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1 Introduction

In recent years, the techniques and intuitions from quantum information-theory have proven

to be immensely helpful in the study of many-body quantum systems. The entanglement

structure of the low energy states of local Hamiltonians is a key concept in simulating

lattice systems in condensed matter, the study of order parameters in phase-transitions,

and constructing renormalization monotones in relativistic quantum field theories.

The renormalization group (RG) flow is the process in which one integrates out the

ultraviolet (UV) high energy degrees of freedom, and compensates for them by adjusting

the coupling constants such that the low energy physics is unchanged. Since the information

about the UV modes are washed out, one might expect that the RG flow is irreversible.

RG monotones are functions that reflect this irreversability as they change monotonically

under the flow.

The study of RG monotones in relativistic quantum field theory (QFT) was started

by the seminal work of Zamolodchikov [1], where he showed that the two point function

of stress tensor in 2d QFT is a monotonic function of scale. In four dimensions, it was

conjectured by Cardy in [2], and later proved in [3], that the a-anomaly term is an RG

monotone. In two and three dimensions, the strong subadditivity (SSA) of entropy was

used to show that there are universal terms in the entanglement entropy of vacuum in QFT

reduced to a ball-shaped region that are RG monotones [4]. At the moment, the approaches

to construct RG monotones seem to depend on the dimensionality of the spacetime, and a

framework that works for all dimensions is missing.

– 1 –



J
H
E
P
0
1
(
2
0
1
9
)
2
1
9

In field theory, scaling is a unitary operation that allows us to compare the reduced

density matrices on subsystems of different size. In this paper, we use scaling and the re-

covery maps of quantum information theory to quantify the amount of long-range quantum

correlations at a scale. As a crucial step, we show that the Markov property of the vacuum

of a conformal field theory implies that the vacuum state reduced to a null cone can be

recovered perfectly from its subregions using both maps. We define the entanglement of

scaling and the entanglement of recovery as two measures whose first derivative quantifies

the long-range entanglement.1 Both of these functions increase monotonically under the

RG flow. In some relativistic theories the entanglement of scaling can be infinite; however,

we expect that the entanglement of recovery to remain finite. Our monotonic functions

are generalizations of the 2d and 3d entanglement monotones to higher dimensions. They

provide a unifying information-theoretic approach to RG monotones in various dimensions.

Furthermore, it points to a connection between recovery maps in quantum information the-

ory and the RG transformation of states that goes beyond the construction of monotones.2

We start by reviewing some notions and tools in quantum information theory.

1.1 Measuring asymmetry

Consider a many-body finite quantum system split into n non-overlapping regions A1 to

An, with isomorphic Hilbert spaces on Ai. The relabeling of the subsystem index i is a

unitary operation in the global Hilbert space: ⊗ni=1Hi. A simple example of such a unitary

is the translation defined by i→ i+ 1 mod n:

U =
∑
a1···an

|a2 · · · ana1〉〈a1 · · · an|,

where {ai} is the basis that spans Hi. The density matrix ρi on Ai is mapped to Ai+1 with

the local unitary

ρi+1 = E(ρi) = U †i ρiUi

Ui =
∑

ai,ai+1

|ai+1〉〈ai|. (1.1)

If the transformation sends a subsystem A to Ã, and the state is asymmetric under this

transformation, some information about ρA will be lost. The relative entropy S(ρÃ‖E(ρA))

is a measure of the amount of information in ρA that is lost. It is non-negative, and vanishes

if and only if ρA is symmetric under the transformation.

1.2 Measuring non-Markovianity

Imagine that we are probing the global state with detectors that are localized in A1A2. The

von Neumann entropy S(ρ12) is a measure of the amount of quantum information ρ12 is

missing about a pure global state. If we made a larger detector that allows us access to the

1Intuitively, we think of the entanglement of scaling to be a generalization the measure introduced in [22]

to general non-relativistic field theories.
2While this manuscript was in preparation, the papers [5, 6] appeared, which have overlaps with some

results presented here.
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region A1A2A3, then the new detector teaches us S(A3|A1A2) more qubits of information.

The quantity S(A|A′) ≡ S(AA′) − S(A) is the conditional entropy. Another way to gain

more information is by moving our detectors to adjacent sites A2A3. This gives us access

to both ρ12 and ρ23; however, we are still missing the long-range correlations between A1

and A3. We would like to quantify the amount of quantum information (“entanglement”)

about in ρ123 that is neither in ρ12 nor in ρ23. Naively, one can say that by moving the

detector we have learned S(A3|A2) but there are still

I(A1 : A3|A2) ≡ S(A3|A1A2)− S(A3|A2) (1.2)

more qubits in ρ123 that we are missing. This quantity is the conditional mutual information

(CMI), and is non-negative by the SSA inequality [7].

A careful study of the operational question of how well can one guess ρ123 from the

knowledge of ρ12 and ρ23 (the marginals) suggests that this naive estimate (CMI) is, indeed,

a good measure of the amount of long-range entanglement. This can be seen from the two

arguments below:

1. Statistical physicist’s prescription for the best guess is to consider the set of all

consistent global states C; that is all φ123 with φ12 = ρ12 and φ23 = ρ23. The best

guess is a state φ123 in this set, which has the largest entropy [8]. It follows from the

consistency condition that the entropy of the best guess is the CMI:

sup
φ123∈C

S(φ123) = I(A1 : A3|A2). (1.3)

2. Quantum information theorist’s approach is to look at recovery maps. If a state has

zero CMI, it can be reconstructed perfectly from its marginals. Such states are called

quantum Markov states, and satisfy the following property:

log φ123 = log φ12 + log φ23 − log φ2. (1.4)

The Markov state has no genuine long-range quantum correlations. All the correla-

tions between A1 and A3 is classical and conditioned on A2 [9]. Furthermore, when

the CMI is small one can use universal recovery maps to reconstruct the global state

with high fidelity [10, 11]. The CMI provides an upper bound on the fidelity distance

of the recovered state. In fact, if we do not require the recovery map to be a quantum

channel one can write down the explicit map

ρrecov = elog ρ12+log ρ23−log ρ2/Z, (1.5)

that is hardly distinguishable from the global state:

S(ρ123|ρrecov) ≤ I(A1 : A3|A2). (1.6)

Here Z is the normalization of the state. The inequality above is satisfied trivially

because Z ≤ 1 [12].

– 3 –



J
H
E
P
0
1
(
2
0
1
9
)
2
1
9

In our n-partite A1 to An example, if the state ρ123 is Markovian one can recover it

perfectly from ρ12 and ρ23, move the detector to the an adjacent site, and try to recover ρ1234

fromρ123 and ρ34. This can be iterated to reconstruct ρ1...m for any m < n. If the state is

recovered perfectly at each step, the global state is called a Quantum Markov chain [13, 14].

A quantum Markov chain found from adjacent local density matrices of size r has the form

log ρ1··· ,m+r = log ρm··· ,m+r +

m∑
k=1

(log ρk··· ,k+r−1 − log ρk+1··· ,k+r−1). (1.7)

In our terminology, these Markov states have no entanglement at any scale larger than r.

Intuitively, a quantum Markov chain is scale-invariant, in the sense that all the infor-

mation in a density matrix of size R can be recovered perfectly from subsystems of size

r < R. This suggests that quantum Markov states should appear naturally as the fixed

points of the renormalization group flow.

2 Entanglement of scaling

The states of a quantum field theory are wavefucntionals of fields: Ψ(φ(x)). The trans-

formations f : xµ 7→ xµ + ξµ (diffeomorphisms) are the generalization of the relabeling

operation in finite systems to the continuum limit. Analogously, diffeomorphisms act on

the global state as unitary operators: |ψ̃〉 = ei
∫
dΣµξνTµν |ψ〉, where Σ is the spacelike sur-

face where the state lives, and Tµν is the stress tensor. If we split the degrees of freedom

into a subregion A and the complement, then the unitary operator that maps the reduced

state on A to the reduced state to Ã is:

U =

∫
[Dφ]g|(f−1)∗φ〉〈φ| (2.1)

where (f−1)∗ is the pull-back of functions from A to Ã [15].

A familiar example of such diffeomorphisms is the generalization of translations in finite

systems to the continuum limit. In quantum field theory, the translations are described by

the unitaries U = eia
µPµ which map ρA to ρ̃Ã:

〈φa(x∈A)|ρA,g|φb(x ∈ A)〉 = 〈(f−1)∗φa|ρÃ,g̃|(f
−1)∗φb〉,

where g̃ = (f−1)∗g is the transformed metric. If the translation is a symmetry of the back-

ground metric, and the state then the density matrix changes only by a unitary rotation.

In the remainder of this work, we will be interested in how local Dilatations acts on

null cones. In polar coordinates, this maps f : (t, r) 7→ (eλ(Ω)t, eλ(Ω)r), and leaves the

perpendicular directions Ω untouched; see figure 1. Take a ball on the time slice t = R

centered at r = 0. The boundary of this ball is on the null cone defined by r − t = 0. The

dilatation f with constant λ rescales the size of the ball from R to eλR, and moves it from

t = R to t = eλR. The metric transforms by an overall conformal factor: g̃ = e2λg. If the

state is scale-invariant, for instance the vacuum of a scale-invariant theory, one can ignore
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Figure 1. (a) Dilatataions that deform the boundary of ball at t = R, and act locally at particular

angular variables Ωa and Ωb (b) Translations in the null direction that act locally in x coordinates.

the change of the metric, and the state remains unchanged up to a unitary. To simplify

the notation, we denote the unitarily scaled density matrix from R to R′ by

ρ̃R′ ≡ E(ρR) = U †ρRU, (2.2)

where R′ has been suppressed in the notation, and will be clear from the context.

We are interested in a quantum field theory that is a deformation of a scale-invariant

theory by a relevant operator of scaling dimension ∆ < d

SQFT = Sscale−inv + λ0

∫
ddxO(x), (2.3)

where λ0 = µ∆−dg0 is the dimensionful coupling at the UV length scale µ. Diffeomorphism

invariance allows us to compare ρR, the reduced states on a ball of size R, to a smaller ball

ρr rescaled back to R. In the UV (r/µ� 1), the state ρr can be approximated well by the

scale-invariant vacuum state which transforms trivially under rescaling E . In essence, the

entanglement of scaling compares the reduced density matrix of a QFT to that of its ultra-

violet fixed point. with corrections proportional to the coupling λ0. The modular operator

of ρr can be computed in the conformal perturbation theory. It remains local in spacetime,

to the first order in λ0. The relative entropy S(ρR‖E(ρr)) is a measure of the amount of

distinguishability lost under the dilatation. We define the entanglement of scaling to be

Ssc(ρR) = lim
r→0

S(ρR‖E(ρr)). (2.4)

The entanglement of scaling is, by definition, non-negative. Similar to the entangle-

ment entropy, the entanglement of scaling is invariant under any unitary operations:

Ssc(ρ) = Ssc(U †ρU).

In essence, the relative entropy above compares the reduced density matrix of quantum

field theory with that of its fixed point which was proposed as a C-function in relativistic

quantum field theories in [22]. As the authors of [22] have discussed, this measure can be

divergent in relativistic QFT for deformations that are not relevant enough.
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3 Markov states in QFT

Take a quantum field theory density matrix ρR. If it is a quantum Markov state,3 it can be

perfectly recovered from its smaller marginals ρr, for any r < R. This suggests that there

is no new physics at any length scale in between the r and R. In other words, it is scale-

invariant in that range. One might expect that the CFT vacuum reduced to ball-shaped

regions are quantum Markov states. In this section, we show that this intuition is indeed

correct.

Start with a ball-shaped region A in a CFT vacuum state, and make two geometric

deformations fa and fb. The state will be Markovian if the CMI I(δAa, δbA|A) vanishes

for any finite size deformation. This quantity was computed in a perturbation theory in

small deformations by [16]. They find the CMI to be

I(δAa; δAb|A) = δAīaδA
(j)
b

2π2CT
(d+ 1)R2

ηīj

|Ωa − Ωb|2(d−1)
, (3.1)

where ηīj and δA
(i)
a and δA

(j)
b are, respectively, the metric and the area elements in the

t, r directions, and CT is the coefficient in the two-point function of the stress tensor. For

a generic deformation, this CMI is non-zero. However, if we take the deformed ball to be

on a null cone, that is ξ = ξu(Ω)∂u, the CMI is proportional to ηuu which is zero in flat

space. This leaves the possibility that for null deformations the vacuum state is Markovian.

This was recently proved to be case in [5]. Here, we explore the Markov property from an

intuitive tensor network point of view using the method of the Euclidean path-integrals.

In fact, it is pedagogical to start with a simpler example:

Ex. 1: QFT vacuum on half-space. As the first example, we show that the QFT

vacuum in flat space reduced to a half-space is a quantum Markov state with respect to

null deformations; see figure 1. Consider the vacuum of a d > 2 dimensional QFT in flat

space ds2 = dudv + dx2 + dzidz
i, with u = y + t and v = y − t the null directions. We

reduce the state to the region A, the y > 0 half-space. The modular operator of this region,

KA ≡ − log ρA, is local [17]. On the null surface v = 0, it has the form

KA ≡ − log ρA =

∫
dxKx

Kx =

∫
dd−3z

∫ ∞
0

du uTuu(x). (3.2)

In Euclidean QFT, the density matrix ρA is represented by a path-integral on Rd, with

boundary conditions above and below A in the Euclidean time; i.e. (τE = 0±, y > 0) [18].

One can split the x direction into n slabs Ai = (xi, xi+1), and insert the resolutions of

identity in between slabs; see figure 2:

ρ =

∫ N∏
i=1

[Dφi] ρi(φi, φi+1),

ρi(φi, φi+1) = 〈φi|ρi|φi+1〉. (3.3)

3In the remainder of this paper, we use the words Markov chain and Markov states synonymously.
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Figure 2. (a) Partitioning the Euclidean path-integral into slabs in the x directions (b) The path-

integral over each slab has five boundaries. Two boundaries at xi and xi+1, two at ∂I+ and ∂I−

where the state lives, and one infinitesimal cylinder cut around the origin at y = τE = 0.

Here, ρi(φi, φi+1) is an operator (transfer matrix) that acts only on the subsystem Ai.

Intuitively, one can think of the expression in (3.8) as a matrix product operator in the x

direction; see figure 4.

We apply a diffeomorphism that is non-zero only at Aa and Ab, and deforms A to

Ã = A + δaA + δbA. The density matrix of Ã is given by ρÃ,η = U †ρA,gU , where gµν =

∂µξν + ∂νξµ + ∂µξα∂νξ
α, and η is the flat metric [15]. We take f to be a translation in a

null direction localized on two slabs Ia and Ib:

fa : u 7→ u+ λf(xa), (3.4)

with f(xa) a function that has a peak at the center of Aa, and goes to zero on the boundaries

of Ia at xa and xa+1.4 The flat metric changes by gxv = ∂xξv = λ∂xf(xa), which is nonzero

only inside the slab Ia and vanishes on the boundaries ∂Ia. Partitioning the path-integral

of ρ̃Ã according to (3.3) and comparing with ρA, only the transfer matrices ρa and ρb have

changed. Let us focus on the matrix elements of one of these operators, ρ̃a:

〈φ1(∂I−a )|ρ̃a(φa, φa+1)|φ2(∂I+
a )〉 =

∫ φ(xa+1)=φa+1,φ(∂I+a )=φ2

φ(xa)=φa,φ(∂I−a )=φ1
[Dφ]e−S[φ,g], (3.5)

where ∂I±a are the boundaries at x ∈ Aa and τE = 0±; see figure 2. The path-integral

above is on Ia that has five boundaries in the Euclidean Rd+1. Two boundaries at x = xa,

x = xa+1, two boundaries at ∂I+
a and ∂I−a , and a fifth boundary at y2 + τ2

E = ε which is a

small cylinder cut around y = τE = 0.

The only difference between the path-integrals for ρ̃a and ρa is in the metric that goes

into the action. We Taylor expand the action around the flat space

S[φ, g] = exp

(∫
Ia

∂µξν
δ

δgµν

)
S[φ, η] = exp

(
−
∫
Ia

ξν∂µ
δ

δgµν
+

∫
∂Ia

dΣµξν
δ

δgµν

)
S[φ, η],

(3.6)

4One might worry about the fact that the function f is not infinitely differentiable. We will be ignorant

of such subtleties here.
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Figure 3. (a) The density matrix of the half-space on a null sheet factorizes in free field theory

(b) a shape deformation on the null sheet at point x = a corresponds to acting with unitaries Ua.

where we have used the integration by parts, and dΣµ is the normal to the boundary ∂Ia.

The term with the integral over Ia vanishes, due to the fact that ∂ν
δ

δgνµS[φ, g] = ∂νT
µν ,

which is identically zero.

The change in the metric under the diffemorphism by fa is in the gux component,

and since ξµ has only u components, only the two boundaries at constant x contribute

to (3.6). However, we chose ξ to vanish on these boundaries; therefore S[φ, g] on Ia can be

replaced with its flat space value S[φ, η]. Hence, the transfer matrices in the partitioned

path-integral in (3.3) do not change:

ρ̃a(φa, φa+1) = ρa(φa, φa+1). (3.7)

Hence, there is a unitary that rotates the overall density matrix ρA to ρ̃Ã:

ρ̃Ã = (I⊗ U †a ⊗ U
†
b )ρA(I⊗ Ua ⊗ Ub) . (3.8)

This unitary operator is Ua(x) = eiαQa where Qa =
∫
du Tuu(a) is the average null energy

operator.

In the null quantization of free field theory, the vacuum state is the zero eigenvector

of the null momentum Pu. Furthermore, we know that this state is a tensor product of the

vacuua of the Qx:

|Ω〉 = ⊗x|Ωx〉, Qx|Ωx〉 = 0 . (3.9)

This means that the reduced density matrix of half-space is also a tensor product

ρ = ⊗xρx = ⊗xe−2πKx (3.10)

where ρx is the vacuum density matrix on the half-space found from the ground state |Ωx〉.
There is no entanglement between ρx and ρx′ and the matrix product operator is of the

form in figure 3. It is clear that applying the unitaries Ua and Ub only changes the matrices

ρa and ρb and cannot create entanglement. Therefore, it is trivially true in free theory that

KÃ = K + (U †aKaUa −Ka) + (U †bKbUb −Kb).

The two-dimensional Poincare group gives us the commutation relation

[Kx, Qa] = −iQaδ(x− a) . (3.11)

– 8 –
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Figure 4. (a) The density matrix of the half-space on a null sheet factorizes in interacting theories

is entangled in the x direction (b) a shape deformation on the null sheet at point x = a corresponds

to acting with unitaries Ua.

which results in a resummation of the Baker-Campbell-Hausdorff expansion:

U †xe
−2πKxUx = e−2π(Kx−αQx) . (3.12)

As a result, the modular Hamiltonian of the deformed region is

KÃ = KA − α(Qa −Qb) . (3.13)

This is the Markov property of vacuum in free field theory as was originally argued for

in [19].

In a general interacting theory the vacuum state is the zero eigenvector of Qx smoothed

in the x direction. However, we expect Qx with no smoothing to have no normalizable zero

eigenvector.5 This is reflected in the fact that the vacuum state is entangled across cuts of

constant x. The matrix product operator representation of the vacuum density matrix is

schematically drawn in figure 4. The density matrix is still

ρA = e−2πK1e−2πK2 · · · e−2πKn (3.14)

which is not a product state. It has been argued in [5] that the commutator

[Kx, Qa] = −iQaδ(x− a) . (3.15)

remains unmodified in interacting theories. One can commute the operators eiαQx with

e−2πKx′ and finds the same expression for the modular Hamiltonian as in the free theory:

KÃ = KA − α(Qa −Qb), (3.16)

which is the Markov property of the vacuum density matrix on a null sheet.

5We thank Juan Maldacena for pointing this out to us.
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Ex. 2: CFT vacuum on a null cone. There is a conformal transformation that maps

the causal development of a half-space A to the causal development of a ball B [17]. If

KA and KB are, respectively, the modular operators of subsystems A and B, there exists

a unitary such that KB = U †KAU . Under this conformal transformation, the deformed

half-space A+δaA is mapped to a deformed ball B+δaB; see figure 1. Deformations on the

null surface in A are sent to deformations of B on the null-cone. The equation (3.13) with

Ã continues to hold for the vacuum of a CFT in arbitrary dimensions with Ã a deformation

of the ball on the null cone that is its causal development. As a result, the vacuum of a

d-dimensional CFT is a quantum Markov state with respect to deformations on a null cone.

In 2d CFTs, any state that is a descendant of vacuum with arbitrary time-dependence

is related to vacuum by a conformal transformation, and remains a quantum Markov state.

It is straightforward to check that SSA is saturated in these states from the expressions

in [20].6

Near Markov states. Before applying the SSA inequality to the states of a quantum

field theory, we would like to have an analogue of CMI that is insensitive to the ultraviolet

details. We replace the entanglement entropies in CMI with the entanglement of scaling:

Isc(A1 : A3|A2) ≡ Ssc(ρ12) + Ssc(ρ23)− Ssc(ρ2)− Ssc(ρ123)

= IρR(A1 : A3|A2)− lim
r→0

Iρr(A1 : A3|A2)

= I(A1 : A3|A2) ≥ 0, (3.17)

where we have used the fact that the UV CFT state is Markovian. Note that in relativistic

quantum field theory there is no guarantee that this quantity remains finite term by term.

4 Entanglement at a scale

In this section, for simplicity we restrict to vacuum state of QFTs in flat space.7 The goal is

to find an information-theoretic measure that quantifies the entanglement at a scale that is

insensitive to the UV and has an operational interpretation. A measure of entanglement at

scale R is a function that ρR and its derivatives ∂mR ρR. Here, we compare three candidate

measures that appear natural from an information-theory point of view:

1. The obvious candidate is the relative entropy S(ρR+δR|E(ρR)). This quantity vanishes

at the first order in δR, due to the smoothness of relative entropy. At the second

order, it becomes the quantum Fisher information which is a metric in the space of

density matrices:

S(ρR+δR|ρR) = (δR)2〈δRρ, δRρ〉R +O((δR)3).

It is finite, non-negative at any R, and vanishes in CFTs. It is a metric, and hence

satisfies the triangle inequality. Quantum Fisher information has an interpretation

in terms of distinguishability, as it is the variation of a relative entropy.

6We thank Matthew Roberts for pointing this out to us.
7The generalization of the measures introduced here to arbitrary states requires minor, but straightfor-

ward modifications.
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2. The second candidate is the derivative ∂RSsc(ρR). It is finite, and non-negative at

any R (see the supplementary material for a proof):

∂RSsc(R) ≥ 0. (4.1)

This quantity is expected to be insensitive to the UV details, and has the benefit

that its integral, Ssc, resembles a smoothed-out version of SUV − SIR. However, in

relativistic field theory it diverges for deformations that are not relevant enough.

3. The third candidate, the information-theorist’s favorite, is based on recovery maps

and SSA. The task is to quantify how well one can recover the state ρR+δR from the

knowledge of all balls of size R within the causal development of ρR+δR. That is to

say, we want to build a ball of size R+δR from the iteration of a recovery map which

acts on balls of size R. One way to do this was introduced in [4]. Take two balls

with boundaries on a null cone. As we bring the balls close in the angular directions

on the cone,the distance between δaA and δbA tends to R. the CMI measures the

entanglement at scale R. To obtain the larger ρR+δR we have to apply the recovery

map many times following [4], and add up the CMI contributions at each step. The

total sum of the CMI we obtain as we repeat this recipe is the quantity that we define

to be the derivative of the entanglement of recovery

∂RSrec(ρR) ≡
(
(d− 3)∂R +R∂2

R

)
Ssc(R) ≥ 0. (4.2)

It is a measure of the entanglement in the vacuum of QFTs at the scale R, that has

an operational interpretation in terms of recovery. It vanishes in a CFT vacuum.

Integrating this quantity from the UV to the scale R we obtain

Srec(R) = (d− 2−R∂R)Ssc(ρR). (4.3)

5 Renormalization monotones

We are encouraged by [21] to look for an RG monotone in arbitrary dimensions that has

the following properties

1. It is a finite dimensionless quantity, and regularization independent.

2. It decreases monotonically along the flow.

3. If the flow ends in an IR fixed point, the value of the function can only depend on

quantities that are intrinsic to the UV and IR fixed points.

We expect both the entanglement of scaling and the entanglement of recovery to satisfy

the first property in non-relativistic examples. In relativistic theories, the conditions under

which they remain finite is unclear to us and deserves further study. Both measures satisfy

the second criterion:

∂RSsc(R) ≥ 0

∂RSrec(R) ≥ 0. (5.1)
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In all the known examples in 2d and 3d they also satisfy the third criterion. It is unclear

to us, whether this continues to be the case in all dimensions.

In 2d and 3d they do indeed reduce to all the known monotones. The entanglement

of scaling, Ssc(R), is a smoothed version of the RG monotone defined in [22], which is

the relative entropy of vacuua in two different CFTs. While intuitive, the smoothness of

Ssc(R) deserves further investigation. We believe that studying the entanglement of scaling

in more detail can shed light on the UV divergences in the quantity in [22] for the particular

range of the deformation scaling dimensions ∆ > (d+ 2)/2.

The entanglement of recovery, Srec(R), is a smoothed version of the entanglement

monotones in 2d and 3d introduced in [4] generalized to arbitrary dimension. As this

work was in its final stages, we learned about the work in [6] that generalizes the previous

entanglement proof to the a-theorem in four dimensions. It is of great interest to relate

the entanglement of recovery to other known quantities of CFTs in d > 4.

6 Conclusions

In this work, we studied a connection between recovery maps in quantum information the-

ory, and the renormalization group flow in quantum field theories. Applying information-

theoretic tools, and taking advantage of the diffeomorphism invariance of QFT, we con-

structed candidate functions for the entanglement at a scale. Two new entanglement mea-

sures intrinsic to the continuum limit, the entanglement of scaling and the entanglement of

recovery were defined. They are built such that their first derivatives in scale quantifies the

amount of entanglement at scale. However, the more natural quantity from the point of

view of the recovery maps is the entanglement of recovery. Both quantities are monotonic

under a change of scale. A better understanding of the RG monotones in higher dimensions

can be achieved by studying these quantities and relating them to the properties of the IR

scale-invariant fixed point.

It is tempting to rewrite the entanglement of scaling in the language of the algebraic

QFT as

lim
λ→0
〈Ω|∆

Ω,U†λΩUλ
|Ω〉, (6.1)

and avoid referring to the density matrix. Here, |Ω〉 is the state of a QFT, and ∆Ω,Ω′ is the

relative modular operator of the two states with respect to a region, and Uλ generates dilata-

tion by factor λ. We postpone a further investigation of this, and potential connections be-

tween the entanglement of scaling and the renormalized entanglement entropy [23] to future

work. Furthermore, since our approach views RG as an operation on a QFT state, the RG

monotones we find characterize a particular flow from the UV to the IR. An interesting ques-

tion to explore is whether this quantity can be read off, directly from a CFT Hilbert space.
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A The entanglement of scaling is monotonic

We are interested in the derivative:

lim
µ→0

∂RS(ρR‖E(ρµ)) ≥ 0. (A.1)

We start by proving that the operations, E and N commute: N (E(ρ)) = E(N (ρ)).

Split the system in two parts: the part that is traced out A, and the remaining part B.

The matrix elements of E(trAρ) are∫
[Dψ]A 〈ψA(f−1)∗φ+

B|ρ|ψA(f−1)∗φ−B〉. (A.2)

After a change of variables this is equal to∫
[D(f−1)∗ψ]A 〈(f−1)∗ψA(f−1)∗φ+

B|ρ|(f
−1)∗ψA(f−1)∗φ−B〉.

which is nothing but trAE(ρ).

Relative entropy is monotonic under a partial trace: NR→R−δR. We have

S (ρR‖E(ρµ)) ≥ S (N (ρR)‖NE(ρµ)) = S (N (ρR)‖E(N (ρµ)))

= S(ρR−δR‖E(ρµ) + µE(δρµ)) (A.3)

Taking the limit µ→ 0 we establish that

∂RSsc(R) ≥ 0. (A.4)
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