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1 Introduction

Entanglement entropy in quantum field theory potentially accounts for horizon entropy

in gravity [1, 2]. The Ryu-Takayanagi formula [3, 4] makes this connection precise in

AdS/CFT, where, at large N , boundary entanglement entropy is given by areas of bulk

extremal surfaces.1 It has been argued that, to subleading order in 1/N , this formula

receives quantum corrections [6]:

Sbdry =
A

4G
+ Sbulk + · · · , (1.1)

where Sbulk denotes the entanglement entropy of bulk fields across the Ryu-Takayanagi

surface.

Being the sum of a geometric and a matter term, the right hand side of (1.1) has a

natural interpretation as a total bulk entropy. In the context of black holes, such sum is

called ‘generalised entropy’ and was introduced by Bekenstein [7]. One of its virtues is

that it should increase during black hole evaporation, thus ensuring that the second law of

thermodynamics holds despite the shrinking of the area contribution [8].

Other examples of an interplay between geometric and matter contributions to entropic

quantities include the quantum focussing conjecture [9], which encompasses covariant en-

tropy bounds, and from which the quantum null energy condition was first conjectured.

In AdS/CFT, the formula (1.1) can be used to argue that bulk reconstruction from

field-theoretic subregions holds in the entanglement wedge [10], and that the set of field-

theoretic quantum states with a common geometric dual span a quantum error correcting

subspace [11].

1See [5] for an example where black hole entropy is fully accounted for by entanglement across the

horizon.
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One difficulty with eq. (1.1) is that Sbulk receives contributions from all fields in the bulk

— which include, in particular, the graviton. However, as is well known, the entanglement

entropy of fields with local symmetries is subtle. The main obstruction is that, while

the definition of entanglement entropy assumes a factorising Hilbert space across regions,

gauge fields describe extended degrees of freedom that do not naturally factorise. While

this problem is already present in electromagnetism, it is exacerbated in general relativity,

because there are no local diff-invariant observables. One then needs a prescription for

dealing with these non-factorising degrees of freedom.2

This paper studies subregions in general relativity, and gives a prescription for a notion

of factorisation of the graviton across a subregion, and its entanglement with the outside.

The main object of analysis is the symplectic form of the graviton. The symplectic form

is the basic structure of phase space. In a field theory, this object can be read from the

kinetic term. Since the symplectic form is the integral of a local object, our analysis is

local. One main conclusion is that, unlike for other fields, with this formalism one can only

discuss gravitational subregions bounded by extremal-area surfaces.

The guiding principle that leads to these conclusions is that the subregions of consid-

eration are bounded by ‘imaginary surfaces’. That is, that the boundaries are not made of

any physical substance. This entails that subregions be defined only with the ingredients

of the underlying theory. Since gravity is diffeomorphism-invariant, the only separation of

subsystems that is allowed has to be defined independently of coordinates. Hence, the local

analysis implies that in GR the only allowed entangling surfaces are extremal surfaces.

2 Symplectic reduction of gauge symmetries

In this section we review some features of the hamiltonian formalism and gauge symmetries.

These ingredients are necessary for the analysis in the rest of this paper.

The phase space of a system is its space of states. One way to think about it is as

the space of initial data. More covariantly, phase space is the space of solutions to the

equations of motion [14].

The main object in phase space is the symplectic form W ; a non-degenerate, closed,

2-form

W (w, v) = IvIwW = −IwIvW , δW = 0 , (2.1)

where IvW denotes contraction of a phase space vector field v with the first index of W .

δ is the exterior derivative operator in phase space.3 For a particle in one dimension q,

W = δq ∧ δp.
Gauge symmetries are spurious degrees of freedom. In phase space, these non-degrees of

freedom appear as null directions g in the would-be symplectic form W . Such degenerate W

is called a ‘presymplectic form’: it is not a true symplectic form because these can’t be de-

generate. Often, these directions g are only null in some constraint surface C in phase space:

IgW |C = 0 . (2.2)

2See [12, 13] for discussions of this problem in AdS/CFT wormholes.
3We reserve iv and d for contraction and exterior derivative of spacetime forms.
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For example, in electromagnetism we often think of phase space as charted by the vector

potential and the electric field on a Cauchy slice: {Ai(x), Ej(x)}. In this space of initial

data, the presymplectic form is degenerate on gauge transformations gε={δAi(x) = ∂iε(x)}
only on the phase space surface satisfying Gauss’ law, C : {∇iEi = 0}.

The true phase space is the quotient of the gauge-redundant space by the orbits of

the gauge transformations g. This quotient produces the familiar, smaller, space of gauge-

inequivalent configurations; and this phase space is equipped with a true, non-degenerate

symplectic form W , which is inherited from the degenerate presymplectic form in the larger,

gauge-redundant space.

This symplectic reduction [15] proceeds just like ordinary Kaluza-Klein reduction, from

the gauge-redundant ‘phase space’ to the true phase space of gauge-invariant states. As

in KK, a necessary condition to carry out the reduction is that the gauge directions g are

symmetries of the object to be reduced — the presymplectic form. That is, to implement

symplectic reduction of W on C over g we need:

LgW |C = δ (IgW )|C = 0 . (2.3)

Here Lg denotes the phase space Lie derivative, and we used that LgW = δIgW + IgδW ,

and that δW = 0.

Condition (2.3) is redundant in principle, but useful in practice. It is redundant be-

cause, if one restricts W to C properly, (2.3) holds as an identity, as the closedness of W

is preserved under restriction and IgW is identically zero on C. The problem in practice,

however, is that restricting W to C is not always technically straightforward. In particular,

as in the GR case below, it may not be trivial to decide a priori which directions of phase

space are tangent to C and which are not, and hence which legs of W must be kept or

discarded under the restriction to C.4

Eq. (2.3) implies that, on C, IgW is locally exact. One says that g are hamiltonian

transformations:

IgW |C = δHg . (2.4)

To summarise: in phase space, gauge transformations correspond to null directions

g of the presymplectic form W . One can reduce to the physical phase space of gauge-

inequivalent configurations if g are hamiltonian directions of W .

2.1 Symplectic reduction of gauge transformations on subregions

Entanglement considerations need, as starting point, the division of a system into subsys-

tems, which may then be entangled. For field theories, natural subsystems are subregions.

These are bounded domains of an initial data slice — or, more covariantly, the domains of

dependence of these subregions.

4This is also the reason to introduce ‘Dirac brackets’ when restricting Poisson brackets (which are defined

in terms of W ) to constraint surfaces C. The role of Dirac brackets is to trivialise discarding gradients away

from C.
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Our key physical requirement will be to impose that the subregions are not separated

by physical membranes. That is, that this separation of the system into constituents is only

an imaginary separation, not a physical one. This is a key defining property of entangling

surfaces in field theory.

The demand of the boundary not being physical translates into the condition that

the separation of the system into subsystems does not introduce degrees of freedom. If it

did introduce degrees of freedom, these would be the degrees of freedom of the separation,

which would therefore be a physical membrane; the separation would be made of something

— the new degrees of freedom.

As we will review, subregions in gauge theories tend to have boundary degrees of

freedom: the gauge transformations with support on the boundary of the subregion.5 This

is so because boundaries upgrade these gauge transformations from redundant to ‘large’.

In some contexts, as in the Quantum Hall effect, these edge modes are physical [21].

Instead, we will insist that the separations are imaginary; we will seek to avoid edge

modes. This involves fixing certain ‘boundary conditions’ on the separating surface. These

boundary conditions discard the degrees of freedom that would otherwise become the

edge modes.

The role of these boundary conditions is not to fix the state of the fields on the boundary

— this would make the boundary physical. Rather, their role is to exclude certain directions

from the tangent space of the phase space that we associate to the subregion. These are

the directions that would change the state of the boundary, i.e., the boundary degrees of

freedom. Discarding them forbids certain motions in phase space, and the state space of a

subregion thus decomposes into disconnected superselection sectors labelled by the values

of their ‘boundary conditions’ [22]. Then, we average over the superselection sectors.

In phase space, this discussion translates to imposing that gauge transformations g with

support on the boundary of subregions Σ, g|∂Σ 6= 0, continue to be non-degrees of freedom

of the presymplectic form W . That is, that they continue to be null and hamiltonian, so

that one can still symplectically reduce over them.

In the next section we will see how these requirements recover known results in elec-

tromagnetism, and in the following section we will use them in general relativity.

3 Electromagnetism

This section and the next build up on arguments that were first laid down in [22].

The presymplectic form for the Maxwell field is

W (δ1, δ2) =

∫
Σ

√
gΣ d

D−1x
(
δ1Ai δ2E

i − δ2Ai δ1E
i
)
. (3.1)

5See [16] for a rigorous analysis of edge modes in Yang-Mills and GR, and [17] for general diff-invariant

theories; and these together with [18] and [19, 20] for constructions recovering the area term in (1.1) from

the edge modes.
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Consider this presymplectic form on a subregion bounded by ∂Σ. Evaluating W on a

gauge direction, gε = {δAi(x) = ∂iε(x)}, gives

W (gε, δ) =

∫
Σ

√
gΣ d

D−1x
(
∇i(ε δEi)− ε∇iδEi

)
=

∫
∂Σ

√
g∂Σ d

D−2σ ε δE⊥ . (3.2)

Here we defined E⊥ ≡ niEi, with ni the outward pointing unit normal to ∂Σ in Σ. In the

second equality we integrated by parts the first term and used Gauss’ law to discard the

second term.

We now demand that the separation of Σ into the subregions inside and outside ∂Σ is

imaginary. That is, that gε is a gauge, non-degree of freedom that can be symplectically

reduced upon. As argued in the previous subsection, this demands two things on gε: that

it continues to be null and hamiltonian in the presence of ∂Σ.

The hamiltonian condition is automatically satisfied in eq. (3.2). Defining

Hgε =

∫
∂Σ

√
g∂Σ d

D−2σ εE⊥ , (3.3)

we have that6

W (gε, δ) = δHgε , (3.4)

and thus gε is a symmetry direction of the presymplectic form W .

For gε to be a null direction of W we need (3.2) to vanish. Two natural ways to achieve

this are demanding that either ε|∂Σ = 0, or that δE⊥
∣∣
∂Σ

= 0.

These two possibilities are in correspondence with two natural choices in the algebraic

discussion of entanglement entropy for gauge fields [23]: the electric and magnetic centres.

The electric centre considers sectors with fixed normal electric field in the boundary. The

magnetic centre sector fixes, instead, the tangent components of the vector potential on

the boundary: δAi|∂Σ = 0.7 This boundary condition naturally requires that ε|∂Σ = 0.8

Notice that there is much more freedom of choice than these two centres: at each point

in ∂Σ one can choose wether to fix E⊥ or Ai [23].

In the algebraic discussion, one chooses the centre and restricts the state to sectors

with definite values of the centre operators. For example, one would write the state in Σ

in the electric centre choice as

ρ =
⊕
E⊥

pE⊥ρE⊥ , (3.5)

where trρE⊥ = 1, and pE⊥ is the probability of the superselection sector with boundary

electric field E⊥. A similar decomposition holds for other choices of centres.

The von Neumann entropy of the state (3.5) is

Sel =
∑
E⊥

p(E⊥)SE⊥ +HE⊥ , HE⊥ ≡ −
∑
E⊥

pE⊥ ln pE⊥ . (3.6)

6We consider gauge transformations that are independent of the fields: δε = 0.
7More precisely, the holonomies of the induced Ai on ∂Σ.
8Strictly speaking it only demands that ε is constant ε0 on ∂Σ, but ε and ε − ε0 are the same gauge

transformation.

– 5 –



J
H
E
P
0
1
(
2
0
1
9
)
1
8
2

The first term in Sel can be interpreted as distillable entropy [24, 25], and the second term

is the Shannon entropy of the centre variables. Since E⊥ is a functional space, the sums

should be interpreted as functional integrals. pE⊥ is really a probability density on this

functional space of E⊥s on ∂Σ.

As discussed in [29, 30], the Shannon entropy of continuous probability distributions

is not necessarily positive. In fact, while the distillable entropy should be independent of

the choice of centre variables, the total entropy depends on the choice of centre [23].

For abelian lattice gauge theories, the electric centre choice is in correspondence with

the ‘extended Hilbert space’ construction of [26, 27], in which one enlarges the Hilbert space

with boundary degrees of freedom — edge modes — [25]. See [28] for a recent review.

4 General relativity

The symplectic form of general relativity evaluated on a diffeomorphism ζ is [22, 31]:

W (g; δg,£ζg) =

∫
∂Σ
δQζ(g)− iζθ(g; δg) , (4.1)

where we have used the equations of motion: the metrics g and g + δg are on-shell.9 Just

as in electromagnetism, this expression is a boundary term: in the absence of boundaries,

diffeomorphisms are trivially null directions of the symplectic form.

In (4.1) Qζ is the Noether charge density of the diffeomorphism:

Qζ(g) = − εh
16πG

εab∇aζb , (4.2)

where εh is the volume (D − 2)-form of the metric induced on ∂Σ, and εab is its binormal.

θ is the boundary term that relates the variation of the Lagrangian to the equations of

motion upon integration by parts:10

iζθ(g; δg) =
εh

16πG
va(g; δg) ζb εab , (4.3)

with

va(g; δg) ≡ gacgbd (∇dδgbc −∇cδgbd) . (4.4)

To evaluate (4.1), we fix the coordinates of the background metric g around ∂Σ:

ds2 =
(
hij + 2Kijax

a +Qijab x
axb
)
dσidσj + 2ai εab x

b dxa dσi

− 4

3
Riabc x

axbdxcdσi +

(
ηbd −

1

3
Rabcd x

axc
)
dxbdxd +O(x3) . (4.5)

In these coordinates the separating surface ∂Σ lies at xa=0, a=0, 1,11 and ηab=diag(−1, 1).

xa are normal coordinates away from ∂Σ, and eq. (4.5) makes explicit only the dependence

9In this section g denotes the metric, not a gauge transformation; these are denoted just by their

action £ζg.
10If L is the Lagrangian D-form and Eµν the Einstein equations, θ is defined by δL = Eµνδgµν+dθ(g; δg).
11Until now, a, b were generalised indices. From now on, they relate to this choice of coordinates. Likewise,

i, j indices spanned Σ in section 3; now they span ∂Σ.
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on xa — all objects depend implicitly on σi, the coordinates on ∂Σ. hij is the intrinsic

metric of ∂Σ and Kija its extrinsic curvature. The binormal of ∂Σ is εab dx
adxb = dx0∧dx1.

It will be convenient to divide the intrinsic metric and extrinsic curvature of ∂Σ into

their trace and traceless parts:

hij ≡ e2Ωh̄ij , det h̄ij = 1 , (4.6)

so that the volume form in ∂Σ is εh = e(D−2)Ωdσ1 ∧ · · · ∧ dσD−2, and

Kija ≡
1

D − 2
hijKa + e2ΩK̄ija , hijK̄ija = 0 . (4.7)

Notice that the definitions (4.6), (4.7) imply that variations satisfy

hijδh̄ij = 0 , h̄ij δK̄ija = K̄ija δh̄ij . (4.8)

With these definitions, eq. (4.1) evaluates to:12

W (g; δg,£ζg) =
1

8πG

∫
∂Σ

[
− ζiδ(ai εh) + ζτδ(εh) +

1

D − 2
ζbεab δ(Ka εh)

+

(
D − 3

D − 2
δKa +

1

2
K̄ij

a δh̄ij

)
ζbεab εh

]
, (4.9)

where ∂τ ≡ x1∂x0 + x0∂x1 .

There are three types of diffeomorphisms contributing to W (g; δg,£ζg): surface diffeo-

morphisms ζi, boosts ζτ , and translations ζa. The first line of (4.9) shows hamiltonians for

each of these types of generators; the second line is an apparent obstruction to translations

ζa being hamiltonian.

Now we impose that the entangling surface is imaginary; this demands that diffeos

continue to be null, and hamiltonian, in the presence of ∂Σ.

Consider first the surface diffeomorphisms ζi. There are two natural ways to drop

them from W ; one is to not let ai εh fluctuate. This is analogous to the electric boundary

conditions for electromagnetism. The other way is analogous to the magnetic choice: fix

instead the conformal class of the induced metric on ∂Σ, δh̄ij = 0 — h̄ij would transform

under a diffeomorphism on the surface, so fixing h̄ij generically sets ζi = 0.13 In this paper

we focus on the option that fixes h̄ij .

Let us now look at surface translations ζa. Their effect is to slightly displace ∂Σ.

It is then natural that they will drop from W if the location of ∂Σ is sufficiently rigidly

specified, so that no such deformations are active. Indeed, the translation term drops

from the first line of (4.9) if we do not let Ka εh fluctuate. One natural way to achieve

this is demanding that ∂Σ has extremal area, Ka = 0, and that fluctuations respect this

extremality: δKa = 0.

12Restoring to Euclidean signature, this corrects expression (A.28) in [22].
13Except for conformal Killing vectors, which are not generic, and are at best a finite dimensional subspace

of ζi(σ) in D > 4. In D = 4, they make the infinite-dimensional conformal group of 2-dimensional surfaces.

These CKVs, however, have one-dimensional dependence, and so still are a zero-measure subset of ζi(σ1, σ2).
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δKa = 0 also gets rid of the first term in the second line of (4.9). Recall that this

second line is a potential obstruction to ζa being hamiltonian, and making it zero ensures

that we are properly restricting W to a constraint surface in phase space — in this case, a

certain Ka = 0 locus. To achieve this restriction we also need to demand the vanishing of

the last term in eq. (4.9):

K̄ij
a δh̄ij = 0 . (4.10)

This suggests that the extremality condition Ka = 0, δKa = 0, does not fully spec-

ify the location of the entangling surface ∂Σ. Indeed, we argue below that, generically,

codimension-2 extremal surfaces can be infinitesimally locally deformed. As we will see,

condition (4.10) then discards this freedom.

Observe that the hamiltonian for homogeneous boosts ζτ is

Hζτ =
Area|∂Σ

8πG
ζτ . (4.11)

We could drop these by demanding that the area of ∂Σ is fixed, but we will not do that

in this paper. One reason not to do it is that ∂τ = 0 on ∂Σ, so ζτ does not act on

the boundary. Another reason is by comparison to the codimension-1 problem, where the

trace of the extrinsic curvature is canonically conjugate to the area, so fixing both would

be overconstraining, and we have already fixed δKa = 0.

The fact that boosts are physical symmetries in this formalism may be related to the

physicality of modular flow — which, for ordinary quantum fields, acts as a boost near the

entangling surface.

In summary, extremal surfaces ∂Σ make good entangling surfaces in general relativity.

The superselection sectors on which phase space splits can be taken to be labelled by the

induced conformal metric h̄ij , subject to the constraint (4.10).

In this choice of centre, the state of the graviton in Σ decomposes into:

ρΣ =
⊕

{δh̄ij |K̄ija δh̄ij=0}

pδh̄ij ρδh̄ij , (4.12)

where ρδh̄ij are normalised states of the degrees of freedom in Σ subject to making ∂Σ a

minimal surface, with induced conformal metric h̄ij + δh̄ij .
14 The entropy of (4.12) is just

like in (3.6).15

4.1 Generic local deformability of codimension-2 extremal surfaces

We now sketch an argument why codimension-2 extremal surfaces are generically infinites-

imally deformable. Such a deformation of ∂Σ from xa = 0 to a nearby xa = ζa(σ) is called

a Jacobi field, and satisfies the equation δζK
a = 0:

δζK
a = −Di

(
Diζa

)
+Q′b

aζb = 0 , (4.13)

14Since the analysis is perturbative, the direct sum is over fluctuations δh̄ij . h̄ij is the metric induced on

Σ in the classical background.
15This requires a measure in the space of constrained h̄ijs. Defining this type of measures is subtle [20].
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where

Q′ij
ab ≡ Qijab − 2K(i

kaKj)k
b + ai aj η

ab , (4.14)

and Q′b
a ≡ hijQ′ijba. The Di derivative is

Diζ
a ≡ ∇iζa − ai εab ζb , (4.15)

where ∇i is the standard covariant derivative in ∂Σ compatible with its induced metric

hij , and is transparent to a-indices. The ai object of (4.5) acts as a connection along ∂Σ

for boosts of the normal directions.

Eq. (4.13) reduces to a Laplace equation for ζa when ∂Σ is a flat surface embed-

ded in Minkowski space, as one expects. Inspection of the adapted coordinates (4.5) also

makes the appearance of Qijab ζ
b plausible in the variation of Kija under the deformation

generated by ζa.

Infinitesimal local deformability of extremal surfaces is a statement about existence

of solutions to eq. (4.13) centred on arbitrary points σi = σ̄i. If such solutions decay

fast enough so that they can be considered localised around σ̄i, they can be called local

deformations. In AdS/CFT, these would be infinitesimal deformations of the HRT surface

that do not change the boundary anchoring surface.

We will argue for the existence of localised solutions to (4.13). This involves

analysing (4.14), which can be simplified with Gauss-Codacci-type of equations, that relate

the Qijab and ai objects to the background Riemann tensor of (4.5) on ∂Σ:

Rij
kl = Rijkl − 2Ki

[k
cK

l]
j
c

Rij
ab = Fij ε

ab − 2K[i
kaKj]k

b

R(i
a
j)
b = −Q′ijab −K(i

kaKj)k
b , (4.16)

where Rijkl is the Riemann tensor of hij , the intrinsic metric on ∂Σ, and Fij = 2∂[iaj] is

the curvature of the abelian connection on normal boosts, ai.

Using (4.16) we can rewrite the trace of (4.14) as

Q′ab ≡
1

2

(
−hijRij +R+ (K̄2)cc

)
ηab −R{ab} − (K̄2)ab (4.17)

where we used that ∂Σ is a minimal surface, Ka = 0, and defined R{ab} ≡ Rab− 1
2 Rcd η

cd ηab,

and (K̄2)ab ≡ K̄ika K̄ikb.
16

Making the approximation that the induced metric is conformally flat h̄ij = δij , which

in D = 4 is not an approximation,17 we can conformally transform hij to δij in (4.13) and

write the kinetic term as in flat space:

Di

(
Diζa

)
− D − 4

4(D − 3)
R ζa = e−

D
2

Ωδij (∂i − ai) (∂j − aj) ζ̃a (4.18)

where ζ̃a = e
D−4

2
Ωζa.

16The Raychaudhuri equation for congruences of null geodesics emanating from an extremal surface can

be obtained from (4.17) by specialising ab to a null direction, say v, and recognising that Q′vv = θ̇(v), and

that K̄ijv = σ(v)ij . We then have the familiar θ̇(v) = −Rvv − (σ(v))
2. The usual − 1

D−2
(θ(v))

2 term is

missing because of extremality: θ(v) = 0.
17Two-dimensional surfaces are conformally flat.
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In this way (4.13) becomes a flat space equation on ∂Σ

−δij (∂i − ai) (∂j − aj) ζ̃a + V a
b ζ̃

b = 0 , (4.19)

with:

V a
b = e2Ω

[
1

2

(
−hijRij +

1

2

D − 2

D − 3
R+ (K̄2)cc

)
δab − ηacR{cb} − (K̄2)ab

]
. (4.20)

Ignoring ai, eq. (4.19) is a zero-energy Schroedinger-type equation for a vector quantity

ζ̃a, with potential V a
b.

18 Localised zero-energy solutions are only possible if the potential

attains negative values.

To analyse this further, let us consider a region where the background is approximately

flat, so the Ricci terms vanish and R = −(K̄2)cc, giving

flatV a
b(σ) =

e2Ω

4

[
D − 4

D − 3
(K̄2)cc δ

a
b − 4(K̄2)ab

]
, (4.21)

and

flatFij = −K̄i
ka K̄jk

b εab . (4.22)

(K̄2)ab has a two eigenvalues, (κ̄1̂)2 and −(κ̄0̂)2, for a spacelike and timelike eigenvec-

tors. Since (K̄2)ab is a square, the spacelike eigenvalue is non-negative, and the timelike

one is non-positive.

The spacelike eigenvalue of V a
b then is:

V1̂ = −e
2Ω

4

[
D − 4

D − 3
(κ̄0̂)2 +

3D − 8

D − 3
(κ̄1̂)2

]
, (4.23)

and is negative in D = 4 if κ̄1̂ 6= 0, which is generic, and more generally for D > 4

if K̄ija 6= 0.

Approximating such eigenvalue by a constant, V1̂ ≈ −κ̄2, eq. (4.19) in the direction 1̂

becomes:

−∂i∂i ζ̃ 1̂ − κ̄2 ζ̃ 1̂ = 0 , (4.24)

where we are ignoring Fij , and thus ai. Eq. (4.24) does admit spherical wave solutions,

decaying away from a centre. For example, in D = 4, we have

ζ̃ 1̂ = J0(κ̄ σ) , σ ≡
√
δij(σi − σ̄i)(σj − σ̄j) , (4.25)

with σ̄i integration constants, and J0(κ̄ σ) Bessel functions, decaying as (κ̄ σ)−1/2. (4.25)

are then localised deformations to infinitesimally nearby extremal codimension-2 surfaces.

To justify neglecting Fij instead of, e.g., approximating it by a constant, recall that

a constant magnetic field on a plane acts like a harmonic potential ∝ σ2, giving rise to

Landau levels. Fij should be then kept at the same order as the one that keeps harmonic

corrections to V a
b ∝ σ2, that is, subleading order.

18Keeping ai, eq. (4.19) is a zero-energy Schroedinger-type equation for a charged particle in a mag-

netic field Fij , under a complex potential that also acts on the complex conjugate of the ‘wave function’

ζ0 + i ζ1 [32].
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The key ingredient enabling local deformations of ∂Σ is a non-zero traceless extrinsic

curvature K̄ija 6= 0. We will now see that, as announced, condition (4.10), which is active

also only when K̄ija 6= 0, works to discard these deformations.

An infinitesimal deformation ζa of ∂Σ would change the induced metric by

δζhij = 2Kija ζ
a . (4.26)

Substituting this into (4.10) we have

K̄ij
a δζ h̄ij = 2K̄ij

a K̄ijb ζ
b = 0 , (4.27)

which, if K̄ija 6= 0, can only be satisfied by ζa = 0. (4.10) thus discards the deforma-

tions (4.25).

In fact, eq. (4.10) discards all translations ζa 6= 0, not only the ones reaching nearby

extremal surfaces in the original geometry (4.25). We will now interpret why all such

translations need to be discarded. The reason is that they do reach a nearby extremal

surface, albeit possibly in a perturbed geometry. This effect is second order in gravitational

perturbations.

Recall that in eq. (4.12) the state of a gravitational subregion is given as a mixture of

sectors. Each sector is constituted by a family of background geometries with an entangling

extremal surface of interest, at xa = 0, with fixed induced conformal metric h̄ij , but with

the remaining geometric data varying: these are the background Weyl tensor,19 as well as

the traceless extrinsic curvature and area density of the entangling surface.

The deformation equation (4.19) has a different potential V a
b within each such geom-

etry and, as a result, its solutions ζ̃a will have varying direction and support depending

on this varying data. We expect that, through these variations, translations to nearby

entangling extremal surfaces ζa span all directions in the normal plane ab and all supports

on ∂Σ within a given h̄ij sector.

Such translations are discarded by K̄ija δh̄ij = 0 even when the traceless extrinsic

curvature has changed to K̄ija + δK̄ija. To see this, decompose δK̄ija into a sum of terms

with and without zero product and trace with K̄ija in the ij indices:

δK̄ija ≡ K̄ijb δ1S
b
a + δ2K̄ija , K̄ija δ2K̄ijb = 0 . (4.28)

To leading order in δK̄ija, δ2K̄ija decouples from the discussion: on one hand, the variation

of the potential in eq. (4.19) is

δV a
b ∝ K̄ija K̄ijc δ1S

c
b +O((δ2)2) ; (4.29)

and, on the other hand, the variation in eq. (4.10) induced by a translation ζa is

K̄ija δh̄ij = 2K̄ija
(
K̄ijc(δ

c
b + δ1S

c
b) + δ2K̄ijb

)
ζb = 2(K̄2)ac (δcb + δ1S

c
b) ζ

b . (4.30)

δ2K̄ija drops both from (4.29) and (4.30). Because of this, to O(δK̄ija), eq. (4.10) discards

all relevant nearby entangling surfaces, that effectively live within the family of geometries

with traceless extrinsic curvatures K̄ijc(δ
c
b + δ1S

c
b).

19The part of the curvature not fixed by the Einstein equations.
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Condition (4.10) is, then, generically about second variations: deformations of the

entangling surface in a perturbed geometry. That this should be the case can be justified

by re-examining its origin in eq. (4.9). We demanded K̄ij
a δh̄ij = 0 so that the variations

generated by ζa were Hamiltonian. K̄ij
a δh̄ij is an obstruction to finding a Hamiltonian

only if K̄ija is allowed to depend on phase space, so that K̄ij
a δh̄ij 6= δ

(
K̄ij

a h̄ij
)
, and this

obstruction is so only if K̄ija can have a non-trivial variation in the presence of δh̄ij . This is

a condition of variations in the presence of variations, and hence a second order condition.

These arguments are perturbative, but it is only when the states in (4.12) spread over

small such perturbations of one geometry that we can talk about there being a ‘back-

ground geometry’ on which we can consider the entanglement of the graviton across a

certain surface.

We have in effect argued that all deformations xa = ζa of the original extremal en-

tangling surface, at xa = 0, can be nearby entangling surfaces, in the original geometry

or in a fluctuated one. The role of eq. (4.10) is to discard, from the sum over centres h̄ij ,

entangling surfaces that lie in background geometries that have already been accounted for

in the sector with δh̄ij = 0. Indeed, eq. (4.12) should describe the state of the graviton

across one entangling surface, at xa = 0, not across multiple entangling surfaces within

each ambient background geometry.

We close this subsection with three comments.

First, having solutions to the Jacobi equation does not imply existence of finite defor-

mations to nearby entangling surfaces. Any result following from the Jacobi equation is

just a first order result.

Second, the sketch of this subsection does not imply anything on geodesics — or

dimension-1 extremal curves — as for these the enabling term K̄ija is identically zero. But

we expect the essence of the argument to hold generically for dimension > 1 extremal

surfaces.

Third, nothing significant in this subsection changes in Euclidean signature; only

ηab → δab, the sign of the ai aj term in (4.14), and the sign of Hζτ . flatV a
b also

has generically at least one negative eigenvalue, as can be seen by taking the trace,
flatV a

a = − e2Ω

2
D−2
D−3(K̄2)aa, which is negative when K̄ija 6= 0 because it is minus a sum

of squares.

5 Discussion

In this paper we have studied entangling surfaces for the gravitational field. Our key

physical requirement has been to demand that these surfaces are not physical, i.e., that

they do not have degrees of freedom. This translates to the mathematical condition that

diffeomorphisms with support on the entangling surface are null and hamiltonian directions

of the symplectic form.

When the only field available is the graviton, the analysis outputs extremal surfaces

Ka = 0 as the only type of entangling surfaces for which these properties hold.20 We have

20See [33] for a similar conclusion from an argument with Euclidean path integrals.
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only examined in some detail one choice of centre variables on which the phase space splits

under the separation into subregions; in this choice, the centre variables are the confor-

mal class of the induced metric on the entangling surface, δh̄ij , subject to the constraint

K̄ij
a δh̄ij = 0. We sketched an argument that this constraint works to discard fluctuations

to nearby, extremal, entangling surfaces.

Notice that the constraint K̄ij
a δh̄ij = 0 trivialises on bifurcation surfaces of Killing

horizons, such as the r = 2M surface in Schwarzschild, where Kija = 0. These surfaces

are expected to be good graviton entangling surfaces. But the constraint will be active, for

example, in the generic Hubeny-Rangamani-Takayanagi setups [4].

The analysis of this paper suggests that the entanglement of the graviton may be

definable only across surfaces of extremal area Ka = 0, and this raises questions about

some proposed algorithms to compute gravitational entropy to all orders in G. According

to the prescription in [34] (see also [35]), one should evaluate Stot = A/4G+Sbulk on surfaces

that minimise it, δStot = 0. But if Sbulk is only defined across extremal surfaces, δ in δStot

can not explore all surfaces nearby21 — at best it would explore extremal surfaces nearby.

Similarly, the condition that the entangling surface be extremal seems to rule out gen-

eral sections of time-dependent black hole horizons, which make the setup of the generalised

second law of black hole thermodynamics. If one is to argue that Stot increases at all steps

of black hole evaporation, it ought to be possible to define entanglement of the graviton

across non-minimal surfaces.

Continuing on the subject of black holes, it would be very interesting to develop a real-

time picture of the quantum corrections to black hole entropy (see [36] for a review). By

importing the AdS/CFT derivation of [6], one expects that such quantum corrections are

given by the entanglement of the graviton Sbulk [37]. But, as briefly recalled in section 3,

the entanglement entropy of gauge fields — including the so-called ‘universal’ logarithmic

corrections — depends on how one chooses the centre [23].22 It is important to understand if

this ambiguity continues to apply for the graviton, and if it does, whether it gives rise to any

ambiguity in the logarithmic corrections to black hole entropy. While these caveats about

logarithms would apply to finite temperature black holes, e.g. as in Schwarzschild [38], they

may not be relevant for extremal black holes, for which the entanglement-across-the-horizon

picture may break down, as the horizon is infinitely far away.

The fact that we charted the boundary values of fluctuations by the change in the

trace of the extrinsic curvature δKa and the change in the conformal class of the induced

metric h̄ij is reminiscent to analogous boundary conditions for codimension-1 surfaces in

Euclidean quantum gravity [43] — where it was argued that the more familiar Dirichlet

boundary conditions δhij = 0 fail to make the graviton fluctuation operator elliptic. We

note that both there and here the guiding principle in choosing boundary conditions is to

discard diffeomorphisms with support on the boundary as degrees of freedom. It would be

very interesting to flesh out the extent of this apparent connection more precisely.

21I thank Aron Wall for pointing this out.
22See [39–41] for examples of calculations of entanglement entropy in electromagnetism whose logarithmic

divergences do not agree with the ones of the electric centre [29, 30]. The form of the latter is dictated by

the central charges. However, see [42] for an agreement between electric and magnetic calculations.
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