
J
H
E
P
0
1
(
2
0
1
9
)
1
0
2

Published for SISSA by Springer

Received: October 18, 2018

Accepted: January 7, 2019

Published: January 11, 2019

The order p8 mesonic chiral Lagrangian

Johan Bijnens, Nils Hermansson-Truedsson and Si Wang

Department of Astronomy and Theoretical Physics, Lund University,

Sölvegatan 14A, SE 223-62 Lund, Sweden

E-mail: bijnens@thep.lu.se, nils.hermansson-truedsson@thep.lu.se,

siw34@pitt.edu

Abstract: We derive the chiral Lagrangian at next-to-next-to-next-to-leading order

(NNNLO) for a general number Nf of light quark flavours as well as for Nf = 2, 3. We

enumerate the contact terms separately. We also discuss the cases where some of the

external fields are not included. An example of a choice of Lagrangian is given in the

supplementary material.

Keywords: Chiral Lagrangians, Global Symmetries, Spontaneous Symmetry Breaking

ArXiv ePrint: 1810.06834

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2019)102

mailto:bijnens@thep.lu.se
mailto:nils.hermansson-truedsson@thep.lu.se
mailto:siw34@pitt.edu
https://arxiv.org/abs/1810.06834
https://doi.org/10.1007/JHEP01(2019)102


J
H
E
P
0
1
(
2
0
1
9
)
1
0
2

Contents

1 Introduction 1

2 Building blocks for chiral Lagrangians 3

2.1 Chiral building blocks 5

2.2 A basis of odd and even monomials 6

2.3 Contact terms 7

3 Constructing the chiral Lagrangian 8

3.1 Partial integration or addition of total derivatives 9

3.2 Field redefinitions or equations of motion 10

3.3 The Bianchi identity 10

3.4 Other relations for general Nf 11

3.5 The Cayley-Hamilton theorem 12

3.6 Contact terms 13

4 The NNNLO Lagrangian 13

5 Meson-meson scattering 16

6 Conclusions 17

A Contact terms 18

1 Introduction

Chiral perturbation theory (ChPT) [1–3] is an effective field theory (EFT) of QCD at low

energies. An introduction and further references can be found in [4]. For Nf flavours of

light quarks the effective degrees of freedom are the N2
f − 1 lightest pseudoscalar mesons.

These arise as the (pseudo-)Goldstone bosons of the spontaneously broken chiral symmetry

SU(Nf )L×SU(Nf )R to SU(Nf )V . For Nf = 2, i.e. when only u and d quarks are considered,

these are the pions, and for Nf = 3 when the s quark is included, the additional degrees of

freedom are the kaons and the eta meson. The power counting is done in terms of a generic

momentum, p, and, as in any EFT, a calculation is done to a fixed order in this variable.

This requires a chiral Lagrangian of the corresponding order. The leading order (LO), or

p2, next-to-leading order (NLO), or p4, and next-to-next-to-leading order (NNLO), or p6,

chiral Lagrangians are known. The LO is basically current algebra, the NLO was derived

in [2, 3]. The p4 Lagrangian in the anomalous sector contains no new free parameters [5, 6].

The NNLO or p6 Lagrangian was studied in [7, 8] and for the anomalous sector in [9, 10].

In addition the divergence structure is known for all of these [2, 3, 9, 11].
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The basis of [8] for a general number of flavours and Nf = 3 is generally accepted as

minimal. For two flavours, an extra relation was found in [12] and another one for the

case of vanishing scalar and pseudoscalar external fields [13]. In general, it is quite difficult

to be sure one has a minimal Lagrangian. The only foolproof method we are aware of is

to find Green functions of the external fields that allow to determine all free parameters.

This program has been done to NNLO for the case with vanishing scalar and pseudoscalar

external fields in [14]. A very systematic approach to NNLO was done in the Diplom

thesis [15]. This latter reference was the inspiration for the present work.

In this paper we present a derivation of the next-to-next-to-next-to-leading order

(NNNLO), or p8, chiral Lagrangian L8 in the nonanomalous or positive intrinsic parity

sector. We do this for two, three and a general number of light quark flavours. We treat

the cases of only Goldstone bosons, including scalar and pseudoscalar external fields, in-

cluding vector and axial vector external fields and including all four sets of external fields.

As a byproduct we clarify the number of terms in the two-flavour case at NNLO.

There are several underlying reasons to do this work. It is of general interest to know

how many terms there actually are at a given order in the EFT expansions. For the

case of extensions of the standard model there is a large literature, we quote here only

the Hilbert series approach [16] and a software to find the minimal Standard Model EFT

Lagrangian [17]. The remaining literature can be traced via these two. Our approach can

in principle be extended to these cases as well. The second reason is that at tree level

there are a number of works studying effective fields theories using amplitude methods [18]

and references therein. Knowing the solution to p8 provides a cross-check for extensions

of that work to higher derivatives. The third motivation to find the Lagrangian is that in

a previous calculation [19], analytical expressions for the pion mass and decay constant at

order p8 were obtained for two flavour ChPT. However, as the NNNLO Lagrangian was

not yet known, the tree level contributions were parametrised in terms of two unknown

parameters. These parameters are in fact combinations of low energy constants (LECs)

multiplying the monomials in the minimal set we derive here, and their numerical values

can in principle be found from experiment. The present status of their values was reviewed

in [20] and their determination from lattice QCD in [21].

The Lagrangians are of the generic form

L2n =
∑
i

c
(2n)
i O(2n)

i . (1.1)

The c
(2n)
i are the free constants, usually referred to as low-energy-constants (LECs). The

Oi are monomials in terms of the (pseudo-)Goldstone bosons and external fields that are

invariant under chiral symmetry, hermitian and invariant under charge conjugation and

parity.1 The set of Oi should be complete and minimal.

We first write down all possible single term operators2 in terms of a number of basic

building blocks. At this level we impose parity (P ) and invariance under chiral symmetry.

1Since we have a field theory this also implies invariance under time-reversal because of the CPT -

theorem.
2For these we use the term operators in the remainder.
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This is described in section 2.1. This basis is the simplest one to derive all the relations

described below. At this stage we also take into account the different ways to write each

operator due to cyclicity of the trace, relabelling of indices and those that are zero because of

contraction of antisymmetric and symmetric pairs. The next step is then to combine these

operators into monomials that are invariant under charge conjugation (C) and hermitian

conjugation (H). The method we use here is discussed in section 2.2. An extension was

needed to find all possible contact terms, i.e. the operators only depending on external

fields. This is discussed in section 2.3.

In general this leads to a very large number of operators, but here the importance is

to be complete. It is also easier to make sure we have obtained all relations when the basis

at this level contains all possible single term operators, even those that can obviously be

removed. The linear relations between operators that we use are all partial integrations,

finding operators that can be removed using field redefinitions by using the equation of

motion, the Bianchi identity and relations that follow from commuting derivatives. These

are discussed in sections 3.1–3.4 and are what we use to determine the general Nf flavour

Lagrangian. For two- and three flavours there are additional relations following from the

Cayley-Hamilton relation. These are discussed in section 3.5. Again, there are a number

of extra conditions needed when determining the relations between possible contact terms.

These are discussed in section 3.6.

The analytical work is done using FORM [22] and Python to rewrite some of

FORM’s output back into FORM commands. Identical relations are removed within

the FORM programs but we still end up with a very large number of operators and rela-

tions. The number of independent relations was determined by using Gaussian elimination.

This we implemented using C++ with exact arithmetic via the GNU multiple precision

library (GMP) [23].

The results are discussed in section 4. We give here the numbers of independent

monomials for the various cases of number of flavours and inclusion of external fields.

Explicit lists of the monomials involved are relegated to the appendix for the contact

terms and to the supplementary material for the others. As an example of the use of our

Lagrangians we discuss meson-meson scattering in section 5 and show that the number of

LECs agrees with general considerations on the form of the amplitude.

2 Building blocks for chiral Lagrangians

ChPT is constructed from the chiral symmetry G = SU(Nf )L × SU(Nf )R of the QCD

Lagrangian with Nf massless quarks. Due to a non-vanishing quark vacuum expecta-

tion value, this symmetry is spontaneously broken to H = SU(Nf )V and the correspond-

ing N2
f − 1 Goldstone bosons live in the coset space G/H and are the lightest pseudo-

scalar mesons.

Gasser and Leutwyler [2, 3] added scalar s, pseudoscalar p, vector vµ and axial-vector

aµ external fields to the QCD Lagrangian. They transform in such a way that the chiral
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group G can be made local and leave the QCD Lagrangian

L = L0QCD + qγµ (vµ + aµγ5)− q (s− ipγ5) q (2.1)

invariant. q is an Nf column vector, s, p, vµ, aµ are Nf ×Nf matrices in flavour space. We

assume that vµ and aµ are traceless.

The Goldstone boson fields φ can be organized in a unitary matrix u(φ) [24, 25]. The

transformation under a chiral symmetry transformation (gL, gR) ∈ SU(Nf )L×SU(Nf )R of

the relevant fields is

u(φ) −→ gRu(φ)h(gL, gR.u(φ))† = h(gL, gR.u(φ))u(φ)g†L ,

χ ≡ 2B (s+ ip) −→ gRχg
†
L ,

`µ ≡ vµ − aµ −→ gL`µg
†
L − i∂µgLg

†
L ,

rµ ≡ vµ + aµ −→ gR`µg
†
R − i∂µgRg

†
R . (2.2)

The top line in (2.2) is the definition of h(gL, gR, u(φ)) which is an element of the unbroken

subgroup H. The remaining lines in (2.2) define the combinations χ, `µ and rµ. In the

remainder we drop the arguments of u and h. The constant B in the definition of χ is

related to the chiral limit value of the quark vacuum expectation value and pion decay

constant B = −〈q̄q〉/NfF
2. We also use the notation 〈X〉 = tr (X) for any matrix in

flavour space. The effective Lagrangian is expanded in powers of p2 according to

L = L0 + L4 + L6 + L8 + . . . , (2.3)

where the first four contributions are the LO, NLO, NNLO and NNNLO Lagrangians,

respectively. Each of these is a sum of order p2n monomials O(2n)
i , i.e.

L2n =

N2n∑
i=1

c
(2n)
i O(2n)

i , (2.4)

where the c
(2n)
i are LECs and N2n is the number of monomials. We use here the stan-

dard counting where the fields s, p are counted as p2, vµ, aµ as order p. The monomials

O(2n)
i depend on the field content, and each is invariant under chiral symmetry, Lorentz

transformations and the discrete transformations parity, charge conjugation and hermitian

conjugation.

The easiest way to construct invariants is to produce objects that transform linearly

under a simple symmetry group. Here one can use different choices, all transforming

purely left or purely right-handed or purely under the vector group SU(3)V . The former

choices were made in [7, 10, 26], the latter in [8, 9]. We will use the latter except for the

determination of the contact terms.
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P C h.c.

U U † UT U †

χ χ† χT χ†

FµνL ε(µ)ε(ν)FµνR −
(
FµνR

)T
FµνL

FµνR ε(µ)ε(ν)FµνL −
(
FµνL

)T
FµνR

Table 1. Transformation properties of the first chiral building blocks. ε(0) = −ε(i = 1, 2, 3) = 1.

2.1 Chiral building blocks

The p4 Lagrangian was constructed in [3] using

U ≡ u2 −→ gRUg
†
L ,

χ −→ gRχg
†
L ,

FµνL ≡ ∂
µ`ν − ∂ν`µ − i [`µ, `ν ] −→ gLF

µν
L g†L ,

FµνR ≡ ∂
µrν − ∂νrµ − i [rµ, rν ] −→ gRF

µν
R g†R . (2.5)

We will refer to FµνL,R as field strengths.

We can define covariant derivatives Dµ acting on these building blocks that transform

as the building blocks themselves via

DµO =



∂µO − irµO + iO`µ, O −→ gRO g
†
L ,

∂µO − i`µO + iOrµ, O −→ gLO g
†
R ,

∂µO − irµO + iOrµ, O −→ gRO g
†
R ,

∂µO − i`µO + iO`µ, O −→ gLO g
†
L ,

(2.6)

for any operator O transforming in one of the four ways. The respective momentum orders

of the above structures are U ∼ p0, DµU ∼ p and χ, FµνL,R ∼ p2. Their transformation

properties under the discrete transformations can be found in table 1. This set of building

blocks we will refer to as the first basis.

As mentioned above it is easier to use building blocks that all transform the same way.

We choose to use the transformation under h ∈ H as defined in (2.2) and all building blocks

X transforming as X −→ hXh†. It can be checked that the following blocks transform in

the desired way and form a complete set:

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − i`µ)u†

]
,

χ± = u†χu† ± uχ†u ,
fµν± = uFµνL u† ± u†FµνR u . (2.7)

– 5 –
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P C h.c.

uµ −ε(µ)uµ uTµ uµ

χ± ±χ± χT± ±χ±
f±µν ±ε(µ)ε(ν)f±µν ∓fT±µν f±µν

Table 2. Transformation properties of the main chiral building blocks, where ε(0) = −ε(i =

1, 2, 3) = 1.

Note that when no external fields are included, only uµ with `µ = rµ = 0 needs to be

considered. The covariant derivative ∇µ is defined as

∇µX = ∂µX + [Γµ, X] , (2.8)

where the chiral connection is

Γµ =
1

2

[
u† (∂µ − irµ)u+ u (∂µ − i`µ)u†

]
. (2.9)

Equations (2.6) and (2.8) highlight one of the reasons this set of building blocks is more

convenient than the first set. We will refer to this as the main set in the remainder.

Since ∇µX transforms like X under chiral symmetry, we can always take covariant

derivatives of the structures in (2.7) and obtain another building block of one order higher in

p-counting. The respective orders of the above structures are uµ,∇µ ∼ p and χ±, f±µν ∼ p2.
Their transformation properties under P , C and hermitian conjugation are given in table 2.

Further note that uµ and f±µν are traceless since rµ and `µ are.

All possible operators of a given order in p that are invariant under the chiral group

can be generated by taking traces of the building blocks and their covariant derivatives. At

this stage we make sure that terms that are the same from cyclicity of traces or relabelling

indices are identified. We also remove terms that are obviously zero because a pair of

antisymmetric indices is contracted with a pair of symmetric ones.

We look here at the nonanomalous sector so we do not need the Levi-Civita tensor

εµναβ . Lorentz-indices are always contracted pairwise so parity can be easily implemented

as well by keeping only terms with an even number of uµ, χ− and f−µν .

2.2 A basis of odd and even monomials

In addition to chiral invariance and parity as implemented in the single term operators

built directly from the building blocks we need to impose charge conjugation and have

terms that are hermitian. One advantage of the building blocks is that charge conjugation

and hermitian conjugation always relate the same operators. This can be seen from

C (〈X1 . . . Xn〉) = ±〈XT
1 . . . X

T
n 〉 = ±〈XN . . . X1〉 ,

(〈X1 . . . Xn〉)† = 〈X†n . . . X
†
1〉 = ±〈XN . . . X1〉 , (2.10)

where Xi is any of the building blocks in (2.7) or their covariant derivatives.

– 6 –



J
H
E
P
0
1
(
2
0
1
9
)
1
0
2

We can now construct the combinations that are hermitian and odd or even under C.

Any operator transforms according to

Oi −→ λC± λ
h.c.
± Oj , (2.11)

where Oj can be any operator in the basis and λC,h.c.± = ±1 are the eigenvalues under the

respective discrete transformations. There are thus four possibilities of the signs, which we

denote by (λC±, λ
h.c.
± ), in addition we can have i = j or i 6= j. We define C-even and C-odd

monomials O±i for the case j = i:

(+,+) : Oi = O+
i ,

(−,+) : Oi = O−i ,
(+,−) : Oi = iO+

i ,

(−,−) : Oi = iO−i . (2.12)

For j 6= i we instead have

(+,+) : Oi =
O+
i + iO−i

2
, Oj =

O+
i − iO

−
i

2
,

(−,+) : Oi =
iO+

i +O−i
2

, Oj =
−iO+

i +O−i
2

,

(+,−) : Oi =
iO+

i +O−i
2

, Oj =
iO+

i −O
−
i

2
,

(−,−) : Oi =
O+
i + iO−i

2
, Oj =

−O+
i + iO−i

2
. (2.13)

The final Lagrangian should only contain the monomials O+
i .

2.3 Contact terms

The monomials constructed using the main building blocks in (2.7) are sufficient to con-

struct a complete basis and determine the total number of terms in the Lagrangian. How-

ever, there are in general terms possible that only depend on the external fields, i.e. the

contact terms. These cannot be simply measured in physical processes but depend on

the precise definitions of the external fields used in QCD. For determining the number of

physically relevant parameters at a given order it is therefore desirable to also know the

number of contact terms.

The contact terms only depend on external fields and are therefore best handled in the

first basis using O = χ, FµνL , FµνR and their covariant derivatives. The relations between

the building blocks in this and the main basis are

χ =
1

2
u (χ+ + χ−)u ,

χ† =
1

2
u† (χ+ − χ−)u† ,

FµνL =
1

2
u†
(
fµν+ + fµν−

)
u ,

FµνR =
1

2
u
(
fµν+ − f

µν
−
)
u† . (2.14)

This shows that the contact terms are included when using the main basis.

– 7 –
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The contact terms are found by writing down all possible chiral invariant trace struc-

tures of the building blocks O and their covariant derivatives, taking into account that the

transformations under the left and right group should match. One also needs to be more

careful with defining the P,C and hermitian conjugation even operators generalizing the

method of the previous subsection.

The third complication is that there is for a given number of flavours another combi-

nation with a well-defined chiral transformation [27]:

χ̃ ≡
(
det(χ)χ−1

)† −→ gRχ̃g
†
L . (2.15)

This allows to take care of the invariant operator det χ + detχ† of chiral order p2Nf and

the extra building block for the two-flavour case in [2], called χ̃ there.

χ̃ is perfectly regular when s, p go to zero. This can be seen from the explicit expressions

using χij = xij :

Nf = 2 : χ̃ =

(
x∗22 −x∗21
−x∗12 x∗11

)
,

Nf = 3 : χ̃ =

x∗22x∗33 − x∗23x∗32 x∗31x∗23 − x∗21x∗33 x∗21x∗32 − x∗31x∗22x∗32x
∗
13 − x∗12x∗33 x∗11x∗33 − x∗31x∗13 x∗31x∗12 − x∗11x∗32

x∗12x
∗
23 − x∗22x∗13 x∗21x∗13 − x∗11x∗23 x∗11x∗22 − x∗12x∗21

 (2.16)

Terms involving χ̃ can be rewritten in the other building blocks so they are included in our

main basis. However, structures involving χ̃ are not fully independent of structures with χ,

so a careful check that they are really independent is needed. An example is 〈χ̃χ̃†〉 = 〈χχ†〉
for Nf = 2. The easiest way to check is simply to use the explicit forms given in (2.16).

3 Constructing the chiral Lagrangian

Equipped with the chiral building blocks of the main set basis it is now possible to construct

the Lagrangians. By demanding that the operators be invariant under chiral symmetry,

Lorentz transformations and the discrete symmetries of QCD, the only possible monomials

at LO are

〈uµuµ〉, 〈χ+〉 . (3.1)

This gives the LO Lagrangian in the standard form

L0 =
F 2

4
〈uµuµ + χ+〉 . (3.2)

F is a LEC corresponding to the LO pion decay constant and the second LEC B is hidden

inside χ as given in (2.2).

– 8 –
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At higher orders many more structures must be included, and it is important to note

that the operators Oi can be linearly related. The relations relevant for the NNNLO

Lagrangian will be discussed in more detail below, but in short they arise from

• the vanishing of total derivatives (i.e. from integration by parts),

• terms that can be removed using field redefinitions, this is equivalent to removing

combinations of operators that vanish due to the LO equation of motion (EoM), for

a proof see [28] and appendix A of [8],

• the Bianchi identity of the field-strength tensor Γµν = 1
4 [uµ, uν ]− i

2f+µν ,

• the identities f−µν −∇νuµ +∇µuν = 0 and [∇µ,∇ν ]X = [Γµν , X],

• the Cayley-Hamilton theorem (for Nf = 2, 3).

The Schouten identity [29] resulting from the fact that any completely anti-symmetric

tensor of rank higher than the number of dimensions must vanish, yields no extra relations

here since Lorentz invariance in the nonanomalous sector implies that there can be at most

four independent indices.

We first construct all operators using the building blocks of the main set defined in

section 2.1. Then we determine all relations on this set of operators since it is easier to

handle the single term operators in the relations. We then rewrite the operators in terms

of the C-even and odd operators O±i defined in section 2.2 and keep the C-even part of

all relations which involve only the N2n monomials O+
i . We remove identical relations

and write the remainder in matrix form AijO+
j = 0. The number of linearly independent

equations is thus equal to the rank of Aij , and the minimal set of monomials at order p2n

therefore has N2n − rank(A) elements.

Note that also the contact terms are linearly related, so that a similar procedure must

be done in order to find the minimal number of such terms. The differences are discussed

in section 3.6.

We used FORM [22] to produce the original operator basis and to produce all linear

relations. The output of this was then used as input for a C++ program calculating the

rank of Aij by Gaussian elimination. In order to avoid numerical imprecision, we used the

library GMP [23] which allows for exact arithmetic. Given the size of the final matrices,

we implemented a method using sparse matrices allowing the Gaussian elimination to work

without swapping. The general Nf case was handled by choosing a number of values for

Nf and checking that we got the same result, we used Nf = 17, 49, 73, 199 and obtained

the same basis for all of them.

As a check, we reproduce the known numbers for NLO and NNLO in [2, 3, 8]. We

have also two independent implementations of the procedures as a check. A minor check

is that the relations can be rewritten separately in C-even and C-odd operators.

3.1 Partial integration or addition of total derivatives

The order p2n action is invariant under the addition of a total derivative to the Lagrangian.

This leads to partial-integration relations. It is very difficult to be sure one has all such

– 9 –
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relations using partial integrations. However all total derivatives can be constructed in a

fashion similar to the construction of all basis operators. We construct all operators of the

form Oµ that are chiral and parity invariant. We can then add a relation ∂µOµ = 0 since

we can add a term ∂µOµ to the action.

One therefore has to write down all possible structures of order p2n−1 and then take

the derivative of each these. Generating all possible structures Oµ can be implemented in

the same way as generating all possible operators Oi thus guaranteeing that we have all

possible partial-integration relations.

As an example at NNNLO we get the relation

0 = ∂µ
〈
∇νuµ∇ν∇ρuσfρσ+

〉
=
〈
∇µ
(
∇νuµ∇ν∇ρuσfρσ+

)〉
=
〈
∇µ∇νuµ∇ν∇ρuσfρσ+

〉
+
〈
∇νuµ∇µ∇ν∇ρuσfρσ+

〉
+
〈
∇νuµ∇ν∇ρuσ∇µfρσ+

〉
, (3.3)

so that one of the operators can be written in terms of the other two.

3.2 Field redefinitions or equations of motion

Field redefintions also allow to remove terms from the Lagrangian. This is at the level of

the terms that can be removed equivalent to deriving relations between the higher order

terms using the LO EoM [8, 28].

The LO Lagrangian in (3.2) has EoM

∇µuµ −
i

2

(
χ− −

1

Nf
〈χ−〉

)
= 0 . (3.4)

The way we implement this is to take the set of all possible operators generated using the

building blocks. We then look for all occurrences of ∇µuµ or covariant derivatives thereof

and then use (3.4) to produce a relation.

An example is the operator 〈χ+u
ρχ+∇ρ∇µuµ〉 which using the EoM leads to the

relation

0 = 〈χ+u
ρχ+∇ρ∇µuµ〉 −

i

2
〈χ+u

ρχ+∇ρχ−〉+
i

2Nf
〈χ+u

ρχ+〉〈∇ρχ−〉 . (3.5)

We replace all possible occurrences of ∇µuµ but only one at a time if it occurs twice in

an operator. Using it twice in the same term does not yield new relations. Since we

have constructed all possible operators this method catches all possible relations from field

redefinitions.

3.3 The Bianchi identity

The field strength tensor Γµν is defined through the equation

[∇µ,∇ν ]X = [Γµν , X] , (3.6)

and can be expressed in our building blocks via

Γµν =
1

4
[uµ, uν ]− i

2
f+µν . (3.7)
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Γµν satisfies the Bianchi identity

Bµνρ ≡ ∇µΓνρ +∇νΓρµ +∇ρΓµν = 0 . (3.8)

The Bianchi identity is of order p3. Using the definition of Γµν this can be written

Bµνρ =
1

4

([
uρ, f−µν

]
+
[
uµ, f−νρ

]
+
[
uν , f−ρµ

])
− i

2

(
∇ρf+µν +∇µf+νρ +∇νf+ρµ

)
.

(3.9)

We will use it in this form which makes it clear that in the absence of external fields the

Bianchi identity does not give extra relations. Bµνρ is cyclic in µνρ and transforms as

our main set of building blocks. It is also automatically zero under a contraction of any

two indices.

Based on chiral dimension, the only structure the Bianchi identity can be traced with

at NLO is uµ, but as each term in the Bianchi identity is of even parity (this is easily seen

from table 2) such an operator would be odd under parity. Therefore, the Bianchi identity

becomes non-trivial only beyond NLO. At NNLO, it can be traced with ∇µf+νρ, f−µνuρ
or ∇µuνuρ [8]. At NNNLO there are additional complications, since it is possible to have

several traces and that it can be traced with tensors of rank three or five. However, we can

treat Bµνρ as a separate building block and use the same methods as before to construct

all possible operators involving Bµνρ. Each of these gives after inserting (3.9) a relation

between the operators Oi.
It is sufficient to have one insertion of Bµνρ since a relation involving it twice can

be constructed from those only involving it once. In addition since we have all possible

partial-integration relations there is also no need to consider covariant derivatives of Bµνρ.

3.4 Other relations for general Nf

There are also other identities that can be used to obtain relations. These essentially

follow from the fact that partial derivatives commute or that the commutator of partial

derivatives is related to field strengths.

The first is

∇µuν −∇νuµ + f−µν = 0 . (3.10)

This implies that ∇µuν is symmetric in its two indices when neglecting external fields. This

is implemented in a very similar way as done for the EoM. We look for all occurrences of

∇µuν and covariant derivatives of it in our complete list of operators and replace it with

the relation (3.10).

The second such equation is the defining relation of the field-strength tensor in (3.6)

and its expression in terms of the building blocks (3.7). We implement all these relations

by looking inside the list of operators for quantities that have two covariant derivatives

acting on them. We then replace ∇µ∇νX by

0 = ∇µ∇νX −∇ν∇µX − ΓµνX +XΓµν (3.11)
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and replace Γµν by its expression (3.7). This leads to a number of relations between

the original operators. We also have cases where more than two covariant derivatives

act on an object X. One could in principle also use the relation then on two “inside”

covariant derivatives. This does not lead to new relations since we have included all possible

operators and already have all partial-integration relations. The relation produced by

“inside” covariant derivatives will be produced by the relation from the term where the

“outside” derivatives have been partially integrated first.

3.5 The Cayley-Hamilton theorem

The characteristic polynomial of any Nf ×Nf matrix A can be written

0 = p(λ) = det (λI −A) = λNf det

(
I − A

λ

)
, (3.12)

where λ is an eigenvalue of A and I is the unit matrix. This can be written

p(λ) = λNf exp

〈
ln

(
I − A

λ

)〉
, (3.13)

and when expanded in 1/λ this yields the respective polynomial coefficients in p(λ). The

Cayley-Hamilton theorem states that any Nf × Nf matrix satisfies its own characteristic

equation, i.e. p(A) = 0 as a matrix equation. For Nf = 2 and Nf = 3 one finds

Nf = 2 : A2 −A〈A〉 − 1

2
〈A2〉+

1

2
〈A〉2 = 0 ,

Nf = 3 : A3 −A2〈A〉 − 1

2
A〈A2〉+

1

2
A〈A〉2 − 1

3
〈A3〉+

1

2
〈A〉〈A2〉 − 1

6
〈A〉3 = 0 . (3.14)

For a given Nf the matrix A can be split into a sum of Nf terms, and the Cayley-Hamilton

theorem thus gives a relation between them. Letting A = B+C for Nf = 2 and using that

both C and D also satisfy the Cayley-Hamilton theorem yields

Nf = 2 : {B,C} −B〈C〉 − C〈B〉 − 〈BC〉+ 〈B〉〈C〉 = 0 . (3.15)

For Nf = 3 and A = B + C +D the relation is

Nf = 3 : BCD +DBC + CBD +DCB + CDB +BDC −DB〈C〉
−BD〈C〉 −BC〈D〉 − CB〈D〉 −DC〈B〉 − CD〈B〉 −D〈BC〉
−B〈CD〉 − C〈BD〉 − 〈BCD〉 − 〈CBD〉+D〈B〉〈C〉+B〈C〉〈D〉
+ C〈B〉〈D〉+ 〈D〉〈BC〉+ 〈B〉〈CD〉+ 〈C〉〈BD〉 − 〈B〉〈C〉〈D〉 = 0 . (3.16)

Tracing each of the above relations with any other matrix of the corresponding size thus

produces a relation between the monomials.

In practice how we use these relations is that we look for all possible operators con-

structed using our building blocks and for each possible trace we need to look for all

possibilities of having blocks BC. B and C can be a single building block but also prod-

ucts of them. Once we have a choice, we replace BC with the relation (3.15) giving a

relation between operators. The three-flavour case is dealt with in an analoguous manner

but looking for a possible block BCD inside traces and replacing it with (3.16).
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3.6 Contact terms

As noted in section 2.3 here we have to work in the first basis. We classify the possible

operators into three classes: terms

1. with only χ, χ†, χ̃ and χ̃† and covariant derivatives,

2. containing both χ, χ̃ and field strengths.

3. with only FµνL and FµνR and covariant derivatives.

For the first two classes there were sufficiently few terms that it could be handled by

hand. The last class can be dealt with in the same fashion as before, but with some minor

modifications. Partial integrations are immediately generalizable. Field redefinitions are

not relevant for the contact terms since the external fields are given. The Bianchi identity

is valid separately for the left and right handed field strengths3

DµFLνρ +DνFLρµ +DρFLµν = 0 ,

DµFRνρ +DνFRρµ +DρFRµν = 0 . (3.17)

The relations from commuting covariant derivatives split up according to the four cases

in (2.6) depending on the transformation property of the building block:

DµDνO −DνDµO + iFRµνO − iOFLµν = 0, O −→ gROg
†
L ,

DµDνO −DνDµO + iFLµνO − iOFRµν = 0, O −→ gLOg
†
R ,

DµDνO −DνDµO + iFRµνO − iOFRµν = 0, O −→ gROg
†
R ,

DµDνO −DνDµO + iFLµνO − iOFLµν = 0, O −→ gLOg
†
L . (3.18)

The Cayley-Hamilton relations remain the same, however one must make sure that

the (products of) building blocks that form B,C,D in (3.15) or (3.16) transform either

all under SU(Nf = 2, 3)L or all under SU(Nf = 2, 3)R only. In practice this means the

Cayley-Hamilton relation is only useful for classes 2 and 3.

We wrote a separate set of programs to determine the number of independent contact

terms of class 3 and a final set to remove terms that can be removed when the minimal set

of contact terms is included.

4 The NNNLO Lagrangian

In this section we present the NNNLO Lagrangian obtained from the considerations in the

previous sections. The number of independent monomials and the number of contact terms

is unique.

The original papers constructing the different Langrangians made a number of choices

of which monomials to keep and which to consider superfluous. However, the actual choice

of the independent set of monomials is very much a matter of choice.

3These do not provide extra relations on our main basis, they can be derived from the relations in

sections 3.3 and 3.4.
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Nf Nf = 3 Nf = 2

Total Contact Total Contact Total Contact

p2 2 0 2 0 2 0

p4 13 2 12 2 10 3

p6 115 3 94 4 56 4

p8 1862 22 1254 21 475 23

Table 3. Number of monomials in the minimal basis for the case with all external fields included.

Also listed is how many of them are contact terms. Our results agree with the known ones for

p2, p4, p6.

We follow here a number of guiding principles to keep terms:

1. We always keep the maximal number of independent contact terms.

2. We remove terms that vanish when external fields vanish as much as possible.

3. We remove terms involving covariant derivatives in favour of those involving external

fields.

4. We remove terms that contribute to processes with a low number of mesons as much

as possible. This is done by counting occurrences of uµ, χ− and f−µν .

5. Terms involving scalar-pseudoscalar external fields are placed before those with only

vector-axial-vector external fields.

6. After that we preferentially keep terms with lower number of flavour traces. This is

to make the large Nc counting [30] of the monomials explicit, only leading in Nc is

equivalent to keeping only single trace monomials.

In addition in [8] covariant derivatives were always symmetrized and χ±µ was used rather

than ∇µχ±. In the lists of terms given we can always choose instead of the monomial

listed those with symmetrized covariant derivatives (including the index µ of uµ) and

replace ∇µχ± by χ±µ. These are always equivalent choices of monomials.

The cases given below always include the (pseudo-)Goldstone bosons but have different

sets of external fields included. The cases with only external fields correspond to the

columns giving the number of contact terms.

Let us first look at the case with all external fields included. The number of independent

monomials we find at each order and the number of those that are contact terms are given

for general Nf flavours and for Nf = 2, 3 in table 3. We agree with the known results for

order p2, p4, p6 with following caveat: in [15] there is one more relation listed for the p6

Nf = 2 case, however if correctly rewritten in terms of C-even operators this relation is

equivalent to an earlier one. So after correcting that we agree there as well. The monomials

our program produces at order p6 are slightly different from those in [8]. We find a basis

that has fewer terms with only the Goldstone bosons. We have however checked that the

basis given in [8] is a minimal basis for us as well, i.e. the 115, 94, 55 [12] monomials

translated into ours form a complete set.
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Nf Nf = 3 Nf = 2

Total Contact Total Contact Total Contact

p2 1 0 1 0 1 0

p4 7 1 6 1 5 1

p6 59 2 44 2 27 2

p8 963 15 591 13 238 11

Table 4. Number of monomials in the minimal basis for the case with no scalar or pseudoscalar

external fields included. Also listed is how many of them are contact terms.

Nf Nf = 3 Nf = 2

Total Contact Total Contact Total Contact

p2 2 0 2 0 2 0

p4 10 1 9 1 7 1

p6 62 1 48 2 27 2

p8 538 3 328 4 122 6

Table 5. Number of monomials in the minimal basis for the case with no vector or axial-vector

external fields included. Also listed is how many of them are contact terms.

As an example of the size of the calculations involved we give the intermediate num-

bers for the general Nf case. The main basis consists of 9740 C-even monomials and we

find 12444 different relations. The Gaussian elimination gave 7878 linearly independent

relations, and thus a final minimal basis of 1862 monomials.

The second case that we study is when we have no scalar or pseudoscalar external

fields and is given in table 4. This case was studied at order p6 in [14] and in an AdS/QCD

context in [13]. The number of operators at orders p2, p4 can be easily checked against the

known full Lagrangians. The p6 case for Nf = 2 agrees with [14].

The third case is when we only include scalar and pseudoscalar external fields. This

is given in table 5. The results for p2 and p4 can be easily determined from the known full

Lagrangians.

The final case is when we do not include any external fields. Here there are obviously

no contact terms. The number of monomials at each order is given in table 6. The number

of monomials at p2, p4 can again be easily seen from the known Lagrangians. In [8] the

monomials were chosen to follow roughly the same criteria as given above, however this

was done by hand and no check whether the basis without external fields was minimal was

done. From table 2 in [8] one sees 21 (Nf ), 12 (Nf = 3) and 6 (Nf = 2) monomials that

do not vanish when all external fields are put to zero at order p6. The extra relation found

in [12] reduces the Nf = 2-number to 5 in agreement with what we obtain. One can go

back to the unpublished notes underlying [8] or use the list of monomials and relations

given explicitly in [15] removing all external fields to derive that for general Nf at p6 we

have 19 independent monomials, in agreement with our result.
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Nf Nf = 3 Nf = 2

p2 1 1 1

p4 4 3 2

p6 19 11 5

p8 135 56 16

Table 6. Number of monomials in the minimal basis for the case with no external fields included.

There are no contact terms in this case.

#mesons Nf Nf = 3 Nf = 2

p2 4 1 1 1

p4 4 4 3 2

p6 4 4 3 2

6 15 8 3

p8 4 6 5 3

6 60 31 9

8 69 20 4

Table 7. Number of monomials in the minimal basis for the case with no external fields included

that produce vertices starting at the given number of mesons.

The number of terms is in general rather large and finding relations between processes

in general will be quite some work. To order p6 this was done in [31]. However we can look

at the types of terms that appear for the case with no external fields. Our ordering scheme

removes terms preferentially with a lower minimal number of mesons involved. We can thus

check how many monomials require at least 4, 6 or 8 mesons in the vertices to contribute.

This is done by explicitly looking at the minimal Lagrangians our programs produce.

The result is given in table 7. Note that we have a slightly lower number of monomials

contributing to terms with only 4 mesons than the monomials quoted in [8]. The number

of LECs contributing to 4-meson processes is compared with a general amplitude analysis

in section 5.

5 Meson-meson scattering

The general amplitude M(s, t, u) =
〈
φc(pc)φ

d(pd)
∣∣φa(pa)φb(pb) 〉 of meson-meson scatter-

ing for a general Nf can be written as [32, 33]

M(s, t, u) =
[
〈XaXbXcXd〉+ 〈XaXdXcXb〉

]
B(s, t, u)

+
[
〈XaXcXdXb〉+ 〈XaXbXdXc〉

]
B(t, u, s)

+
[
〈XaXdXbXc〉+ 〈XaXcXbXd〉

]
B(u, s, t)

+ δabδcdC(s, t, u) + δacδbdC(t, u, s) + δadδbcC(u, s, t) , (5.1)
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where s, t and u are the Mandelstam variables

s = (pa + pb)
2, t = (pa + pc)

2, u = (pa + pd)
2, (5.2)

satisfying s+ t+u = 0 in the massles case considered here. The Xa are SU(Nf ) generators

normalized to 1. The functions satisfy C(s, t, u) = C(s, u, t) and B(s, t, u) = B(u, t, s).

This follows from crossing and the SU(Nf )V symmetry.

For pion-pion scattering and Nf = 2 the amplitude can be written

M(s, t, u) = δabδcdA(s, t, u) + δacδbdA(t, u, s) + δadδbcA(u, s, t) , (5.3)

where A(s, t, u) = A(s, u, t). The traces with four generators can here be written in terms

of the Kronecker delta terms.

For Nf = 3 the Cayley-Hamilton relation (3.16) shows that the sum of all 6 four

generator traces can be rewritten in terms of the Kronecker delta terms. The part of

B(s, t, u) that is fully symmetric can be transferred to the C(s, t, u) using that relation.

The tree level contributions from our Lagrangian become polynomials in s, t, u, so we

can expand the two functions as

C(s, t, u) = α0 + α2s+ α41s
2 + α42(t− u)2 + α61s

3 + α62s(t− u)2

+ α81s
4 + α82s

2(t− u)2 + α83(t− u)4 ,

B(s, t, u) = β0 + β2t+ β41t
2 + β42(s− u)2 + β61t

3 + β62t(s− u)2

+ β81t
4 + β82t

2(s− u)2 + β83(s− u)4 . (5.4)

Chiral invariance requires α0 = β0 = 0.

For Nf = 2 we only have A(s, t, u) which can be expanded as C(s, t, u). The number of

free parameters at order p2n matches exactly that in the corresponding column of table 7.

For general Nf the number of parameters doubles w.r.t. Nf = 2 since we now have

both functions C(s, t, u) and B(s, t, u) present. This again matches the numbers in table 7.

The Nf = 3 case is a bit more subtle, we can transfer the fully symmetric part in s, t, u

away from B(s, t, u) so we have to determine how many of these there are at each power tak-

ing into account s+t+u = 0. At orders p4, p6, p8 there is only one such combination at each

order. This agrees with the numbers in the Nf = 3 column in table 7. If one only considers

meson-meson scattering no results follow from chiral symmetry beyond those of SU(Nf )V
in the massless limit except that α0 = β0 = 0. This is not very surprising, derivative

couplings in the massless limit are always soft for all legs for a four meson vertex, see [18].

6 Conclusions

In this manuscript we have determined the order p8 or NNNLO chiral perturbation theory

Lagrangian for the purely mesonic case of positive intrinsic parity. We have reproduced the

known results at lower orders and discussed the cases of general number of light flavours

and with two and three light flavours. We also discussed the cases where the types of

external fields are restricted to either scalar-pseudoscalar or vector-axial-vector as well as

the case with no external fields. We separately determined the number of contact terms.
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Our main results are the number of terms given in tables 3–7. The list of monomials is

included as supplementary material but the contact terms have been listed in the appendix

in table 8.

As an example of how our results can be used we looked at meson-meson scattering and

the general form of the amplitude and compared it with the freedom our Lagrangian allows.
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A Contact terms

In this appendix we list the contact terms for both a general and a fixed number of flavours.

These particular operators have been chosen so as to minimise the number of traces.

For a general Nf , there are 22 contact terms, of which 15 are of class 3 and 7 belong

to classes 1 and 2. For Nf = 3 there are 13 class 3 monomials and 8 from classes 1 and 2,

thus yielding 21 contact terms in total. Finally, for Nf = 2 the number of contact terms is

23, to which class 3 contributes 11 and the remaining 12 come from classes 1 and 2. These

are listed in table 8. They are ordered by class but those involving χ̃ are put last.
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monomial Nf Nf = 3 Nf = 2〈
χχ†χχ†

〉
1841 1234 453〈

χχ†
〉 〈
χχ†

〉
1842 1235 454〈

D2χD2χ†
〉

1843 1236 455

i
〈
DµχDνχ

†FµνR +Dµχ
†DνχF

µν
L

〉
1844 1237 456〈

χFLµνχ
†FµνR

〉
1845 1238 457〈

χχ†FRµνF
µν
R + χ†χFLµνF

µν
L

〉
1846 1239 458〈

χχ†
〉 〈
FRµνF

µν
R + FLµνF

µν
L

〉
1847 1240〈

D2FLµνD
2FµνL

〉
+ L→ R 1848 1241 459

i
〈
FLµνD

ρFµσL DρF
ν
L σ

〉
+ L→ R 1849 1242 460

i
〈
FLµνD

ρFµσL DσF
ν
L ρ

〉
+ L→ R 1850 1243 461〈

FLµνF
µν
L

〉 〈
FLρσF

ρσ
L

〉
+ L→ R 1851〈

FLµνF
µρ
L

〉
〈F σνL FLσρ〉+ L→ R 1852

〈FLµνFLρσ〉
〈
FµνL F ρσL

〉
+ L→ R 1853 1244

〈FLµνFLρσ〉
〈
FµρL F νσL

〉
+ L→ R 1854 1245〈

FLµνF
µν
L

〉 〈
FRρσF

ρσ
R

〉
1855 1246 462〈

FLµνF
µρ
L

〉
〈F σνR FRσρ〉 1856 1247 463

〈FLµνFLρσ〉
〈
FµνR F ρσR

〉
1857 1248 464

〈FLµνFLρσ〉
〈
FµρR F νσR

〉
1858 1249 465〈

FLµνF
µν
L FLρσF

ρσ
L

〉
+ L→ R 1859 1250 466〈

FLµνF
µρ
L F νσL FLρσ

〉
+ L→ R 1860 1251 467〈

FLµνF
µρ
L FLρσF

νσ
L

〉
+ L→ R 1861 1252 468〈

FLµνFLρσF
µν
L F ρσL

〉
+ L→ R 1862 1253 469〈

DµχD
µχ̃† +Dµχ

†Dµχ̃
〉

1254〈
χ̃χ†χχ† + χ̃†χχ†χ

〉
470〈

χ̃χ†χ̃χ† + χ̃†χχ̃†χ
〉

471〈
D2χD2χ̃† +D2χ†D2χ̃

〉
472

i
〈(
DµχDνχ̃

† +Dµχ̃Dνχ
†)FµνR 〉

+ i
〈(
Dµχ

†Dνχ̃+Dµχ̃
†Dνχ

)
FµνL

〉 473〈
χFLµν χ̃

†FµνR + χ̃FLµνχ
†FµνR

〉
474〈(

χχ̃† + χ̃χ†
)
FRµνF

µν
R

〉
+
〈(
χ†χ̃+ χ̃†χ

)
FLµνF

µν
L

〉 475

Table 8. The list of contact terms and the number in the minimal basis for a general number of

flavours Nf and for Nf = 2, 3.
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