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1 Introduction

For computing scattering amplitudes in maximally supersymmetric Yang-Mills theory in

four dimensions, supertwistors have provided an extremely powerful formalism [1]. Since

maximally supersymmetric D = 4 super-Yang-Mills theory naturally arises from com-

pactification of ten-dimensional super-Yang-Mills theory, it is natural to ask if these four-

dimensional supertwistor techniques can be extended to ten dimensions. Hints that this

may be possible have come from superstring theory, either through ambitwistor string

approaches [2, 3] or through twistor-like approaches to covariant quantization of the su-

perstring [4].

Ambitwistor strings [2, 5, 6] are chiral worldsheet theories that provide the two-dimen-

sional quantum field theories that give rise to the CHY formulae for the scattering of

massless particles in any spacetime dimension [7–9] as an extension of the four-dimensional

twistor-string [1, 10, 11]. In particular, these chiral models for Type IIA/IIB supergravity

in ten-dimensional spacetime reproduce the standard tree amplitudes corresponding to the

massless modes of type IIA/IIB superstring theory [12]. Yang-Mills tree amplitudes can

be obtained from the chiral model of the heterotic string, but other sectors of the heterotic

ambitwistor string do not give rise to standard gravity [13].

In the late eighties and early nineties, there was great interest in covariant approaches

to quantizing superparticle and superstring models. A novel model was introduced by one
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of us [4] that covariantly quantizes the ten-dimensional massless superparticle model using

twistor variables. These consist of a pair of 16-component bosonic spinors of opposite

chirality together with a ten-dimensional fermionic vector (λα, wβ, ψ
m). These are related

to standard ten-dimensional superspace (xm, θα) through the incidence relations

wα = Xm(γmλ)α − iψm(γmθ)α , ψ
m = (λγmθ) . (1.1)

The twistor variables classically solve the massless condition P 2 = 0 via

Pm = λα(γm)αβλ
β , (1.2)

where m = 0, . . . , 9, α, β = 1, . . . 16 and (γm)αβ are the 10d Pauli matrices, and the

massless condition follows from the special 10d Fierz identity (γm)α(β(γ
m)γδ) = 0. Al-

though the solution of (1.2) introduces reducible constraints, covariant quantization in this

twistor framework for the superparticle is straightforward after including three generations

of ghost-for-ghosts for a consistent BRST approach. Unfortunately, this twistor approach

to covariantly quantizing the ten-dimensional superparticle did not generalize to the full

superstring since it was unable to describe massive states.

Following the ideas developed in [2, 5] to construct the ambitwistor actions, we will con-

struct the supertwistor ambitwistor string action using the ten-dimensional supertwistors

mentioned above. We replace the worldline of the superparticle by a Riemann sphere and

the time derivatives are replaced by the antiholomorphic derivative ∂̄ to give a supertwistor

ambitwistor string action. This new chiral supertwistor model will be reducible as in the

superparticle version. The BRST structures of these models were studied in [14]. The

analysis is revisited here also in section 3 to show that the heterotic and IIB models are

critical in 10d. The covariant analysis is complicated with ghosts for ghosts and so on. To

avoid these difficulties, a light-cone gauge analysis will be performed here.

We first develop the RNS model of [2] in light-cone gauge to obtain new formulae for

tree amplitudes. These are still based on solutions to the scattering equations, but these

are presented in a novel form in terms of interaction operators. We then give a light-cone

gauge treatment of the twistorial 10d ambitwistor-string. In this gauge we are able to define

physical vertex operators and interaction-point operators. Using the standard light-cone

gauge amplitude prescription, we demonstrate that this formalism is equivalent to the light-

cone RNS ambitwistor string framework and can be used to compute tree amplitudes. Work

is in progress on providing a fully covariant description of this ten-dimensional supertwistor

model.

This paper is organized as follows. In section 2 we review the supertwistor description

of the ten-dimensional massless superparticle starting from the ten-dimensional Brink-

Schwarz superparticle, and ten-dimensional super-Maxwell is shown to be described by

canonical first quantization of this model. In section 3 we introduce the supertwistor

ambitwistor string using the action found in section 2. We then give a light-cone gauge

treatment of the RNS ambitwistor string in section 4. Using a similar light-cone gauge

choice, we fix in section 5 all the constraints in the supertwistor ambitwistor string and

demonstrate the equivalence of N-point tree-level scattering amplitudes in this formalism
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with N-point tree-level scattering amplitudes in the light-cone gauge RNS ambitwistor

string.

2 Review of supertwistors for 10D massless superparticles

2.1 Standard 10D massless superparticle

The ten-dimensional Brink-Schwarz superparticle is described by the action:

S =

∫

dτ

[

Pm(Ẋm − iθ̇γmθ) +
1

2
eP 2

]

(2.1)

where Xm, Pm are bosonic SO(1, 9) vectors, θα is a fermionic SO(1, 9) Majorana-Weyl

spinor, e is the Lagrange multiplier enforcing the massless condition P 2 = 0 and (γm)αβ ,

(γm)αβ are the Pauli matrices, symmetric real 16× 16 matrices satisfying

(γm)αβ(γn)βδ + (γn)αβ(γm)βδ = 2ηmnδαδ .

This action is invariant under the global Poincaré group together with the global

supersymmetry:

δθα = ǫα , δXm = −i(δθγmθ) , δPm = 0 , δe = 0 . (2.2)

with conserved currents for the super-Poincaré group, pm := Pm for translations and

Mmn :=
1

2
P [mXn] +

i

4
Pp(θγ

mnpθ) , (2.3)

qα := −2iPm(γmθ)α , (2.4)

for Lorentz transformations and supersymmetry respectively.

The action also has a local fermionic κ-symmetry :

δθα = Pm(γmκ) , δXm = −i(θγmδθ) , δe = −4iθ̇ακα , δPm = 0 , (2.5)

and a gauge symmetry

δe = ǫ̇ , δXm = −ǫPm, δ(θα, Pm) = 0. (2.6)

The orbits of these two symmetries together are super null geodesics of dimension 1|8 and

reducing (Xm, Pm, θα)|P 2=0 by these local symmetries gives Witten’s superambitwistor

space A, the 18|8-dimensional phase space of massless 10d-superparticles [15].

2.2 Review of supertwistor description of the D = 10 massless superparticle

We define a supertwistor to be Z = (λα, wα, ψm) where ψm is a fermionic real ten-

dimensional vector and the bosonic parts λα and wβ are real 16 component spinors of

opposite chirality combining to form a bosonic twistor ZA, a 32 component chiral spinor

for the conformal group SO(2, 10). There is a natural invariant skew form on such super-

twistors

Ω(Z1,Z2) = λα
1w2α − λ

β
2w1β + iψm

1 ψ2m − iψm
2 ψ1m . (2.7)
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In order to describe the ten-dimensional superparticle using supertwistors, one solves

the massless condition P 2 = 0 using (1.2) to define Pm in terms of λα, Pm = (λγmλ). It

then follows that

wα = Xm(γmλ)α − iψm(γmθ)α , ψm = (λγmθ) , (2.8)

are invariant under the κ-symmetry (2.5) and gauge symmetry (2.6). In order to be able

to obtain (Xm, θα) satisfying (2.8), Z must be subject to the constraints

g := (λγmλ)ψm = 0 (2.9)

Gα := (λγmλ)(γmw)α − 2λα(λw) + 2iψmψn(γmγnλ)
α = 0 . (2.10)

These constraints are not independent of each other as

Hm := (λγmG)− 4iψmg = 0 . (2.11)

Using the 10d-gamma matrix identity (γm)(αβ(γ
m)δ)ǫ = 0, one readily finds that

(λγmλ)Hm = 0. Thus one is left with 16− 9 = 7 independent bosonic constraints. These

first-class constraints generate the gauge transformations

δηwα = 2(γmλ)α(ηγmw)− 2ηα(λw)− 2(λη)wα + 2iψmψn(ηγmγn)α

δηλ
α = −(γmη)α(λγmλ) + 2(λη)λα

δηψ
m = ψn(ηγnγ

mλ)− ψn(ηγmγnλ)

δξwα = 2ξ(γmλ)αψ
m

δξψ
m = ξ(λγmλ) (2.12)

where ηα and ξ are arbitrary SO(1, 9) bosonic spinor and fermionic scalar parameters

respectively. So the twistor model actually possesses 32 − 14 = 18 independent bosonic

and 10 − 2 = 8 independent fermionic degrees of freedom, i.e., the dimension of A, the

phase space of the ten-dimensional Brink-Schwarz superparticle.

The above relations imply

ẊmPm = 2λαẇα + 2iψ̇mψm + 2iψm(λγmθ̇)− ∂τ (X
mPm)

−iPm(θ̇γmθ) = −2iψm(λγmθ̇) . (2.13)

So ignoring boundary terms, the superparticle action (2.1) can be written in terms of

supertwistor variables as

S =

∫

dτ [Ω(Z, Ż) + hαG
α + fg] =

∫

dτ [2λαẇα + 2iψ̇mψm + hαG
α + fg] (2.14)

where hα, f are Lagrange multipliers enforcing the twistor constraints.

The super-Poincare currents can be written in terms of supertwistors as

pm = (λγmλ) , qα = 4iψm(γmλ)α ,M
mn =

1

2
(λγmnw)− i

2
ψ[mψn] (2.15)

where the Lorentz generators are obtained from the identity

(λγnγpw) = ηnpXmPm + 2X [pPn] − iψm(λγnγpγmθ) (2.16)

that follows from (2.8).
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2.3 Quantization

The canonical quantization yields the (anti)commutators for the superwistor variables

[λα, wβ ] =
i

2
δαβ , {ψm, ψn} = −1

4
ηmn . (2.17)

Therefore the ψm operators will be represented by SO(1, 9) Γ-matrices and the superparticle

wavefunction will be described by an SO(1, 9) 32-component spinor φA. The supertwistor

constraints in a φA(λ) representation take the form

GA
αBφB :=

1

2i

[

(λγmλ)(γm)αβ
∂

∂λβ
− 2λα(λβ ∂

∂λβ
)

]

φA −

i

4
(γmγnλ)α(ΓmΓn)A

CφC − 2iλαφA = 0 (2.18)

gA
BφB :=

i

2
√
2
(λγmλ)(Γm)A

BφB = 0 (2.19)

where (Γm)A
B is an SO(1, 9) 32 × 32 gamma matrix. The last term in (2.18) comes from

normal ordering ambiguities and is fixed by requiring (λγm)βGA
β B + i

√
2(Γm)A

CgC
B = 0.

These constraints can be solved using the chiral components of the spinor 32-compo-

nent φA = (φα, φ
β) as

φα = Am(γmλ)α (2.20)

φβ = −2
√
2(Bαλ

α)λβ +

√
2

2
(Bγm)β(λγmλ) (2.21)

where Am(λγmλ) = 0 and Am and Bα are functions only of the momentum (λγmλ). Note

that φα is invariant under the transformation Am → Am + C(λγmλ), and φα is invariant

under the transformation Bα → Bα + (λγmλ)(γm)αβF
β , for arbitrary C and F β . The

gauge invariant object constructed out of Bα given by

Cα = (λγmλ)(γmB)α (2.22)

satisfies the usual Dirac equation in momentum space (λγmλ)(γmC)α = 0.

A supersymmetric vertex can be obtained from (2.20), (2.21) using the 32 component

spinor ground state. In the Weyl representation, this state can be divided into two 16

component spinors |0〉α and |0〉α where the supersymmetry generators written in matrix

notation are

(qα)
δǫ = −

√
2(γm)δǫ(γmλ)α

(qα)δǫ = −
√
2(γm)δǫ(γmλ)α . (2.23)

Using the commutation relations

[qα, Am] = (γm)αβC
β , [qα, Bβ ] = (γm)αβAm (2.24)

and the action of the operator qα on the ground state

(qα|0〉)β = −
√
2(γmλ)α(γm)βδ|0〉δ , (qα|0〉)β = −

√
2(γmλ)α(γm)βδ|0〉δ (2.25)
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one finds that the state V defined to be

V = −(γmλ)βAm|0〉β − 2
√
2(Bβλ

β)λδ|0〉δ +
√
2

2
(λγpλ)(Bγp)δ|0〉δ (2.26)

is supersymmetric invariant.

3 Supertwistor 10D ambitwistor strings

The supertwistor ambitwistor action for the heterotic superstring, based on the superpar-

ticle action (2.14), will be defined on the Riemann surface Σ to be

SHet. =

∫

Σ

(

Ω(Z, ∂̄Z) + hαG
α + fg + b∂̄c

)

+ SJ (3.1)

where SJ stands for a current algebra action as in the standard SO(32) or E8×E8 heterotic

superstring. Here now Z are taken to be spinors in K1/2, where K is the bundle of

holomorphic 1-forms on the worldsheet. The Lagrange multiplier/gauge fields hα and f

are (0, 1) forms with values in K−3/2.

Similarly, the ambitwistor action for the Type IIB superstring is defined by doubling

up the fermionic coordinates to obtain

SIIB =

∫

d2z

(

wα∂̄λ
α +

1

2
ψm∂̄ψm +

1

2
ψ̃m∂̄ψ̃m + f(λγmλ)ψm + f̃(λγmλ)ψ̃m

+ hα[(λγ
mλ)(γmw)α − 2λα(λw) + ψmψn(γmγnλ)

α + ψ̃mψ̃n(γmγnλ)
α] + b∂̄c

)

(3.2)

where ψ̃m is a second fermionic vector and the incidence relation (2.8) becomes

wα = (γmλ)αX
m + (γmθ)αψ

m + (γmθ̃)αψ̃
m . (3.3)

The N = 2 D = 10 supersymmetry generators are qα =
∫

dzψm(γmλ)α and q̃α =
∫

dzψ̃m(γmλ)α which have the same spacetime chirality, so the superstring is type IIB

and there surprisingly does not seem to be a type IIA version of this ambitwistor action.

To simplify notation, we will focus in the rest of this paper on the heterotic model given

in eq. (3.1), however, all results are expected to easily generalize to the Type IIB model.

The OPEs satisfied by the canonical variables are given by

λα(z)wβ(w) →
δαβ

z − w
(3.4)

ψm(z)ψn(w) → ηmn

z − w
(3.5)

and the energy-momentum tensor is

TB(z) =
1

2
∂wαλ

α − 1

2
wα∂λ

α − 1

2
ψm∂ψm + TJ (3.6)
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where TJ is the stress-energy tensor associated to the current algebra. Using TB defined

above, the central charges corresponding to the Sψψ and Sλw systems are

cψψ =
D

2
, cλw = 4− 2D . (3.7)

Denote the scalar and spinor constraints TF and Gα respectively

TF = (λγmλ)ψm (3.8)

Gα = (λγmλ)(γmw)α − 2λα(λw) + ψmψn(γmγnλ)
α . (3.9)

Using eqs. (3.4), one finds the constraint algebra to be

Gα(z)TF (w) → − 2

(z − w)
λαTF (w)

TB(z)G
α(w) → 3

2(z − w)2
Gα(w) +

1

(z − w)
∂Gα(w)

TB(z)TF (w) → 3

2(z − w)2
TF (w) +

1

(z − w)
∂TF (w)

TB(z)TB(w) → −11
2 + cJ

2

(z − w)4
+

2

(z − w)2
TB(w) +

1

(z − w)
∂TB(w)

TF (z)TF (w) → regular

Gα(z)Gβ(w) → − 4

(z − w)
λ[αGβ] − 56

(z − w)2
λαλβ − 36

(z − w)
∂λβλα

− 20

(z − w)
∂λαλβ +

16

(z − w)2
(γm)αβ(λγmλ) +

16

(z − w)
(∂λγmλ)(γm)αβ .

(3.10)

In principle one might use (3.10) to construct the BRST operator and the corresponding

BRST-closed vertex operators. However this task is not so simple, since the supertwistor

ambitwistor string is a reducible constrained system where Gα and TF are related to each

other through the relation

(λγmG)− 2ψmTF = 0 (3.11)

and the coefficients of this relation are in turn constrained to obey

(λγmλ)(γmλ)α = (λγmλ)ψm = 0 . (3.12)

This implies three generations of ghosts, which will give rise to heavy algebraic manipula-

tions. For instance, the BRST operator up to the first ghost generation is

Q =

∫

dz

[

cTB + γTF + cαG
α + bc∂c+

3

4
∂cγβ +

1

4
cγ∂β − 3

4
c∂γβ − 2cαλ

αγβ − 3

4
∂ccαb

α

−1

4
ccα∂b

α +
3

4
c∂cαb

α + 2λαcαcβb
β + [((λγmb) + 2βψm)γm + (λγmλ)c̃βm] + . . .

]

(3.13)
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where . . . stands for contributions coming from the next ghost generations. The ghost

pairs of these generations have been denoted by (c, b), (γ, β), (cα, b
α), (γm, βm), (c̃, b̃)

and one can easily calculate the total matter and ghost central charge to be1

cTotal = −2
D
2
−1 +

D

2
− 26 + 11− 11× 2

D
2
−1 + 26D − 74 + cJ .

So when D = 10, cancellation of the conformal anomaly implies cJ = 16 as in the E8 ×E8

or SO(32) heterotic models. The type IIB model can also be readily shown to be free of

conformal anomalies in D = 10 since

cTotal = −2
D
2
−1 +

D

2
+

D

2
− 26 + 11 + 11− 11× 2

D
2
−1 + 26D − 74 (3.14)

which again vanishes in D=10 [14].

To avoid the algebraic complications arising from covariant quantization, we will per-

form a light-cone gauge analysis here which will require the gauge-fixing of the symmetries

generated by Gα and the stress-energy tensor. The covariant quantization of the super-

twistor ambitwistor string will hopefully be addressed in a forthcoming paper.

4 Light-cone gauge RNS ambitwistor string

The light-cone gauge description of the RNS superstring was introduced in the early stages

of the construction of string theory and was mainly developed by Mandelstam in [16, 17].

On the other hand, the RNS ambitwistor string was recently constructed in [2], where it

was interpreted as the infinite tension limit of the standard RNS string. Following the same

line of reasoning used in constructing the RNS string in light-cone gauge, we formulate a

light-cone gauge quantization of the RNS ambitwistor string. The original heterotic RNS

ambitwistor string, ignoring the current algebra variables in SJ , has action

SRNS =

∫

Σ
Pm∂̄Xm +

1

2
Ψm∂̄Ψm − 1

2
ePmPm − ẽ(P · ∂X +Ψ · ∂Ψ)− χPmΨm , (4.1)

where e, ẽ and χ are the Lagrange multipliers for the constraints

PmPm = 0, P · ∂X +Ψ · ∂Ψ = 0, PmΨm = 0

respectively and we will take the Riemann surface Σ to be the Riemann sphere CP1. These

Lagrange multipliers are also gauge fields generating symmetries

δ(Xm, Pm,Ψm, e, ẽ, χ) =

(αPm + ǫΨm + α̃∂Xm, ∂(α̃Pm), ǫPm +
√
α̃∂(

√
α̃Ψm), ∂̄α, ∂̄α̃, ∂̄ǫ) (4.2)

where α, α̃ and ǫ are respectively two bosonic and one fermionic gauge symmetry param-

eters, α̃ corresponding to infinitesimal holomorphic coordinate transformations.

1The 2
D

2
−1 terms arise as the dimensions of the chiral spin spaces in general dimension.
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We will quantize in light-cone gauge where all ghosts and non-physical variables de-

couple. Decompose 10-vectors to 1 + 1 + 8, with i = 1, . . . , 8 so that

Pm = (P+, P−, P i) , PmPm = −2P+P− + P iP i , (4.3)

We first use the symmetries parameterized by α and ǫ in (4.2) of the RNS ambitwistor-

string to gauge X+ = Ψ+ = 0. Through the equation of motion for P−, this implies that

eP+ = 0. We will assume that P+ is nonzero, so that this gauge implies e = 0. Similarly,

the equation of motion for Ψ− implies that χ = 0. The equations of motion for e and χ in

this gauge imply that

P− =
P iP i

2P+
, Ψ− =

PiΨ
i

P+
. (4.4)

Although these equations potentially introduce poles into P− and Ψ− at the zeroes of P+,

we will later find that the interaction point operators inserted at the zeroes of P+ involve

delta functions that set the residues of the poles to zero.

The action is now reduced to

SRNS =

∫
[

−P+∂̄X− + P i∂̄Xi +
1

2
Ψi∂̄Ψi − ẽ(−P+∂X− + P i∂Xi +Ψi · ∂Ψi)

]

. (4.5)

There are two gauge-fixing choices of the remaining symmetries parametrized by α̃ in (4.2)

that we will wish to bear in mind. The first follows by setting ẽ = 0 so that the correspond-

ing coordinate z is a standard affine coordinate on the Riemann sphere. In the presence of

vertex operators with exponential factors ekr ·X , these exponentials can be taken into the

action to provide sources for (P+, Pi) giving the equations of motion for (P+(z), Pi(z))

∂̄P+ =
∑

r

k+r δ2(z − zr) ∂̄P i =
∑

r

kir δ
2(z − zr) . (4.6)

These have the unique solutions

P+(z) =
N
∑

r=1

k+r
z − zr

, P i(z) =
N
∑

r=1

kir
z − zr

, (4.7)

where kmr = (k+r , k
−
r , k

i
r) are the momenta of the external states.

The standard light cone coordinate ρ = σ + iτ for the conventional string identifies

X+ = τ and this has the effect of setting P+
ρ = 1. In the ambitwistor string, the string

lies in the space of complex null geodesics, ambitwistor space A, and in light cone gauge

we are choosing coordinates (P+, P i, X−, Xi) on A where (X−, Xi) is the point where the

geodesic intersects X+ = 0 and (P+, P i) parametrizes its null momentum. Although we

cannot therefore identify τ with X+, we can nevertheless make an alternative choice of the

gauge-fixing for α̃ by imposing the condition

P+
ρ = 1 . (4.8)

With this gauge choice, the equation of motion for X− implies ∂ẽ = 0 and the con-

stant mode of ẽ acts as a Lagrange multiplier for the remaining light-cone constraint
∫

dz(P j∂Xj +Ψj∂Ψj), which is the usual L0 − L̄0 condition.
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When expressed in terms of the z coordinate defined using the first gauge-fixing choice,

Pm
ρ dρ = Pm

z dz . (4.9)

This implies
∂ρ

∂z
= P+

ρ

∂ρ

∂z
= P+

z (z) =
∑

r

k+r
z − zr

,

so one arrives at the usual Mandelstam map

ρ =
∑

r

k+r log(z − zr) (4.10)

relating the light-cone coordinate with the Riemann sphere. In this coordinate, strings

come in from infinity as cylinders in the ρ coordinate corresponding to the points z = zr in

conformal gauge and join in pairs of pants at the n−2 interaction points z̃α where P+
z = 0.

In light-cone gauge, the differences of these interaction points, ρ(z̃α) − ρ(z̃1) for α = 2 to

n − 2, naturally parametrise the n − 3 moduli of the n-punctured Riemann sphere. This

choice now fixes P+
ρ = 1 and we then solve for X− using the remaining constraint

∂X− =
P i∂Xi +Ψi∂Ψi

P+
. (4.11)

This has the freedom of a constant in the solution for X− and integrating this out will give

conservation of the + component of the external momenta.

With this last gauge fixing and elimination of the remaining constraint, we have re-

duced to the physical degrees of freedom. These light-cone gauge variables are the SO(8)

bosonic vectors Xi and P i and the SO(8) fermionic vector Ψi, with the chiral worldsheet

action

SLC =

∫

d2ρ[P i∂̄Xi +
1

2
Ψi∂̄Ψi] + SJ . (4.12)

4.1 Interaction point operators, scattering equations and momentum conser-

vation

One needs to introduce interaction-point operators in light-cone gauge at the n− 2 points

z̃α at the zeroes of P+(z). These are the light-cone version of picture-changing operators

in the covariant RNS amplitude prescription and come from integration over the modes

of the worldsheet gravitino χ and metric e which cannot be gauge-fixed to zero on an

n-punctured Riemann sphere. In the ordinary light-cone RNS formalism, the interaction-

point operator is

ULC
RNS = (P i

zΨ
i
z)|z̃α

(

∂P+
z

∂z

)− 3
4

(4.13)

where (P i
zΨ

i
z)|z̃α comes from integration over the modes of χ and the factor of

(

∂P+

∂z

)− 3
4

has conformal weight −3
2 which cancels the conformal weight of P iΨi. For the ambitwistor
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string, one obtains an additional delta function δ(P iP i) from integration over the modes

of e together with a factor
(

∂P+

∂z

)

to cancel the conformal weight. So the ambitwistor

light-cone gauge interaction-point operator is

ULC
ambi :=

(

∂P+
z

∂z

)
1
4

(P i
zΨ

i
z)|z̃αδ(P i

zP
i
z |z̃α) (4.14)

Comparing with (4.4), we see that the delta functions2 in the interaction-point operator

imply the absence of poles in P−
z and Ψ−

z at the points where P+
z vanishes. Furthermore,

we can see that the vanishing of the residues of P− at the interaction points is equivalent

to the scattering equations as follows. First note that on the Riemann sphere, the P−

defined by (4.4) has simple poles at the zr with residue k−r . Although superficially there

is a double pole coming from the numerator, the pole in P+ cancels with one of these to

give the residue

ReszrP
−(z) = Reszr

P iP i(z)

P+(z)
=

kirk
i
r

k+r
=: k−r . (4.15)

If all the residues at the interaction points vanish, then we must have

P−(z) =
N
∑

r=1

k−r
z − zr

. (4.16)

However, by definition, 2P−(z)P+(z) = P j(z)P j(z) so that PmPm = 0 identically, and

hence its residues at zr vanish which gives the usual form of the scattering equations.

It is also the case that the sum of all the residues of P− must vanish as it is a 1-form on

the Riemann sphere. Thus the delta functions of residues at the interaction points together

imply
∑

r k
−
r = 0, which is the final momentum conservation delta function.

Thus the path-integral over the zero-modes of (Xi, X−) will give the delta function for

conservation of the transverse and +-components of the momentum, whereas the insertion

of δ(Resz̃αP
−) at the interaction points will provide the scattering equations and the final

momentum conservation delta function.

4.2 Vertex operators

To describe Ramond states, we must construct the spin fields. Bosonizing Ψi in the stan-

dard way

1√
2
(Ψ2j ± iΨ2j−1) = e±H̃j (4.17)

with H̃i satisfying the OPE

H̃i(z)H̃j(w) → δij log(z − w) (4.18)

2Here we use the fact that a fermionic delta function is δ(η) = η for a fermionic variable η so that

δ(P i
zΨ

i
z) = P i

zΨ
i
z.
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one can construct the SO(8) chiral and antichiral spin fields of conformal weight 1
2

Σ̃a = e

[

∑4
i=1 ±

H̃i
2

]

, for an even number of −’s (4.19)

Σ̃ȧ = e

[

∑4
i=1 ±

H̃i
2

]

, for an odd number of −’s . (4.20)

In terms of the light-cone variables, the spacetime supersymmetry currents are

qa =
i

√

2
√
2
(σi)aḃΣ̃

ḃ P i

(P+)
1
2

, qȧ =
i
4
√
2
(P+)

1
2 Σ̃ȧ (4.21)

which satisfy the OPEs

qa(z)qb(w) → − δabP
−

√
2(z − w)

, qa(z)qḃ(w) → − (σi)aḃP
i

2(z − w)
, qȧ(z)qḃ(w) → − δȧḃP

+

√
2(z − w)

.

(4.22)

The gluon and gluino states are generated at the cylindrical ends of the strings by

vertex operators which in light-cone gauge are

V LC
gluon = ΨiAI

i JIe
ikjXj

V LC
gluino = (k+)−

1
2 Σ̃aCI

aJIe
ikjXj

(4.23)

where AI
i and Ca I = P+Ba I are the gluon and gluino polarizations in the light-cone gauge

A+I = Bȧ I = 0. Here I is a Lie algebra index and JI a corresponding current algebra.

In terms of these vertex operators and interaction-point operators, the N-point tree-

level scattering amplitude prescription is

ALC = 〈V LC
1 (z1)V

LC
2 (z2)U

LC
ambi(z̃1)V

LC
3 (z3) . . . U

LC
ambi(z̃N−2)V

LC
N (zN )〉 (4.24)

where V LC
r are the light-cone gauge physical vertex operators defined in (4.23) which are

located at points zr satisfying the scattering equations, and ULC
ambi are the interaction-point

operators located at points z̃α satisfying P+(z̃α) = 0.

We can see that this is equivalent to the conventional CHY formula arising from the

conventional BRST covariant quantization of the RNS ambitwistor string by comparing

this formulation with that given in [12]. There, the choice of basis of Beltrami differentials

is arbitrary and so can be adapted to the interaction points setting µα = θαδ̄(P
+
z ) where

θα = 1 near z̃α and zero near z̃β for β 6= α. This leads to the formulae given here for

the scattering equations at the interaction points. Furthermore, the insertion points for

the picture changing operators are essentially arbitrary, and if inserted at the interaction

points they reduce to give δ(β)(P iΨi + P−Ψ+). But in light cone gauge for the external

fields, there will be no Ψ− for the latter term to contract with, so the Ψ contractions will

give the same formulae as for the BRST covariant quantization of the ambitwistors-string.

Furthemore, as in the usual RNS string, the path integral over the (β, γ) ghosts with these

insertions will cancel the path integral over the (Ψ+,Ψ−) fields.
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5 Light-cone gauge for twistorial ambitwistor-string

The heterotic twistorial ambitwistor string, ignoring the current algebra variables in SJ ,

has action

S =

∫
(

wα∂̄λ
α +

1

2
ψm∂̄ψm + hα[(λγ

mλ)(γmw)α − 2λα(λw) + ψmψn(γmγnλ)
α]+

f(λγmλ)ψm + ẽ

(

1

2
wα∂λ

α − 1

2
λα∂wα +

1

2
ψm∂ψm

))

(5.1)

where hα, f and ẽ are Lagrange multipliers for the constraints Gα, TF and TB respectively.

In light-cone gauge for the twistorial string, we again completely fix the gauge freedom

so that there are no propagating ghosts. Under the SO(8) decomposition of (4.3), 10d

spinors decompose into SO(8) chiral spinors so that

λα =

(

λa

λȧ

)

, (5.2)

where a, ȧ run from 1 to 8. We will further choose a specific impure 8d spinor ιa with

ιaιa = 1 and, using the gauge transformations generated by Gα, set seven components of

λα to zero by requiring

λa = λ+ιa . (5.3)

With these choices

Pm = λγmλ = (−
√
2λaλa,−

√
2λȧλȧ, 2λa(σi)aȧλ

ȧ)

= (−
√
2(λ+)2,−

√
2λȧλȧ, 2λ+(σi)+ȧλ

ȧ) , (5.4)

where (σi)aȧ are the 8d Pauli matrices and we define (σi)+ȧ = (σi)aȧι
a. We can similarly

parametrize the external momenta km in terms of spinors κα = (κ+ιa, κȧ) with

km = (−
√
2(κ+)2,−

√
2κȧκȧ, 2κ+(σi)+ȧκ

ȧ) . (5.5)

We now use the transformations in (2.12) to gauge ψ+ = 0 and solve the constraint

TF = 0 by expressing ψ− in terms of the transverse components ψi, where i = 1, . . . , 8, as

ψ− = −
√
2
(σi)+ȧλ

ȧψi

λ+
. (5.6)

We similarly use the constraint Gα = 0 to solve for the components of wa that are perpen-

dicular to ιa as

wa − ιaw+ =
√
2(δad − ιaιd)

λḃσi
+ḃ
σi
dċw

ċ

λ+
+ . . . , (5.7)

where . . . are quadratic terms in ψ that depend on λ. This leaves the component w+ :=

waι
a free. We finally use the transformations generated by TB to gauge-fix λ+ = i

4√2
which

fixes the coordinates on the worldsheet. Since P+ = −
√
2(λ+)2, this will agree with the

standard light-cone gauge choice. Setting TB = 0 then allows one to solve for ∂w+ in terms

of the other variables.
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So in light-cone gauge, the worldsheet action depends only on the bosonic and fermionic

transverse worldsheet variables (λȧ, wȧ, ψ
i) of conformal weight 1

2 and the worldsheet ac-

tion is

SLC =

∫

d2z[wȧ∇̄λȧ + ψi∇̄ψi] + SJ (5.8)

where SJ is the current algebra action and ∇̄ ≡ ∂̄ − ∂̄(log λ+). This is defined so that

∇̄λ+ = 0 in any coordinate system.

As before in the RNS case, and in the usual light-cone gauge in string theory, we

identify the momentum P+ = ∂ρ
∂z where the Mandelstam map ρ(z) from the complex plane

to the string worldsheet for N -point tree amplitudes is given by [17, 18]

ρ(z) =
N
∑

r=1

k+r log(z − zr) . (5.9)

Since −
√
2(λ+(z))2 = P+(z) =

∑N
r=1

k+r
z−zr

in this gauge, we must have

λ+(z) =
i
4
√
2

√

∂ρ

∂z
=

i
4
√
2

√

√

√

√

N
∑

r=1

k+r

z − zr
. (5.10)

Thus λ+(z) has square-root cuts at the locations z = zr and has square-root zeros at the

locations of the N − 2 interaction-points z = z̃α defined by

∂ρ

∂z

∣

∣

∣

∣

z=z̃α

=
N
∑

r=1

P+
r

z̃α − zr
= 0. (5.11)

Since the momenta P j(z) = 2λ+(σj)+ȧλ
ȧ and the supersmmetry generator qȧ =

λ+(σj)+ȧψ
j should not have square-root cuts anywhere on the worldsheet where λ+ is

defined by (5.10), the transverse worldsheet variables (λȧ, ψi, wȧ) must have square-root

cuts at the locations z = zr and z = z̃α. This is different from the RNS fermionic variable

Ψj in light-cone gauge which has no square-root cuts at the interaction points z = z̃α

and only has square-root cuts at z = zr for states in the Ramond sector. However, the

square-root cuts of ψi in this formalism is similar to the Green-Schwarz light-cone fermionic

variable which has square-root cuts both at z = zr and z = z̃α. Of course, ψi differs from

the Green-Schwarz light-cone fermionic variable in that it is an SO(8) vector instead of an

SO(8) spinor, although in our gauge, (σi)+ȧ can be used to translate.

5.1 Light-cone gauge vertex operators

In this subsection we use the light-cone twistor variables to construct physical vertex op-

erators for the gluon and gluino fields AmI and BI
α, where I is a Lie algebra index. We

will choose the light-cone gauge conditions: A+ I = BI
ȧ = 0. The first step to construct the

vertex operators is to define the eigenvector of the momentum operator. In this light-cone

framework this vertex will have the factor

e−wȧkȧ/2λ
+

where kȧ := ki(σi)+ȧ . (5.12)
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This agrees with ekix
i

via the incidence relations in light-cone gauge. In a generic N -point

correlation function, one will insert N of this type of vertex which will provide the following

light-cone equations of motion for the twistor field λȧ

∇̄λȧ =
1

2λ+

N
∑

r=1

kȧr δ
2(z − zr) (5.13)

which implies that

λȧ =
1

2λ+

N
∑

r=1

kȧr
z − zr

(5.14)

where λ+ is defined in (5.10).

Next we will construct the light-cone gauge gluon and gluino vertices using standard

bosonization techniques. Defining

1√
2
(ψ2j ± iψ2j−1) = e±Hj , for j = 1, 2, 3, 4 (5.15)

where the scalar field H(z) satisfies the OPE

Hi(z)Hj(w) → δij ln(z − w), (5.16)

one can construct the light-cone gauge spin fields as3

Σa = e±
H1
2

±H2
2

±H3
2

±H4
2 , for an even number of −’s (5.17)

Σȧ = e±
H1
2

±H2
2

±H3
2

±H4
2 , for an odd number of −’s (5.18)

which have the usual OPE’s, e.g.

ψi(z)Σȧ(w) → 1√
z − w

(σi)aȧΣ
a . (5.19)

The light-cone gauge vertex operators can now be defined as

Vgluon(zr) = [(σj)+ḃΣ
ḃAI

j ]JIe
− kir(σ

i)+ȧwȧ

2λ+ (5.20)

Vgluino(zr) =
1

√

k+r
Ca I(−Σa + 2ιaιbΣb)JIe

− kir(σ
i)+ȧwȧ

2λ+ (5.21)

where AI
j and Ca I are the light-cone gauge gluon and gluino polarizations. One can show

that the vertex V = Vgluon+Vgluino is invariant under the light-cone gauge supersymmetries

generated by the currents

qȧ = ψi(σi)+ȧλ
+ , qa = ψi(σi)aȧλ

ȧ − 2ψi(σi)+ȧλ
ȧδa+ (5.22)

which satisfy the OPEs

qa(z)qb(w) →
δabλ

ċλċ

z − w
, qa(z)qȧ(w) → −λ+(σi)+ȧλ

ȧ

z − w
, qȧ(z)qḃ(w) →

δȧḃ(λ
+)2

z − w
. (5.23)

3Formally, one should also write the so-called cocycles for Σa, Σȧ. These factors are relevant to get

correctly the OPEs between the spin fields and ψi.
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5.2 Light-cone gauge scattering amplitudes

To compute scattering amplitudes, one first needs to introduce interaction-point operators

located at the zeros z̃α of ∂ρ
∂z . The light-cone gauge scattering amplitudes can then be

computed using the prescription

A = 〈V1(z1)V2(z2)Uint(z̃1)V3(z3) . . . Uint(z̃N−2)VN (zN )〉 (5.24)

where Vr, Uint are the physical vertices and interaction-point operators.

Since ψj(z) should have square-root cuts at z = z̃α, the interaction-point operators

should contain the spin field Σα̇ and will be defined as

Uint(z̃α) = (λ̃ȧΣȧ)δ(λ̃ḃλ̃ḃ)

(

∂2ρ

∂z2

)

1
4

(5.25)

where

λ̃ȧ ≡ i
4
√
2

√

∂ρ

∂z
λȧ =

1

2
(σi)ȧ+

N
∑

r=1

kir
z̃α − zr

and, as in (4.14), the factor of (∂
2ρ

∂z2
)
1
4 carries conformal weight of 1

2 which cancels the confor-

mal weight of (λ̃ȧΣȧ)δ(λ̃ḃλ̃ḃ). In principle, it should be possible to derive this interaction-

point operator from gauge-fixing the covariant action of (5.1), but we do not yet see how

to derive (5.25) in this manner.

We will now show the equivalence of the N-point correlation function given by (5.24)

and the one obtained in the standard RNS ambitwistor string by finding an identification

of the variables in the two models.

We start by relating the light-cone gauge RNS fermionic vector Ψi with the fermions

in the twistorial description by the identification

Ψi = (σi)+ȧΣ
ȧ (5.26)

where Σȧ is the spin field constructed out of the light-cone gauge supertwistor fermionic

vector ψi as explained in (5.18). Then the spin field obtained from Ψi can be identified to

ψi through the relation

Σ̃ȧ = (σi)+ȧψ
i (5.27)

where eq. (5.27) is a direct consequence of the definition of Σ̃ȧ in (4.20) and the bosonization

of ψi in (5.15).

Eq. (5.26) can be used to relate the two gluon vertex operators corresponding to both

models as follows

V RNS
gluon = ΨiAI

i JI , V Twistor
gluon = (σi)+ȧA

I
i JIΣ

ȧ . (5.28)

Using the twistor identity Pm = λγmλ, one can immediately relate the interaction-point

operators

URNS
int = PiΨ

iδ(PiP
i)

(

∂P+

∂z

)
1
4

, UTwistor
int = (λ̃ȧΣȧ)δ(λ̃β̇λ̃

β̇)

(

∂2ρ

∂z2

)

1
4

. (5.29)
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Furthermore, eq. (5.27) allows us easily to relate the supersymmetry generators associated

to both models

qRNS
ȧ =

i
4
√
2
(P+)

1
2 Σ̃ȧ , qTwistor

ȧ = λ+(σi)+ȧψ
i . (5.30)

And since the gluino vertex is obtained from Vgluon by supersymmetry in both models, one

has an analogous relation between the fermionic vertices.

Thus the N -point tree amplitude prescription of (5.24) in this twistorial ambitwistor

formalism is equivalent to the N -point tree amplitude prescription in the light-cone am-

bitwistor version of the RNS formalism.

6 Discussion

We have seen that the 10d twistorial ambitwistor-string can be quantized in light cone gauge

so as to generate formulae for amplitudes. These formulae are most simply compared with

the CHY formulae [7] via the RNS model for ambitwistor-strings [2] quantized in light-cone

gauge. In the RNS light-cone gauge, we have seen that the interaction point operators play

the role of imposing the scattering equations and the picture-changing operators. These

eliminate the spurious singularities in the worldsheet fields that have been obtained by

solving the constraints.

We find that the fermionic vector ψm of the 10d twistor model is not naturally identified

with the Ψm of the RNS model. Instead, in their light-cone gauge reduction they live in

each-other’s Ramond sector. This is something that can be inferred covariantly from the

form of the supersymmetry generator which is (ψλ)α in the twistor model whereas it is

constructed from the Ramond sector in the RNS model. This presents a challenge for the

construction of covariant vertex operators.

The light-cone gauge for the 10d twistor model introduces square-roots into the mo-

mentum spinor λα which is constructed rather directly and non-covariantly from the am-

bitwistor momentum Pm. Covariant quantization of the twistor-string [1, 10, 11] and

twistorial ambitwistor-string models [3, 19, 20] in respectively 4, 6 and 10/11 dimensions

leads to rational expressions for the spinor constituents of Pm. The latter formulae are

based on the polarized scattering equations which incorporate polarization data into the

constituent spinors. It is to be hoped that a covariant quantization can be found for the

10d twistor model studied here that manifests some of these features with a rational λα.
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