··· is the combination of metric tensors which is totally symmetric in all indices,

see appendix B. The derivatives with respect to the stops and the gluino have already been

calculated in section 4.3 and are given by

XφΞ =

(
Xσ∗Λ

XσΛ

)
=


(Xt̃∗Lg̃

a)aiα
(Xt̃∗Rg̃

a)aiα
(Xt̃Lg̃a

)aiα
(Xt̃Rg̃a

)aiα

 =
√

2g3


T aij(CPLtj)α
−T aij(CPRtj)α
−(t̄jPR)αT

a
ji

(t̄jPL)αT
a
ji

 , (4.102)
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XΞφ =
(
C−1XΛσ, C−1XΛσ∗

)
(4.103)

= (C−1)αβ

(
(Xg̃a t̃L

)aiβ , (Xg̃a t̃R
)aiβ , (Xg̃a t̃∗L

)aiβ , (Xg̃a t̃∗R
)aiβ

)
(4.104)

=
√

2g3

(
−(t̄jPRC)αT aji, (t̄jPLC)αT aji, T aij(PLtj)α, −T aij(PRtj)α

)
, (4.105)

the difference being that the stops are now considered to be light fields. For the purpose of

this application we also need the derivatives with respect to a top and a gluino, which read

(Xt̄g̃a)aiαβ = −
√

2g3T
a
ij

[
(PR)αβ t̃Lj − (PL)αβ t̃Rj

]
, (4.106)

(Xtg̃a)aiαβ = −
√

2g3T
a
ji

[
−t̃∗Lj(CPL)βα + t̃∗Rj(CPR)βα

]
, (4.107)

(Xg̃a t̄)
a
iαβ =

√
2g3T

a
ij

[
(PR)βαt̃Lj − (PL)βαt̃Rj

]
, (4.108)

(Xg̃at)
a
iαβ =

√
2g3T

a
ji

[
−t̃∗Lj(CPL)αβ + t̃∗Rj(CPR)αβ

]
, (4.109)

and are collected into

XΞξ =
(
C−1XΛω, C−1XΛω̄C−1

)
(4.110)

=
(

(C−1Xg̃at)
a
iαβ , (C−1Xg̃a t̄C−1)aiαβ

)
(4.111)

=
(
−
√

2g3T
a
ji

[
t̃∗Lj(PL)αβ − t̃∗Rj(PR)αβ

]
, −
√

2g3T
a
ij

[
(PR)αβ t̃Lj − (PL)αβ t̃Rj

])
,

(4.112)

XξΞ =

(
Xω̄Λ

C−1XωΛ

)
=

(
(Xt̄g̃a)aiαβ

(C−1Xtg̃a)aiαβ

)
=

(
−
√

2g3T
a
ij

[
(PR)αβ t̃Lj − (PL)αβ t̃Rj

]
−
√

2g3T
a
ji

[
t̃∗Lj(PL)αβ − t̃∗Rj(PR)αβ

]) .
(4.113)

Finally we give the derivatives with respect to two stops

Xφφ =

(
Yφφ 02×2

02×2 (Yφφ)∗

)
, (4.114)

Yφφ =

(
xtt̃
∗
Rj t̃Ri −

g23
6 t̃
∗
Rt̃Rδij xtδij t̃Lt̃

∗
R −

g23
6 t̃Lit̃

∗
Rj

xtδij t̃
∗
Lt̃R −

g23
6 t̃Rit̃

∗
Lj xtt̃

∗
Lj t̃Li −

g23
6 t̃
∗
Lt̃Lδij

)
, (4.115)

where we have introduced the abbreviation xt ≡ y2
t − g2

3/2. Substituting these derivatives

into (4.101) and summing over all indices one finds

ctL =
16

3
g2

3

(
Ĩ[q2]12

g̃0 + 2m2
q̃ Ĩ[q2]13

g̃0

)
, (4.116)

ctR =
16

3
g2

3

(
Ĩ[q2]12

g̃0 + 2m2
ũĨ[q2]13

g̃0

)
, (4.117)

ct̃L = ct̃R =
32

3
g2

3(d+ 2)

(
−Ĩ[q4]31

g̃0 +
m2
q̃

2
Ĩ[q2]22

g̃0

)
, (4.118)

c
LµLµ
61 = c

RµRµ
61 =

7

6
g4

3 Ĩ[q2]22
g̃0, (4.119)

c
LµLµ
62 = c

RµRµ
62 =

1

18
g4

3 Ĩ[q2]22
g̃0, (4.120)
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c
(LR)µ(RL)µ
61 =

10

9
g4

3 Ĩ[q2]22
g̃0, (4.121)

c
(LR)µ(RL)µ
62 = −2

9
g4

3 Ĩ[q2]22
g̃0, (4.122)

cLL61 = cRR61 =
5

18
g4

3m
2
g̃ Ĩ[q2]22

g̃0, (4.123)

cLL62 = cRR62 = −1

6
g4

3m
2
g̃ Ĩ[q2]22

g̃0, (4.124)

c
(LR)(RL)
61 =

7

6
g4

3m
2
g̃ Ĩ[q2]22

g̃0, (4.125)

c
(LR)(RL)
62 =

1

18
g4

3m
2
g̃ Ĩ[q2]22

g̃0, (4.126)

δm2
q̃ = δm2

ũ =
16

3
dg2

3 Ĩ[q2]11
g̃0, (4.127)

cL41 = −40

9
m2
g̃g

4
3 Ĩ[q2]22

g̃0 −
1

9
d(d+ 2)g4

3 Ĩ[q4]22
g̃0, (4.128)

cR4 = −16

3
m2
g̃g

4
3 Ĩ[q2]22

g̃0 −
22

9
d(d+ 2)g4

3 Ĩ[q4]22
g̃0, (4.129)

cL42 =
8

3
m2
g̃g

4
3 Ĩ[q2]22

g̃0 −
7

3
d(d+ 2)g4

3 Ĩ[q4]22
g̃0, (4.130)

cLR41 = −8

9
m2
g̃g

4
3 Ĩ[q2]22

g̃0 −
20

9
d(d+ 2)g4

3 Ĩ[q4]22
g̃0, (4.131)

cLR42 = −56

3
m2
g̃g

4
3 Ĩ[q2]22

g̃0 +
4

9
d(d+ 2)g4

3 Ĩ[q4]22
g̃0, (4.132)

cL61 =
1

54
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 +
2

81
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.133)

cL62 = −2

3
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
2

9
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.134)

cL63 =
1

2
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
4

3
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.135)

cR6 = − 4

27
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
124

81
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.136)

cLR61 =
1

18
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 +
2

27
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.137)

cLR62 = −12

9
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
10

9
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.138)

cLR63 = −1

6
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
14

9
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.139)

cLR64 =
2

9
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.140)

cRL61 = −1

9
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 −
40

27
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.141)

cRL62 = −12

9
d(d+ 2)g6

3m
2
g̃ Ĩ[q4]33

g̃0 +
8

9
d(d2 + 6d+ 8)g6

3 Ĩ[q6]33
g̃0, (4.142)

cLR,1`
51 = cRL,1`

51 = −g
4
3

3
mg̃ Ĩ12

g̃0, (4.143)
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cLR,1`
52 = cRL,1`

52 = −8

3
g4

3xtmg̃ Ĩ12
g̃0, (4.144)

cG = −g
2
3

2
Ĩ2
g̃ . (4.145)

In the calculation of these corrections the relations gµνgµν = d = 4−ε and (C.12) were used

repeatedly. The one-loop corrections δm2
q̃ and δm2

ũ to the third generation squark mass

parameters have already been calculated in [42] and our results agree with the expressions

found there.

Since supersymmetry is only softly broken in the MSSM it is convenient to use DRED

as a regulator. Once the gluino is integrated out from the theory, supersymmetry is ex-

plicitly broken and it is natural to regularize the EFT in DREG. This switch in the

regularization scheme introduces further contributions to the couplings of the EFT coming

from the epsilon scalars. In the formalism of the UOLEA the relevant operators which

contribute here are given by [10]

ε

κ
L1`

reg =−
∑
i

(m2
ε )i(X̆

µ
εεµ)ii +

1

2

∑
ij

(X̆µ
εεν)ij(X̆

ν
εεµ)ji

+
∑
ij

2
cFj
{

2mψj(X̆
µ
εψ)ij(X̆ψ̄εµ)ji + (X̆µ

εψ)ijγ
ν
[
Pν , (X̆ψ̄εµ)ji

]}
−
∑
ijk

2
cFj+cFk−1

(X̆µ
εψ)ijγ

ν(Xψ̄ψ)jkγν(X̆ψ̄εµ)ki

+
ε

12
tr
[
G′µνG

′µν] ,
(4.146)

The X̆ operators are projections of the corresponding 4-dimensional ones X̊ onto the ε-

dimensional QεS space, i.e.

X̆µ = ğµσX̊
σ, (4.147)

X̆µν = ğµσ ğ
ν
ρX̊

σρ, (4.148)

see appendix D. Furthermore, G′µν = −ig3G
a
µνT

a is the gluon field strength tensor. For

the top quark (a Dirac fermion) we have cF = 0, and for the gluino (a Majorana fermion)

cF = 1. From (4.146) we obtain the following additional contributions to the couplings of

the EFT

(δm2
q̃)ε = (δm2

ũ)ε = −4

3
g2

3m
2
ε , (4.149)

(ctL)ε = (ctR)ε =
4

3
g2

3, (4.150)

(cL41)ε =
1

72
g4

3, (4.151)

(cL42)ε =
7

24
g4

3, (4.152)

(cR4 )ε =
11

36
g4

3, (4.153)

(cLR41 )ε =
1

36
g4

3, (4.154)
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(cLR42 )ε =
7

12
g4

3, (4.155)

(cLL51 )ε = (cLL52 )ε = (cRR51 )ε = (cRR52 )ε =
3g4

3

2mg̃
d, (4.156)

(cLR51 )ε = (cRL52 )ε = −3g4
3

mg̃
d, (4.157)

(cG)ε = −g
2
3

4
. (4.158)

The term ∝ m2
ε on the r.h.s. of (4.149) can be removed by switching from the DR to

the DR
′

scheme [43], which involves shifting m2
q̃ and m2

ũ by finite terms. Notice also that

the one-loop DRED-DREG conversion corrections to the coefficients of the dimension 5

operators arise from the third line of (4.146), which among other terms contains the term

(X̆µ
εt)γ

ν(Xt̄g̃ )γν(X̆¯̃gεµ). (4.159)

Here (X̆¯̃gεµ) has an explicit dependence on the gluino spinor g̃,

(X̆¯̃gεµ)ba =
ig3

2
γ̆µfabcg̃c, (4.160)

which must be eliminated by inserting the background field from (4.97). As noted above

the threshold corrections for the two stop masses agree with the results derived in [42]

when the effect of the sbottom quarks is neglected.

5 Conclusions

In this paper we have presented an extension of the Universal One-Loop Effective Action

(UOLEA) by all one-loop operators up to dimension 6 for generic theories with scalar

and fermionic fields, excluding operators stemming from open covariant derivatives in the

UV Lagrangian. Our generic results can be used to derive the analytic expressions of all

one-loop Wilson coefficients up to dimension 6 of an effective Lagrangian from a given UV

theory with heavy scalar or fermionic particles, as long as second derivatives of the UV

Lagrangian w.r.t. the fields do not contain covariant derivatives. Thus, our new results

allow for an application of the UOLEA to a broader class of UV models than before.

To illustrate and test our generic results we have applied the UOLEA to different

EFTs of the SM and the MSSM, where parts of the spectrum are heavy. We were able

to reproduce known results from the literature, including the prediction of some one-loop

Wilson coefficients of higher-dimensional operators of the SMEFT.

We have published our results in form of the two Mathematica files UOLEA.m and

LoopFunctions.m provided in the arXiv submission, which allow for a direct use of our

expressions and a potential implementation into generic tools such as CoDEx or spectrum

generator generators such as SARAH and FlexibleSUSY.
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A Fermionic shifts

In this section we discuss the consistency of the shift (2.33). The treatment of the shift given

in (2.40) is analogous but somewhat more involved. Since ξ is a multiplet of Majorana-like

component spinors, for the shift

δξ′ = δξ + ∆−1
ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

]
(A.1)

to be consistent it is necessary and sufficient that(
∆−1
ξ

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

])T
=
[
δΞT X̃Ξξ + δΦT X̃Φξ + δφT X̃φξ

]←−
∆−1
ξ . (A.2)

In the following we show that (A.2) holds. We first construct ∆−1
ξ in position space through

its Neumann series5

∆−1
ξ (x, y) =

∞∑
n=0

 n∏
i=1
n>0

∫
ddxi S(xi−1, xi) (−Xξξ(xi))

S(xn, y)1̃C−1

≡
∞∑
n=0

 n∏
i=1
n>0

Sxi−1xi (−Xξξxi)

Sxny1̃C−1, (A.3)

where x0 ≡ x and S(x, y) is the matrix-valued Green’s function for ( /P−Mξ), which itself can

be expressed through a Neumann series. To keep expressions short we also introduced the

convention of denoting space-time points by indices, where repeated indices are integrated

over. We may write (/P −Mξ) = (i/∂ −Mξ −A) with

A = i
∑
j

gj /A
a
jT

a
j , (A.4)

where we sum over all factors of the gauge group for a direct product group and T aj is a

block-diagonal matrix which generates the reducible representation of ξ. Due to the fact

that ξ contains ω, ωC and λ (see table 1), the generator is of the form

T a =

T
a
R(ω) 0 0

0 T a
R̄(ω)

0

0 0 T aR(λ)

 , (A.5)

5In what follows we always write the whole series. In practice, however, we are only ever interested in a

finite number of terms with all higher order terms being suppressed by higher powers of couplings.
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where R(ω) is the representation under which ω transforms, R̄(ω) its conjugate represen-

tation and R(λ) is the representation of λ, which is necessarily real. We then have

Sxy =

∞∑
k=0

 k∏
i=1
k>0

Sf,xi−1xiAxi

Sf,xky, (A.6)

where again x0 ≡ x and Sf,xy is the matrix containing the Green’s function of the free

Dirac equation on its diagonal. It can be verified by explicit calculation that

Sxy

(
−i
←−
/∂y −Mξ −Ay

)
= δxy, (A.7)

which means that

∆−1
ξ,xy

←−
∆ξ,y = δxy (A.8)

and therefore
←−
∆−1
ξ,yx = ∆−1

ξ,yx. Hence (A.2) reads(
∆−1
ξ,xy

[
X̃ξΞδΞ− X̃ξΦδΦ− X̃ξφδφ

]
y

)T
=
[
δΞT X̃Ξξ + δΦT X̃Φξ + δφT X̃φξ

]
y
∆−1
ξ,yx.

(A.9)

It is then useful to calculate

C1̃STxy = C1̃
∞∑
k=0

STf,xky

 1∏
i=k
k>0

AT
xiS

T
f,xi−1xi

 (A.10)

= C1̃
∞∑
k=0

CSf,yxkC
−1

 1∏
i=k
k>0

AT
xiCSf,xixi−1

C−1

 (A.11)

= −
∞∑
k=0

1̃Sf,yxk 1̃1̃

 1∏
i=k
k>0

(−At
xi)1̃1̃Sf,xixi−1

1̃1̃

 C−1 (A.12)

= −
∞∑
k=0

Sf,yxk

 1∏
i=k
k>0

(−1̃At
xi 1̃)Sf,xixi−1

 1̃C−1 (A.13)

= −
∞∑
k=0

Sf,yxk

 1∏
i=k
k>0

AxiSf,xixi−1

 1̃C−1 (A.14)

= −Syx1̃C−1, (A.15)

where At means taking the transpose of the gauge group generators only and we used that

1̃

A 0 0

0 B 0

0 0 C

 1̃ =

B 0 0

0 A 0

0 0 C

 . (A.16)
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We then find

(
∆−1
ξ,xy

)T
= C1̃

∞∑
n=0

STxn,y

 n∏
i=1
n>0

(−Xξξ,xi)
T STxi−1xi

 (A.17)

=
∞∑
n=0

Syxn 1̃C

 n∏
i=1
n>0

(−Xξξ,xi)
T STxi−1xi

 (A.18)

=

∞∑
n=0

Syxn 1̃C

 n∏
i=1
n>0

(−Xξξ,xi)
T
1̃C−11̃CSTxi−1xi 1̃C

−11̃C

 (A.19)

=

∞∑
n=0

Syxn 1̃C

 n∏
i=1
n>0

(−Xξξ,xi)
T
1̃C−1Sxixi−11̃C

 (A.20)

= −
∞∑
n=0

Syxn

 n∏
i=1
n>0

(−Xξξ,xi) Sxixi−1

 1̃C−1 (A.21)

= −∆−1
ξyx, (A.22)

where we used that

C1̃XT
ξξ1̃C−1 = Xξξ. (A.23)

Noting that

X̃T
ξΞ = −X̃Ξξ, (A.24)

X̃T
ξΦ = X̃Φξ, (A.25)

X̃T
ξφ = X̃φξ, (A.26)

the validity of (A.2) follows immediately.

B Loop functions

The integrals Ĩ[q2nc ]
ninj ...nL
ij...0 are defined as in [18], that is∫

ddq

(2π)d
qµ1qµ2 . . . qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj . . . (q2)nL
≡ i

16π2
gµ1µ2...µ2nc Ĩ[q2nc ]

ninj ...nL
ij...0 , (B.1)

where gµ1µ2...µ2nc is the completely symmetric combination of metric tensors with 2nc
indices, for instance gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ. For nc = 0 we define the shorthand

notation Ĩ[q0]
ninj ...nL
ij...0 ≡ Ĩninj ...nLij...0 . The integrals can be reduced to basis integrals using

the reduction relations [18]

Ĩ[q2nc ]
ninj ...nL
ij...0 =

1

∆2
ij

(
Ĩ[q2nc ]ninj−1...nL − Ĩ[q2nc ]ni−1nj ...nL

)
, (B.2)

Ĩ[q2nc ]
ninj ...nL
ij...0 =

1

M2
i

(
Ĩ[q2nc ]ninj ...nL−1 − Ĩ[q2nc ]ni−1nj ...nL

)
, (B.3)
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where ∆2
ij = M2

i −M2
j . For convenience we have included the reduction algorithm and the

basis integrals in the Mathematica file LoopFunctions.m of the arXiv submission with the

correspondence

Ĩ[q2nc ]
ninj ...nL
ij...0 ≡ J [nc, {{Mi, ni}, {Mj , nj}, . . .}, nL]. (B.4)

C Useful relations for spinors and SU(N) groups

We define the charge conjugate ψC of a 4-spinor ψ as

ψC ≡ Cψ̄T , ψC = ψTC, (C.1)

where C is the charge conjugation operator and ψ̄ = ψ†γ0. It follows from this definition

that

(ψR)C = C ψL
T
, (ψL)C = C ψR

T
. (C.2)

The following properties of C hold in the Dirac and Weyl representation:

C = iγ2γ0, (C.3)

C = −C−1 = −C† = −CT , (C.4)

CγµC−1 = −(γµ)T , (C.5)

Cγ5C−1 = (γ5)T = γ5, (C.6)

Cγ5γµC−1 = (γ5γµ)T = (γµ)Tγ5, (C.7)

CPLC−1 = (PL)T = PL, (C.8)

CPRC−1 = (PR)T = PR. (C.9)

In our formalism we require that if a model contains Dirac spinors ψ, then the Lagrangian

is expressed in terms of ψ and ψ̄. If the model contains Majorana spinors λ, we require

that the Lagrangian is expressed only in terms of λ, but not in terms of λ̄. Note that λ̄

can always be rewritten as

λ̄ = (λC)TC = λTC (C.10)

because for Majorana fermions λC = λ. When contracting spinor indices the following

identity may be used

ψTΓT ψ̄T = −ψ̄Γψ. (C.11)

A useful relation for the generators T a of the fundamental representation of SU(N) is

T aijT
a
kl =

1

2

(
δilδjk −

1

N
δijδkl

)
. (C.12)
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D Dimensional regularization and dimensional reduction

Throughout this publication we have assumed that the models are regularized in dimen-

sional regularization (DREG) [37], where loop calculations are performed in a quasi-d-

dimensional space QdS with the metric tensor gµν with the property

gµνgµν = d = 4− ε. (D.1)

Although DREG is suited for non-supersymmetric models, it is cumbersome to use in

supersymmetric models, as it explicitly breaks supersymmetry [44]. For supersymmetric

models regularization by dimensional reduction (DRED) [33] is more suited, because it

is currently known to not break supersymmetry up to the three-loop level [39, 45, 46].

In DRED the quasi-4-dimensional space, denoted as Q4S, is decomposed into a quasi-d-

dimensional space QdS and a quasi-ε-dimensional space QεS, as Q4S = QdS ⊕QεS [39].

The corresponding 4- and ε-dimensional metrics are denoted as g̊µν and ğµν , respectively,

and the following properties hold:

g̊µν = gµν + ğµν , (D.2)

ğµσ g̊
σν = ğµν , (D.3)

gµσ g̊
σν = gµν , (D.4)

g̊µν g̊µν = 4, (D.5)

gµνgµν = d, (D.6)

ğµν ğµν = ε, (D.7)

ğµνgµν = 0, (D.8)

tr(γµγµ) = 4d. (D.9)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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