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1 Introduction

The spectral problem for electrons on a two-dimensional square lattice in a uniform mag-

netic field was originally considered by Harper in 1955 [1], where an elegant difference

equation was derived. More than 20 years later in 1976 Hofstadter derived a recursive

equation which allowed him to plot the spectrum as a function of the magnetic field, now

known as the Hofstadter butterfly [2]. Due to the magnetic effect, the electron spectrum

shows a rich structure. Recently, a novel link between a two-dimensional electron lattice

system and a Calabi-Yau geometry was found in [3]. It was pointed out in [3] that this Hof-

stadter’s spectral problem is related to another spectral problem appearing in the mirror
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geometry of the toric Calabi-Yau manifold known as local F0 [4]. The interesting point of

this relation is that the magnetic effect is interpreted as a kind of quantum deformations of

the Calabi-Yau geometry. One can probe quantum Calabi-Yau geometry by the 2d electron

lattice system in the magnetic field. The correspondence was generalized to the triangular

lattice and another Calabi-Yau manifold [5].

In the present paper, our goal is a more quantitative understanding of this relation as

well as the non-perturbative and resurgent structure of the spectrum. We here focus on

the band structure of the Harper-Hofstadter problem in the weak magnetic limit. In this

regime, we can treat the magnetic flux perturbatively. The perturbative expansion of the

energy spectrum can explain the position (the center) of the band for each Landau level.

However, it does not explain the width of bands because the band width is non-perturbative

in the weak magnetic flux limit. Such non-perturbative corrections are caused by quantum

mechanical tunneling effects. We will demonstrate that the non-perturbative band width

is explained by instanton effects in the path integral formalism. This was observed long

ago in [6] (see also [7] for the WKB approach to the problem). However here we will focus

on the resurgent properties intimately related to these instantons, or more correctly to the

multi-instanton contributions which we discuss in some details.

Technically, we have a very efficient way to compute the perturbative expansion of the

energy spectrum around the trivial saddle [8, 9], but this efficient way is not applicable

for the computation of semiclassical expansion around the other nontrivial saddles. To our

knowledge, there are no systematic ways to compute the semiclassical expansions around

the instanton saddles in the Harper-Hofstadter model. We employ several approaches to

extract this information. One is a brute force numerical approach, which we use as a check.

The second is a path-integral approach, where we find the exact saddle of the path-integral

action and the one-loop fluctuation. We push this computation to the 2-instanton sector

and find matching results to the numerics. The instanton analysis is performed only to the

leading-order in perturbation theory, and is not easily extended to perturbative corrections

around the instanton saddles.

To extract corrections around instanton saddles, we employ a rather unconventional

approach. We use the connection with a toric Calabi-Yau threefold, local F0, and find that

the non-perturbative band width is captured by the free energy of the refined topological

string on this geometry. Using this remarkable connection, we can efficiently compute the

semiclassical fluctuation around the 1-instanton saddle by using the string theory tech-

nique, called the refined holomorphic anomaly equations [10–12]. Our approach here is

conceptually very similar to the previous works [13–15] on certain quantum mechanical

systems.1 We would like to emphasize that here we have a realistic electron system where

string theory techniques can be applied.

The structure of the rest of the paper is as follows. In section 2 we quickly review

the eigenvalue problem of the Harper-Hofstadter model and its exact solutions when the

magnetic flux φ is 2π times a rational number. We argue that in the latter case there

are two Bloch’s angles which can be turned on, while only one of them can be turned on

1In fact, the results in [15] correspond to the special case, the midpoint of each sub-band in our analysis.
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if the magnetic flux has a generic value, as in the case of a trans-series solution of the

Harper-Hofstadter model. In section 3, we make a trans-series ansatz for the energy in the

small φ limit. We then compute the leading order contribution in the 1-instanton sector

for the ground state energy by a path integral calculation, and find that it agrees with

the numerical results. In section 4, we perform further path integral calculations in the

2-instanton sector, and compare with the numerical results. The imaginary part of the

instanton-anti-instanton sector is extracted numerically using the well-known relation to

the large order growth of the perturbative energy. Inspired by [15–17], we also find in

section 5 the fluctuations in the 1-instanton and instanton-anti-instanton sector can be

computed from topological string on local F0. Finally we conclude and list some open

problems in section 6.

2 The Harper-Hofstadter problem

To prepare for the other sections, we quickly review in this section the classic results on

the Harper-Hofstadter model [1, 2], including the formulation of its eigenvalue problem,

and the exact solutions when the magnetic flux is 2π times a rational number. We make

the careful distinction that there are two Bloch’s angles in this case while only one of them

can be turned on if the value of the magnetic flux is generic.

2.1 The eigenvalue problem of the Harper-Hofstadter equation

The Harper-Hofstadter model describes an electron in a two dimensional lattice potential

with a uniform magnetic flux in the perpendicular direction. Let the lattice spacing be a,

and suppose the electron momentum has components kx and ky in the two directions. The

energy of the electron before turning on the magnetic flux is, up to a normalization

E = −1

2

(
eikxa + e−ikxa + eikya + e−ikya

)
+ 2 . (2.1)

We have chosen for later convenience a particular normalization so that the energy vanishes

for zero electron momentum. In this convention, the energy forms a single band 0 ≤ E ≤ 4.

After we turn on the magnetic flux, quantum mechanically we get the Hamiltonian

operator by replacing the momentum ~k by the operator2 ~π := ~p − ~A. Notice that ~p is

the canonical momentum. Upon the gauge transformation ~A→ ~A+ ~∇Λ, the Hamiltonian

is only invariant up to a canonical transformation ~p → ~p + ~∇Λ. Under such a canonical

transformation, the state of the Hilbert space transforms as |Ψ〉 → eiΛ(x,y) |Ψ〉. Notice that

the momentum ~π generally depends on the coordinates. Indeed this is reflected in the fact

that the commutator

[πx, πy] = iFxy(x, y) (2.2)

where Fxy(x, y) = ∂xAy − ∂yAx is the xy component of the field-strength tensor of ~A, i.e.

the magnetic field through the xy-plane at the point (x, y). Henceforth, we consider the

case where the magnetic field is uniform: Fxy(x, y) = B.

2We work in ~ = c = 1 units.
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Replacing3 x = πxa, y = πya, we have that the lattice Hamiltonian becomes

H = −1

2

(
eix + e−ix + eiy + e−iy

)
+ 2 , (2.3)

with the commutation relation

[x, y] = iφ, (2.4)

where φ = Ba2 is the flux of the magnetic field through the plaquette. We will also use

the exponentiated notation

Tx = eix , Ty = e−iy (2.5)

with the commutation relation

TxTy = eiφTyTx (2.6)

so that the Hamiltonian can be written as

H = −1

2

(
Tx + T−1

x + Ty + T−1
y

)
+ 2 . (2.7)

We regard x and y as the canonical operators, and can now look at eigenstates |ψ〉 in

the x-representation, i.e. define ψ(x) = 〈x|ψ〉 where |x〉 is an eigenstate of x with eigenvalue

x, so that

H |ψ〉 = E |ψ〉 ⇒ −1

2
(ψ(x+ φ) + ψ(x− φ))− cos(x)ψ(x) = (E − 2)ψ(x) (2.8)

which is just the difference equation.

2.2 Symmetries and θ-angles

The Hamiltonian (2.3) clearly commutes with the symmetry operators4

T̃y = e
i 2πx
φ , T̃x = e

−i 2πy
φ , (2.9)

each of which generates a group Z. The labelling above is because

T̃y y T̃†y = y − 2π , T̃x x T̃
†
x = x− 2π . (2.10)

But we generally have

T̃xT̃y = e
−i 4π

2

φ T̃yT̃x . (2.11)

Since for a generic value of φ ∈ R the operators commute up to a phase, we can say that

the physical symmetry group Z× Z acts projectively.

Let us first choose that

φ = 2π/Q , Q ∈ Z . (2.12)

3Despite the notation, x and y are not the original coordinates of the system, but are proportional to

the magnetic translation operators.
4Similar operators also play an important role in the context of quantum mechanics associated with

toric Calabi-Yau threefolds [3].
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In that case the two operators commute, and the symmetry Z × Z is no longer acting

projectively. Now we can project to simultaneous eigenstates of the operators T̃x and T̃y,

i.e. we can demand that

T̃x |Ψ〉 = eiθx |Ψ〉 , T̃y |Ψ〉 = eiθy |Ψ〉 (2.13)

The angles θx and θy are Bloch’s angles for the x and y translations. Notice however that

they can only be defined in this way if 2π/φ ∈ Z.

Next, we consider more general case that

φ/(2π) = P/Q ∈ Q , (2.14)

where P,Q are coprime integers. Then we have that

T̃xT̃y = e−i
2πQ
P T̃yT̃x . (2.15)

Clearly, if P 6= 1, the generators T̃x, T̃y must be supplemented by the generator5 IP = ei
2π
P ,

and the Z× Z must be centrally extended by ZP .

What about θ-angles? In this case we have that [(T̃x)
P , (T̃y)

P ] = 0, and we can define

θx, θy angles by the simultaneous eigenstate of (T̃x)
P and (T̃y)

P . Alternatively, in this case

we also have [(T̃x), (T̃y)
P ] = 0, so we could equally define the two θ-angles as eigenstates of

these two operators. Finally if P = n2 is a perfect square, we have that [(T̃x)
n, (T̃y)

n] = 0

and we can define θ-angels accordingly as well. In most cases we will only consider P = 1.

Then, all these definitions of θ-angles coincide, and we are back to the scenario (2.12).

Finally if φ/2π is irrational, then

T̃xT̃y = eiαT̃yT̃x , (2.16)

where α/(2π) = −2π/φ is irrational as well. The additional generator Iα = eiα generates

the group Z, so the Z× Z is centrally extended by Z. In this case we are allowed only one

θ-angle, which we can get as an eigenstate of either T̃x or T̃y but not both simultaneously.

2.3 Exact solutions for rational magnetic flux

It is well-known that the eigenvalue problem (2.8) can be solved exactly if the rationality

condition (2.14) is satisfied [2]. Let us set

φ = 2πP/Q (2.17)

where P,Q are two coprime integers and Q > 0. The underlying reason of the exact

solvability is that in the case of (2.17) we can project onto simultaneous eigenstates of the

powers T̃Px and T̃Py , as these two operators commute. This will allow, as we shall see, for a

finite-dimensional representation of the operators Tx and Ty, in which the Hamiltonian (2.7)

is written, and give us an algebraic equation for the eigenvalue problem. Note that in this

case Tx,Ty are also shift operators, as

Tx y T
†
x = y − 2πP/Q , Ty xT

†
y = x− 2πP/Q . (2.18)

5IP is equivalent to e−
2πiQ
P because there always exists an integer k such that e−

2πiQ
P

k = IP .
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Recall that in this case we can define θ-angles as eigenvalues of T̃Px = TQy and T̃Py = TQx .

Now let us for the moment choose θx = θy = 0 mod 2π, i.e.

(T
(0)
x )Q = (T

(0)
y )Q = 1 , (2.19)

In other words we impose periodic boundary conditions on physical states under the shift

x→ x− 2πP and y→ y − 2πP . The algebra (2.6), which now reads

T
(0)
x T

(0)
y = e

2πiP
Q T

(0)
y T

(0)
x (2.20)

has a finite dimensional representation in terms of the clock and shift matrices

T
(0)
x =


1 0 0 . . . 0

0 q 0 . . . 0

0 0 q2 . . . 0
...

...
...

...

0 0 0 . . . qb−1

 , T
(0)
y =


0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

 , (2.21)

where q = eiφ = e
2πiP
Q . Note also that (T

(0)
x )Q = (T

(0)
y )Q = IQ×Q, as it should.

Now let us introduce the twisted boundary condition through the replacement

(T
(0)
x ,T

(0)
y )→ (Tx,Ty) = (T

(0)
x e

i θx
Q ,T

(0)
y e

i
θy
Q ). Then we have that

(Tx)
Q = eiθx1, (Ty)

Q = eiθy1 , (2.22)

while the algebra (2.6) is intact. Alternatively, the twisted boundary condition is equivalent

to a deformation of the Hamiltonian. Using the notation kx = θx/Q, ky = θy/Q, we can

write the Hamiltonian operator depending on kx and ky as

H(kx, ky) = −1

2

(
eikxT

(0)
x + e−ikxT

(0)−1
x + eikyT

(0)
y + e−ikyT

(0)−1
y

)
+ 2, (2.23)

while keeping the boundary condition periodic. Now we are finally ready to write the

eigenvalue equation for the operator (2.3). Plugging the matrix representation of T
(0)
x and

T
(0)
y into (2.23), the Hamiltonian becomes

H(kx,ky) =



2−cos(kx) −1
2e−iky 0 . . . 0 −1

2eiky

−1
2eiky 2−cos

(
kx+ 2πP

Q

)
−1

2e−iky . . . 0 0

...
...

...
...

...

0 0 0 . . . −1
2e−iky

−1
2e−iky 0 0 . . . −1

2eiky 2−cos
(
kx+ 2π(Q−1)P

Q

)


(2.24)

so that the characteristic equation det(H − E IQ×Q) = 0 is given by

FP/Q(E, kx, ky) = det


M0 −e−iky 0 . . . 0 0 −eiky

−eiky M1 −e−iky . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . −eikx MQ−2 −e−iky

−e−iky 0 0 . . . 0 −eiky MQ−1

 = 0 , (2.25)
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Figure 1. The Hofstadter butterfly plots energy levels Ekx,ky (N,φ) with 0 ≤ kx, ky ≤ 2π/Q

against magnetic flux φ ∈ 2πQ for the Harper-Hofstadter model. We take φ/2π to be P/Q for any

coprime pairs of positive integers such that P ≤ Q and Q ≤ 30.

with

Mn = 2(2− E)− 2 cos(2πnP/Q+ kx) . (2.26)

As in [18], it is straightforward to check that

FP/Q(E, kx, ky) = FP/Q(E, kx, 0)− 2 cos(Qky) + 2 . (2.27)

Using the symmetry under the mapping (kx, ky) 7→ (ky,−kx, ), one finds that the equa-

tion (2.25) can be simplified to

FP/Q(E, 0, 0) + 4 = 2(cos(θx) + cos(θy)) , (2.28)

with the Bloch’s angels θx = Qkx, θy = Qky. It is then a simple job to get eigen-energy E

by solving (2.28).

We notice that the equation (2.28) depends on the value of P only through the poly-

nomial FP/Q(E, 0, 0). Note (2.28) indicates that the minimal ranges for the Bloch’s angles

θx, θy are

0 ≤ θx < 2π , 0 ≤ θy < 2π , (2.29)

as they should. By varying the values of θx, θy, the eigen-energies E(θx, θy) form bands.

The two edges of a energy band correspond to (θx, θy) = (0, 0), (π, π). If we turn off one

Bloch’s angle, the energy band width is reduced to its one half. We reproduce in figure 1

the famous plot of the Hofstadter butterfly, which is a plot of the energy bands as a function

of the magnetic flux φ when φ/2π is rational.
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3 Trans-series expansion and 1-instanton sector

3.1 Why trans-series expansion?

We are interested in the energy spectrum of the Harper-Hofstadter model in the weak

flux limit φ → 0. As discussed in section 2, with generic values of φ, we should use the

Hamiltonian operator (2.3) for the twisted boundary condition with only one Bloch’s angle.

Throughout this paper, however, we consider the weak flux limit with the specific form

φ =
2π

Q
, Q→∞, (3.1)

then we can introduce two distinct Bloch’s angles θx and θy simultaneously.

We want to understand the spectral behavior in the limit (3.1). To do so, it is useful

to treat φ as a continuous parameter even in the specific case (3.1). Since the Hamiltonian

is a Laurent polynomial of eix and eiy, we can use the Mathematica package BenderWu [8, 9]

to compute its perturbative energy.6 The first few orders are as follows

Epert(N) =
2N + 1

2
φ− 2N2 + 2N + 1

16
φ2 +

2N3 + 3N2 + 3N + 1

384
φ3 +O(φ4) , (3.2)

where N is the Landau level of the eigen-energy. We note the agreement with earlier

studies [19, 20].

The perturbative energy (3.2) or even its Borel resummation cannot be the full answer.

First of all, the higher order terms of the perturbative series have the same sign, and thus

its Borel transform of the perturbative series has poles on the positive axis, leading to

ambiguity in the Borel resummation. This ambiguity is an indication that the energy

receives non-perturbative corrections. We discuss the ambiguity in detail in section 4.4.

Second, the perturbative series clearly does not depend on Bloch’s angles, thus itself alone

cannot explain the energy bands. As a result, the band spectrum should have the trans-

series expansion, with the explicit dependence of θx and θy in instanton sectors. The

trans-series expansion of the spectrum should take the following form:

E(θx,θy)(N) = Epert(N) + E1-inst
(θx,θy)(N) + E2-inst

(θx,θy)(N) + · · · (φ→ 0) . (3.3)

The leading perturbative contribution is given by (3.2). The k-instanton sector is expo-

nentially suppressed by a factor e−kA/φ with a constant A.7

Our goal in this paper is to reveal this trans-series structure. In particular, we will

show explicit forms for a few instanton sectors. In the subsequent subsections, we will

first compute the leading (1-loop) order contribution to the 1-instanton for the ground

state energy by an honest path integral computation, and then compare them with the

6The Hamiltonians considered in [9] consist of operators ex and ey with [x, y] = i~. To translate it into

our case here, one has to identify ~ = −φ. See subsection 5 for detail. We have however updated the

BenderWu package version 2.2 with a function BWDifferenceArray, which allows of mixed inclusion of terms

ex, ep, eix, eip. The package is available on Wolfram Package site.
7More precisely, beyond the one-instanton order, in general logarithmic corrections of the form log` φ

also appear. Therefore, the full trans-series expansion consists of three kinds of trans-monomials: φ, e−A/φ

and log φ.
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prediction from the numerical analysis. We further argue that the quantum fluctuations

in the one-instanton sector for any energy level can be read off from the topological string

theory on local F0. In the next section, we will investigate the 2-instanton sector.

3.2 Path integral in one-instanton sector

The problem of instantons in the Harper/Hofstadter problem was first discussed in [6]

where the authors computed the one-instanton and its one-loop determinant numerically.

Here we will re-derive these instanton solutions and compute analytically the one-loop

fluctuations in the instanton sectors of the ground state energy.

To begin with, let’s reproduce the Hamiltonian operator (2.3) for convenience

H(x, y) := − cos x− cos y + 2 , [x, y] = iφ . (3.4)

The cosine potential has infinitely many degenerate vacua located at

x = 2πnx , y = 2πny , nx, ny ∈ Z . (3.5)

Classically we have complete freedom of whether to identify different vacua as physically

equivalent. This is not possible quantum mechanically for generic values of φ as we shall see.

Treating φ as the Planck constant, the above Hamiltonian can be associated with the

Euclidean path integral

Z = tr e
−β
φ
H(x,y)

=

∫
DxDy exp

[
− 1

φ

∫ β/2

−β/2
dt (H(x, y)− iẋy)

]
. (3.6)

with boundary conditions for x and y to be specified momentarily. The partition function

above is related to the eigen-energies E(N) with levels N = 0, 1, 2, . . . of the Hamiltonian

H by

Z =

∞∑
N=0

e−βE(N)/φ , (3.7)

so that the ground state energy E(0) can be obtained through the Euclidean path integral

in the large β limit.

Before we continue we should emphasize that the action of the above path integral is

similar to that of the phase-space quantum mechanical system where x is identified with

a coordinate, and y is identified with a momentum. The difference is that here we do not

have a purely Gaussian dependence on the “momentum” y. For this reason we cannot

integrate it out. Still one may hope to analyze the problem semi-classically. But there are

several issues here. Firstly the semi-classics of path-integrals is to this day not a completely

understood subject, but it has become clear recently that the correct interpretation of it

is via the Picard-Lefschetz (PL) theory [21–30]. The PL theory analysis is by far not a

straightforward matter, and requires the identification of saddles which contribute in the

semi-classical expansion. As we shall see all such saddles of the action above will be on

complex x, y trajectories. We do not a priori know whether such saddles should contribute.

To determine it we should compute the so-called intersection number of the co-thimble (we

– 9 –
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refer the reader to the cited literature for details). This is a difficult task way beyond our

current understanding. We will find some instanton solutions and argue that they must

contribute on physical grounds. We will check quantitatively their contribution against

numerics and find exact agreement.

Secondly it is not clear whether a continuum limit of the above path-integral exists.

The path-integral is typically obtained by slicing the Boltzmann weight into N pieces, and

inserting a complete set of states in between. This amounts to a lattice discretization of

the path-integral, with a lattice spacing ε = β/N . Upon integration over the momentum,

the resulting path-integral has a Gaussian suppression factors e−(... )
(xi+1−xi)

2

ε . As we take

the continuum limit ε→ 0 the path of x is forced to be smoother and smoother. No such

smoothness seems to be justified in the continuum-limit of the phase-space path integral

above. Still as we shall see the semiclassical analysis passes many non-trivial checks against

the numerical brute-force calculation.

The boundary conditions of the path integral can be made strictly periodic. This

amounts to saying that values of coordinates (x, y) and (x+ 2πnx, y+ 2πny) are physically

distinct for any nx, ny ∈ Z. In this case the above Lagrangian has a shift symmetry which

takes x→ x+ 2πnx and y → y + 2πny, with nx,y ∈ Z.

Now let us consider the values of x and x + 2π to be physically equivalent. In other

words we are gauging the shift symmetry of the scenario above, projecting the full Hilbert

space down to eigenstates of a shift symmetry operator. Without a θx-term, the projection

will be to singlets of the shift operator. Gauging the symmetry amounts to saying that the

boundary conditions must be relaxed to include periodicity of x(t) up to a 2π shift, i.e.

x(t+ β) = x(t) + 2πmx, where mx is to be summed over. The integers mx can be viewed

as holonomies of the Z-valued gauge field which we have to sum over in order to project to

a subspace of singlets under the shift symmetry x→ x+ 2π.

Notice however that after gauging the x-shift symmetry, shifting y to y+ 2πny we get

an additional phase in the partition function

e
i
φ

(2π)2nymx . (3.8)

The above is only unity if φ = 2π/Q, where Q ∈ Z. Hence if we insist that x ∼ x+ 2π (i.e.

x-shift symmetry is gauged) and that y → y+ 2π is a global symmetry we must have that8

φ = 2π/Q. This is of course evident from the Hilbert space picture, but it is satisfying

to see it in the path-integral. Incidentally we can say that there is a ’t Hooft anomaly

between the two (Z)x and (Z)y shift symmetries, so that the system must break at least

one of the two to saturate the anomaly.

Since we are assuming that φ = 2π/Q, we can insert the two θ-angles by introducing the

terms θy
ẏ

2π and θx
ẋ
2π . The path integral can be treated by the saddle-point approximation if

φ is small. The main contribution comes from the perturbative saddle for which x = y = 0

at any time t. This solution does not break the translational symmetry on the time-circle,

8From the point of view of the Hilbert space this means that if x → x + 2π is a gauge symmetry, the

operator which shifts y → y + 2π, given by ei2πx/φ, is not a gauge invariant operator unless 2π/φ ∈ Z, and

even though it commutes with the Hamiltonian, it is not a valid generator of the symmetry transformation.
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and all its modes are Gaussian. The perturbative partition function can be expanded in

powers of φ using the Feynman diagrams. The result will be the perturbative partition

function which we denote as Z0. In turn this is related to the perturbative energies as follows

Z0 =

∞∑
N=0

e−βE
pert(N)/φ . (3.9)

where Epert(N) is the perturbative energy at level N .

On the other hand, the contributions of the partition function can be classified by their

topological winding number, i.e.

Z(β, θ) = Z0 + Z1 + Z−1 + Z2 + Z−2 · · · = Z0

1 +

∞∑
n 6=0

Ẑn

 , Ẑn = Zn/Z0 , (3.10)

where Z0 is the expansion around the trivial saddle point (i.e. the perturbative vacuum),

and it is responsible for perturbative contributions Epert(0)

Z0 ≈ Ce−βE
pert(0)/φ , β →∞ , (3.11)

while Zn 6=0 come from different instanton sectors (n counts the instanton number). The

constant C above may be UV divergent, and may be removed by the appropriate definition

of the path integral measure. Further all Zn-s are UV divergent. However all the UV

divergences are the same, and so Ẑn is UV finite. The constant C therefore factorizes, and

is of no physical consequence as it cancels in the observables.

The dilute instanton gas approximation makes now the following assumption: the

multi-instanton contributions factorize to 1-instanton contributions. So

Ẑn =
∑

m−m̄=n

Ẑm1
m!

Ẑm̄−1

m̄!
. (3.12)

Summing over n we simply have

Z(β, θ) ≈ Zdilute instanton gas = Z0 eẐ1+Ẑ−1 . (3.13)

Now the Ẑ±1 is given by

Ẑ±1 = −
∫ β/2

−β/2
dt Ke−A/φ±iθ = −βKe−A/φ±iθ (3.14)

where K is the measure of the 1-instanton configurations, including the perturbative correc-

tions, and θ is the relevant θ-angle coupling to the instantons.9 Therefore the 1-instanton

correction to the ground state energy is given by

E1-inst
θ (0) = EI + EĪ = 2φKe−A/φ cos θ . (3.15)

To get this correction we need to compute K.

9In the Harper-Hofstadter problem we will have two types of instantons which tunnel in x- and y-

directions respectively. So we may have two θ-angles: θ = θx or θ = θy coupling to the tunneling events

x→ x+ 2π and y → y + 2π. Recall that these θ angles can only be defined when 2π/φ ∈ Z.
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Let us first consider the partition function Z(β, θ) in the trivial vacuum given by

x = y = 0 by expanding in x and y up to quadratic terms and performing the Gaussian

integral to get

Z0(β) ≈ 1

(detO0)1/2
, (3.16)

with

O0 = −∂2
t + 1 , (3.17)

Now we consider the 1-instanton sector. For this purpose, we need to solve for the

1-instanton configuration. The equations of motion for the partition function (3.6) is

iẋ− sin y = 0 , (3.18a)

iẏ + sinx = 0 . (3.18b)

We solve these equations in the appendix A to give the 1-instanton solution

x1(t) = 2 cos−1

− √
2 tanh(t− t0)√

1 + tanh2(t− t0)

 , y1(t) = cos−1

(
1 +

2

cosh 2(t− t0)

)
, (3.19)

where t0 is a free parameter interpreted as the center of the instanton. Note that x1(t)

starts from 0 in t = −∞ and reaches 2π in t = +∞, and thus it indeed has topological

charge 1, while y1(t) is always imaginary and its imaginary value reaches the maximum

cos−1(3) at t = t0. This means that we are considering the instanton tunneling in the

x-direction. We call it an x-instanton. We plot x1(t) and −iy1(t) in figure 2. The profile of

an anti-instanton is obtained by simply the time-reversal transformation.10 We also notice

that the Hamiltonian is constant

cos y1 + cosx1 = 2 , (3.20)

as it should be, with the help of the e.o.m. (3.18a), which will be of use later.

There exists in fact another type of 1-instanton due to the fact that the Hamiltonian

function is also periodic in y. In the example of the Harper-Hofstadter model, one can

easily find the new instanton due to the symmetry of the theory under the map

(x(t), y(t))→ (−y(t), x(t)) . (3.21)

Applying this map to the instanton solution (3.19), we get a new instanton solution with

the x- and y-profiles exchanged (up to a minus sign). We call it a y-instanton, since it has

a non-trivial topological charge in the y-direction, but a trivial topological charge in the

x-direction. This instanton does not couple to θx. Instead it couples to the θy-angle.11

10The time reversal transformation takes T : (x(t), y(t))→ (x(−t),−y(−t)). In addition we have a parity

transformation which takes P : (x(t), y(t))→ (−x(t),−y(t)).
11We remind the reader that both θx and θy are only possible if the 2π/φ ∈ Z, which we assume here.

However much of the results will hold for generic φ, as we shall comment later.
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Figure 2. The x- and y-profiles of 1-instanton in the Harper-Hofstadter model. The value of y is

purely imaginary.

Let us compute the action of the 1-instanton configuration (3.19), in the limit β →∞.

The action of the instanton is computed analytically in appendix A and it reads

A = 8C , (3.22)

where C is the Catalan’s constant.

Now we compute the one-loop partition function in the 1-instanton sector, by perform-

ing the expansion

x = x1 + δx , y = y1 + δy , (3.23)

and keeping only terms up to quadratic orders. Using the conservation law (3.20) as well

as the e.o.m. (3.18), we have

Z1(β) ≈ e−A/φ+i θ

∫
D(δx)D(δy) exp

[
− 1

2φ

∫ β/2

−β/2
dt
(
cosx1 · δx2 + cos y1 · δy2 − 2i δẋδy

)]
.

(3.24)

We can first integrate out δy. However notice that in doing so we will get a nontrivial

factor in front of the path-integral, because the coefficient of δy2 is not a constant. To

avoid this, let us first replace δỹ =
√

cos y1δy and δx̃ = δx/
√

cos y1.12 Notice that this

replacement keeps the measure invariant i.e. D(δx̃)D(δỹ) = D(δx)D(δy). Upon integrating

out the δỹ, we get

Z1(β) ≈ e−A/φ+iθ

×
∫
D(δx̃) exp

[
− 1

2φ

∫ β/2

−β/2
dt

([
∂t
(
δx̃
√

cos y1

)]2
cos y1

+ cosx1 cos y1δx̃
2

)]
(3.25)

=
e−A/φ+i θ√

det Õ

where the operator Õ is

Õ = −√cos y1∂t
1

cos y1
∂t
√

cos y1 + cos y1 cosx1 . (3.26)

12Note that cos y1 > 0, because y1 is purely imaginary on the instanton trajectory.
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The operator Õ has a zero mode given by ψ0(t) = N−1 ẋ1(t)√
cos y1

, as can be checked. Here

N =
√

(ẋ1/
√

cos y1, ẋ1/
√

cos y1) (3.27)

is the normalization factor. So the above expression of the one loop weight of the instanton

cannot be correct. The zero mode originates from the time-translation symmetry of the

theory. In other words, field fluctuations which only change the location of the instanton

do not change the action, and the modes in this direction must be treated exactly (i.e.

beyond the Gaussian approximation).

To find the measure of the instanton we must first separate out the zero mode, which

we denote by t0. We will get that

Z1 = e−A/φ+iθ

∫
dt0

µ√
det′ Õ

, (3.28)

where the prime indicates that the zero mode has been excluded from the determinant.

The µ above is the measure of the instanton moduli t0 (or the moduli space metric). It is

given by (see appendix B)

µ =

√
N2

2πφ
, (3.29)

so that the one-loop instanton contribution to the partition function is given by

Z1(β) ≈
∫

dt0√
2πφ

√(
ẋ1/
√

cos y1(t), ẋ1/
√

cos y1(t)
) e−A/φ+i θ

(det′O)1/2
. (3.30)

The contribution is of course divergent, as the functional determinant is infinite in the

continuum. We therefore normalize it with respect to the perturbative partition function.

The normalized 1-instanton partition function is given by

Ẑ1(β) =
Z1(β)

Z0(β)
≈ e−A/φ+i θ

β
√(

ẋ1/
√

cos y1, ẋ1/
√

cos y1

)
√

2πφ

(
detO0

det′ Õ

)1/2

. (3.31)

Comparing with (3.14), we find that the prefactor K entering formula (3.15) is given by13

K =

√(
ẋ1/
√

cos y1, ẋ1/
√

cos y1

)
√

2πφ

(
detO0

det′ Õ

)1/2

. (3.32)

As we show in the appendix C, the ratio of determinants is given by

det′ Õ

detO0
=

ẋ1(−β/2)ẋ1(β/2)

sinhβ cos y1(−β/2)

∫ β/2

−β/2
dt

ẋ2
1(t)

cos y1(t)

∫ t

−β/2
dt′

cos y1(t′)

ẋ2
1(t′)

∫ β/2

t
dt′′

cos y1(t′′)

ẋ2
1(t′′)

.

(3.33)

Note that in obtaining the above result, we have used Dirichlet boundary conditions for the

space of function acted on by the operators O and O0. Since we will only be interested in

13A possible minus sign can be absorbed into the θ angle.
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the limit β →∞, the boundary conditions will not matter. However if one is interested in

computing the instanton contributions to higher energy levels, a computation with periodic

boundary conditions is necessary.

Further since we only care about the limit β → ∞, we can make convenient ap-

proximations. We notice that the 1-instanton configuration (A.6), (A.7) has the following

asymptotic form

ẋ1(t) ∼ A±e∓ωt , cos y1(t) ∼ 1 +B±e∓2ωt , t→ ±∞ , (3.34)

where

A± = 2
√

2 , B± = 4 , ω = 1 . (3.35)

Besides, the integrand of the integral over t is small when t is close to ±β/2, so the integral

over t is saturated away from them. So regarding the two integrals over t′ and t′′, only the

−β
2 � t� β

2 region is important. The two integrals can be approximated by∫ t

−β/2
dt′

cos y1(t′)

ẋ2
1(t′)

∼
∫ t

−β/2
dt′

e−2ωt′

A2
−
∼ eωβ

2ωA2
−
,∫ β/2

t
dt′′

cos y1(t′′)

ẋ2
1(t′′)

∼
∫ β/2

t
dt′′

e2ωt′′

A2
+

∼ eωβ

2ωA2
+

.

(3.36)

Pulling these two integrals out of the integral of t, the latter becomes (ẋ1/
√

cos y1,

ẋ1/
√

cos y1). Apply (3.34) in the remaining part of the determinant evaluation, we find in

the end
det′ Õ

detO0
=

(ẋ1/
√

cos y1, ẋ1/
√

cos y1)

16
. (3.37)

we get that the factor K in (3.32) is given by

K = 4

(
1

2πφ

)1/2

. (3.38)

The anti-instanton partition function is the same but with the opposite topological charge.

Therefore using (3.15), the leading order 1-instanton correction to the ground state energy

given by x-instanton coupled to θx is

EIx(0) + EĪx(0) = 8 cos θx

(
φ

2π

)1/2

e−A/φ . (3.39)

Since we have two kinds of instantons coupled to θx and θy respectively, the full 1-instanton

correction is finally given by

E1-inst
(θx,θy)(0) = EIx(0) + EĪx(0) + EIy(0) + EĪy(0)

= 8(cos θx + cos θy)

(
φ

2π

)1/2

e−A/φ .
(3.40)

We will see that it indeed agrees with the numerical results given in (3.43).
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3.3 Comparison with numerical analysis

In the previous subsection, we gave the path integral analysis in the Harper-Hofstadter

model. The spectrum of the Harper-Hofstadter Hamiltonian turned out to receive non-

perturbative corrections in the weak flux limit. The eigen-energy takes the form of the

trans-series expansion (3.3). As was seen in the previous subsection, the one-instanton

sector consists of x- and y-instantons and their anti-instantons. From the isotropy, it

should take the form as

E1-inst
(θx,θy)(N) = (cos θx + cos θy)N (1)(N,φ)e−A/φP1-inst

fluc (3.41)

where A is the instanton action given by (3.22), N (1)(N,φ) is an unknown coefficient, and

P1-inst
fluc is the perturbative fluctuation around the one-instanton saddle. We have computed

N (1)(0, φ) in the previous subsection, but it is not easy to compute it for excited states in the

same way. In this subsection, we predict N (1)(N,φ) and P1-inst
fluc from the numerical analysis.

To extract one-instanton contribution, the best way is probably to investigate the

width of the energy bands. As is clear from the trans-series form of the eigen-energies (3.3)

with (3.41), the band width is controlled, at the leading order, by the one-instanton sector.

From the angle dependence of (3.41), one can easily see that two band edges correspond

to (θx, θy) = (0, 0) and (θx, θy) = (π, π). Therefore the band width is given by

∆Eband(N) := |E(0,0)(N)− E(π,π)(N)| = 4e−A/φ|N (1)(N,φ)|P1-inst
fluc + · · · (3.42)

where · · · represents the higher instanton contributions, which are irrelevant here. We com-

pute this band width for various values of φ = 2π/Q and N using the exact formula (2.28),

and fix unknown parameters in the formula above by numerical fitting. The strategy is the

same as the one used in [31]. We refer the reader to this work for details.

We first confirm that the exponential decay of the band width in φ → 0 is actually

explained by the instanton action A = 8C. By the numerical fitting, we also find the

explicit form of the coefficient N (1)(N,φ):

N (1)(N,φ) = (−1)N
8N+1

πNN !

(
φ

2π

)1
2−N

(3.43)

For the lowest Landau level N = 0, this is indeed in agreement with the path integral

result (3.40).

Finally, we make a comment that with numerical calculation we can also go beyond the

leading order contribution. With the help of the Richardson transformation, as explained

in [31], we find the fluctuation in the 1-instanton sector to be

logP1-inst
fluc = −6N2 + 30N + 19

96
φ− 20N3 + 102N2 + 136N + 27

4608
φ2

− 210N4 + 1380N3 + 2910N2 + 2700N + 893

368640
φ3 +O(φ4) .

(3.44)

While checking this result is very hard with instanton calculus of path-integrals, our

topological string theory analysis of section 5 essentially obtains the same result.
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4 Two-instanton sector

4.1 Two-instanton calculation

Now we wish to go beyond the dilute instanton gas approximation, and compute the

contributions of the two-instanton sector to the leading order in semi-classics. Recall that

we have two types of instantons, which we will call Ix and Iy, where Ix is a tunneling event

in x, i.e. it takes x→ x+ 2π, while Iy is a tunneling event in y → y + 2π.

We will consider all kinds of two-instanton events, ranging from “pure” correlations

[IxĪx], [ĪxIx], [Iy Īy], [ĪyIy],

[IxIx], [IyIy], [ĪxĪx], [Īy Īy],
(4.1)

to “mixed” ones
[IxIy], [IyIx], [ĪxĪy], [Īy Īx],

[ĪxIy], [Iy Īx], [IxĪy], [ĪyIx] .
(4.2)

Before computing their interactions, we should stress that the contribution of such events

has long been subject to debates. Particularly tricky is the instanton-anti-instanton contri-

bution [IĪ], which is a priori ill-defined. This is because when instanton and anti-instanton

are close to each other the configuration is indistinguishable from the perturbative vacuum,

and it is not clear how such configurations should be taken into account (see [29] for an

incomplete list of references on the topic).

If we naively superpose the well-separated instanton and anti-instanton, where we label

their separation by τ , the action will be an increasing function of τ . Such a configuration

spends most of the time in one of the vacua (say x = 0) and then tunnels to the other

vacuum (x = 2π), lingering there for the time τ , and then returns back to the original (x=0)

vacuum. The action of such a configuration is approximately (as we will demonstrate in

the next subsection)

S2 ≈ 2A+B e−τ (4.3)

where the exponential contribution is the “classical” interaction14 of the instanton-anti-

instanton pair. The contribution of such a class of configurations to the partition function

would then be15 ∫
dt0

∫
dτK2 e

− 2A
φ

(
e
−B
φ
e−τ − 1

)
, (4.4)

where φ is the coupling constant, t0 is the “center of mass” location of the pair, and K is

the one-loop measure of the individual (anti-)instantons. The integral over t0 will simply

produce one power of β, while the rest of the expression will be related to the IĪ contribu-

tion to the energy. The integral over their separation is, however, an awkward operation.

As we shall see in the next subsection (4.18), the interaction constant B is negative, so

the integral is saturated by its lower limit τ ∼ 0, where the approximations of the above

expression are invalid, and where the notion of the instanton-anti-instanton is ill defined.

14The term “classical” is used to reflect the 1/φ dependence of the interaction, but it is a bit of a

misnomer, because an instanton-anti-instanton event is in fact a large-quantum fluctuation, and is in no

way classical.
15The subtracted unity is to control the IR divergence due to the uncorrelated instantons. Since uncor-

related instantons have already been taken into account by the instanton gas approximation it should be

subtracted here to avoid double counting.
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Bogomolny [32] and Zinn-Justin [33, 34] argued long time ago that the ill-defined

IĪ amplitude is connected with the ambiguity of the Borel sum of the perturbation the-

ory. They correctly argued that the definition of the IĪ amplitude must be ambiguous in

the same way that the perturbation theory is. A prescription which is now dubbed the

Bogomolny-Zinn-Justin (BZJ) prescription, is to take the coupling φ to be negative, so that

the above integral is saturated away from τ ∼ log(1/φ)� 1, where the approximations are

valid. The above integral over τ is then performed to produce a correction to the energy

EIĪ0 = φK2e−2A/φ(−γE − log(B/φ)− Γ(0, B/φ)) , (4.5)

where γE is the Euler’s constant, and Γ(•, •) the incomplete gamma function. The last

term is exponentially small when φ < 0 so it is normally dropped. Further the expression is

ambiguous if we now send φ from negative to positive values in the upper or lower complex

half-plane, because of the appearance of the log. Moreover the ambiguity is exactly canceled

by the ambiguity in the Borel sum of the perturbation theory. This was one of the great

successes of resurgence in quantum mechanics and our understanding of its relationship

with path-integrals.

The BZJ prescription, however revolutionary, causes some unease. Perhaps the most

uncomfortable one is that it requires dropping a factor which is exponentially small when

φ < 0, but becomes exponentially large when the correct limit φ > 0 is taken. In recent

years it became increasingly evident that at the heart of the correct interpretation of

the BZJ result is the Picard-Lefschetz theory — a generalization of the steepest decent

method to multi-integral (or indeed path-integral) cases. In fact it was only recently that a

resolution of this puzzle was proposed by the interpretation of the instanton-anti-instanton

pair as a saddle point at infinity [29], which establishes a concrete method for a systematic

calculation of the semi-classical expansion in path integrals. The procedure is roughly as

follows (We refer the reader to [29] for details.):

1) Consider an instanton-anti-instanton configuration for the case of finite time β.

2) Note that if the instanton and the anti-instanton are at opposite ends of a temporal

circle, the configuration becomes a saddle point. Since the action can be decreased

by bringing the pair closer together, the saddle point in question is “unstable”.

3) Treat the saddle point with Picard-Lefschetz theory, i.e. instead of integrating over a

cycle of real instanton-anti-instanton separation, replace the cycle with the Lefschetz

thimble integral (i.e. the “steepest decent cycle”), along which the action is mono-

tonically increasing.

4) Note that the imaginary part of the thimble integral is ambiguous depending on

whether Im φ is greater or smaller than zero, and that the ambiguity cancels the

Borel sum ambiguity of the path-integral, while the real part is identical to the BZJ

result above, provided that we drop the incomplete-gamma term.

In particular the ambiguity, which comes from the imaginary part, is given by

Im EIxĪx0 = ±πφK2 e−2A/φ = ±8 e−2A/φ (4.6)
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where we used our result (3.38). We would like to point out that the ambiguity does

not contain the interaction term for the ground-state energy, i.e. it is independent of the

constant B which parametrizes the instanton-anti-instanton interactions. This is in fact

clarified by the thimble integration procedure in [29], summarized above. The ambiguity

comes from the vicinity of the critical point at infinity, which, for a finite temporal extent,

is the instanton-anti-instanton pair at opposing ends of the temporal circle. Since the

saddle is “unstable” with regards to the perturbations in the real field space, the proper

thimble integration will force us to integrate along the direction of imaginary separation,16

inducing an imaginary factor in the result. This is the ambiguity, and in this case it is

saturated in the vicinity of the IĪ saddle. When we take β → ∞, this vicinity of the IĪ

saddle moves to infinity, where the instanton and anti-instanton are decorrelated, and all

dependence on the interactions vanishes.

On the other hand, the real part is given by

Re EIxĪx0 = φK2 e−2A/φ(−γE − log(−B/φ)) =
8

π
e−2A/φ(−γE − log(−B/φ)) , (4.7)

which depends explicitly on the instanton interaction parameter B, and which compared

to corresponding terms in (4.5) has already changed sign inside the logarithm. We leave

the computation of the interaction parameter to the next subsection.

Let us now consider other two-instanton events with nonzero topological charges. As

opposed to quantum mechanics these in addition to the pure types (second line in (4.1))

include also the mixed types (4.2). It is straightforward to repeat the same analysis as

for the instanton-instanton events, and it yields always more or less the same results.

However, a crucial difference is that, as we shall see in the next subsection, the interaction

constant B is positive if the two instantons are identical. In this case we have no need to

change the sign of the coupling in the logarithm and the ambiguity is absent. The energy

correction contains the real part only, which is (4.7) with B replaced by −B. Furthermore

the mixed type as in (4.2) also must be present on physical grounds, because we expect

terms of the kind cos(θx) cos(θy) to be present in the ground-state energy θ-dependence.

Quite unexpectedly their interactions are all found to be purely imaginary, and thus the

individual corresponding energy correction is complex. Nevertheless, when all eight mixed

2-instanton events in (4.2) are considered, the total energy correction is real.

In fact, according to the logic of [29] all these contributions should correspond to exact

saddles of the QM problem on a compact S1 time. What is especially interesting is that

while the instanton-instanton and instanton-anti-instanton events of the same type (4.1)

have their counterpart in quantum mechanics and are thus not very surprising by analogy,17

the mixed type (4.2) are a different matter. Yet as we shall see their naive BZJ amplitudes

16The contour IĪ separation parameter τ along the thimble eventually bends and becomes parallel to the

real axis in the complex τ -plane, which gives the real contribution.
17Such saddles can be thought of as the motions in a periodic inverted-potential which either oscillate with

a period β between two peeks of the inverted potential (i.e. between two classical vacua of the potential) —

a saddle that corresponds to an instanton-anti-instanton pair — or roll with the “energy” slightly higher

than the peak of the inverted potential so that in precisely one period of the imaginary time β the particle

winds twice — a saddle corresponding to an instanton-instanton event.
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are in an extremely good agreement with the numerics, so we are inclined to believe that

such saddles must also exist.

4.2 Instanton interactions

This section is devoted to the determination of instanton-interaction constants B in various

instanton events, and the corresponding correction to the ground state energy. To start

with, we would like to write down a general formula with any given choice of correlations.

The ansatz goes as follows: let’s consider a superposition of two instanton events,

x2 = xα + xβ , y2 = yα + yβ , (4.8)

where xα and xβ (yα and yβ) are either instanton or anti-instanton in the x (y) direction.

We shift the solutions to separate two events (xα, yα) and (xβ , yβ) by τ � 0. We further

make the assumption that the “tunneling” of (xα, yα) takes place when t � 0, while for

(xβ , yβ) it happens when t � 0. As a consequence, it shows that xα(0) or yα(0) differs

from xα(+∞) or yα(+∞) by exponentially small terms, while xβ(0) or yβ(0) differs from

xβ(−∞) or xβ(−∞) by exponentially small terms.

The two-instanton action can be split into two parts,

S2 =

∫ ∞
−∞

dt L(x2, y2) =

∫ 0

−∞
dt (H(x2, y2)− iẋ2y2) +

∫ ∞
0

dt (H(x2, y2)− iẋ2y2) . (4.9)

For ease of notation, we denote the two terms on the r.h.s. as S− and S+ respectively.

Let’s first concentrate on S−. Our assumption implies that δx = xβ − xβ |−∞ and

δy = yβ − yβ |−∞ can be treated as small perturbations in this region. Let us Taylor

expand S− up to the second order

S− =

∫ 0

−∞
dt

(
H|xα,yα + ∂xH|xαδx+ ∂yH|yαδy +

1

2
∂2
xH|xαδx2 +

1

2
∂2
yH|yαδy2

− iẋα(yα + yβ |−∞)− iẋαδy − iδẋ(yα + yβ |−∞)− iδẋδy

)
.

(4.10)

Here we have used the fact that both xβ(−∞) and yβ(−∞) must be integer multiples of 2π.

It can be shown that sum of the two terms
∫ 0
−∞ dt(1

2∂
2
xH|xαδx2 + 1

2∂
2
yH|yαδy2) always has

the order o(e−2τ ), while we will look for the interactions of order o(e−τ ). Indeed the reader

may wonder why we even bothered to expand up to a quadratic order in δx and δy in the

first place. The reason is that the terms δyδẋ is special because it is a total derivative, and

will contribute a finite amount to the o(e−τ ) order. Then recall our normalization and the

equations of motion (3.18a)(3.18b) as well as the conservation law (3.20), we can further

simplify it to be

− iδx(0) (yα|0 + yβ |−∞)− i

∫ 0

−∞
dt δẋδy − iyβ |−∞

∫ 0

−∞
dt ẋα − i

∫ 0

−∞
dt ẋαyα . (4.11)

If we choose the normalization carefully such that yβ |−∞ = 0 and −i
∫∞
−∞ dt ẋαyα = A, we

can obtain, at the leading order, a very neat formula

S− = A+ i(xβ |−∞ − xβ |0)(yα|0 + yβ |0) + iyα|0 (xα|∞ − xα|0) . (4.12)
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The same story, with the only difference that δx′ = xα− xα|+∞ and δy′ = yα− yα|+∞
are treated as small perturbations, goes for S+ and yields

S+ = A− i(xα|∞ − xα|0)(yα|0 + yβ |0)− iyβ |0 (xβ |−∞ − xβ |0) , (4.13)

given the choice of renormalization yα|∞ = 0 and −i
∫∞
−∞ dt ẋβyβ = A (again we observe

that
∫∞

0 dt(1
2∂

2
xH|xβ (δx′)2 + 1

2∂
2
yH|yβ (δy′)2) has no contribution at this order).

Summing up S+ and S− we get the following approximation of two-instanton action

S2 = 2A+ iyα|0 (xβ |−∞ − xβ |0)− iyβ |0 (xα|∞ − xα|0) . (4.14)

Notice that 2A is already accounted for by dilute instanton gas approximation, while the

remaining part will yield the exponential contribution predicted in (4.3).

Now it is time to consider concrete examples and plug in instanton solutions. First of

all, it is convenient to recall the asymptotic behaviors of instanton solutions

x1(t) =

{
2
√

2e−t, t� 0

2π − 2
√

2e−t, t� 0
, y1(t) =

{
i2
√

2e−t, t� 0

i2
√

2e−t, t� 0
. (4.15)

Let us go over all the 2-instanton events listed in (4.1), (4.2).

• “Pure” instanton-anti-instanton. The four events [IxĪx], [ĪxIx], [Iy Īy], [ĪyIy] in the

first line of (4.1) have the same interaction term, so we only need to compute [IxĪx].

A superposition can be chosen as

xα = x1

(
t+

τ

2

)
, xβ = x1

(
−t+

τ

2

)
− 2π ,

yα = y1

(
t+

τ

2

)
, yβ = −y1

(
−t+

τ

2

)
.

(4.16)

The first order interaction can be read off with the help of asymptotics (4.15) and

we obtain

SIxĪx = 2A− 16 exp(−τ) , (4.17)

which verifies the claim (4.3) and we find the instanton-interaction constant

BIxĪx = −16 (4.18)

to be negative.

• “Pure” instanton-instanton. The four events in the second line of (4.1) also have the

same interaction, so we only need to compute [IxIx]. A superposition can be chosen as

xα = x1

(
t+

τ

2

)
, xβ = x1

(
t− τ

2

)
,

yα = y1

(
t+

τ

2

)
, yβ = y1

(
t− τ

2

)
.

(4.19)

We readily find

SIxIx = 2A+ 16 exp(−τ) , (4.20)

from which we read off the instanton-interaction constant

BIxIx = 16 , (4.21)

which is positive.
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• “Mixed” events. We work out explicitly the [IxIy] pair. A superposition satisfying

the constraints above can be chosen as

xα = x1

(
t+

τ

2

)
, xβ = y1

(
t− τ

2

)
,

yα = y1

(
t+

τ

2

)
, yβ = −x1

(
t− τ

2

)
.

(4.22)

Plugging into our general formula (4.14), we get

SIxIy = 2A+ 16 i exp(−τ) . (4.23)

On the other hand, if we consider the [IyIx] correlation, we need to shift our solutions

xα = y1

(
t+

τ

2

)
, xβ = x1

(
t− τ

2

)
,

yα = 2π − x1

(
t+

τ

2

)
, yβ = y1

(
t− τ

2

)
,

(4.24)

thus we obtain

SIyIx = 2A− 16 i exp(−τ) . (4.25)

Indeed these 2-instanton actions share the same pattern as (4.3) but with imaginary

instanton-interaction constants. By the same token, we are able to determine all the

rest “mixed” events

SIxĪy = 2A− 16 i exp(−τ) , SĪyIx = 2A+ 16 i exp(−τ)

SĪxIy = 2A− 16 i exp(−τ) , SIy Īx = 2A+ 16 i exp(−τ)

SĪxĪy = 2A+ 16 i exp(−τ) , SĪy Īx = 2A− 16 i exp(−τ).

(4.26)

With all the formulas in hand, we are able to determine various contributions to the

ground state energy due to various 2-instanton events. We assume that up to 2-instantons,

the ground state energy of the Harper-Hofstadter model has the most general trans-

series form

E0(θx, θy) = Epert
0 + E1-inst

0 (cos θx + cos θy) + EIĪ0 + EII0 (cos 2θx + cos 2θy)

+ EIImix
0 cos θx cos θy ,

(4.27)

which respects the symmetry θx → θy as well as θx → −θx, θy → −θy.
The 1-instanton correction has already been discussed in section 3. We will check the

various 2-instanton corrections in this section. Let’s first look at the EIĪ0 term. From

the discussion above, we know that this term has both real and imaginary parts, given

by (4.7) and (4.6) respectively for an individual 2-instanton event. Reading off the instanton

interaction constant BIxĪx from (4.17), and summing up all four events in the first line

of (4.1), we find the real correction is

Re EIĪ0 = e−2A/φ 32

π
(γE + log(16/φ)) . (4.28)

while the imaginary correction, i.e. the ambiguity is

Im EIĪ0 = ±32 e−2A/φ , (4.29)
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Next, EII0 receives contribution from both IxIx and ĪxĪx events, which is the same

as the sum of IyIy and Īy Īy. Since the instanton-interaction BIxIx (4.21) is negative, the

energy correction is real, and we find

EII0 = e−2A/φ 16

π
(γE + log(16/φ)) . (4.30)

Finally, all the eight mixed events listed in (4.2) contribute to EIImix
0 . Although each

individual event has imaginary instanton-interaction, as one sees in (4.23), (4.25), (4.26),

and thus gives complex correction to the ground state energy, one can check that the imag-

inary contributions cancel and the total contribution of all the eight events is real. It reads

EIImix
0 = e−2A/φ 64

π
(γE + log(16/φ)) . (4.31)

4.3 Numerical studies of two-instanton sector

In this subsection, we perform a numerical study of the various 2-instanton corrections

to the ground state energy, and compare them with the predictions computed in the last

subsection. And we will find perfect agreement. We confine ourselves to the real parts of the

corrections, and leave the study of the imaginary part (ambiguity) to the next subsection.

The trans-series (4.27) of the ground state energy already gives us a hint as how to

extract 2-instanton corrections numerically. We have

E0(0, π2 ) = Epert
0 + E1-inst

0 + EIĪ0 ,

E0(0, π) = Epert
0 + 2EII0 − EIImix

0 + EIĪ0 ,

E0(π2 ,
π
2 ) = Epert

0 − 2EII0 + EIĪ0 ,

E0(π2 , π) = Epert
0 − E1-inst

0 + EIĪ0 ,

(4.32)

thus all the 2-instanton contributions can be obtained from the following linear

contributions

Epert
0 + EIĪ0 =

1

2
(E0(0, π2 ) + E0(π2 , π)) ,

EII0 =
1

4
(E0(0, π2 ) + E0(π2 , π)− 2E0(π2 ,

π
2 )) ,

EIImix
0 = E0(0, π2 ) + E0(π2 , π)− E0(π2 ,

π
2 )− E0(0, π) .

(4.33)

Since the r.h.s. can be computed exactly when φ = 2π/Q for Q ∈ N, these simple linear

formulas allow us to easily compute 2-instanton corrections indicated on the l.h.s. up to

at least 3-instanton corrections for a sequence of Q up to very large Q, with very good

accuracy for large Q. Note that here EIĪ0 actually refers to only its real part; the imaginary

value cannot be computed in this way as it cancels in physical observables. To check the

imaginary part of the 2-instanton sector we can analyze the perturbation series, and match

its lateral Borel sum with the ambiguity from the instantons. This will be discussed in the

next section. We also notice that since E0(π/2, π/2) = E0(0, π) (cf. (2.28)), we have

EIImix
0 = 4EII0 , (4.34)
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Figure 3. We plot in upper panels numerical results of 2-instanton corrections (left: EII
0 ; right:

EIĪ
0 ) as a function of Q = 2π/φ in green dots versus theoretical predictions (4.28), (4.30) in red

lines. Plotted in lower panels are the matching digits between the numerical and theoretical results;

we perform Richardson transformations of order 200 for EII
0 and order 10 and EIĪ

0 respectively to

improve convergence.

up to the next instanton level, which is indeed implied by (4.30), (4.31). Thus we can skip

EIImix
0 and only check EII0 if (4.33) are correct.

We comment that in using (4.33) we will make at most an error exponentially sup-

pressed by a one-instanton factor. We demonstrate this explicitly by comparing with the

results of Fourier transformation in appendix D

Let us thus focus on EIĪ0 and EII0 . For a sequence of Q = 2π/φ, we expect improving

agreement with the path integral predictions (4.28), (4.30) as Q increases. Note that from

numerics, we only obtain the combination Epert
0 + EIĪ0 , and we have to remove Epert

0 by

hand by subtracting the Borel-Padé sum of the perturbative ground state energy. Poles in

the Borel plane, which are responsible for the ambiguity (4.29), are dealt with by Cauchy

principal value integration. This additional complication limits the range of Q we can

push for. The agreement between the numerical results and the path integral predictions

is excellent, as demonstrated in the matching digits plots figure 3.
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4.4 Large order growth and ambiguity of energy

According to the resurgence theory, the large order growth of the perturbative energy

expansion is controlled by the ambiguity (imaginary part) of energy, which receives con-

tributions from instanton sectors with topological charge zero (see for instance [35]). The

first such sector is the instanton-anti-instanton sector [IĪ] including all four events listed

in the first line of (4.1). The imaginary energy correction from this sector is

ImEIĪ(N,φ) = ± e−2A/φ(S(N)/2) · φbN
∞∑
n=0

a(1,1)
n (N)φn

where S(N) is the Stoke’s constant, related to the ambiguity of the lateral Borel resumma-

tion of the perturbative expansion, and bN is the leading exponent of φ in the instanton-

anti-instanton sector. Let us denote the perturbative expansion by

Epert(N) =
∞∑
n=1

a(0)
n (N)φn (4.35)

The resurgent analysis then suggests the following relation

a(0)
n (N) =

S(N)

2π

(n−bN−1)!

(2A)n−bN

(
1+

a
(1,1)
1 (N)2A

n−bN−1
+

a
(1,1)
2 (N)(2A)2

(n−bN−1)(n−bN−2)
+· · ·

)
. (4.36)

We will use this relation to compute numerically the imaginary part of EIĪ .

We start with the ground state with N = 0. We compute a
(0)
n up to n = 320 using the

BenderWu package. With the help of (4.36), we found that

b0 = 0 , (4.37)

and we also extracted the following numerical values of A and S(0)

2Anum = 14.6554495068355 . . . , Snum
(0) = 63.9999999999999 . . . . (4.38)

In this process, it is convenient to use the Richardson transformation to accelerate the

convergence (see for instance [36] for details). It is easy to check that these numerical

estimations reproduce the exact values

2A = 16C, S(0) = 64 , (4.39)

so that in the leading order, we have

ImEIĪ(0, φ) = ±32e−16C/φ , (4.40)

which agrees with the path integral calculation (4.29).

As in the 1-instanton sector, once the analytic values of S(0) and A are fixed, nu-

merically we can go beyond the leading order and further extract the values of a
(1,1)
n (0)

using (4.36). For instance, we find

a
(1,1)
1 (0) = −13

48
, a

(1,1)
2 (0) =

115

4608
,

a
(1,1)
3 (0) = − 12209

3317760
, a

(1,1)
4 (0) = − 355687

637009920
, · · ·

(4.41)
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These coefficients should give the perturbative fluctuation around the instanton-anti-

instanton saddle.

We repeat the same computation for higher energy levels. Observing the general

structure (4.36), we find that

bN = −2N , S(N) =
28N+6

(N !)2
. (4.42)

In addition, we extract the coefficients a
(1,1)
n (N) for various energy levels N and fit them

as functions of N . As a result, we find the fluctuation around the [IĪ] saddle point to be

logPIĪfluc := log

( ∞∑
n=0

a(1,1)
n (N)φn

)

= −6N2 + 18N + 13

48
φ− 20N3 + 66N2 + 100N + 27

2304
φ2

− 210N4 + 900N3 + 2190N2 + 1980N + 653

184320
φ3 +O(φ4).

(4.43)

From these data, we could construct the [IĪ] contribution to the imaginary part of the

eigen-energy

ImEIĪ(N,φ) = ±i e−2A/φ(S(N)/2) · φbN
∞∑
n=0

a(1,1)
n (N)φn

= ±i e−2A/φ 28N+5

(N !)2
φ−2N · PIĪfluc . (4.44)

Before we conclude this section, we point out that there is an interesting empirical

relation between PIĪfluc and P1-inst
fluc

PIĪfluc

(P1-inst
fluc )2

=

(
1

φ

∂Epert

∂N

)−1

. (4.45)

which indicates that we can cast the 1-instanton fluctuation and [IĪ] fluctuation as

P1-inst
fluc =

1

φ

∂Epert(N)

∂N
e−A(N,φ) , (4.46)

PIĪfluc =
1

φ

∂Epert(N)

∂N
e−2A(N,φ) . (4.47)

where the function A(N,φ) is nothing else but the “non-perturbative” A-function appear-

ing in the Zinn-Justin-Jentschura exact quantization conditions [37, 38] in conventional

quantum mechanics. In our example, the first few terms of A(N,φ) read

A(N,φ) =

(
ν2

16
+

11

192

)
φ+

(
5ν3

1152
+

49

4608

)
φ2

+

(
7ν4

12288
+

77ν2

24576
+

889

2949120

)
φ3 +O(φ4) .

(4.48)

where ν = N + 1/2.

– 26 –



J
H
E
P
0
1
(
2
0
1
9
)
0
7
9

5 Instanton fluctuation from topological string

Here we reveal an interesting connection between the fluctuation parts P1-inst
fluc ,PIĪfluc and

topological string theory.

Before our analysis, we would like to remind the reader that the Harper-Hofstadter

model is closely related to a Calabi-Yau threefold called the canonical bundle of F0, also

known as local F0 in string theory community, as first pointed out in [3]. According to

mirror symmetry, all the Gromov-Witten invariants of local F0 are encoded in an algebraic

curve, called mirror curve, whose equation reads18

ex + e−x + ey + e−y = u . (5.1)

Clearly the Hamiltonian of the Harper-Hofstadter model (2.3) can be obtained by rotating

(x, y) in complex plane to (ix, iy), and promoting them to operators satisfying the commu-

tation relation (2.4). Then the free parameter u is related to the energy by u = 4 − 2E.

One can obtain another QM model by promoting x and y without the rotation, i.e., one

considers the Hamiltonian

HF0 = −1

2

(
ex + e−x + ey + e−y

)
+ 2 , (5.2)

with

[x, y] = i~ , ~ ∈ R+ . (5.3)

We choose a normalization of HF0 slightly different from that in the literature to match

the normalization of (2.3) we use in this paper. Motivated by topological string considera-

tions [39, 40], this QM model has been thoroughly studied, both its spectrum [4, 41–46] and

its wave functions [47–49] (see also [50, 51]). This has led to exciting development of non-

perturbative completion of topological string theory and topological string / spectral the-

ory duality [4, 52–58], which in turn inspired a new procedure to solve non-perturbatively

QM models [15–17], as well as the discovery of a new class of exactly solvable deformed

QM models [59].

We would like to point out that on the one hand, the Hamiltonian (5.2) and that of

the Harper-Hofstadter model are rather different in nature. The former is confining and

has a discrete spectrum, while the Harper-Hofstadter Hamiltonian is periodic and thus has

a rich band structure. On the other hand, the spectra of the two Hamiltonians are closely

related in the semi-classical regime. In fact, the perturbative eigen-energies of HF0 was

computed in [15], also using the BenderWu package [8, 9], and it is easy to check that they

are related to the perturbative eigen-energies of H(0, 0) by the map

~→ −φ . (5.4)

We will see in later sections that many results [15] also apply for the Harper-Hofstadter

model as well with appropriate modification.

18We have set one coefficient of the curve equation, the so-called mass parameter, to be 1. This mass

parameter corresponds to anisotropy of the 2d lattice.
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The large order growth of the perturbative energy of HF0 has been analyzed in detail

in [15], and it is incorporated in the leading non-perturbative correction19 to the perturba-

tive series. It is revealed in [15] that this non-perturbative correction can be obtained from

the refined free energies in the Nekrasov-Shatashvili limit of topological string theory on the

Calabi-Yau threefold local F0. We will demonstrate that we can obtain the 1-instanton cor-

rection (and the instanton-anti-instanton correction) of the Harper-Hofstadter model from

their data by applying the map ~ → −φ. This is not obvious at first glance because the

1-instanton correction here is the half order of the non-perturbative correction in [15]. This

is a consequence of the fact that the 1-instanton sector and the instanton-anti-instanton

sector are closely interrelated, as suggested in [31].

Let us quickly review the results of [15] concerning the spectrum of HF0 . The pertur-

bative eigen-energy can be computed also by using the BenderWu package [8, 9], and the

first few terms read

Epert
F0

(ν, ~) = −ν~− 4ν2 + 1

32
~2 − 4ν3 + 3ν

768
~3 − 16ν4 + 72ν2 + 13

49152
~4 +O(~5) , (5.5)

with

ν = N + 1/2 . (5.6)

Indeed, this agrees with the perturbative energy of the Harper-Hofstadter model (3.2) by

the replacement (5.4). Note we have adapted the series of Epert
F0

(ν, ~) to be consistent

with the normalization of HF0 used in this paper. To formulate the results of the formal

“instanton-anti-instanton” correction, we need some terminology from topological string

theory on a local Calabi-Yau manifold and its mirror curve.

The coefficient u in the equation of mirror curve (5.1) parametrizes the complex struc-

ture moduli space of the curve. The moduli space has several singular points, one of which

of particular interest is called the conifold singularity and it is located at u = 4, as it

corresponds to the semi-classical limit EF0 = 0 of the QM model HF0 . Let us introduce

z =
1

u2
. (5.7)

Then the classical periods of the mirror curve are

∂ztc = − 2

πz
K(1− 16z) ,

∂zt
D
c =

2

z
√

1− 16z
K

(
16

16z − 1

)
,

(5.8)

of which tc can serve as a good local coordinate on the moduli space near the conifold

singularity. Here K is the complete elliptic integral of the first kind. Furthermore, for

the topological string theory on a local Calabi-Yau threefold X, an important quantity is

19This is what is called the 1-instanton correction in [15]. We refer to it as the “instanton-anti-instanton”

correction because of the similarity to the Harper-Hofstadter model. More precisely, the situation in [15]

corresponds to the special Bloch angles (θx, θy) = (π/2, π/2), which is just the midpoint (or the Van

Hove singularity) of each subband. At this point, the one-instanton correction vanishes, and the leading

non-perturbative correction starts from the two-instanton order.
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the refined free energy F (t, ε1, ε2). It encodes the numbers of BPS states of the M-theory

compactified on X × (R4 × S1)ε1,ε2 , where the parameters ε1, ε2 describe how the R4 is

twisted along S1. t is a set of coordinates on the moduli space of X, which due to mirror

symmetry is mapped to the complex structure moduli space of the associated mirror curve.

In the application to the spectrum of HF0 , one is in particular interested in the so-called

Nekrasov-Shatashvili limit [60]

FNS(t, ~) = lim
ε1→0

iε1F (t, ε1, i~) , (5.9)

and the free energy in the NS limit enjoys a genus expansion

FNS(t, ~) =
∞∑
n=0

FNS
n (t)~2n . (5.10)

Near the conifold singularity, the NS free energies FNS
n are functions of tc with at most

logarithmic singularity, and we will use the notation

FNS(t, ~) = FC(tc, ~) =

∞∑
n=0

FCn (tc)~2n . (5.11)

They can be computed recursively by the so-called refined holomorphic anomaly equa-

tions [10–12] in the NS limit, as explained in detail in [15–17]. For local F0, the first few

NS free energies are

FC0 (tc) =
1

2
t2c

(
log

(
tc
16

)
− 3

2

)
− t

3
c

48
+

5t4c
4608

− 7t5c
61440

+
733t6c

44236800
+O(t7c) .

FC1 (tc) =− 1

24
log tc−

11tc
192

+
49t2c
9216

− 77t3c
73728

+
2213t4c

8847360
− 607t5c

9437184
+O(t6c) ,

FC2 (tc) =− 7

5760t2c
− 889tc

2949120
+

181981t2c
707788800

− 16157t3c
113246208

+
2194733t4c

32614907904
+O(t5c) .

(5.12)

We stress that these results are obtained purely in the framework of topological string

theory. We do not need any knowledge of the corresponding quantum mechanics. Our goal

is to relate these quantities to the eigen-energy in quantum mechanics.

It turns out, the formal “instanton-anti-instanton” correction to the eigen-energy of

HF0 , which controls the asymptotic growth of the coefficients of Epert
F0

(ν, ~), is given by [15]

EIĪF0
(ν, ~) = ±i 2f (1)e16C/~∂E

pert
F0

(ν, ~)

∂ν
exp

(
−2

~
∂FC(tc, ~)

∂tc

) ∣∣∣
tc→~ν

, (5.13)

where C is the Catalan’s constant, and f (1) a free constant. The exponential factor is

e16C/~ = e2A/~, and this indeed corresponds to the 2-instanton sector in our terminology.

Using the NS free energies of local F0, one can write down the terms in the exponential

−1

~
∂FC

∂tc

∣∣∣
tc→~ν

= ν−ν log
( ν

16

)
+

1

24ν
− 7

2880ν3
+O(ν−5)

−ν log~+
12ν2+11

192
~− 20ν3+49ν

4608
~2+

1680ν4+9240ν2+889

2949120
~3+O(~4) .

(5.14)
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Interestingly, the terms independent of ~ can be resummed to

log

( √
2π16ν

Γ(1
2 + ν)

)
. (5.15)

Furthermore, let us denote the power series in ~ starting from O(~) by[
−1

~
∂FC

∂tc

]
. (5.16)

Then the “instanton-anti-instanton” correction can be written as

EIĪF0
(ν, ~) = ±if (1) 28ν+2π

Γ(1
2 + ν)2

~1−2νe16C/~ · 1

~
∂Epert

F0
(ν, ~)

∂ν
exp

[
−2

~
∂FC

∂tc

] ∣∣∣
tc→~ν

, (5.17)

where the components after · is a power series starting from constant 1.

We observe here that this result in terms of topological string free energies also repro-

duces the imaginary part of the instanton-anti-instanton correction (4.44) for the Harper-

Hofstadter model after applying the map (5.4). Indeed, if we do so, we find that the factor

in front of · in (5.17) agrees with the prefactor before · in (4.44), if we choose

f (1) =
1

2π
. (5.18)

Note that this normalization constant can also be fixed through the path integral calcu-

lation in section 4.1. Comparing the remaining part with the numerical result (4.47), one

conjectures then the A-function should be identified with the opposite of the derivative of

the NS free energy for local F0, i.e.

A(N,φ) =

[
+

1

~
∂FC

∂tc

] ∣∣∣~→−φ
tc→−φν

. (5.19)

We follow the calculation in [15] of the NS free energies for local F0 by solving the NS

holomorphic anomaly equations and push it to a few orders higher than what is explicitly

given in [15]. We find[
+

1

~
∂FC

∂tc

] ∣∣∣~→−φ
tc→−φν

=

(
ν2

16
+

11

192

)
φ+

(
5ν3

1152
+

49ν

4608

)
φ2

+

(
7ν4

12288
+

77ν2

24576
+

889

2949120

)
φ3 +

(
733ν5

7372800
+

2213ν3

2211840
+

181981ν

353894400

)
φ4

+

(
47ν6

2359296
+

3035ν4

9437184
+

16157ν2

37748736
+

112573

3170893824

)
φ5

+

(
35921ν7

8323596288
+

2443337ν5

23781703680
+

2194733ν3

8153726976
+

652008227ν

7990652436480

)
φ6

+

(
83347ν8

84557168640
+

1183937ν6

36238786560
+

42157069ν4

289910292480
+

427007447ν2

4058744094720

+
1910609149

324699527577600

)
φ7 +O(φ8) , (5.20)

and it agrees completely with the A-function (4.48) from the numerical fit.
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Finally, since the power series in the 1-instanton sector is given by the A-function as

shown in (4.46), we claim that the 1-instanton sector can also be expressed in terms of the

NS free energy of local F0. In fact, by plugging (5.19) into (4.46) for the fluctation and

comparing the prefactor (3.43) with the component (5.15), we find an expression similar

to (5.13)

E1-inst
(θx,θy)(N,φ) =

cosθx+cosθy
π

e−A/φ
∂Epert(N)

∂N
Imexp

(
+

1

φ

∂FC

∂tc

)∣∣∣~→−φ
tc→−φ(N+1/2)

. (5.21)

Note that after mapping ~→ −φ the exponential becomes purely imaginary, and we take

its imaginary value in the expression above.

6 Conclusion and discussion

In this paper, our goal is to understand the peculiar band structure of the energy spec-

trum of the Harper-Hofstadter model in the semi-classical limit. According to the general

philosophy of resurgence, the energy levels should be written as trans-series summing over

contributions from all saddle points coupled differently to the Bloch’s angles, and in addi-

tion, the large order growth of the perturbative sector is controlled by the ambiguity of the

energy, which receives leading order contributions from the instanton-anti-instanton sector.

We used various techniques to compute the trans-series energy levels. The perturba-

tive series is computed very conveniently using the extended BenderWu package [8, 9]. The

1-loop contributions to the 1-, 2-instanton sectors, and the energy ambiguity are obtained

by a path integral calculation, albeit restricted to the ground state level. Higher order

corrections in the 1-instanton sector and in the ambiguity (imaginary contributions of the

instanton-anti-instanton sector) are computed using refined topological string techniques in

connection with the local F0 geometry inspired by a similar work [15]. All these results can

be checked against numerical results, which can be computed exactly when the magnetic

flux is 2π times a rational number, and they all agree perfectly. This validates all our tech-

niques. In the process, we find that the perturbative-non-perturbative relation20 relating

the perturbative sector and the 1-instanton sector is not satisfied,21 which is not that sur-

prising since the Schrödinger equation of the Harper-Hofstadter model is a difference rather

than a second-order differential equation. On the other hand there still exists a curious

relation between the three sectors: perturbative, 1-instanton, instanton-anti-instanton.

Clearly there are many open questions. The most pressing one is how to understand

better the nature of instantons, and in particular the [IxIy] instanton configuration, the

treatment of which is rather ad hoc in this work. Namely the inclusion of the saddles, such

as instantons, is expected to be dictated by the Picard-Lefschetz theory, and requires a

decomposition of the path-integral cycle into the Lefschetz thimbles. We have not rigorously

checked whether instanton configurations we analyze are a part of this decomposition,

but have argued that they should contribute on physical grounds. The case of [IxIy] is

20This relation was first proposed in [61–65] and later rediscovered by [66].
21This should not be taken as indication that such a relation does not exist, but just that the form is

different.
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particularly interesting, as it is an object without an analogue in simple 1D quantum

mechanics. Näıve application of the BZJ prescription yields a result in perfect agreement

with the numerics. On the other hand the BZJ prescription was interpreted as contributions

from saddles at infinity [29]. It would be desirable to understand this better in the case

at hand. It would also be nice to have a path integral understanding of the higher order

corrections computed using topological string techniques. Furthermore, another real world

model, one that describes electrons on a triangular lattice, is revealed to be connected

to the topological string theory, with the target space being the canonical bundle of the

three-point blow-up of P2 [5]. One can explore whether the similar analysis can be applied

in that model as well.
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A Instanton solution

We would like to solve the instanton profile from its equations of motion

iẋ− sin y = 0 , (A.1a)

iẏ + sinx = 0 . (A.1b)

We take the derivative w.r.t. time on (A.1a) and multiply it with ẋ, and after using (A.1b)

to remove all appearance of y, we find

d

dt

(√
1 + ẋ2 ± cosx

)
= 0 , (A.2)

where ± comes from converting cos y to sin y, and the above equation integrates to

the identity

E(β) =
√

1 + ẋ2 ± cosx . (A.3)

We interpret the integration constant E(β) to be the conserved energy of the saddle point

configuration. Indeed, when ẋ is small, the r.h.s. of (A.3) becomes

1

2
ẋ2 + 1± cosx (A.4)

which resembles the conserved energy of a saddle point configuration in non-relativistic

QM where 1± cosx is the inverted potential. For the 1-instanton configuration x1(t), the
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energy E(β) reaches the maximum value in the limit β → ∞, and it corresponds to the

oscillation between two neighboring highest points of the inverted potential. In (A.3), we

have E(∞) = 2 regardless of the sign in the inverted potential, so we simply take + without

loss of generality √
1 + ẋ1

2 + cosx1 = 2 . (A.5)

Solving (A.5), we find the following profile of 1-instanton

x1(t) = 2 cos−1

− √
2 tanh(t− t0)√

1 + tanh2(t− t0)

 , (A.6)

as well as

y1(t) = cos−1(2− cos(x1(t))) = cos−1

(
1 +

2

cosh 2(t− t0)

)
. (A.7)

Using the conservation law

cos y1 + cosx1 = 2 , (A.8)

we find that the action is given by

A =

∫ ∞
−∞

dt(− cosx1 − cos y1 + 2− iẋ1y1)

= −i
∫ 2π

0
y1(x1)dx1 = 2

∫ π

0
cosh−1(2− cosx)dx

= 2

∫ π

0
log
(

2− cosx+
√

(3− cosx)(1− cosx)
)

dx

= 4

∫ π

0
log

(
sin

x

2
+

√
1 + sin2 x

2

)
dx

= 8

∫ 1

0

dt

1− t2
log(t+

√
1 + t2) = 8C . (A.9)

In the last line we performed the change of variables t = sinx/2, and used one of the

definitions of the Catalan’s constant

C =

∫ 1

0

sinh−1 t√
1− t2

dt . (A.10)

B The moduli-space metric

We want to find the moduli-space metric of the one instanton. We can do this by adding

a factor λδx̃2 to the action (3.25) before integration, so as to lift the zero mode. Upon

modifying (3.25) by adding such a term, we can do the Gaussian integral and simply get

Zλ1 =
1√

Õ + λ
. (B.1)

Now let us write the small deviation around the instanton solution as

δx̃ ≈
(
∂t0x1

∣∣
t0=0

/
√

cos y1

)
t0 + δx̃⊥ = −ẋ1t0/

√
cos y1 + δx̃⊥ , (B.2)
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where δx̃ is orthogonal to cos y1ẋ1. The first term is a small deviation from the instanton

solution in the direction of the zero mode, and t0 specifies a shift of its position in time.

In fact t0 is precisely the coordinate we want to isolate, and over which we will integrate

exactly, producing a factor of β. Recall that our goal is to find a way to write the path

integral in (3.25), as

Z1 =

∫
dt0

µ√
det′ Õ

, (B.3)

where the prime indicates that the zero-mode has been excluded from the determinant.

The µ above is the measure of the zero-mode moduli t0 (also referred to as moduli space

metric), which is what we wish to find.

To find it we will add the term λδx̃2 into the action as before, and integrate over t0.

We should get (B.1), up to a constant, which will precisely correspond to µ−1. To do this,

let us plug in the expression (B.2) for δx̃ into the path integral (3.25). It only amounts to

adding the term λδx̃2 into the action, since the zero mode is annihilated by Õ. Then it is

easy to see that the action contains the term

e
−λN

2

2φ
t20 . (B.4)

where N is given by (3.27). If we now integrate over t0 and δx̃⊥ we produce a term√
2πφ

λN2

µ√
det′(Õ + λ)

, (B.5)

where the prime on the determinant means we have excluded the zero mode of the Õ

operator. The λ in the denominator however combines with the primed determinant to

give the complete determinant √
2πφ

N2

µ√
det(Õ + λ)

. (B.6)

Comparing with (B.1), we can read off the measure to be

µ =

√
N2

2πφ
. (B.7)

C The one-instanton determinant

We will compute the determinant of the one-instanton fluctuation operator using the

Gel’fand-Yaglom theorem, explained for instance in [67–70]. Consider an ordinary dif-

ferential operator O, with a canonical second derivative term O = −∂2
t + . . . . We wish

to compute the determinant of the operator. For that purpose we consider the space of

functions on which the operator acts to be defined on an interval t ∈ [−β/2, β/2] with the
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Dirichlet boundary conditions22 for the eigenfunctions φ(t), i.e.

φ(−β/2) = φ(β/2) = 0 . (C.1)

Then the Gel’fand-Yaglom theorem states that the determinant of the operator O is

detO ∝ Ψ(β/2) , (C.2)

where Ψ(t) is a zero mode of O, i.e.

O ◦Ψ(t) = 0 (C.3)

satisfying a different boundary condition

Ψ(−β/2) = 0 , Ψ̇(−β/2) = 1 . (C.4)

The proportionality identity can be made precise by regularizing the operator determinant

with that of a simple operator, for instance, the harmonic oscillator

detO

detO0
=

Ψ(β/2)

Ψ0(β/2)
, (C.5)

where Ψ0(t) is the zero mode of the harmonic oscillator O = −∂2
t + 1 with the boundary

condition (C.4), and it is simply

Ψ0(t) = sinh(t+ β/2) . (C.6)

To treat det′O with zero mode removed, we can use the relation

det′O = lim
λ→0

d

dλ
detOλ , (C.7)

with

Oλ := O + λ . (C.8)

Therefore we need to compute the zero mode of Oλ satisfying the boundary condition (C.4)

up to order λ.

Now we could take the operator O to simply be the fluctuation operator Õ given

by (3.26). However notice that we have

det(Õ + λ) = det[f(t)Õ
1

f(t)
+ λ] , (C.9)

22More appropriate boundary conditions for computing path-integral determinants would be periodic

boundary conditions, as Euclidean time is periodic. However in the limit of large Euclidean time-expanse

— the limit relevant for the ground state properties of the system — the boundary conditions do not

matter. Since the formulas are simpler when Dirichlet boundary conditions are used. But everything can

be generalized to periodic boundary conditions if so desired. Indeed if one wished to study the excited

spectrum of the theory, one would need to do precisely this.
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where f(t) is an arbitrary, nonsingular function with no zeros. By taking the derivative

with respect to λ and setting λ = 0 we get

det ′(Õ) = det ′
[
f(t)Õ

1

f(t)

]
. (C.10)

If we take f(t) =
√

cos y1(t) we can define the operator

O =
√

cos y1(t)Õ
1√

cos y1(t)
= cos y1

(
−∂t

1

cos y1(t)
∂t + cosx1(t)

)
(C.11)

so that we will compute det ′(O) instead of det (O).

In order to compute it we first have to consider the determinant of det Oλ, where

Oλ = O + λ, at least for small λ. We already know that O has a zero mode given by ẋ1.

To use Gel’fand-Yaglom theorem we look for a solution

OλΨλ = 0 , (C.12)

where Ψλ satisfies (C.4). Now assuming λ is small we can write

Ψλ = Ψ(0) + λΨ(1)(t) +O(λ2) , (C.13)

where

OΨ(0) = 0 (C.14)

and

OΨ(1) = −Ψ(0) . (C.15)

The first of these equations reduces to

OΨ(0) = cos y1(t)

(
−∂t

1

cos y1(t)
∂t + cosx1(t)

)
Ψ(0) = 0 . (C.16)

This is a second order ODE, and we already know that one solution is

ψ1(t) = ẋ1(t) , (C.17)

although it does not satisfy the boundary condition (C.4). In order to find a second

independent solution, we notice that the operator O can be factorized in the following way.

We introduce operators

Q =
1

cos y1
∂t − i

sinx1

sin y1
, Q† =

1

cos y1
∂t + i

sinx1

sin y1
. (C.18)

They satisfy

Q†Q = − 1

cos2 y1
O , QQ† = − 1

cos2 y1
O +

2

cos y1

(
cosx1

cos y1
+

sin2 x1

sin2 y1

)
. (C.19)

We want to find the most general homogeneous solution to the equation Oψ = 0. This is

the same as finding such a solution for the operator Q†Q. We observe that Q† annihilates
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1/ẋ1. If one can find ψ2 such that Qψ2 = 1/ẋ1, then one concludes immediately from (C.19)

that ψ2 is another solution to (C.16). Indeed by making an appropriate ansatz we find

ψ2(t) = ẋ1(t)

∫ t

dt′
cos y1(t′)

ẋ2
1(t′)

. (C.20)

Furthermore since the Wronskian is not identically vanishing

W21(t) := ψ2(t)∂tψ1(t)− ψ1(t)∂tψ2(t) = − cos y1(t) , (C.21)

the two solutions are linearly independent. From ψ2(t) we can construct the solution

to (C.16) satisfying the boundary condition (C.4)

Ψ(0)(t) =
ẋ1(−β/2)

cos y1(−β/2)
ẋ1(t)

∫ t

−β/2
dt′

cos y1(t′)

ẋ2
1(t′)

. (C.22)

Let us proceed to the next order in λ, namely eq. (C.15),(
∂2
t −

ẏ1 sin y1

cos y1
∂t − cos y1 cosx1

)
Ψ(1) = −O ◦Ψ(1) = Ψ(0) , (C.23)

and Ψ(1)(t) satisfies the boundary condition

Ψ(1)(−β/2) = 0 , Ψ̇(1)(−β/2) = 0 . (C.24)

One way to solve (C.23) is to first find the modified Green’s function G(t, t′) satisfying

OG(t, t′) = cos y1δ(t− t′) , (C.25)

so that Ψ(1) is given by

Ψ(1)(t) =

∫ β/2

−β/2
dt′G(t, t′)Ψ(0)(t′)

1

cos y1
. (C.26)

We claim that the Green’s function is given by

G(t, t′) =

{
−ψ1(t)ψ2(t′) + ψ2(t)ψ1(t′) , t > t′ ,

0 , t ≤ t′ .
(C.27)

Indeed, when both t < t′ and t > t′, (C.25) is trivially satisfied since ψ1(t), ψ2(t) are

annihilated by O. In the neighborhood of t → t′, let us plug (C.27) into (C.25), integrate

both sides from t = t′ − ε to t = t′ + ε and take the limit ε → 0. The r.h.s. is simply

cos y1(t′), while the l.h.s. is given by

∂tG(t, t′)
∣∣
t=t′+

− ∂tG(t, t′)
∣∣
t=t′−

= −W21(t′) = cos y1(t′) , (C.28)

where we have used (C.21). Therefore (C.27) is the correct modified Green’s function. We

can now write down Ψ(1)(t)

Ψ(1)(t) =

∫ t

−β/2
dt′Ψ(0)(t′)

1

cos y1(t′)

(
ψ1(t′)ψ2(t)− ψ2(t′)ψ1(t)

)
. (C.29)

This function indeed satisfies the boundary condition (C.24).
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Now we are ready to compute the operator determinant using the Gel’fand-Yaglom

theorem. Combining (C.5), (C.6), (C.7), (C.29), we have

det′O

detO0
=

det′ Õ

detO0
=

ẋ1(−β/2)ẋ1(β/2)

sinhβ cosy1(−β/2)

∫ β/2

−β/2
dt
ẋ2

1(t)

cosy1

∫ t

−β/2
dt′

cosy1(t′)

ẋ2
1(t′)

∫ β/2

t
dt′′

cosy1(t′′)

ẋ2
1(t′′)

.

(C.30)

D Comparison of Fourier analysis with linear formulas

In the section 4.3 we have used (4.33) to compute the 2-instanton θx, θy-dependence of the

system. These formulas are expected to have an error exponentially suppressed with the

coupling. Here we analyze Epert
0 +EIĪ0 , E1-inst

0 , EII0 , EIImix
0 by a direct Fourier transforma-

tion in order to check explicitly the validity of the formulas (4.33) and make an estimate

on the error. To be explicit, we should have

Epert
0 + EIĪ0 =

1

π2

∫ π

0
dθxdθyE0(θx, θy) ,

E1-inst
0 =

2

π

∫ π

0
dθx cos(θx)E0(θx,

π
2 ) ,

EII0 =
2

π

∫ π

0
dθx cos(2θx)E0(θx,

π
2 ) ,

EIImix
0 =

4

π2

∫ π

0
dθxdθy cos(θx) cos(θy)E0(θx, θy) .

(D.1)

Here we can integrate over θ ∈ [0, π] instead of [0, 2π] because E0 is an even function

of θx, θy.

We notice that the energy level E0 is solved from the equation (cf. (2.28))

FQ(E0) = 2(cos θx + cos θy − 2) (D.2)

where FQ(E0) for φ = 2π/Q is a polynomial of degree Q in E0. It is simpler to perform

the integration if we can exchange the integration variable from θx, θy to E0. This can be

done in the following way.

To compute E1-inst
0 , we take θy = π/2 and E0 only depends on cos θx = cos θ. The

relation (D.2) is simplified to

FQ(E0) = 2(cos θ − 2) . (D.3)

Then we shall have

E1-inst
0 =

2

π

∫ π

0
dθ cos(θ)E0(cos θ)

=
2

π

∫ +1

−1
d cos θ

cos θ√
1− cos2 θ

E0(cos θ)

=
2

π

∫ E0(1)

E0(−1)
dE0E0

d cos θ

dE0

cos θ√
1− cos2 θ

=
2

π

∫ E0(1)

E0(−1)
dE0E0

1

2
F ′Q(E0)

1
2FQ(E0) + 2√

1− (1
2FQ(E0) + 2)2

. (D.4)
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Similarly, we have for the EII0

EII0 =
2

π

∫ π

0
dθ cos(2θ)E0(cos θ)

=
2

π

∫ 1

−1
d cos θ

2 cos2 θ − 1√
1− cos2 θ

E0(cos θ)

=
2

π

∫ E0(1)

E0(−1)
dE0E0

1

2
F ′Q(E0)

2(1
2FQ(E0) + 2)2 − 1√
1− (1

2FQ(E0) + 2)2
. (D.5)

In the case of Epert
0 + EIĪ0 and EIImix

0 , the energy E0 depends on cos θx + cos θy. Let

us define

s = cos θx + cos θy , t = cos θx − cos θy . (D.6)

The integration range θx ∈ [0, π], θy ∈ [0, π] is equivalent to

s ∈ [−2, 2] (D.7)

and

t ∈

{
[−s− 2, s+ 2] s < 0

[s− 2,−s+ 2] s > 0
. (D.8)

We find that Epert
0 + EIĪ0 is computed by

Epert
0 + EIĪ0 =

1

π2

∫ π

0
dθxdθyE0(cos θx + cos θy)

=
1

π2

∫ 1

−1

d cos θxd cos θy√
(1− cos2 θx)(1− cos2 θy)

E0(cos θx + cos θy)

=
1

2π2

∫
dsdt√

1− s2+t2

2 + ( s
2−t2

4 )2
E0(s)

=
1

π2

∫ 2

−2
dsE0(s)

∫ ±s+2

0

4dt√
16− 8(s2 + t2) + (s2 − t2)2

(D.9)

where the integration range for t is [0, s+2] if s < 0 and [0,−s+2] if s > 0. The integration

on t can be performed explicitly, and we find

K(s) :=

∫ ±s+2

0

4dt√
16− 8(s2 + t2) + (s2 − t2)2

=


4

2−sK

[(
2+s
2−s

)2
]

s < 0

4
2+sK

[(
2−s
2+s

)2
]

s > 0

, (D.10)

where K(•) is the complete elliptic integral of the first kind. In the end, we have

Epert
0 + EIĪ0 =

1

2π2

∫ E0(2)

E0(−2)
dE0E0F

′
Q(E0)K

(
1
2FQ(E0) + 2

)
. (D.11)
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Figure 4. Plot of matching digits between results from linear combination and from Fourier trans-

formation against Q = 2π/φ for various 2-instanton events. Blue, red, and green (indistinguishable

from blue) dots correspond to EII
0 , EIImix

0 , and Epert
0 + EIĪ

0 respectively. Also plotted in yellow

(orange) line is log10 of 2-(4-)instanton action 2A/φ (4A/φ).

Similarly for EIImix
0 , we have

EIImix
0 =

4

π2

∫ π

0
dθxdθy cos θx cos θyE0(cos θx + cos θy)

=
4

π2

∫ 1

−1
d cos θxd cos θy

cos θx cos θy√
(1− cos2 θx)(1− cos2 θy)

E0(cos θx + cos θy)

=
4

π2

∫ 2

−2
dsE0(s)

∫ ±s+2

0
dt

s2 − t2√
16− 8(s2 + t2) + (s2 − t2)2

(D.12)

We carry out the integration on t explicitly

L(s) :=

∫ ±s+2

0
dt

s2 − t2√
16− 8(s2 + t2) + (s2 − t2)2

=


(2− s)E

[(
2+s
2−s

)2
]

+ 4(−1−s)
2−s K

[(
2+s
2−s

)2
]

s < 0

(2 + s)E

[(
2−s
2+s

)2
]

+ 4(−1+s)
2+s K

[(
2−s
2+s

)2
]

s > 0

(D.13)

where E(•) is the complete elliptic integral of the second kind, and conclude in the end

EIImix
0 =

2

π2

∫ E0(2)

E0(−2)
dE0E0F

′
Q(E0)L

(
1
2FQ(E0) + 2

)
. (D.14)

Equations (D.11), (D.4), (D.5), (D.14) then provide us the means to compute the instanton

contributions as Fourier coefficients of the ground state energy.

We compare the results of different 2-instanton corrections computed by the two dif-

ferent methods in figure 4. Since we focus on the 2-instanton sector, we only include the

corrections of Epert
0 +EIĪ0 , EII0 , and EIImix

0 . We find the agreement to be remarkable, with

the relative difference to be at 2-instanton or even 4-instanton levels, and is thus negligible.
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