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1 Introduction

Unitarity is at the heart of the traditional, Feynman diagrammatic approach to calculating

scattering amplitudes. It is built into the framework of quantum field theory. Modern on-

shell methods provide an alternative way to calculate scattering amplitudes. While they

eschew Lagrangians, gauge symmetries, virtual particles and other redundancies associated

with the traditional formalism of QFT, unitarity remains a central principle that needs to
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be imposed. It has allowed the construction of loop amplitudes from tree amplitudes via

generalized Unitarity methods [1–5] and the development of loop level BCFW recursion

relations [6, 7]. These on-shell methods have been particularly fruitful in planar N = 4

SYM and led to the development of the on-shell diagrams in [8] and the discovery of

the underlying Grassmannian structure. Locality and unitarity seemed to be the guiding

principles which dictated how the on-shell diagrams glued together to yield the amplitude.

The discovery of the amplituhedron in [9, 10] revealed the deeper principles behind this

process - positive geometry. Positivity dictated how the on-shell diagrams were to be glued

together. The resulting scattering amplitudes were miraculously local and unitary!

This discovery of the amplituhedron was inspired by the polytope structure of the

six point NMHV scattering amplitude, first elucidated in [11] and expanded upon in [12].

This motivated the original definition of the amplituhedron which was analogous to the

definition of the interior of a polygon. The tree amplituhedron An,k,0 was defined as the

span of k planes Y I
α , living in (k+4) dimensions. Here I = {1, . . . , k+4} and α = {1, . . . k}.

Y I
α = CαaZIa (1.1)

where ZIa (a = 1, . . . n) are positive external data in (k + 4) dimensions. In this context,

positivity refers to the conditions det
{
Za1 , . . .Zak+4

}
≡ 〈Za1 . . .Zak+4

〉 > 0 if a1 < · · · <
ak+4 and Cαa ∈ G+(k, n). G+(k, n) is the positive Grassmannian defined as the set of all

k×n matrices with ordered, positive k×k minors. For more details on the properties of the

positive Grassmannian, see [8, 13–15] and the references therein. The scattering amplitude

can be related to the differential form with logarithmic singularities on the boundaries of

the amplituhedron. The exact relation along with the extension of eq. (1.1) to loop level

can be found in [9].

The amplituhedron thus replaced the principles of unitarity and locality by a central

tenant of positivity. Tree level locality emerges as a simple consequence of the boundary

structure of the amplituhedron, which in turn is dictated by positivity. The emergence of

unitarity is more obscure. It is reflected in the factorization of the geometry on approaching

certain boundaries. This was proved for A4,0,L in [10]. The extension of this proof to

amplitudes with arbitrary multiplicity using (1.1) is cumbersome and requires the use

of the topological definition of the amplituhedron introduced in [16]. In the following

section, we review this definition in some detail along with some properties of scattering

amplitudes relevant to this paper. We also expound the relation between the amplituhedron

and scattering amplitudes. The rest of the paper is structured as follows. In section 3,

we present a proof of unitarity of scattering amplitudes for 4 point amplitudes of planar

N = 4 SYM, using the topological definition of the amplituhedron. This serves as a warm

up to section 4 in which we provide a proof which is valid for MHV amplitudes of any

multiplicity. Finally, in section 5 we show how the proof of the previous section can be

extended to deal with the complexity of higher k sectors.
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Figure 1. A representation of the relationship between momenta and momentum twistors, taken

from [19].

2 Review of the topological definition of An,k,L

The scattering amplitudes extracted from the amplituhedron defined as in (1.1), using the

procedure outlined in [9], reproduce the Grassmannian integral form of scattering ampli-

tudes presented in [13–15, 17, 18]. These necessarily involve the auxiliary variables Cαa. In

contrast, the topological definition of the amplituhedron can be stated entirely in terms of

the 4D momentum twistors (first introduced in [11]). Consequently, this yields amplitudes

that can be thought of as differential forms on the space of momentum twistors. In this

section, we will review the basic concepts involved in the topological definition of the ampli-

tuhedron. We begin with a review of momentum twistors and their connection to momenta

in section 2.1 and proceed to the topological definition of the amplituhedron in section 2.2.

We then explain how amplitudes are extracted from the amplituhedron in section 2.3 and

finally, in section 2.4, we set up the statement of the optical theorem in the language of

momentum twistors. This is the statement we will prove in the main body of the paper.

2.1 Momentum twistors

Momentum twistor space is the projective space CP3. A connection to physical momenta

can be made by writing them in the coordinates of an embedding C4 as Za =
(
λaα, µ

α̇
a

)
.

Here (λ, λ̃) are the spinor helicity variables which trivialize the on-shell condition.

paαα̇ ≡ λaαλ̃a α̇ =⇒ p2a = det(λa, λa) det(λ̃a, λ̃a) = 0

µα̇a = xαα̇a λaα where the dual momenta xa are defined via pa = xa − xa−1 and trivialize

conservation of momentum. Thus the point xa in dual momentum space is associated to a

line in momentum twistor space. Scattering amplitudes in N = 4 SYM involve momenta

pa which are null (p2a = 0) and are conserved (
∑

a pa = 0). Momentum twistors are ideally

suited to describe the momenta involved in these amplitudes because they trivialize both

these constraints. Figure 1 summarizes the point-line correspondence between points in

dual momentum space and lines in momentum twistor space. Thus all the points of the form

Za =
(
λaα, x

αα̇
a λaα

)
(2.1)

are associated to the momentum pa. Note that these Za are different from the calligraphic

Za used in (1.1)(the connection between the two is that Za are obtained by projecting the
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Za through the k−plane Y in (1.1)). Thus, a set of on-shell momenta {p1, . . . pn} satisfy-

ing
∑n

a=1 pa = 0 can be represented by an ordered set of momentum twistors {Z1, . . . Zn}.
Each line ZaZa+1 corresponds to the point xa in dual momentum space as shown in figure 1.

Each loop momentum `a can also be associated to a line in momentum twistor space.

We denote these lines by (AB)a, where A and B are any representative points. This

helps us distinguish loop momenta from other external momenta. We can express Lorentz

invariants in terms of determinants of momentum twistors using the relation

(xa − xb)2 =
〈a− 1ab− 1b〉
〈a− 1a〉〈b− 1b〉

(2.2)

with 〈abcd〉 = det {Za, Zb, Zc, Zd} and 〈ab〉 = det {I∞, Za, Zb} where I∞ is the infinity

twistor [14, 19]. Finally, we connect the invariants involving the ZIa with the four bracket via

〈ZaZbZcZd〉 = εI1...Ik+4
Y I1
1 . . . Y Ik

k Z
Ik+1
a ZIk+2

b ZIk+3
c ZIk+4

d

We will utilize this connection later in section 5.4.

2.2 Topological definition

The amplituhedron An,k,L is a region in momentum twistor space which can be cut out

by inequalities. The region depends on the integers n, k and L which specify the n−point,

NkMHV amplitude. n is the number external legs of the amplitude and correspondingly

the number of momentum twistors which are involved in the definition of the amplituhe-

dron. We denote these by {Z1, . . . Zn}. L is the number of loops and we have the lines,

(AB)1, . . . . . . (AB)L corresponding to the L loop momenta `1, . . . `L. k appears below in

the inequalities that define An,k,L.

2.2.1 Tree level conditions

The first set of conditions that define the amplituhedron involve only the external momen-

tum twistors Za and we refer to these as the “tree-level” conditions. They are listed below

along with some comments about each condition.

• The external data must satisfy the following positivity conditions.

〈ii+ 1jj + 1〉 > 0 i = 1, . . . n (2.3)

We adopt an ordering (1, . . . n) in all definitions. We must also define a twisted cyclic

symmetry for this ordering with

Zn+i ≡ (−1)k−1Zi (2.4)

This definition is required to ensure that 〈ii+1n1〉 > 0 for odd k and 〈ii+1n1〉 < 0 for

even k. We will see below that this is crucial to obtain the right number of sign flips.

• We require that the sequence

Stree : {〈1234〉, 〈1235〉 . . . 〈123n〉} has k sign flips. (2.5)

– 4 –
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Note that the ordering (1, . . . n) is crucial for the above condition to make sense. Us-

ing (2.3), (2.5) and the reasoning in appendix A, we can conclude that all sequences

of the form{
〈ii+1i+2i+3〉, . . .〈ii+1i+2n〉,(−1)k−1〈ii+1i+21〉, . . .〈ii+1i+2i−1〉(−1)k−1

}
with i = 1, . . . n have k sign flips. The use of (2.4) is crucial in arriving at this

conclusion. Since all the sequences {〈ii+ 1i+ 2j〉}j=i−1j=i+3 have the same number of

flips (with the appropriate twisted cyclic symmetry factors), we can use any of them

in place of the sequence {〈123i〉}i=ni=4 . In the rest of the paper, we will the sequence

which is most convenient to the situation.

2.2.2 Loop level conditions

The next set of conditions involve both the external data and the loops (AB)a and we refer

to these as “loop level” conditions.

• Each loop (AB)a must satisfy a positivity condition analogous to (2.3)

〈(AB)aii+ 1〉 > 0 i = 1, . . . n (2.6)

Note that we must include the twisted cyclic symmetry factor (−1)k−1 here as well.

Once again, this implies that 〈(AB)an1〉 > 0 for odd k and 〈(AB)a1n〉 > 0 for even k.

• We require that sequence

Sloop : {〈(AB)a12〉, 〈(AB)a13〉, . . . 〈(AB)a1n〉} has k + 2 flips. (2.7)

Following a line of reasoning similar to that in 2.2.1, we can show that all sequences

of the form{
〈(AB)aii+ 1〉, . . . 〈(AB)ain〉, 〈(AB)ai1〉(−1)k−1, . . . 〈(AB)aii− 1〉(−1)k−1

}
with i = 1, . . . n have the same number of sign flips. We will make use of these

sequences as convenient in the rest of the paper.

2.2.3 Mutual positivity condition

The final condition is a relation involving multiple loop momenta (AB)a. We must have

〈(AB)a(AB)b〉 > 0 ∀a, b = {1, . . . L} (2.8)

For multi loop amplitudes, the conditions above amount to demanding that each loop

(AB)a is in the one-loop amplituhedron (i.e. it satisfies conditions (2.6) and (2.7)) and

also the mutual positivity condition (2.8). Finding a solution to all these inequalities is

tantamount to computing the n−point NkMHV amplitude. The complexity of solving the

mutual positivity condition shows up even in the simplest case of n = 4. Indeed, its solution

is at the heart of the four point problem, as explained in [10].

The topological definition is well suited to exploring cuts of amplitudes (which corre-

spond to saturating some of the inequalities in (2.3)–(2.8) by setting them to be equal to

zero). This formalism has been exploited to investigate the structure some cuts of ampli-

tudes that are inaccessible by any other means. The results of some classes of these “deep”

cuts are obtained to all loop orders in [20, 21].

– 5 –
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2.3 Amplitudes and integrands as canonical forms

The inequalities (2.3)–(2.8) define a region in the space of momentum twistors. The goal

of the amplituhedron program is to be able to obtain the amplitude from purely geometric

considerations. More precisely, we can obtain the tree level amplitude and the loop level

integrand for planar N = 4 SYM. In contrast to generic quantum field theories, the planar

integrand in N = 4 SYM is a well defined, rational function as shown in [7, 22]. The

conjecture here is that the Canonical form associated to the amplituhedron is the loop

integrand. The Canonical form associated to a region is the differential form with loga-

rithmic singularities on all the boundaries of that region. For more details on Canonical

forms, their properties and precise definitions, see [23]. The discovery of amplituhedron-like

geometric structures (for e.g. [24–27]) in other theories lends further support to the idea

that amplitudes can be thought of as differential forms on kinematic spaces. Some conse-

quences of this are explored in [28]. It is interesting to note that a topological definition of

the amplituhedron has been found directly in momentum space [29]. This allows for the

possibility of expressing N = 4 SYM amplitudes as differential forms in momentum space

rather than momentum twistor space.

It is illustrative to show the calculation of the canonical form for the simple case of

A4,0,1. This canonical form should be the 4-point, one-loop MHV integrand. The defining

inequalities are

Tree Level : 〈1234〉 > 0 (2.9)

Loop Level : 〈AB12〉 > 0, 〈AB23〉 > 0, 〈AB34〉 > 0, 〈AB14〉 > 0,

〈AB13〉 < 0, 〈AB24〉 < 0

Since A,B ∈ C4, we can expand these in a basis consisting of {Z1, Z2, Z3, Z4}. However,

A,B are arbitrary points on the line AB which corresponds to the loop momentum. Since

any linear combination (A′, B′) of the points A and B is also on the same line, there is

a GL(2) redundancy in the choice of A and B. Fixing this redundancy, we arrive at the

following parametrization.

A = Z1 + α1Z2 + α2Z3 B = −Z1 + β1Z3 + β2Z4

The solution to the inequalities in (2.9) is

α1 > 0 α2 > 0 β1 > 0 β2 > 0

The boundaries are located at α1 = α2 = β1 = β2 = 0 and the differential form with

logarithmic singularities on all the boundaries is just

dα1

α1

dα2

α2

dβ1
β1

dβ2
β2

=
〈ABd2A〉〈ABd2B〉

Vol(GL(2))

〈1234〉2

〈AB12〉〈AB23〉〈AB34〉〈AB14〉

This is the integrand for the 1-loop four point MHV amplitude as conjectured.

At higher points, the situation is more complicated cases. There are multiple ways

in which the sequence Sloop (2.7) can have k + 2 sign flips. It is useful to triangulate the

– 6 –
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Figure 2. Structure of a unitarity cut of MHV amplitudes. The loop (AB) is cut and the residue

factorizes as shown.

complete region by enumerating all such patterns. This procedure works extremely well

for n−point MHV amplitudes and is fleshed out in section 7 of [16]. Specifically, if we

parametrize

Aa = Z1 + α1Zi + α2Zi+1 Ba = −Z1 + β1Zj + β2Zj+1 (2.10)

with αi > 0, βi > 0, we have 〈(AB)a1i〉
〈(AB)a1i+1〉 = −α1

α2
and 〈(AB)a1j〉

〈(AB)a1j+1〉 = −β1
β2

. The sequence

{ 〈(AB)a1i〉} has two sign flips, one occurring between 〈(AB)a1i〉 and 〈(AB)a1i + 1〉 and

the second between 〈(AB)a1j〉 and 〈(AB)a1j + 1〉. Summing over all i < j = {1, . . . n}
covers all the positions of the flips. The canonical form for this region is the integrand of

the n− point MHV amplitude.

∑
i<j

〈ABd2A〉〈ABd2B〉 〈AB(1ii+ 1 ∩ 1jj + 1)〉2

〈AB1i〉〈AB1i+ 1〉〈ABii+ 1〉〈AB1j〉〈AB1j + 1〉〈ABjj + 1〉

For another derivation of this integrand, please refer to [7].

Finally, an important property of these forms is that they are all projectively well

defined. They are invariant under the re-scaling Zi → tiZi of each external leg. We will

make use of this property in section 5.

2.4 Unitarity and the optical theorem

The relationship between the singularity structure of scattering amplitudes and unitarity

has been the subject of a lot of work. [1–5, 22, 30–32]. It is well known that the branch cut

structure of amplitudes is intimately tied to perturbative unitarity. This is encapsulated

in the optical theorem which related the discontinuity across a double cut to the product

of lower loop amplitudes.

The presence of branch points in loop amplitudes is due to the pole structure of the

integrand. This is governed by the boundary structure of the amplituhedron. The structure

of boundaries and their relation to branch points has been studied extensively in [33–

40]. The discontinuity across a branch cut is calculated by the residue on an appropriate

boundary of the amplituhedron. The optical theorem thus translates into a statement

about the factorization of the residue on this boundary. We expect this factorization to

emerge as a consequence of the positive geometry.

– 7 –
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Let us begin by rewriting the optical theorem, specifically for N = 4 SYM in the

language of momentum twistors. For now, we will focus on MHV amplitudes. We are

interested in the case where one of the loops, AB, cuts the lines ii + 1 and jj + 1 and

all other loops (which we denote by (AB)a) remain uncut. Thus we are calculating the

residue of the n − point MHV amplitude on the cut 〈ABii + 1〉 = 〈ABjj + 1〉 = 0. It is

convenient to parametrize AB as

A = Zi + xZi+1 + w1Z? B = yZj + Zj+1 + w2Z? (2.11)

where Z? is an arbitrary reference twistor. The terms in the L-loop integrand which

contribute to this cut (which has the required poles) can be written as

ML
n =

〈ABd2A〉〈ABd2B〉
〈ABii+ 1〉〈ABjj + 1〉

L−1∏
a=1

〈(AB)ad
2Aa〉〈(AB)ad

2Ba〉f(x, y, w1, w2, (AB)a)

The dependence of f on the external twistors has been suppressed. The residue of ML
n on

the cut 〈ABii+ 1〉 = 〈ABjj + 1〉 = 0 is

Resw1=w2=0ML
n =

dx dy

g(x, y)

L−1∏
a=1

〈(AB)ad
2Aa〉〈(AB)ad

2Ba〉f(x, y, 0, 0, (AB)a) (2.12)

where g(x, y) is a Jacobian which is irrelevant to our purposes. Unitarity predicts that the

function f(x, y, 0, 0, (AB)a) is related to lower point amplitudes (see figure 2) and is of the

form

f(x, y, 0, 0, (AB)a) =
∑

L1+L2=L−1
ML1
L (Zj+1, . . . Zi, A,B)ML2

R (B,A,Zi+1, . . . , Zj) (2.13)

We will show that this structure emerges from the geometry of the amplituhedron. We will

first present a proof for the four point case. This is just a rewriting of the proof found in [10]

using the topological definition. This proof will then admit a generalization to amplitudes

of higher multiplicity.

3 Proof for 4 point amplitudes

In this section we will examine the unitarity cut 〈AB12〉 = 〈AB34〉 = 0, at four points

and show that the residue can be written as a product of lower loop, 4-point amplitudes.

Specifically, we will show that the defining conditions of the amplituhedron (2.3)–(2.7)

can be replaced by two disjoint set of conditions which define a “left amplituhedron” with

external data {Z1, A,B, Z4} and a “right” amplituhedron with external data {A,Z2, Z3, B}.
We will show that the mutual positivity conditions in (2.8) which seemingly connect the

“left” and “right” amplituhedra are automatically satisfied once the defining conditions for

the “left” and “right” amplituhedra are met. This suffices to prove that the canonical form

on the cut is ∑
L1+L2=L−1

ML1
L (Z1, A,B, Z4) ML2

R (B,A,Z2, Z3)

– 8 –
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Figure 3. Structure of the unitarity cut at 4 points.

where ML1
L (Z1, A,B, Z4) and ML2

R (B,A,Z2, Z3) are the canonical forms of the “left” and

“right” amplituhedra respectively. A suitable parametrization of (AB) is

A = Z1 + xZ2 B = yZ3 + Z4 (3.1)

This ensures the cut conditions are satisfied. To compute the canonical form on the cut, we

must solve the remaining inequalities. The tree level constraints (2.3), (2.5) trivially imply

〈1234〉 > 0. The remaining loop level conditions in (2.6) and (2.7) impose 〈AB13〉 < 0

and 〈AB14〉 > 0 which ensure x > 0, y > 0. Denoting the uncut loops as (AB)a with

a = 1, . . . L− 1, the remaining inequalities are loop positivity conditions,

〈(AB)ajj + 1〉 > 0 ∀j = 1, . . . 4, (3.2)

mutual positivity among the uncut loops

〈(AB)a(AB)b〉 > 0, (3.3)

and mutual positivity with the cut loop

〈ABAaBa〉 = 〈AaBa13〉y + 〈AaBa14〉+ 〈AaBa23〉xy + 〈AaBa24〉x > 0. (3.4)

Here we have used the parametrization (3.1) for A and B. The consequences of this

inequality are best understood by considering the related quantity (〈(AB)a2B〉〈(AB)aA3〉).
Using (3.1) for A and B, we can rewrite this as follows.

(〈(AB)a2B〉〈(AB)aA3〉)
= (〈AaBa24〉+ 〈AaBa23〉y) (〈AaBa13〉+ 〈AaBa23〉x)

= 〈ABAaBa〉〈AaBa23〉 − 〈AaBa14〉〈AaBa23〉+ 〈AaBa13〉〈AaBa24〉
= 〈ABAaBa〉〈AaBa23〉+ 〈(AaBa1 ∩AaBa2)34〉
= 〈ABAaBa〉〈AaBa23〉+ 〈AaBa12〉〈AaBa34〉 (3.5)

The above equation implies 〈(AB)a2B〉〈(AB)aA3〉 > 0 as each term on the right hand side

is individually positive due to (3.2) and (3.4). The two possible solutions are

〈(AB)a2B〉 > 0 〈(AB)aA3〉 > 0 (3.6)

– 9 –
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and

〈(AB)a2B〉 < 0 〈(AB)aA3〉 < 0 (3.7)

A particular loop (AB)a may satisfy either (3.6) or (3.7). In a generic case, there will

be L1 loops, (AB)a1 which obey (3.6) and L2 = L − L1 − 1 loops, (AB)a2 which obey

(3.7). There are no restrictions on what values L1 and L2 can take. Consequently, the

complete region satisfying the inequalities (3.2) and (3.4) is a sum over all values of L1

and L2 with L1 +L2 = L− 1. We will now show that the canonical form for a region with

fixed L1 and L2 can be written as a product of forms for amplituhedra A4,0,L1 and A4,0,L2 .

From figure 3, it is clear the external data corresponding to the left amplitude is the set

{Z1, A,B, Z4}. Any loops (AB)a1 which belongs to this amplituhedron must satisfy the

defining conditions (2.3), (2.5), (2.6), (2.7).

Tree Level 〈1AB4〉 = 〈AB14〉 = 〈1234〉 > 0 from (3.1) (3.8)

Loop level 〈(AB)a11A〉 = x 〈(AB)a112〉 > 0 〈(AB)a1B4〉 = y〈(AB)a134〉 > 0

Both of these follow from (3.1) and (3.2)

〈(AB)a1 AB〉 > 0 from (3.4)

The sequence {〈(AB)a11A〉, 〈(AB)a11B〉, 〈(AB)a114〉} has 2 sign flips

Mutual positivity 〈(AB)a1(AB)a′1〉 > 0 (3.3),

The flip condition is the only one left to be verified and follows from the Plücker relation

〈(AB)a11B〉〈(AB)a123〉 − 〈(AB)a12B〉〈(AB)a113〉 = 〈(AB)a112〉〈(AB)a1B3〉 (3.9)

This can be derived by noting that the 5 twistors {B,Aa1 , Ba1 , Z1, Z2} are linearly depen-

dent which leads to the condition

〈BAa1Ba11〉Z2 + 〈Aa1Ba112〉B + 〈Ba112B〉Aa1 + 〈12BAa1〉Ba1 + 〈2BAa1Ba1〉Z1 = 0.

Contracting this with (AB)a1Z3 yields (3.9). Note that the r.h.s. of (3.9) is negative since

〈(AB)a1B3〉 = −〈(AB)a134〉 < 0 while the signs of the terms in the l.h.s. are

{〈(AB)a123〉, 〈(AB)a12B〉, 〈(AB)a113〉} (3.10)

{ + ,+ , − }

This forces 〈(AB)a1B〉 < 0 and ensures that the sequence in (3.8) has 2 flips.

Similarly, the external data for the right is the set {A,Z2, Z3, B} and a loop (AB)a2
which belongs to it satisfies the following conditions.

Tree Level 〈A23B〉 = 〈AB23〉 > 0 (3.11)

Loop level 〈(AB)a2A2〉 = 〈(AB)a212〉 > 0 〈(AB)a223〉 > 0

〈(AB)a23B〉 = 〈(AB)a234〉 > 0

The sequence {〈(AB)a2A2〉, 〈(AB)a2A3〉, 〈(AB)a2AB〉} has 2 sign flips

Mutual positivity 〈(AB)a2(AB)a′2〉 > 0,
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Clearly, the conditions (3.8) and (3.11) define the amplituhedra A4,0,L1 and A4,0,L2 with

canonical forms ML1
L (Z1, A,B, Z4) and ML2

R (B,A,Z2, Z3) respectively. To complete the

proof that the canonical form on the cut is just the product of these forms, we must

show that mutual positivity between the loops (AB)a1 and (AB)a2 imposes no further

constraints. To see this, we can expand the loop (AB)a1 in terms of {Z1, A,B, Z4}

Aa1 = Z1 + α1A+ α2B Ba1 = −Z1 + β1B + β2Z4

and compute 〈(AB)a1(AB)a2〉 which yields,

〈(AB)a1(AB)a2〉 = y〈(AB)a21B〉β1+〈(AB)a214〉β2+〈(AB)a21A〉(α1)+〈(AB)a2AB〉α1β1

+〈(AB)a2A4〉a21β2+〈(AB)a21B〉(a22)+〈(AB)a2B4〉a22β2 (3.12)

The positivity of all the terms except for 〈(AB)a2A4〉 and 〈(AB)a2B1〉 immediately follows

from (3.11). For these two, we have

〈(AB)a2A4〉 = 〈(AB)a2A(B − y3)〉 = 〈(AB)a2AB〉 − y〈(AB)a2A3〉 > 0

〈(AB)a21B〉 = 〈(AB)a2(A− x2)B〉 = 〈(AB)a2AB〉 − x〈(AB)a22B〉 > 0

Therefore, 〈(AB)a1(AB)a2〉 > 0 imposes no new constraints and the canonical form on the

cut factorizes into ML and MR.

4 Proof for MHV amplitudes of arbitrary multiplicity

We will extend the above results to amplitudes of arbitrary multiplicity. However, the

existence of higher k sectors beginning with n = 5 complicates the proof. In this section

we will focus on a proof of unitarity for MHV amplitudes. This allows us to sketch the

essentials of the proof without additional complications. In the next section, we modify

the proof to account for higher k sectors.

We are examining the residue of the MHV amplituhedron An,0,L (Z1, . . . , Zn) on the

cut 〈ABii + 1〉 = 〈ABjj + 1〉 = 0. For the rest of the paper, we will assume j 6= i + 1.1

The defining conditions for the amplituhedron An,0,L{Z1, . . . Zn} are

Tree Level 〈ijkl〉 > 0 for i < j < k < l (4.1)

Loop level 〈ii+ 1〉 > 0

The sequence S = {〈i+ 1i+ 2〉, . . . 〈i+ 1n〉,−〈i+ 11〉, · · · − 〈i+ 1i〉}
has 2 sign flips.

Mutual Positivity 〈(AB)a(AB)b〉 > 0 ∀a, b ∈ {1, . . . L}

Here, 〈ij〉 ≡ 〈(AB)aij〉. We have chosen to look at the flip pattern of a particularly

convenient sequence. All other related sequences will also have the same number of flips

as mentioned in section 2.2.2.
1In the singular case of j = i + 1, the amplitude factorizes into a 3-point MHV or MHV amplitude a

n + 1 point MHV amplitude. The 3 point case is degenerate and the use of momentum twistors ensures

that all the defining conditions(on-shell and momentum conservation) are always satisfied. There are no

further constraints that need to be imposed.

– 11 –
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Figure 4. The left amplituhedron.

There are clearly many patterns of signs for which the sequences S has two sign flips.

We refer to each pattern as a configuration of the amplituhedron. A configuration for the

MHV amplituhedron is specified by giving the signs of all entries of the sequence S. We

would like to show that for each configuration, the canonical form can be written as the

product of canonical forms of a left and right amplituhedron. To begin, we can parametrize

the cut loop AB as

A = Zi + xZi+1 B = y Zj + Zj+1 (4.2)

To show that the canonical form on this cut can written as a product of canonical forms for

lower loop, “left” and “right” MHV amplituhedra ALn1,0,L1
and ARn2,0,L2

(with L2 = L−L1−
1), we need precise definitions of these objects. This is provided in the following section.

4.1 Left and right amplituhedra

4.1.1 The left amplituhedron An1,0,L1

The left amplituhedron An1,0,L1 is defined by three sets of conditions similar to (4.1). In this

case, the external data, as seen from figure 4 is the set L = {Z1, . . . Zi, A,B, Zj+1, . . . , Zn}.
Letting a, b, c, d denote elements of this set and 〈ij〉 ≡ 〈(AB)aij〉, the defining conditions are

Tree Level ∀a < b < c < d ∈ L
〈abcd〉 > 0, 〈iAab〉 > 0, 〈ABab〉 > 0, 〈Bj + 1ab〉 > 0

These are satisfied if x > 0 and y > 0.

Loop Level 〈aa+ 1〉 > 0, 〈iA〉 > 0, 〈AB〉 > 0, 〈Bj + 1〉 > 0

The sequence SL = {〈iA〉, 〈iB〉, 〈ij + 1〉, . . . 〈in〉,−〈i1〉, · · · − 〈ii− 1〉}
has 2 sign flips

Mutual Positivity 〈(AB)a(AB)b〉 > 0.

The above sequence lends itself to easy comparison with the sequence S in (4.1). However,

for consistency, we must also verify that the following sequences have the same number of
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Figure 5. The right amplituhedron.

sign flips as SL.

{〈AB〉, 〈Aj + 1〉, . . . ,−〈Ai〉}
{〈Bj + 1〉, 〈Bj + 2〉, . . . ,−〈BA〉}

...

{〈i− 1i〉, 〈i− 1A〉, · · · − 〈i− 1i− 2〉}

This ensures that the definition of the amplituhedron is independent of the choice of se-

quence, similar to section 2.2.2. The positivity conditions on the loop data ensures that all

the first and last entries of these sequences are positive. Furthermore any two sequences

in the above set, all of which are of the form {〈ak〉} and {〈a+ 1k〉}, satisfy

〈ak〉〈a+ 1k + 1〉 − 〈ak + 1〉〈a+ 1k〉 = 〈aa+ 1〉〈kk + 1〉 > 0 (4.3)

The equality of sign flips now follows from the analysis in appendix A. This shows that

the left amplituhedron can be consistently defined at tree level. The mutual positivity and

the loop level positivity conditions for all the loops in the left amplituhedron are automat-

ically satisfied because of (4.2) and (4.1). The flip condition defines the criterion for any

uncut loop (AB)a to be in the left amplituhedron. We will present a detailed analysis in

section 4.2.

4.1.2 The right amplituhedron An2,0,L2

The external data for the right amplituhedron An2,0,L2 is R = {A,Zi+1, . . . , Zj , B} and

the defining inequalities are listed below. a, b, c, d ∈ R and 〈ij〉 ≡ 〈(AB)aij〉 with (AB)a
being an uncut loop.

Tree Level 〈abcd〉 > 0, 〈Ai+ 1ab〉 > 0, 〈abjB〉 > 0, (4.4)

〈ABab〉 > 0 with a < b < c < d

Loop Level 〈Ai+ 1〉 > 0, 〈jB〉 > 0, 〈aa+ 1〉 > 0

The sequence SR = {〈i+ 1i+ 2〉, . . . 〈i+ 1j〉, 〈i+ 1B〉,−〈i+ 1A〉}
has 2 sign flips

Mutual Positivity 〈(AB)a(AB)b〉 > 0
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Once again, for consistency we should verify that

S1 : {〈Ai+ 1〉, 〈Ai+ 2〉, . . . , 〈AB〉}
S2 : {〈i+ 2i+ 3〉, 〈i+ 2i+ 4〉, . . . ,−〈i+ 2i+ 1〉}

...

S2+j−i : {−〈BA〉,−〈Bi+ 1〉, · · · − 〈Bj〉}

all have the same number of sign flips as SR. The proof is identical to the one for the

left amplituhedron. The tree level, mutual positivity and loop level positivity conditions

are once again guaranteed by (4.2) and (4.1) and an analysis of the flip condition is in

section 4.2.

4.2 Factorization on the unitarity cut

It was shown in the last section that the two sets L = {Z1, . . . , Zi, A,B, Zj+1, . . . , Zn}
and R = {A,Zi+1, . . . Zj , B} define positive external data and that the loop level posi-

tivity conditions are satisfied. We need to analyze every configuration of the amplituhe-

dron and show that for each configuration, an uncut loop belongs to the left or the right

amplituhedron. The similar analysis for the 4 point case, performed in section 3, was

much simpler owing to the fact there was only one possible sign pattern for the sequence,

{〈AB12〉, 〈AB13〉, 〈AB14〉}. Here, the presence of multiple compatible sign patterns in-

creases the complexity of the proof and no simple relation like (3.5) exists. It is natural to

label the configurations of An,0,L(Z1, . . . Zn) by looking at the sign patterns in the sequence

S as explained below.

S = {〈i+ 1i+ 2〉, . . . 〈i+ 1j〉 〈i+ 1j + 1〉, . . . − 〈i+ 1i〉}

Note that the flip pattern of this sequence determines whether the loop (AB)a belongs to

the original amplituhedron which has external data {Z1, . . . Zn}. Consequently, it doesn’t

involve the points A and B. We have divided the sequence in a suggestive way. The left

half of S looks very similar to SR (4.4). It is natural to label the different flip patterns of

S as Sablr where a, b = ± are the signs of 〈i+ 1j〉 and 〈i+ 1j + 1〉 and l, r are the number

of flips in the left and right parts of S.

In order to compare SL (4.3) to S, we introduce the sequence

S′L = {〈i+ 1A〉, 〈i+ 1B〉, 〈i+ 1j + 1〉, · · · − 〈i+ 1i− 1〉} (4.5)

and call the number of flips in this sequence k′L flips. The motivation behind introducing

this is that SL and S′L are connected by the Plücker relation (similar to (4.3))

〈ik〉〈i+ 1k + 1〉 − 〈ik + 1〉〈i+ 1k〉 = 〈ii+ 1〉〈kk + 1〉 > 0 (4.6)

Following the analysis in appendix A, the relation between kL and k′L is determined entirely

by the signs of the first and last elements(
〈iA〉 −〈ii− 1〉
〈i+ 1A〉 −〈i+ 1i− 1〉

)
=

(
+ +

− 〈i− 1i+ 1〉

)
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where kL is the number of sign flips in SL. If 〈i− 1i+ 1〉 > 0, then kL = k′L − 1 otherwise

kL = k′L.

S now looks almost like a juxtaposition of SR and S′L. Each flip pattern of S determines

whether the corresponding loop (AB)a belongs to the left or the right amplituhedron as

shown below.

• S++20 = {+, . . . 2 flips · · ·+ + . . . 0 flips · · ·+}

The sequence SR clearly has 2 sign flips since

−〈i+ 1A〉 > 0 and 〈i+ 1j〉 > 0, 〈i+ 1j + 1〉 > 0 =⇒ 〈i+ 1B〉 > 0

S′L has one sign flip since

〈i+ 1A〉 > 0, 〈i+ 1B〉 > 0, 〈i− 1i+ 1〉 > 0.

Furthermore kL = k′L−1 = 0 and the loop (AB)a belongs only to the right amplituhedron.

• S++02 = {+, . . . 0 flips · · ·+ + . . . 2 flips · · ·+}

SR obviously has 0 sign flips. If 〈i− 1i+ 1〉 > 0, kL = k′L + 1 = 2 and if 〈i− 1i+ 1〉 < 0,

k′L = kL = 2. In both cases, the loop belongs to the left amplituhedron and not the right.

• S+−01 = {+, . . . 0 flips · · ·+ − . . . 1 flip · · ·+}

If 〈i+ 1B〉 > 0, then the sequence SR has 0 flips and the loop doesn’t belong to the right

amplituhedron. If 〈i − 1i + 1〉 > 0, k′L = 3 and kL = k′L − 1 = 2. Otherwise, k′L = 2 and

kL = k′L = 2. Thus irrespective of the sign of 〈i − 1i + 1〉, the loop (AB)a belongs to the

left amplituhedron.

If 〈i+ 1B〉 < 0, then SR has 2 sign flips and it can be shown that kL = 0 by analysis

similar to the cases above. This (AB)a belongs to the right amplituhedron.

• S−+10 = {+, . . . 1 flip · · · − + . . . 0 flips · · ·+}

In this case, SR has two flips and S′L has one flip irrespective of the sign of 〈i+ 1B〉. Since

kL = k′L − 1, we have kL = 0 and the loop belongs to the right amplituhedron.

• S−−11 = {+, . . . 1 flip · · · − − . . . 1 flip · · ·+}

Once again, it is simple to show that SR has two sign flips and SL has 0 sign flips in this

configuration.

4.2.1 Trivialized mutual positivity

We have shown that for every configuration of the amplituhedron, each loop belongs either

to the left or the right. While we can consistently define left and right amplituhedra, it

remains to be shown that the mutual positivity between a loop (AB)L, (L = 1, . . . L1)

in the left amplituhedron and a loop (AB)R (R = 1, . . . L2) in the right amplituhedron

doesn’t impose any extra constraints.

– 15 –



J
H
E
P
0
1
(
2
0
2
0
)
0
6
9

Figure 6. Unitarity cut for an NkMHV amplitude.

This is easiest to see if we expand each loop (AB)L and (AB)R using (2.10) as

AR = A+ α1Zr1 + α2Zr1+1 BR = −A+ β1Zr2 + β2Zr2+1

AL = A+ α3Zl1 + α4Zl1+1 BL = −A+ β3Zl2 + β4Zl2+1

with r1 < r2 ∈ {A,Zi+1, . . . , Zj , B} and l1 < l2 ∈ {Z1, . . . Zi, A,B, Zj+1, . . . , Zn}. On

expanding 〈(AB)L(AB)R〉, every term is of the form 〈l1l2r1r2〉 with l1 < l2 < r1 < r2.

Since the external data are positive, i.e. 〈ijkl〉 > 0 for i < j < k < l, we are assured that

〈(AB)L(AB)R〉 > 0.

This completes the proof of factorization for MHV amplituhedra on the unitarity cut.

In the next section, we will extended this proof to the higher k sectors.

5 Proof for higher k sectors

The proof of unitarity for higher k is similar in spirit to that for the MHV sector. However,

there are a lot additional details that we must take into account. Firstly, we must mod-

ify (2.13) to include products of “left” and “right” amplituhedra with different k. Suppose

the left amplitude has gL negative helicity gluons and the right amplitude has gR nega-

tive helicity gluons, then we have gL + gR = g + 2. With the MHV degrees defined as

kL = gL− 2, kR = gR− 2, k = g− 2, this equation reads kL + kR = k. Recall that we intro-

duced the function f(x, y, 0, 0, (AB)a) in (2.12) and stated the optical theorem in terms of

it. Including sectors of different k, this becomes,

f(x, y, 0, 0, (AB)a) =
∑

kL+kR=k

∑
L1+L2=L−1

MkL,L1

L MkR,L2

R (5.1)

We expect that unitarity emerges from a factorization property of the geometry in a

manner similar to the MHV case. In order to make this statement more precise, we will

have to define analogues of the left and right MHV amplituhedra for NkMHV external
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data. An,k,L, the NkMHV amplituhedron defined by the conditions

Tree level 〈ii+1jj+1〉> 0, 〈ii+1n1〉(−1)k−1> 0 and the sequence (5.2)

Stree :
{
〈ii+1i+2i+3〉, . . .〈ii+1i+2i−1〉(−1)k−1

}
has k sign flips.

Loop level 〈(AB)aii+1〉> 0, 〈ABn1〉(−1)k−1> 0 and the sequence

Sloop : {〈(AB)a12〉,〈(AB)a13〉, . . .〈(AB)a1n〉} has k+2 sign flips.

Mutual Positivity 〈(AB)a(AB)b〉> 0

We can use any sequence {〈ABki〉} instead of {〈AB1i〉} as explained in section 2.2.2.

It is worth re-emphasizing that we wish to prove that the canonical form on the cut

(which is computed by solving the inequalities (5.2) for the uncut loops (AB)a along with

〈ABii + 1〉 = 〈ABjj + 1〉 = 0) can be written as in (5.1). For this to happen, we want

to show that the set of inequalities in (5.2) can be replaced by two sets of inequalities

which define lower loop amplituhedra, ALn1,kL,L1
and ARn2,kR,L2

. It is not essential that the

external data for these is a subset of {Z1, . . . Zn}. In particular they can be rescaled by

factors Zi → σ(i)Zi and still yield the same canonical form due to projective invariance as

discussed in section 2.3. In fact, as we show below, this rescaling plays a crucial role in

ensuring that the left and right amplituhedra have k of both even and odd parity.

On the unitarity cut (〈ABii+ 1〉 = 〈ABjj + 1〉 = 0 with i+ 1 6= j), there is a natural

division of the external data into “left” and “right” sets, {Z1, . . . , Zi, A,B, Zj+1, . . . , Zn}
and {A,Zi+1, . . . , Zj , B}. However, insisting that this be the external data for the left and

right amplituhedra imposes too many constraints. To see this, suppose that the “left”

set has MHV degree kL. We must have 〈ABn1〉(−1)kL−1 > 0. But (5.2) implies that

〈ABn1〉(−1)k−1 > 0. This forces (−1)k+kL > 0 and restricts kL to be the same parity as

k. Similarly for the right set, we have 〈j − 1jBA〉(−1)kR−1 > 0 and again (5.2) implies

〈ABj−1j〉 > 0 which forces (−1)kR > 0. In order to avoid these extra constraints on kL and

kR, we must allow for arbitrary signs on the Zs and define two the sets of external data as

L = {σL(1)Z1, . . . σL(i)Zi, σL(A)A, σL(B)B, σL(j + 1)Zj+1, . . . , σL(n)Zn}
R = {σR(A)A, σR(i+ 1)i+ 1, . . . , σR(j)j, σR(B)B} (5.3)

where σ(k) = ±1. These signs will be determined by conditions like (5.2) which define the

left and right amplituhedra along with the appropriate twisted cyclic symmetry. We will

then show that the canonical form for every configuration in An,k,L can be mapped into a

product of canonical forms on suitably defined left and right amplituhedra ALn1,kL,L1
and

ARn2,kR,L2
.
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5.1 The left and right amplituhedra

5.1.1 The left amplituhedron AL
n1,kL,L1

We must demand that the set L satisfies all the conditions in (5.2). In addition, this must

also be compatible with the fact that the Zi are the external data for An,k,L.

〈aa+ 1bb+ 1〉σL(a)σL(a+ 1)σL(b)σL(b+ 1) > 0

〈ABaa+ 1〉σL(A)σL(B)σL(a)σL(a+ 1) > 0 (5.4)

∀ a, b ∈ {1, . . . , i− 1, j + 1, . . . , n− 1}

AB and the Zs automatically satisfy 〈aa + 1bb + 1〉 > 0 and 〈ABaa + 1〉 > 0. Thus we

have, σL(a)σL(a+1)σL(b)σL(b+1) > 0 and σL(A)σL(B)σL(a)σL(a+1) > 0. Furthermore,

we have new constraints on A and B coming from

〈iABj + 1〉σL(i)σL(A)σL(B)σL(j + 1) > 0

〈iAkk + 1〉σL(i)σL(A)σL(k)σL(k + 1) > 0 (5.5)

〈Bj + 1kk + 1〉σL(B)σL(j + 1)σL(k)σL(k + 1) > 0

Finally, since the set L is the external data for ALn1,kL,L1
, it must satisfy a twisted cyclic

symmetry

〈aa+ 1n1〉σL(a)σL(a+ 1)σL(n)σL(1)(−1)kL−1 > 0 (5.6)

Since 〈aa+1n1〉(−1)k−1 > 0, consistency requires (−1)k+kLσL(a)σL(a+1)σL(n)σL(1) > 0.

This divides into two cases

• (−1)k+kL < 0

An allowed set {σL(k)} satisfying (5.4) and (5.6) is

{σL(1), . . . , σL(i), σL(A), σL(B), σL(j + 1), . . . , σL(n)}
= {+, . . . , +, ? , ? , − , . . . , − }

with σL(A) and σL(B) undetermined. (5.4) requires σL(A)σL(B) > 0 and the constraints

in (5.5) read

〈iABj + 1〉 < 0 〈iAkk + 1〉σL(A) > 0 〈Bj + 1kk + 1〉σL(B) < 0

The solutions to these constraints are

L1 : σL(A) > 0, σL(B) > 0 with 〈iAkk + 1〉 > 0, 〈Bj + 1kk + 1〉 < 0, 〈iABj + 1〉 < 0

L2 : σL(A) < 0, σL(B) < 0 with 〈iAkk + 1〉 < 0, 〈Bj + 1kk + 1〉 > 0, 〈iABj + 1〉 < 0

• (−1)k+kL > 0

In this case {σL(k)} satisfying (5.4) and (5.6) is

{σL(1), . . . , σL(i), σL(A), σL(B), σL(j + 1), . . . , σL(n)}
= {+, . . . , +, ? , ? , + , . . . , + }
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Region A B Stree
L

L1 ±Zi + xZi+1 −yZj ± Zj+1

{
+, . . . , (−1)kL

}
L2 ±Zi − xZi+1 yZj ± Zj+1

{
−, . . . , (−1)kL−1

}
L3 ±Zi + xZi+1 yZj ± Zj+1

{
+, . . . , (−1)kL

}
L4 ±Zi − xZi+1 −yZj ± Zj+1

{
−, . . . , (−1)kL−1

}
Table 1. Parametrization of (AB) in the four regions.

which again requires σL(A)σL(B) > 0 and turns (5.5) into

〈iABj + 1〉 > 0 〈iAkk + 1〉σL(A) > 0 〈Bj + 1kk + 1〉σL(B) > 0.

This has the following solutions

L3 : σL(A) > 0, σL(B) > 0 with 〈iAkk + 1〉 > 0, 〈Bj + 1kk + 1〉 > 0, 〈iABj + 1〉 > 0

L4 : σL(A) < 0, σL(B) < 0 with 〈iAkk + 1〉 < 0, 〈Bj + 1kk + 1〉 < 0, 〈iABj + 1〉 > 0

Each of these regions is characterized by particular signs for 〈iAkk+ 1〉 and 〈Bj+ 1kk+ 1〉
along with a pattern of sign flips for the sequence

Stree
L :

{
〈i− 1iAB〉σL(B), 〈i− 1iAj + 1〉σL(j + 1), . . . 〈i− 1iAi− 2〉(−1)kL−1σL(i− 2)

}
.

Each region allows parametrization of the line (AB) as A = ±Zi±xZi+1 and B = ±yZj ±
Zj+1 with x > 0, y > 0. In table 1, we list the different possibilities.

It is crucial to remember that the canonical form is independent of the choice of σ(i)

and parametrization of A and B. In all these cases the canonical form is that of An1,kL,L1 .

5.1.2 The right amplituhedron AR
n2,kR,L2

A similar analysis of the effects of (5.2) on the setR yields the following constraints on {σR}.

σR(a)σR(a+ 1)σR(b)σR(b+ 1) > 0 (5.7)

σR(A)σR(i+ 1)σR(k)σR(k + 1)〈Ai+ 1kk + 1〉 > 0

σR(j)σR(B)σR(k)σR(k + 1)〈jBkk + 1〉 > 0

σR(B)σR(A)σR(k)σR(k + 1)〈BAkk + 1〉(−1)kL−1 > 0

σR(A)σR(B)σ(i+ 1)σR(j)〈ABi+ 1j〉 > 0

These conditions are satisfied by

{σR(1), . . . , σR(i), σR(A), σR(B), σR(j + 1), . . . , σR(n)}
= {+, . . . , +, ? , ? , + , . . . , + }

with σR(A) and σR(B) having solutions depending on kR.
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Region A B Stree
R

R1 Zi ± xZi+1 ±yZj + Zj+1 {+, . . . ,+}
R2 −Zi ± xZi+1 ±yZj − Zj+1 {+, . . . ,+}
R3 Zi ± xZi+1 ±yZj − Zj+1 {+, . . . ,−}
R4 −Zi ± xZi+1 ±yZj + Zj+1 {−, . . . ,+}

Table 2. Parametrization of (AB) in the four regions.

• (−1)kR > 0

R1 : σR(A) > 0, σR(B) > 0 with 〈Ai+ 1kk + 1〉 > 0, 〈jBkk + 1〉 > 0, 〈ABi+ 1j〉 > 0

R2 : σR(A) < 0, σR(B) < 0 with 〈Ai+ 1kk + 1〉 < 0, 〈jBkk + 1〉 < 0, 〈ABi+ 1j〉 > 0

• (−1)kR < 0

R3 : σR(A) > 0, σR(B) < 0 with 〈Ai+ 1kk + 1〉 > 0, 〈jBkk + 1〉 < 0, 〈ABi+ 1j〉 < 0

R4 : σR(A) < 0, σR(B) > 0 with 〈Ai+ 1kk + 1〉 < 0, 〈jBkk + 1〉 > 0, 〈ABi+ 1j〉 < 0

Once again, each region is characterized by different pattern of sign flips of the sequence

Stree
R : {〈Ai+ 1i+ 2i+ 3〉σR(i+ 3), . . . , 〈Ai+ 1i+ 2B〉σR(B)}

where we have ignored an overall factor of σR(A)σR(i + 1)σR(i + 2). We list the various

parametrizations and sign patterns of Stree
R in table 2.

The canonical form is independent of the choice of σ(i) and parametrization of A and

B.

5.2 Factorization of the external data

We will show that, on the unitarity cut, for every allowed sign flip pattern of the sequence

Stree, there exist regions Li,Ri such that Stree
L and Stree

R have the flip patterns necessary

for ALn1,kL,L1
and ARn2,kR,L2

. The analysis that follows is similar to the one is section 4.2.

The sequence SR is similar to the left part of Stree and can be compared directly. In order

to compare Stree
L with Stree, it is necessary to introduce another sequence S′treeL . This is

analogous to what we did in (4.5).

S
′tree
L :

{
〈i+ 2iAB〉σL(B), 〈i+ 2iAj + 1〉σL(j + 1), . . . , 〈i+ 2iAi− 2〉σL(i− 2)(−1)kL−1

}
Let k, kL, k

′
L, kR be the number of flips in Stree

L , S
′tree
L , Stree

R , Stree respectively. kL and k′L
are related to each other due to the following Plücker relations

σL(B)σL(j + 1) (〈i− 1iAB〉〈i+ 2iAj + 1〉 − 〈i− 1iAj + 1〉〈i+ 2iAB〉)
= σL(B)σL(j + 1)〈i− 1iAi+ 2〉〈iABj + 1〉 > 0
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sign(〈iAaa+ 1〉) sign(〈Ai+ 1aa+ 1〉) sign(〈i− 2ii+ 1i+ 2〉) kL − k′L
+ + + 0

+ + - 1

+ - + -1

+ - - 0

- + + -1

- + - 0

- - + 0

- - - 1

Table 3. Relation between kL and k′L determined according to appendix A.

and

〈i− 1iAk〉〈i+ 2iAk + 1〉 − 〈i− 1iAk + 1〉〈i+ 2iAk〉
= 〈i− 1iAi+ 2〉〈iAkk + 1〉 > 0

It is easy to see that these hold in all regions (Li,Ri). As shown in appendix A, we can

conclude that the relation between kL and k′L depends only on the signs of first and last

terms which are encoded in the matrix below.

M =

(
sign(〈i− 1iAB〉) sign(〈i− 2i− 1iA〉)(−1)kL

sign(〈i+ 2iAB〉) sign(〈i− 2iAi+ 2〉)(−1)kL

)
(5.8)

≡

(
+ +

sign(〈iAaa+ 1〉)sign(〈Ai+ 1aa+ 1〉) sign(〈i− 2ii+ 1i+ 2〉)

)

The relation between kL and k′L is tabulated in table 3.

It is helpful to label all the allowed flip patterns of Stree as Stree
ab where a and b are

the signs of 〈ii+ 1i+ 2j〉 and 〈ii+ 1i+ 2j + 1〉 respectively. The different possibilities are

shown below.

Stree :
{
〈ii+1i+2i+3〉, . . .〈ii+1i+2j〉〈ii+1i+2j+1〉, . . . ,〈ii+1i+2i−1〉(−1)k−1

}
Stree
++ :

{
+ k1 + + k2 (−1)k

}
Stree
+− :

{
+ k1 + − k2 (−1)k

}
Stree
−+ :

{
+ k1 − + k2 (−1)k

}
Stree
−− :

{
+ k1 − − k2 (−1)k

}
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Stree
++ R1 R2 R3 R4

L1 (k2 + 1, k1) (k2 − 1, k1) (k2 + 1, k1 + 1) (k2 − 1, k1 + 1)

L2 (k2 − 1, k1) (k2 + 1, k1) (k2 − 1, k1 + 1) (k2 + 1, k1 + 1)

L3 (k2, k1) (k2, k1) (k2, k1 + 1) (k2, k1 + 1)

L4 (k2, k1) (k2, k1) (k2, k1 + 1) (k2, k1 + 1)

Table 4. (kL, kR) in all regions for the configuration S++.

Stree
+− R1 R2 R3 R4

L1 (k2, k1) (k2, k1) (k2, k1 + 1) (k2, k1 + 1)

L2 (k2, k1) (k2, k1) (k2, k1 + 1) (k2, k1 + 1)

L3 (k2 + 1, k1) (k2 − 1, k1) (k2 + 1, k1 + 1) (k2 − 1, k1 + 1)

L4 (k2 − 1, k1) (k2 + 1, k1) (k2 − 1, k1 + 1) (k2 + 1, k1 + 1)

Table 5. (kL, kR) in all regions for the configuration S+−.

Stree
−+ R1 R2 R3 R4

L1 (k2 + 1, k1 + 1) (k2 − 1, k1 + 1) (k2 + 1, k1) (k2 − 1, k1)

L2 (k2 − 1, k1 + 1) (k2 + 1, k1 + 1) (k2 − 1, k1) (k2 + 1, k1)

L3 (k2, k1 + 1) (k2, k1 + 1) (k2, k1) (k2, k1)

L4 (k2, k1 + 1) (k2, k1 + 1) (k2, k1) (k2, k1)

Table 6. (kL, kR) in all regions for the configuration S−+.

Stree
−− R1 R2 R3 R4

L1 (k2, k1 + 1) (k2, k1 + 1) (k2, k1) (k2, k1)

L2 (k2, k1 + 1) (k2, k1 + 1) (k2, k1) (k2, k1)

L3 (k2 + 1, k1 + 1) (k2 − 1, k1 + 1) (k2 + 1, k1) (k2 − 1, k1)

L4 (k2 − 1, k1 + 1) (k2 + 1, k1 + 1) (k2 − 1, k1) (k2 + 1, k1)

Table 7. (kL, kR) in all regions for the configuration S−−.

For each configuration, Stree
ab , the sequences SL and SR have the following signs depending

on the region (Li,Ri). For the configuration S++, we have k1+k2 = k. Thus regions which

satisfies kL + kR = k are (L1,R4), (L2,R3), (L3,R1), (L3,R2), (L4,R1), (L4,R2). For the

configuration S+−, we have k1 + k2 = k − 1. Thus regions which satisfies kL + kR = k are

(L1,R3), (L1,R4), (L2,R3), (L2,R4), (L3,R1), (L4,R2).

For the configuration S−+, we have k1 + k2 = k − 1. Thus regions which satisfies

kL + kR = k are (L1,R3), (L2,R4), (L3,R1), (L3,R2), (L4,R1), (L4,R2).

For the configuration S−−, we have k1+k2 = k. Thus regions which satisfies kL+kR = k

are (L1,R3), (L1,R4), (L2,R3), (L2,R4), (L3,R2), (L4,R1).
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We see that for every configuration Stree
ab , there are regions (Li,Ri) that satisfy kL +

kR = k. Thus every configuration in the original amplituhedron can be covered by these

regions consistent with the expected factorization. The remaining regions exist because

they are related to amplitudes via inverse soft factors and have identical canonical forms.

However, these are not necessary to cover all regions of the original amplituhedron.

5.3 Factorization of loop level data

At loop level, we need to show that each loop (AB)a belongs either to the left or the right

amplituhedron. The relevant sequences are (denoting 〈(AB)aij〉 as 〈ij〉)

Sloop
R =

{
〈i+1i+2〉σR(i+2), . . . ,〈i+1j〉σR(j),〈i+1B〉σR(B),(−1)kr−1〈i+1A〉σR(A)

}
Sloop
L =

{
〈iA〉σL(A),〈iB〉σL(B),〈ij+1〉σL(j+1), . . . ,〈ii−1〉σL(i−1)(−1)kl−1

}
Similar to before, it will be convenient to introduce the sequence S

′loop
L

S
′loop
L =

{
〈i+1A〉σL(A),〈i+1B〉σL(B),〈i+1j+1〉σL(j+1),...,〈i+1i−1〉σL(i−1)(−1)kl−1

}
Let the number of flips in Sloop

R and Sloop
L be kr and kl respectively. These are not kR and

kL, which are the number of flips in the tree level sequences Stree
R and Stree

L respectively.

The flip patterns of Stree can be organized as follows.

Sloop :
{
〈i+ 1i+ 2〉, 〈i+ 1i+ 3〉, . . . , 〈i+ 1j〉〈i+ 1j + 1〉, . . . , 〈i+ 1i〉(−1)k−1

}
Sloop
++ :

{
+ k1 + + k2 (−1)k

}
Sloop
+− :

{
+ k1 + − k2 (−1)k

}
Sloop
−+ :

{
+ k1 − + k2 (−1)k

}
Sloop
−− :

{
+ k1 − − k2 (−1)k

}
We showed in the previous section that on the unitarity cut, the external data factorizes

such that kL + kR = k with kL, kR ∈ {0, . . . k}. It is trivially true that each loop belongs

either to the left or the right amplituhedron. We must show that if a loop (AB)a belongs

to the left amplituhedron, then it cannot belong to the right amplituhedron. First, note

that in each configuration, we will have kl = k2 + l and kr = k1 + r with r, l = 1 or 2. Now

suppose that (AB)a belongs to both the left and right amplituhedra. Then we must have

kl = kL + 2 and kr = kR + 2. Expressing kl and kr in terms of k1, l, k2 and r, and using

kL + kR = k, we get

l + r =

{
4 if k1 + k2 = k

5 if k1 + k2 = k − 1
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Clearly, l + r = 5 is impossible since l, r = 1 or 2. We just need to show that l + r = 4 is

impossible. Note that this is possible only if l = r = 2. In this case, the following hold true.(
〈i+ 1j〉σR(j), 〈i+ 1B〉σR(B), (−1)kr

)
∼ (−1)kr(+,−,+)

(〈i+ 1A〉σL(A), 〈i+ 1B〉σL(B), 〈i+ 1j + 1〉σL(j + 1))

=
(
−σL(A)σR(A),−(−1)krσR(B)σL(B), 〈i+ 1j + 1〉σL(j + 1)

)
= (+,−,+) or (−,+,−)

In all these cases, we must have σR(A)σR(B)σL(A)σL(B)(−1)kR < 0. It is easy to verify

from section 5.1 that this is always false. Thus each loop belongs solely to the left or the

right ampltuhedron.

5.4 Mutual positivity

To complete the proof of factorization, we need to show that the mutual positivity between

a loop in ALn1,kL,L1
and one in ARn2,kR,L2

is automatically satisfied. This is easier to see

while working with (k + 2) dimensional data. We can re-write all the four brackets using

Z ′s and the k−plane Y as described in section 2.1. For more details, see section 7 of [16].

A loop in the left amplituhedron can be parametrized as a kL + 2 plane Y L
1 . . . Y L

kL
AaBa.

Y L
ν = (−1)ν−1σL(A)A+ αν σL(iν)Ziν + βν σL(ν + 1)Ziν+1 (5.9)

Aa = (−1)kL+1σL(A)A+ αkL+1 σL(ikL+1)ZikL+1
+ βikL+1

σL(ikL+1 + 1)ZikL+1+1

Ba = (−1)kL+2σL(A)A+ αkL+2 σL(ikL+2)ZikL+2
+ βikL+2

σL(ikL+2 + 1)ZikL+2+1

with ν = {1, . . . kL}, Ziν ∈ {Z1, . . .Zi, A,B,Zj+1,Zn} and i1 < i2 < . . . iKL + 2.

Similarly, a loop in the right amplituhedron can be thought of as a kR + 2 plane

Y R
1 . . . Y R

kR
AbBb and parametrized as

Y R
µ = (−1)µ−1σR(A)A+ αµ σR(iµ)Ziµ + βµ σR(µ+ 1)Ziµ+1 (5.10)

Ab = (−1)kR+1σR(A)A+ αkR+1 σR(ikR+1)ZikR+1
+ βikR+1

σR(ikR+1 + 1)ZikR+1+1

Bb = (−1)kR+2σR(A)A+ αkR+2 σR(ikR+2)ZikR+2
+ βikR+2

σR(ikR+2 + 1)ZikR+2+1

with µ ∈ {1, . . . kR}, Ziµ ∈ {A,Zi+1, . . . ,Zj , B} and with j1 < j2 < . . . jkR+2.

This reduces the mutual positivity condition 〈Y L(AB)aY
R(AB)b〉 > 0 to a condition

involving k + 4 brackets of the form 〈ijklm〉. It is easy to see that with positive k + 4

dimensional data (〈i1 . . . ik+4〉 when i1 < i2 < . . . ik+4), mutual positivity is guaranteed.

The signs σL(k) and σR(k) are crucial in making this work.

6 Conclusions

We have shown that unitarity can be an emergent feature. The positivity of the geome-

try inevitably leads to amplitudes identical to those derived from a unitary quantum field

theory. This lends further support for the conjecture that the amplituhedron computes all

the amplitudes of N = 4 SYM. It also suggests that the notion of positivity is more fun-

damental than those of unitarity and locality which are the cornerstones of the traditional

framework of quantum field theory.
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A Restricting flip patterns

Consider a pair of sequences {a1, . . . , an} and {b1, . . . , bn} which have an equal number of

terms. Further suppose that they are connected by the Schouten identity and satisfy a

postivity condition, i.e. there exists a relation aibi+1 − ai+1bi = ab > 0. We will show that

the number of sign flips in these sequences, k1 and k2 respectively, are related and that the

relation depends only on the signs of a1, an, b1 and bn.

Firstly, we note that the positivity forces each block in the pair of sequences

(
ai ai+1

bi bi+1

)
to take one of the following forms.

Type 1:

(
+ +

+ +

)
,

(
+ +

− −

)
,

(
− −
+ +

)
,

(
− −
− −

)

Type 2:

(
+ −
− +

)
,

(
+ −
+ −

)
,

(
− +

+ −

)
,

(
− +

− +

)

Type 3:

(
+ +

− +

)
,

(
− −
+ −

)

Type 4:

(
+ −
+ +

)(
− +

− −

)
,

Blocks of type 1 and 2 leave k1 − k2 fixed. A block of type 3 changes k1 − k2 by −1 and a

block of type 4 changes it by 1. Two consecutive blocks of type 3 or 4 are prohibited and

a block of type 4 must follow a block of type 3 before the sign of the bottom sequence can

be flipped without flipping the sign of the top. Thus, if we know the signs of a1, an, b1 and

bn, we can determine k1 − k2. We can list the possibilities by the matrices

(
s(a1) s(an)

s(b1) s(bn)

)
where s(x) is the sign of x.

• k1 = k2 (
+ +

+ +

)(
+ −
+ −

)(
+ +

− −

)(
+ −
− +

)(
− −
+ +

)(
− +

+ −

)(
− −
− −

)(
− +

− +

)

• k1 = k2 + 1 (
+ −
+ +

)(
+ +

+ −

)(
− +

− −

)(
− −
− +

)
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• k1 = k2 − 1 (
− +

+ +

)(
+ +

− +

)(
+ −
− −

)(
− −
+ −

)
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