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1 Introduction

One of the most useful examples of a black hole is the hole made with D1, D5, and P

charges in string theory. The microscopic entropy for these charges, Smicro, agrees with

the Bekenstein entropy, Sbek, obtained from the classical gravity solution with the same

charges [1, 2]. Further, a weak coupling computation of radiation from the branes, Γmicro,

agrees with the Hawking radiation from the gravitational solution, Γhawking [3, 4].

AdS3/CFT2 duality [5–7] states that the near horizon dynamics of the black hole is

described by a 1+1 dimensional CFT called the D1-D5 CFT. The momentum charge P

is carried by left moving excitations of this CFT. The CFT has a ‘free point’ called the

‘orbifold CFT’, where the theory can be described using free bosons and free fermions on

a set of twisted sectors [8–14], see [15] for a review of the D1-D5 brane system.

At the orbifold point all states which have only left moving excitations are BPS; i.e.

they have energy equal to their charge. This need not be true as we deform the theory

along some direction in the moduli space of the D1-D5 CFT. Some of the states which were

BPS at the orbifold point will remain BPS, while others can pair up and ‘lift’.

In this paper we will look at a specific family of D1-D5-P states which are BPS at the

orbifold point but which lift as we move away from this free point towards the supergrav-

ity description of the black hole. We use conformal perturbation theory to compute the

lifting at quadratic order in the coupling λ. The form of this lifting will tell us about the

behavior of string states in the gravity dual, and shed light on the nature of the fuzzball

configurations that describe black hole microstates [16–20].

We now summarize the set-up and the main results.
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(a) (b)

Figure 1. (a) N singly-wound component strings in their vacuum state wrapping the S1; this gives

the vacuum of the theory. (b) n of these N copies have been excited by the application of current

operators.

1.1 The D1-D5 CFT

We consider type IIB string theory compactified as

M9,1 →M4,1 × S1 × T 4 . (1.1)

We wrap n1 D1 branes on S1 and n5 D5 branes on S1 × T 4. The bound states of these

branes generate the D1-D5 CFT, which is a 1+1 dimensional field theory living on the

cylinder made from the S1 and time directions. This theory is believed to have an orbifold

point, where we have

N = n1n5 (1.2)

copies of a c = 6 free CFT. The free CFT is made of 4 free bosons and 4 free fermions in

the left-moving sector and likewise in the right-moving sector. The free fields are subject

to an orbifold symmetry generated by the group of permutations SN ; this leads to var-

ious twisted sectors around the circle S1. The field theory is a CFT with small N = 4

supersymmetry in each of the left and right-moving sectors; thus the left sector has chiral

algebra generators Ln, G
±
Ȧ,r
, Jan associated with the stress-energy tensor, the supercurrents,

and the su(2) R-currents (the right-moving sector has analogous generators). The small

N = 4 superconformal algebra and our notations are outlined in appendix A.

1.2 The states of interest

Consider the untwisted sector, i.e. the sector where each copy of the c = 6 CFT is singly

wound around the S1. The N copies of the c = 6 CFT can be depicted by N separate

circles; we sketch this in figure 1. We consider the NS sector. If all the copies are unexcited,

we get the vacuum state |0〉 as shown in the left panel of the figure; the gravity dual of

this state is AdS3 × S3 × T 4.

We will now consider a set of excited states, proceeding in the following steps:

(i) Consider the state where N − 1 copies are in the NS vacuum state, and one of the

copies is excited by application of the operator

J+
−(2m−1) . . . J

+
−3J

+
−1 (1.3)
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on the NS vacuum. This is illustrated in the right panel of figure 1. At the orbifold

point this operator has quantum numbers

(h, h̄) = (m2, 0) , (j, j̄) = (m, 0) . (1.4)

Thus the energy of the state at the orbifold point is

Eorbifold = h+ h̄ = m2 . (1.5)

At the orbifold point, the excitation is BPS since the right movers of the CFT are in

the supersymmetric ground state on all copies.

We will argue that when we move to the supergravity domain, this state can be

heuristically described by a string localized at the center of the AdS space. Because

the excitation is a string rather than a supergravity quantum, the energy will change

away from the orbifold point (1.5); we write the extra energy as

E − Eorbifold = ∆E . (1.6)

(ii) Suppose we place the excitation (1.3) on two copies of the CFT. At the orbifold point

we have

(h, h̄) = (2m2, 0) , (j, j̄) = (2m, 0) , (1.7)

and

Eorbifold = 2m2 . (1.8)

At the supergravity point in the dual theory, our heuristic picture will have two

strings placed at the center of AdS. Each string will have an extra energy ∆E as

before. But there will also be some gravitational attraction between these strings,

which will lower the energy by some amount ∆Egrav. This suggests that the energy

at the supergravity point will have the schematic form

E − Eorbifold = 2∆E − Egrav . (1.9)

(iii) Now suppose we place the excitation (1.3) on n out the the N copies. In the dual

gravity description we have n strings. We get a positive energy from each of the n

strings, and a negative contribution to the energy from the attraction between each

pair of strings. Thus the total energy has the schematic form

En − Eorbifold,n = n∆E − n(n− 1)

2
Egrav , (1.10)

where we have added a subscript n to the energies to indicate the number of copies

which have been excited.

(iv) Finally we place the excitation (1.3) on all the N copies of the c = 6 CFT. In this

situation we know the energy E exactly, because this state is obtained by a spectral

flow of the vacuum by 2m units. We have

EN − Eorbifold,N = 0 (1.11)

To summarize, the quantity En−Eorbifold,n should have the schematic behavior depicted

in figure 2: it vanishes at n = 0, rises for low values of n, then falls back to zero at n = N .
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n=0 n=N
n

ΔE

Figure 2. A schematic plot showing the energy lift when n out of the N copies of the c = 6 CFT

are excited. The lift vanishes when n = 0 and when n = N : the n = 0 state is the vacuum and the

n = N state is a spectral flow of the vacuum.

1.3 The results

In this paper we study the deformation of the D1-D5 CFT off the orbifold point towards

the supergravity point, upto second order in the coupling λ. We show that, at this order,

the energy En of the family of the states we consider in eq. (1.3) indeed has the form

depicted in figure 2:

〈(En − Eorbifold)〉 = λ2π
3
2

2

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

n(N − n) , (1.12)

where m is the number of the R-currents in the initial state (1.3), see section 7 for details.

We also consider the case where the N copies of the CFT are grouped into twist sectors

with winding k each, and then excited in a manner similar to that discussed above, We

again find an expression of the energy lift of the form (1.12).

Finally, we note a general property of the computation of lifting at second order. If

the deformation operators join two component strings and then break them apart, the

covering surface arising in the computation has genus 0. If on the other hand the defor-

mation operators break and then rejoin a component string, the covering space arising in

the computation has genus 1. The maximally twisted sector can only exhibit the second

possibility; this suggests that the large class of unlifted states needed to explain black hole

entropy may lie in this sector.

There are several earlier works that have studied conformal perturbation theory, the

lifting of the states, the acquiring of anomalous dimensions, and the issue of operator

mixing, in particular in the context of the D1-D5 CFT. In particular, [21] studied the

lifting of states in the pp-wave limit, and matched the results to a computation using

string states on AdS. For other related computations, see for example [22–37].

1.4 The plan of the paper

In section 2 we outline the computation that gives the lift to second order; in particu-

lar we explain why the issue of operator renormalization does not arise to this order in

our problem.
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In section 3 we describe the deformation operator and the states whose lift we are

interested in.

In section 4 we compute the vacuum correlation function of two twist-2 operators; we

call this the ‘base’ amplitude, as it appears as a starting element in the computation of all

other correlation functions.

In section 5 we compute the lifting of energies of the states under consideration.

In section 6 we consider global modes and use our approach to show that they are not

lifted under conformal perturbation, to the order we study, as expected.

In section 7 we perform the needed combinatorics to extend our result to the case

where we have an arbitrary number N of component strings.

In section 8 we compute the lift for the case where the component strings on the initial

state are grouped into sets with twist k each.

In section 9 we analyze the nature of the covering space in different instances of second

order perturbation theory, and find a special role for the maximally twisted sector.

Section 10 is a general discussion, where we state the physical implications of our

results.

2 Outline of the method

In this section we first outline the conformal perturbation theory approach that we will

use to compute the lifting of energies. We then derive a general expression for lifting to

second order.

2.1 Conformal perturbation theory on the cylinder

We proceed in the following steps:

(a) Suppose we have a conformal field φ with left and right-moving dimensions (h, 0).

On the plane, the 2-point function is

〈φ(z)φ(0)〉0 =
1

zh
, (2.1)

where the subscript “0” corresponds to the unperturbed theory. After a perturbation

of the CFT, the conformal dimensions can change to (h+ δh, δh). The left and right

dimensions must increase by the same amount, since h− h̄ must always be an integer

for the operator to be local. The operator φ̃ in the perturbed theory, having a well

defined dimension, will also in general be different from φ. So we should write

φ = φ̃+ δφ̃ . (2.2)

We will see, however, that to the order where we will be working, the correction δφ̃

will not be relevant (see eqs. (2.16), (2.23), (2.25), and footnote 1). We can then write

〈φ(z)φ(0)〉pert =
1

zh
1

|z|2δh
=

1

zh
e−2δh log |z| ≈ 1

zh
(1− 2δh log |z|) , (2.3)
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where the subscript “pert” corresponds to the perturbed theory. Thus the perturba-

tion to the 2-point function has a correction term of the form ∼ z−h log |z|, and the

perturbation to the dimension δh can be read off from the coefficient of this term.

For more details on the analyses of conformal perturbation theory in two and higher

dimensional CFTs see, e.g. [38–45].

(b) We will find it convenient to work on the cylinder rather than the plane, so let us

see how the expressions in (a) change when we work on the cylinder. The cylinder

coordinate is given by

z = ew, w = τ + iσ . (2.4)

Consider the state |φ〉 corresponding to the operator φ; we assume that this state is

normalized as

〈φ|φ〉0 = 1 . (2.5)

As will become clear below, we can ignore the change δφ̃ in this state itself. Let us

also assume for the moment that the energy level of φ is nondegenerate. We place

the state |φ〉 at τ = −T
2 and the conjugate state 〈φ| at τ = T

2 . We compute the

amplitude A(T ) for transition between these two states. In the unperturbed theory,

we have for our operator φ with dimensions (h, 0):

A(T ) = 〈φ|e−H(0)T |φ〉 = e−hT , (2.6)

where the energy of the state is E = h + h̄ = h, and H(0) is the Hamiltonian in the

unperturbed theory. After the perturbation, we get

A(T ) + δA(T ) = 〈φ|e−(H(0)+δH)T |φ〉 = e−(h+2δh)T ≈ e−hT − 2δh Te−hT . (2.7)

Thus, we can read off δh from the coefficient of Te−hT in δA(T ).

(c) With these preliminaries, we now set up the formalism for situation that we actually

have. In our problem, the space of operators with dimension (h, 0) is degenerate.

Thus, we consider the case where we have operators φa, a = 1, . . . , n, all with the same

dimension (h, 0). Let the remaining operators having well defined scaling dimensions

be called φµ; there will in general be an infinite number of the φµ(λ), with dimensions

going all the way to infinity. These operators are normalized as

〈φa|φb〉 = δab , 〈φµ|φν〉 = δµν , 〈φa|φµ〉 = 0 . (2.8)

After the perturbations, there will be a different set of operators which have well

defined scaling dimensions; let these operators be denoted by a tilde on top. We

separate these operators into two classes. The first class is the operators that are

deformations of the degenerate set φa, a = 1, . . . n. We call these deformed operators

φ̃a′(λ), a′ = 1, . . . n, where we have explicitly noted the dependence of these operators

on the coupling λ. The second class is comprised of the remaining operators in the

– 6 –
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deformed theory which have well defined scaling dimensions; let us call these φ̃µ(λ).

We assume that these operators are normalized

〈φ̃a′(λ)|φ̃b′(λ)〉 = δa′b′ , 〈φ̃µ(λ)|φ̃ν(λ)〉 = δµν , 〈φ̃a′(λ)|φ̃µ(λ)〉 = 0 . (2.9)

The φ̃a′ have conformal dimensions of (h + δha′(λ), δha′(λ)). The energies of the

unperturbed states φa′ and the perturbed states φ̃a′ are therefore

E = h+ h̄ = h , Ẽa′ = h+ 2δha′(λ) , (2.10)

We expand the perturbed energies as

Ẽa′(λ) = E + λE
(1)
a′ + λ2E

(2)
a′ + · · · , (2.11)

Ẽµ′ = Eµ′ + λE
(1)
µ′ + λ2E

(2)
µ′ + · · · . (2.12)

Let us now consider the expansions of operators themselves. We can write

φ̃a′(λ) = C̃a′a(λ)φa + D̃a′µ(λ)φµ ,

φ̃µ′(λ) = F̃µ′a(λ)φa + G̃µ′ν(λ)φν , (2.13)

where C̃a′a, D̃a′µ, F̃µ′a, and G̃µ′ν are λ-dependent expansion coefficients. We can

invert these expansions to write

φa = Caa′(λ)φ̃a′(λ) +Daµ′(λ)φ̃µ′(λ) ,

φµ = Fµa′(λ)φ̃a′(λ) +Gµν′(λ)φ̃ν′(λ) . (2.14)

Finally, we expand the coefficients above in powers of λ:

Caa′(λ) = C
(0)
aa′ + λC

(1)
aa′ + λ2C

(2)
aa′ + . . .

Daµ′(λ) = D
(0)
aµ′ + λD

(1)
aµ′ + λ2D

(2)
aµ′ + . . . (2.15)

Thus, in particular φa can be expanded as

φa = C
(0)
aa′ φ̃a′ + λC

(1)
aa′ φ̃a′ + λ2C

(2)
aa′ φ̃a′ + · · ·+ λD(1)

aµ φ̃µ + · · · . (2.16)

The condition (2.8) gives at leading order

C
(0)
aa′C

(0)∗
ba′ = δab . (2.17)

The reason all these preliminaries are needed is that when computing an amplitude

in perturbation theory we find ourselves in the following situation. The operators in

the amplitude are taken to be the unperturbed operators φa, φµ, since these are the

ones with well understood and explicit constructions. But the operators that have

well defined scaling dimensions are the φ̃a′ , φ̃µ′ , which are not explicitly known. Thus

we would compute an amplitude of the type

Aab(T ) ≡
〈
φb
(
T
2

) ∣∣∣e−(H(0)+δH(λ))T
∣∣∣φa (−T

2

) 〉
. (2.18)

– 7 –
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Here the operators φa, φb are operators in the unperturbed theory, and therefore

explicitly known to us. But these unperturbed operators do not give eigenstates of

the full Hamiltonian H(0) +δH(λ); the latter eigenstates correspond to the perturbed

operators φ̃a′ , φ̃µ′ . Thus we have

〈φ̃b′
(
T
2

) ∣∣∣e−(H(0)+δH(λ))T
∣∣∣φ̃a′ (−T

2

) 〉
= e−Ẽa′T δa′b′ ,

〈φ̃ν′
(
T
2

) ∣∣∣e−(H(0)+δH(λ))T
∣∣∣φ̃µ′ (−T

2

) 〉
= e−Ẽµ′T δµ′ν′ ,

〈φ̃a′
(
T
2

) ∣∣∣e−(H(0)+δH(λ))T
∣∣∣φ̃µ′ (−T

2

) 〉
= 0 . (2.19)

Substituting the expansions (2.16) in eq. (2.18), we find

Aab(T ) ≡
〈
φb
(
T
2

) ∣∣∣e−(H(0)+δH(λ))T
∣∣∣φa (−T

2

) 〉
=
(
C

(0)∗
ba′ + λC

(1)∗
ba′ + λ2C

(2)∗
ba′ + . . .

)(
C

(0)
aa′ + λC

(1)
aa′ + λ2C

(2)
aa′ + . . .

)
×e−(E+λE

(1)

a′ +λ2E
(2)

a′ +... )T

+λ2D
(1)∗
bµ D(1)

aµ e
−(Eµ+λE

(1)
µ +λ2E

(2)
µ +... )T + · · · . (2.20)

In general amplitudes like Aab(T ) are functions of the fields like φa, φb placed at the

upper and lower time slices, the time interval T between the slices, and the coupling

λ. From the set of such amplitudes, we can extract the perturbed dimensions of the

theory. We will do this below, but first we note that it is convenient to expand the

above amplitude in powers of λ

Aab(T ) = A
(0)
ab + λA

(1)
ab + λ2A

(2)
ab + · · · . (2.21)

(d) We first look at the coefficient of λTe−ET in (2.20). This coefficient is found to be

− C(0)
aa′E

(1)
a′ C

(0)∗
ba′ . (2.22)

We can write the above relation in matrix form, defining (Â(1))ab = A
(1)
ab , (Ĉ(0))aa′ =

C
(0)
aa′ , and (Ê(1))a′b′ = δa′b′E

(1)
a′ . This gives

Â(1) → −Te−ET Ĉ(0)Ê(1)Ĉ(0)† . (2.23)

where the arrow indicates that we are writing only the coefficient of Te−ET in Â(1).

We now note that, in our problem, the amplitude Aab(T ) has no terms at O(λ). This

is because, as we will see in the next subsection, the deformation operator D which

perturbs the theory away from the orbifold point is in the twist 2 sector, while the

states |φa〉 and |φb〉 are in the untwisted sector. The 3-point function 〈φb|D|φa〉 then

vanishes due to the orbifold group selection rules. From eq. (2.17) we see that Ĉ

is unitary. Thus the vanishing of the above contribution tells us that Ê(1) = 0; i.e.

E
(1)
a′ = 0 for all a′ ∈ {1, . . . , n}.

– 8 –
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Now we look at the coefficient of λ2Te−ET in Aab(T ) in eq. (2.20). We find

A
(2)
ab → −Te

−ET
(
C

(0)
aa′C

(0)∗
ba′ E

(2)
a′

)
. (2.24)

In matrix form, this reads

Â(2) → −Te−ET Ĉ(0) ˆE(2)Ĉ(0)† . (2.25)

Thus, if we compute the matrix Â(2) and look at the coefficient of −Te−ET , then the

eigenvalues of this matrix give the corrections to the energies upto O(λ2):

E
(2)
a′ = 2δha′ , (2.26)

and the eigenvectors give the linear combinations of the φa which correspond to

operators with definite conformal dimensions.1

(e) In our system, we have states |Φ(m)〉 labelled by a parameter m ∈ Z≥0, see eq. (1.3).

As we go to higher m, the number of states with the same conformal dimensions as

|Φ(m)〉 increases; in fact even for the lowest interesting value, m = 2, the number

of degenerate states is large enough to make the computation of the matrix A
(2)
ab

difficult. We will be interested in computing something a bit different. The state

|Φ(m)〉 of interest to us is one of the states |φa〉; let us call it |φ1〉. Then we compute

the quantity A
(2)
11 in eq. (2.24). From (2.25) we see that the coefficient of −Te−ET in

Â(2) is ∑
a′

|C1a′ |2E
(2)
a′ =

∑
a′

|〈φ̃a′ |φ1〉|2E(2)
a′ . (2.27)

Thus we get the expectation value of the increase in energy for the state |φ1〉 = |Φ(m)〉.
Computing this quantity will allow us to make our arguments about the nature of

lifting of string states.

2.2 The general expression for lifting at second order

In the above discussion we have expressed the amplitude Aab in eq. (2.21) in terms of

Hamiltonian evolution. But we will actually compute Aab using path integrals, since the

perturbation is known as a change to the Lagrangian rather than a change to the Hamil-

tonian:

S0 → Spert = S0 + λ

∫
d2wD(w, w̄) , (2.28)

where D(w, w̄) is an exactly marginal operator deforming the CFT. As mentioned before,

A
(1)
ab = 0, see the discussion below eq. (2.23). We will work with the next order, where

we have

A
(2)
ab (T ) =

1

2

〈
φb
(
T
2

) ∣∣∣∣( ∫ d2w2D(w2, w̄2)

)(∫
d2w1D(w1, w̄1)

)∣∣∣∣φa (−T
2

)〉
, (2.29)

1We note that, as mentioned below eq. (2.5), δφ̃ defined in eq. (2.2) does not appear in the expectation

value up to second order in perturbation theory. δφ̃ corresponds to the terms with the C(i) and D(i)

(i ∈ Z>0) coefficients in eq. (2.16) and do not appear at the first and second order amplitudes in eqs. (2.23)

and (2.25), respectively.
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where the range of the wi integrals are

0 ≤ σi < 2π , − T
2 < τi <

T
2 . (2.30)

Before proceeding, we write the initial and final states in a convenient form. The local

operators like Ja(w) in the CFT depend on time τ . Thus if we create the state |ψa〉 by the

application of such an operator, then the value of τ at the point of application is relevant.

But if we expand in modes Ja(w) =
∑

n J
a
ne

nw, then the operators Jan do not have the

information about the point of application. It is convenient to write the state in terms of

mode operators like Jan , and so we need to factor out the τ -dependence explicitly.

For τ < −T
2 , the state is the NS vacuum |0〉. Suppose that the state created at τ = −T

2

has energy E. Then we have ∣∣φ (−T
2

) 〉
= e−

ET
2 |Φ〉 , (2.31)

where the state |Φ〉 is written with upper case letters: this will denote the fact that this

state is made from modes like Jan which have no τ -dependence. Similarly, the final state is〈
φ
(
T
2

) ∣∣ = e−
ET
2 〈Φ| . (2.32)

Eq. (2.29) then reads:

A
(2)
ab (T ) =

1

2
e−ET

〈
Φb

(
T
2

) ∣∣∣∣( ∫ d2w2D(w2, w̄2)

)(∫
d2w1D(w1, w̄1)

)∣∣∣∣Φa

(
−T

2

)〉
.

(2.33)

To compute A
(2)
ab , we proceed as follows:

(a) Since Φa has the same energy as Φb, the integrand depends only on

∆w = w2 − w1 . (2.34)

It would be convenient if we could write the integrals over w1, w2 as an integral over

∆w, and factor out the integral over

s =
1

2
(w1 + w2) . (2.35)

We cannot immediately do this, however, as the ranges of the τi integrals given

in (2.30) do not factor into a range for ∆w and a range for s. But for our case, we

will see that we can obtain the needed factorization by taking the limit T →∞.

Suppose that w1 < w2. In the region −T
2 < τ < τ1, we have the state Φa, and

Hamiltonian evolution gives the factor ∼ e−Eτ . Similarly, in the region τ2 < τ < T
2 ,

we have the state Φb, and Hamiltonian evolution gives ∼ e−Eτ . In the region τ1 <

τ < τ2, we have a state Φk with energy Ek, giving a factor ∼ e−Ekτ . As we will show

below, we have

Ek ≥ E + 2 , (2.36)

so that the integrand in A
(2)
ab in eq. (2.33) is exponentially suppressed as we increase

∆w. Thus we can fix w1 = 0, and integrate over w2 ≡ w to compute〈
φb
(
T
2

) ∣∣∣∣( ∫ d2wD(w, w̄)

)
D(0)

∣∣∣∣φa (−T
2

)〉
. (2.37)
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Here the w integral ranges over 0 ≤ σ < 2π,−T
2 < τ < T

2 . The τ range is large in

the limit T →∞. But the contributions to the integral die off quickly for |w| � 2π.

Integration over w1 then just gives a factor∫
d2w1 → 2πT . (2.38)

Thus in the limit T →∞, eq. (2.33) reads

A
(2)
ab (T ) = (2πT )

1

2
e−ET

〈
Φb

(
T
2

) ∣∣∣∣( ∫ d2wD(w, w̄)

)
D(0)

∣∣∣∣Φa

(
−T

2

)〉
. (2.39)

To prove eq. (2.36), we note that Ek must lie in the conformal block of some primary

operator χ with dimensions (hχ, h̄χ). Thus, we need a non-vanishing 3-point function

f = 〈φa(z1)D(z2, z̄2)χ(z3, z̄3)〉 . (2.40)

Since φa has dimensions (h, 0), there is no power of z̄2 − z̄1 in the correlator. Since

D has dimensions (hD, h̄D) = (1, 1), this implies that h̄χ = 1. Further, since the wi
are integrated over the spatial coordinates σi with no phase, the state φk must have

the same spin as φa; i.e. hχ − h̄χ = h. Thus we have

(hχ, h̄χ) = (h+ 1, 1) . (2.41)

and the lowest state Ek corresponding to such a primary has Ek = E+ 2. If we have

a descendent of this lowest state, then we have Ek > E + 2. Thus we obtain (2.36).

(b) Now consider the integrand of A
(2)
ab in eq. (2.39). We have the correlation function

〈Φa|D(w, w̄)D(0) |Φb〉 . (2.42)

The right-moving dimensions of Φa and Φb are zero, so the antiholomorphic part of

this correlator is 〈0|D(w̄)D(0) |0〉. Since h̄D = 1, we find

〈0|D(w̄)D(0) |0〉 =
C1

sinh2
(
w̄
2

) (2.43)

for some constant C1. The left moving part is more complicated and we will calculate

it in later sections. But this part also has the same singularity as the right movers

when the two D operators approach. So the full correlator will have the form

〈Φa|D(w, w̄)D(0) |Φb〉 =
Qab(w)

sinh2
(
w
2

) 1

sinh2
(
w̄
2

) . (2.44)

We define

Xab(T ) ≡
∫
d2w

Qab(w)

sinh2
(
w
2

) 1

sinh2
(
w̄
2

) . (2.45)

The amplitude (2.39) then reads

A
(2)
ab (T ) =

1

2
(2πT ) e−ET Xab(T ) . (2.46)
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(c) To evaluate eq. (2.45) we write

Xab(T ) =

∫
d2w

Qab(w)

sinh2
(
w
2

) 1

sinh2
(
w̄
2

)
=

∫
d2w

Qab(w)

sinh2
(
w
2

) (∂w̄ coth
(
w̄
2

))
= −2

∫
d2w ∂w̄

(
Qab(w)

sinh2
(
w
2

) coth
(
w̄
2

))

= i

∫
C
dw

(
Qab(w)

sinh2
(
w
2

) coth
(
w̄
2

))
, (2.47)

where in the last line we have used the divergence theorem in complex coordinates.

The boundary integral is defined over a contour C consisting of three parts:

(i) C1: the upper boundary of the integration range at τ = T
2 . This integral, which we

call IC1 , runs in the direction of positive σ. Note that i(dw) = i(idσ) = −dσ and

we have

IC1 = −
∫ 2π

0
dσ

(
Qab(w)

sinh2
(
w
2

) coth
(
w̄
2

))
. (2.48)

(ii) C2: the lower boundary of the integration range at τ = −T
2 . The contour runs in the

direction of negative σ. The integral is called IC2 and has the form

IC2 =

∫ 2π

0
dσ

(
Qab(w)

sinh2
(
w
2

) coth
(
w̄
2

))
. (2.49)

(iii) C3: an integral over a small circle of radius ε around the origin where we have the

operator D(0). The contour here runs clockwise as this is an inner boundary of the

integration domain. We therefore write it as

IC3 = −i
∫
|w|=ε

dw

(
Qab(w)

sinh2
(
w
2

) coth
(
w̄
2

))
(2.50)

where now the integral runs in the usual anticlockwise direction. The integral over

C3 contains divergent contributions from the appearance of operators with dimension

h + h̄ ≤ 2 in the OPE D(w, w̄)D(0, 0). These divergences have to be removed by

adding counterterms terms to the action. Thus we get

IC3 + IC3, counterterm = IC3, renormalized . (2.51)

Then eq. (2.47) reads

Xab(T ) = IC1 + IC2 + IC3, renormalized . (2.52)

Figure 3 shows the locations of the three contours.
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IC1 τ
T

✷

IC3 |✇ ϵ

IC2 τ=-
T

2

Figure 3. Here we show the locations of the three boundary contour integrals, IC1
, IC2

, and IC3

given in equations (2.48), (2.49), and (2.50) respectively.

(iv) Let us now summarize the above discussion. As mentioned in section 2.1(d), we com-

pute A
(2)
11 ≡ A(2) for just one state |Φ1〉, see eq. (2.27). This will give the expectation

value of the increase in energy of |Φ1〉. From eqs. (2.46) and (2.52) we obtain

A(2)(T ) = πTe−ET (IC1 + IC2 + IC3, renormalized) . (2.53)

Finally, for our state |Φ1〉, the lift in the expectation value of the energy is given

by the coefficient of −Te−ET in the limit T → ∞, see eqs. (2.25) and (2.26). Thus,

we find

〈E(2)〉 = −π lim
T→∞

Xab(T ) = −π lim
T→∞

(IC1 + IC2 + IC3, renormalized) . (2.54)

3 Setting up the computation

3.1 The deformation operator

The orbifold CFT describes the system at its ‘free’ point in moduli space. To move towards

the supergravity description, we deform the orbifold CFT by adding a deformation operator

D, as noted in (2.28).

To understand the structure of D we recall that the orbifold CFT contains ‘twist’

operators. Twist operators can link any number k out of the N copies of the CFT together

to give a c = 6 CFT living on a circle of length 2πk rather than 2π. We will call such a

set of linked copies a ‘component string’ with winding number k.
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The deformation operator contains a twist of order 2. The twist itself carries left and

right charges j = ±1
2 , j̄ = ±1

2 [47]. Suppose we start with both these charges positive; this

gives the twist σ++
2 . Then the deformation operators in this twist sector have the form

D = P ȦḂÔȦḂ = P ȦḂG−
Ȧ,− 1

2

Ḡ−
Ḃ,− 1

2

σ++
2 . (3.1)

Here P ȦḂ is a polarization. We will later choose

P ȦḂ = εȦḂ (3.2)

where ε+− = −1. This choice gives a deformation carrying no charges.

We will omit the subscript 2 on the twist operator from now on, and will also consider

its holomorphic and antiholomorphic parts separately. We normalize the twist operator as

σ−(z)σ+(z′) ∼ 1

(z − z′)
. (3.3)

We note that [25, 26, 48]

G−
Ȧ,− 1

2

σ+ = −G+
Ȧ,− 1

2

σ− . (3.4)

It will be convenient to write one of the two deformation operators as G−
Ȧ,− 1

2

σ+ and the

other as −G+
Ċ,− 1

2

σ−. We will make this choice for both the left and right movers, so the

negative sign in (3.4) cancels out. Thus on each of the left and right sides we write one

deformation operator in the form G−
Ȧ,− 1

2

σ+ and the other in the form G+
Ȧ,− 1

2

σ−.

From (3.3) we find that on the cylinder

〈0|σ−(w2)σ+(w1)|0〉 =
1

2 sinh
(

∆w
2

) (3.5)

where

∆w = w2 − w1 . (3.6)

3.2 The states

We start by looking at a CFT with N = 2; i.e., we have two copies of the c = 6 CFT (we

will consider general values of N in section 7). The vacuum |0〉 with h = j = 0 is given

by two singly-wound copies of the CFT, i.e. there is no twist linking the copies, and the

fermions on each of the copies are in the NS sector. Thus we can write

|0〉 = |0〉(1) |0〉(2) , (3.7)

where the superscripts indicate the copy number.

We consider one of the copies to be excited by the application of m R-current operators.

The orbifold symmetry requires that the state be symmetric between the two copies, so

the state we take is

|Φ(m)〉 =
1√
2

(
J

+(1)
−(2m−1) . . . J

+(1)
−3 J

+(1)
−1 + J

+(2)
−(2m−1) . . . J

+(2)
−3 J

+(2)
−1

)
|0〉

≡ |Φ(m)〉(1) + |Φ(m)〉(2) , (3.8)
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|Φ m τ
T

2

G
❈

σ w
x

G
A

σ 0
x

〉|Φ m τ=-
T

2

Figure 4. The cylinder with the locations of the initial state |Φ(m)〉 at τ = −T
2 , the final state

〈Φ(m)| at τ = T
2 , and the two deformation operators G−

Ȧ
σ+ and G+

Ċ
σ− at w1 = 0 and w2 = w,

respectively.

where in |Φ(m)〉(i) the excitations act on copy i. This state has

(h, h̄) = (m2, 0), (j, j̄) = (m, 0) . (3.9)

The energy of the state is

E ≡ h+ h̄ = m2 (3.10)

and its momentum is

P ≡ h− h̄ = m2 . (3.11)

The final state is the conjugate of the initial state

〈Ψ(m)| = 1√
2
〈0|
(
J
−(1)
1 J

−(1)
3 . . . J

−(1)
(2m−1) + J

−(2)
1 J

−(2)
3 . . . J

−(2)
(2m−1)

)
. (3.12)

4 The vacuum correlator

As a first step, we compute the vacuum to vacuum correlator

TĊȦ(w2, w1) = 〈0|
(
G+
Ċ,− 1

2

σ−(w2)
) (
G−
Ȧ,− 1

2

σ+(w1)
)∣∣0〉 . (4.1)

The complex conjugate of this correlator will give the right moving part of the correlator

of A(2)(T ), see eq. (2.39). Figure 4 represents the full state on the cylinder.
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4.1 The map to the covering space

To compute the vacuum amplitude TĊȦ(w2, w1) in eq. (4.1) we first map the cylinder

labeled by w to the complex plane labeled by z:

z = ew . (4.2)

We then map this plane to its covering space where the twist operators are resolved, see [46]

for the details of the covering space analyses. We consider the map

z =
(t+ a)(t+ b)

t
. (4.3)

We have
dz

dt
= 1− ab

t2
. (4.4)

The twist operators correspond to the locations given by dz
dt = 0; i.e. the points

t1 = −
√
ab , z1 = ew1 = (

√
a−
√
b)2 , (4.5)

t2 =
√
ab , z2 = ew2 = (

√
a+
√
b)2 . (4.6)

Note that
dz

dt
=

(t− t1)(t− t2)

t2
. (4.7)

We define

∆w = w2 − w1 , (4.8)

s =
1

2
(w1 + w2) , (4.9)

Then we find

a = es cosh2
(

∆w
4

)
, b = es sinh2

(
∆w
4

)
. (4.10)

It will be useful to note the relations

a− b = es, z1z2 = e2s, z1 − z2 = −2es sinh
(

∆w
2

)
. (4.11)

4.2 The ‘base’ amplitude

To compute the vacuum correlator TĊȦ(w2, w1) in eq. (4.1), we start by computing

U(w2, w1) ≡ 〈0|σ−(w2)σ+(w1)|0〉 . (4.12)

We call this the ‘base’ amplitude since each correlator we compute will have this structure

of twist operators, and the only extra elements will be local operators with no twist.

The computation of correlators like (4.12) is discussed in [46, 47]. We briefly summarise

the computation by proceeding in the following steps:
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(i) We already mapped the cylinder labelled by the coordinate w to the complex plane

labelled by the coordinate z in subsection 4.1, through the map z = ew. We then

mapped the plane to the covering space, labelled by the coordinate t, though the

map (4.3). These maps generate a Liouville factor since the curvature of the covering

space is different from the curvature on the cylinder, and the change of curvature

changes the partition function due to the conformal anomaly of the CFT. Let this

Liouville factor be

L [z1, z2] . (4.13)

(ii) The twist operator σ+(w1) has left-moving dimension h = 1
2 and transforms to the

plane as (
dz

dw
(z1)

) 1
2

σ+(z1) = z
1
2
1 σ

+(z1) . (4.14)

Now consider the map to the cover. A twist σ+(z = 0) on the plane z transforms to

a spin field S+(t = 0) on the covering space2 under the map z = t2. The spin field

has left-moving dimension h = 1
4 . In the map (4.3) we have

z − z1 ≈ C(t− t1)2 , C = − 1√
ab
, (4.15)

so we have an extra scaling factor
√
C furnishing t compared to the standard map

z − z1 ≈ (t − t1)2, see [47]. Combining with eq. (4.14), we find that the twist 2

operator σ+(w1) transforms to the spin field S+(t1) on the covering surface with an

overall factor

z
1
2
1

(√
C
) 1

4 = z
1
2
1

(
− 1√

ab

) 1
8

. (4.16)

(iii) Similarly, the operator σ−(w2) transforms to the spin field S−(t2) on the cover ac-

quiring an overall factor

z
1
2
2

(
1√
ab

) 1
8

. (4.17)

(iv) At this stage we have on the t plane the amplitude

〈0|S−(t2)S+(t1)|0〉 . (4.18)

As discussed in footnote 2, the spin field S+(t1) creates an R vacuum at t1. We can

make a spectral flow transformation around the point t = t1 to map this R vacuum to

the NS vacuum |0〉, see appendix B for a brief review. The NS vacuum is equivalent

to no insertion on the covering space at all, so we would have taken all the effects of

the twist into account. The spectral flow parameter needed is α = −1, and we obtain

S+(t1)|0〉 7−→ |0〉 . (4.19)

2This is because fermionic fields have different boundary conditions in the odd versus even twisted sectors

of the symmetric orbifold. The NS sector fermions have the usual NS-type half-integer modes in the odd

twisted sector, whereas in the even twisted sector they have Ramond-type integer modes. The spin fields

account for the ground state energy in the Ramond (R) sector, see ([47], section 2.2) for details.
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Under such a spectral flow transformation, other fields in the t plane pick up a factor

as given in eq. (B.2). Thus, the field S−(t2) (which has R-charge j = −1
2) acquires a

factor (t2 − t1)−
1
2 .

(v) Now consider the spin field S−(t2). We perform a similar spectral flow around the

point t = t2 with α = 1. This gives

S−(t2)|0〉 7−→ |0〉 . (4.20)

There are no other fields in the t plane, so this time we get no additional factors from

the spectral flow.

(vi) We now just have the t plane with no insertions. The amplitude for this vacuum state

is unity: it has been set to this value when defining the Liouville factor (4.13). Col-

lecting all the factors (i)–(v) above, we obtain the amplitude U(w2, w1) in eq. (4.12).

While we can compute U(w2, w1) as outlined above, it turns out that we do not need

to carry out these steps in this specific example: we already know the result from eq. (3.5)

U(w2, w1) =
1

2 sinh
(

∆w
2

) . (4.21)

The reason we do not have to carry out the steps (i)–(v) explicitly here is that we have

only two twist operators in our correlator; in this situation the factors from steps (i)-(v)

can be absorbed in the normalization of the twists. However, if we have more than two

twists then we do need to compute all factors explicitly.

Even though we can compute U(w2, w1) without carrying out these steps, it is impor-

tant to list the steps since when we have other excitations in the correlator then we will

get additional factors from each of these steps. For later use, it will be helpful to also write

the base amplitude (4.21) in alternative ways using the relations in section 4.1:

U =
z

1
2
1 z

1
2
2

(z2 − z1)
=

(a− b)
4
√
ab

. (4.22)

4.3 The complete vacuum amplitude

We now return to the computation of the vacuum amplitude TĊȦ(w2, w1) defined in (4.1).

Consider the operator

G−
Ȧ,− 1

2

=
1

2πi

∫
w1

dw′1G
−
Ȧ

(w′1) . (4.23)

We proceed in the following steps:

(i) We have

1

2πi

∫
w1

dw′1G
−
Ȧ

(w′1) =
1

2πi

∫
z1

dz′1

( dz′1
dw′1

) 1
2
G−
Ȧ

(z′1) (4.24)

=
1

2πi

∫
t1

dt′1

( dt′1
dz′1

) 1
2
( dz′1
dw′1

) 1
2
G−
Ȧ

(t′1)

=
1

2πi

∫
t1

dt′1(t′1 − t1)−
1
2 (t′1 − t2)−

1
2 t′1

1
2 (t′1 + a)

1
2 (t′1 + b)

1
2G−

Ȧ
(t′1) .

– 18 –



J
H
E
P
0
1
(
2
0
1
9
)
0
7
5

(ii) In section 4.2 above we have seen that we perform a spectral flow around t = t1 by

α = −1 and another one around t = t2 by α = 1. These flows give the factors

G−
Ȧ

(t′1) 7−→ (t′1 − t1)−
1
2 (t′1 − t2)

1
2G−

Ȧ
(t′1) , (4.25)

see appendix B. Thus, we obtain

1

2πi

∫
w1

dw′1G
−
Ȧ

(w′1) 7−→ 1

2πi

∫
t1

dt′1(t′1 − t1)−1t′1
1
2 (t′1 + a)

1
2 (t′1 + b)

1
2G−

Ȧ
(t′1)

= t1
1
2 (t1 + a)

1
2 (t1 + b)

1
2G−

Ȧ
(t1) . (4.26)

(iii) Similarly we have

1

2πi

∫
w2

dw′2G
+
Ċ

(w′2) 7−→ t2
1
2 (t2 + a)

1
2 (t2 + b)

1
2G+

Ċ
(t2) . (4.27)

(iv) Apart from the c-number factors in steps (i)-(iii), we have the t plane correlator

〈0|G+
Ċ

(t2)G−
Ȧ

(t1)|0〉 = εĊȦ
(−2)

(t2 − t1)3
. (4.28)

(v) Collecting all the factors and noting the base amplitude (4.21), we find3

TĊȦ(w2, w1) =
(
t1

1
2 (t1 + a)

1
2 (t1 + b)

1
2

)(
t2

1
2 (t2 + a)

1
2 (t2 + b)

1
2

)
×

×
(
εĊȦ

(−2)

(t2 − t1)3
U(w2, w1)

)
= εĊȦ

(a− b)2

16 ab
= εĊȦ

1

4 sinh2
(

∆w
2

) . (4.29)

The right moving part of the correlator in the integrand of A(2)(T ) in eq. (2.53) is

found by taking the complex conjugate of this expression and taking εĊȦ → εḊḂ〈
0|
(
G+
Ḋ,− 1

2

σ−(w̄2)
) (
G−
Ḃ,− 1

2

σ+(w̄1)
)∣∣0〉 = εḊḂ

1

4 sinh2
(

∆w̄
2

) . (4.30)

5 Lifting of D1-D5-P states

In this section we evaluate lifting of the D1-D5-P states (3.8). We compute the left part of

the correlator appearing in the amplitude A(2)(T ), see eqs. (2.39) and (2.53). Analogous

to (4.1), we define

T
(j)(i)

ĊȦ,m
(w2, w1) = (j)

〈
Φ(m)

∣∣(G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)∣∣Φ(m)

〉(i)
, (5.1)

where the superscripts (i), (j) indicate which of the two copies carries the current excitations.

3Since there are fractional powers in the expressions here, the overall phase involves a choice of branch.

But similar fractional powers appear in the right moving sector, and we can choose the signs as taken here

with the understanding that we choose similar signs for the right movers.
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5.1 Computing T
(1)(1)

ĊȦ,m
(w2, w1)

Let us start by computing T
(1)(1)

ĊȦ,m
(w2, w1). We will see that this computation will automat-

ically extend to yield all the T
(j)(i)

ĊȦ,m
(w2, w1) amplitudes.

The operator

J +,(m) ≡ J+
−(2m−1) · · · J

+
−3J

+
−1 (5.2)

has quantum numbers (h, h̄) = (m2, 0) and (j, j̄) = (m, 0). With the commutation relations

given in (A.16), we find that J +
m (z = 0) generates a state with unit norm at z = 0. The

operator conjugate to J +
m is

J −,(m) ≡ J−1 J
−
3 · · · J

−
(2m−1) . (5.3)

We follow the same process by which we computed the amplitude TĊȦ(w2, w1) in

subsection 4.3. The initial and final states have been written in terms of operator modes

and can therefore be assumed to be placed at τ → −∞ and τ → ∞, respectively. We

first map the cylinder w to the plane z. The currents in the initial state give the operator

J +,(m)(z = 0) on copy 1. The currents in the final state give the operator J −,(m)(z =∞),

again on copy 1.

Next we map to the t plane via the map (4.3). The point z = 0 for copy 1 maps to

t = −a. Thus, J +,(m)(z = 0) maps as

J +,(m)(z = 0) 7−→
( dt
dz

)m2

J +,(m)(t = −a) =
( a

a− b

)m2

J +,(m)(t = −a) . (5.4)

The point z = ∞ for copy 1 maps to t = ∞. We have z ∼ t at t = ∞, so the operator

J −,(m)(z =∞) maps as

J −,(m)(z =∞) 7−→ J −,(m)(t =∞) . (5.5)

We note that the state J +,(m)|0〉 is obtained by spectral flow of the vacuum |0〉 by

α = 2m, see appendix B. Thus we can use the spectral flow by α = −2m to map J +,(m)|0〉
to the vacuum |0〉. We will use this trick to remove the insertion of J +,(m) on the t plane:

this reduces the amplitude to the one we had for TĊȦ(w2, w1) in eq. (4.29). (Note that when

we remove J +,(m) from any point in the t plane, we remove at the same time the operator

J −,(m) at infinity.) Figure 5 shows the covering space insertions for the unspectral flowed

amplitude, the amplitude with only spin fields spectral flowed away, and the amplitude

with both spin fields and currents spectral flowed away.

Let us note the extra factors we get in computing T
(1)(1)

ĊȦ,m
(w2, w1) in eq. (5.1) as com-

pared to TĊȦ(w2, w1) in eq. (4.29):

(i) From (3.8) we see that the initial and final states |Ψ(m)〉(1) and (1)〈Ψ(m)| have a

normalization 1√
2

each; this gives a factor

f1 =

(
1√
2

)2

. (5.6)
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Figure 5. (a) The t plane with the spin fields S+(t1) and S−(t2), the G−
Ȧ

contour circling t1, the

G+

Ċ
contour circling t2, the J +,m contour circling t = −a, and the J−,m contour circling t = ∞.

(b) The spin fields, S+(t1) and S−(t2) spectral flowed away. (c) The spin fields S+(t1) and S−(t2)

and the currents J +,m and J−,m all spectral flowed away. All of the spectral flow factors are given

in subsection 5.1.

(ii) We have the factor obtained in (5.4) when mapping J +,(m) from the z to the t plane:

f2 =

(
a

a− b

)m2

. (5.7)

(iii) We perform a spectral flow by α = −1 around the point t = t1. Under this spectral

flow, the operator J +,(m)(t = −a) picks up the factor

f3 = (−a− t1)m . (5.8)
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(iv) We perform a spectral flow by α = 1 around the point t = t2. Under this spectral

flow, the operator J +,(m)(t = −a) picks up the factor

f4 = (−a− t2)−m . (5.9)

(v) We perform a spectral flow around t = −a by α = −2m. This gives

J +,(m)|0〉(t=−a) 7−→ |0〉(t=−a) . (5.10)

We have the operator G−
Ȧ

(t = t1); this picks up a factor

f5 = (t1 + a)−m . (5.11)

Likewise, the operator G+
Ċ

(t = t2) picks up a factor

f6 = (t2 + a)m . (5.12)

We are now left with just the amplitude (4.29). Combining eqs. (5.6)–(5.12), we find

T
(1)(1)

ĊȦ,m
(w2, w1) =

6∏
i=1

fi TĊȦ(w2, w1) =
εĊȦ

2

( a

a− b

)m2
[

(a− b)2

16ab

]

= εĊȦ

(
cosh

(
∆w
4

) )2m2

8 sinh2
(

∆w
2

) . (5.13)

5.2 Computing the remaining T
(j)(i)

ĊȦ

Suppose we fix σ1 and consider the shift σ2 7→ σ2 +2π. This gives ∆w 7→ ∆w+2πi. Under

this change sinh(∆w
2 ) 7→ − sinh(∆w

2 ), and so sinh2(∆w
2 ) is invariant. Similarly, sinh2(∆w̄

2 )

is invariant. But cosh(∆w
4 ) 7→ i sinh(∆w

4 ). Thus, the integrand in (5.13) is not periodic

under σ2 7→ σ2 + 2π. The reason is that when we move σ2 through 2π, we move from copy

1 to copy 2. This implies

T
(1)(1)

ĊȦ,m
7→ T

(2)(1)

ĊȦ,m
. (5.14)

Under the shift σ2 7→ σ2 + 2π we find(
cosh

(
∆w
4

) )2m2

7→ (−1)m
(

sinh
(

∆w
4

) )2m2

. (5.15)

Thus, we see that we can take into account all the four terms T (j)(i) by taking T (1)(1)

and making the replacement(
cosh

(
∆w
4

) )2m2

7→ 2
((

cosh
(

∆w
4

) )2m2

+ (−1)m
(

sinh
(

∆w
4

) )2m2
)
. (5.16)

Collecting the left and right parts of the correlator, we find that

〈Ψ(m)|D(w)D(0)|Ψ(m)〉= P ȦḂP ĊḊεĊȦεḊḂ

((
cosh

(
∆w
4

) )2m2

+ (−1)m
(

sinh
(

∆w
4

) )2m2
)

16 sinh2
(

∆w
2

)
sinh2

(
∆w̄
2

) .

(5.17)

Comparing with (2.44), we find that

Q(m)(w) = P ȦḂP ĊḊεĊȦ εḊḂ

((
cosh

(
∆w
4

) )2m2

+ (−1)m
(

sinh
(

∆w
4

) )2m2
)

16
. (5.18)
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5.3 Computing X(m)(T ) for m even

Due to the term (−1)m in (5.18), it is convenient to treat the cases of even and odd m

separately. We consider even values of m in this subsection and treat the odd m case in

the next subsection.

We first compute the contour integral IC1 in eq. (2.48) in the limit τ →∞. To do so,

we set w2 ≡ w, w1 = 0, and expand the functions in (5.18) in powers of e−w. We find:

(
cosh

(
w
4

) )2m2

=
1

22m2 e
m2

2
w

2m2∑
k=0

2m2
Cke

− k
2
w ,

(
sinh

(
w
4

) )2m2

=
1

22m2 e
m2

2
w

2m2∑
k=0

2m2
Ck(−1)ke−

k
2
w , (5.19)

where mCn are the binomial coefficients. Defining k = 2k′, k′ ∈ Z, we find

(
cosh

(
w
4

) )2m2

+
(

sinh
(
w
4

) )2m2

=
2

22m2 e
m2

2
w

m2∑
k′=0

2m2
C2k′e

−k′w . (5.20)

We also have

1

sinh2
(
w
2

) = 4e−w
∞∑
l=0

(l + 1)e−lw , (5.21)

coth
(
w̄
2

)
= (1 + e−w̄)

∞∑
n=0

e−nw̄ . (5.22)

We have IC1 in eq. (2.48) as an integral over w at τ = T
2 :

IC1 = −P ȦḂP ĊḊεĊȦεḊḂ

×1

2

∫ 2π

σ=0
dσ

em2

2
w

22m2

 m2∑
k′=0

2m2
C2k′e

−k′w

(e−w ∞∑
l=0

(l + 1)e−lw

)
×

×

(
(1 + e−w̄)

∞∑
n=0

e−nw̄

)
, (5.23)

where the last bracket contains antiholomorphic factors of the form 1, e−w̄, e−2w̄, · · · . We

will now argue that only the leading term, 1, survives from this bracket, in the limit T →∞.

To see this, note that the first bracket on the r.h.s. of (5.23) has a power e
m2

2
w. From the

second and third brackets, we can get a power e−k1w with k1 ≥ 0 and from the last bracket

we can get a power e−k2w̄ with k2 ≥ 0. These factors give

e(m
2

2
−k1−k2)τe

i
(
m2

2
−k1+k2

)
σ
. (5.24)

We have ∫ 2π

0
dσei(

m2

2
−k1+k2)σ = 2πδm2

2
−k1+k2,0

, (5.25)
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so that we have k1 = m2

2 + k2. The power of eτ then gives (since τ = T
2 )

e−k2T . (5.26)

Thus in the limit T →∞, the only surviving term is k2 = 0, and therefore the last bracket

in (5.23) can be replaced by unity. We then get

k1 = k′ + l + 1 =
m2

2
(5.27)

which sets l = m2

2 − k
′ − 1. The condition l ≥ 0 then gives

k′ ≤ m2

2
− 1 . (5.28)

Using (5.25), we find

IC1 = −P ȦḂP ĊḊεĊȦεḊḂ
π

22m2

m2

2
−1∑

k′=0

2m2
C2k′

(
m2

2 − k
′
)

= −P ȦḂP ĊḊεĊȦεḊḂ

√
π

8

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.29)

We proceed similarly for the contour integral IC2 in eq. (2.49) at τ = −T
2 . This time

we expand the functions in (5.18) in powers of ew:

(
cosh

(
w
4

) )2m2

=
1

22m2 e
−m

2

2
w

2m2∑
k=0

2m2
Cke

k
2
w ,

(
sinh

(
w
4

) )2m2

=
1

22m2 e
−m

2

2
w

2m2∑
k=0

2m2
Ck(−1)ke

k
2
w . (5.30)

Defining again k = 2k′, k′ ∈ Z in these sums, we find

(
cosh

(
w
4

) )2m2

+
(

sinh
(
w
4

) )2m2

=
2

22m2 e
−m

2

2
w

m2∑
k′=0

2m2
C2k′e

k′w . (5.31)

We further have

1

sinh2
(
w
2

) = 4ew
∞∑
l=0

(l + 1)elw , (5.32)

coth
(
w
2

)
= −(1 + ew̄)

∞∑
n=0

enw̄ . (5.33)

Our integral becomes

IC2 = −P ȦḂP ĊḊεĊȦεḊḂ

×1

2

∫ 2π

σ=0
dσ

2e−
m2

2
w

22m2

 m2∑
k′=0

2m2
C2k′e

k′w

(ew ∞∑
l=0

(l + 1)elw

)

×

(
(1 + ew̄)

∞∑
n=0

enw̄

)
, (5.34)

– 24 –



J
H
E
P
0
1
(
2
0
1
9
)
0
7
5

where the last bracket now contains antiholomorphic factors of the form 1, ew̄, e2w̄, · · · .
Following a reasoning similar to that in the case of the computation for IC1 in eq. (5.23),

we find that only the leading term, 1, survives from the last bracket in the limit T → ∞.

We then have

IC2 = −P ĊḊP ȦḂεĊȦεḊḂ
π

22m2

m2

2
−1∑

k′=0

2m2
C2k′

(
m2

2 − k
′
)

= −P ĊḊP ȦḂεĊȦεḊḂ

√
π

8

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

= IC1 . (5.35)

We next consider IC3 in eq. (2.50), the contribution from the contour around w = 0.

For small |w| we have (with m ≥ 2)

(
cosh

(
w
4

) )2m2

+
(

sinh
(
w
4

) )2m2

= 1 +
m2

16
w2 + · · · , (5.36)

1

sinh2
(
w
2

) =
4

w2
− 1

3
+ · · · , (5.37)

coth
(
w
2

)
=

2

w̄
+
w̄

6
+ · · · . (5.38)

The leading term in the integrand (2.50) gives:

IC3 → −P ȦḂP ĊḊεĊȦεḊḂ
i

2

∫
|w|=ε

dw

w2

1

w̄
= P ȦḂP ĊḊεĊȦεḊḂ

π

ε2
. (5.39)

This is a constant independent of the states at the bottom and top of the cylinder in the

correlator, and will arise even if we replace these states with the vacuum state |0〉. Thus,

to maintain the normalization

〈0|0〉 = 1 (5.40)

of the vacuum at O(λ2) we must add to the Lagrangian a counterterm proportional to the

identity operator, which generates an integral

IC3, counterterm = −P ȦḂP ĊḊεĊȦεḊḂ
π

ε2
. (5.41)

This cancels the divergent contribution to IC3 . The next largest terms in the integrand

of (2.50) give

P ȦḂP ĊḊεĊȦεḊḂ

(
− im

2

32

∫
|w|=ε

dw

w̄
+

i

24

∫
|w|=ε

dw

w̄
− 1

24

∫
|w|=ε

dw

w2
w̄

)
. (5.42)

We find that each of these terms vanishes. Higher order terms give contributions having

positive powers of |ε| and so for these terms we have IC3, renormalized = 0.

Finally, using (2.52), we find that for even m, X(m)(T ) is of the form

lim
T→∞

X(m) = −P ȦḂP ĊḊεĊȦεḊḂ

√
π

4

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.43)
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5.4 Computing X(m)(T ) for m odd

We next compute eq. (5.18) for odd values of m. Defining k = 2k′ + 1, k′ ∈ Z we find that

(
cosh

(
w
4

) )2m2

−
(

sinh
(
w
4

) )2m2

=
2

22m2 e
(m2−1)

2
w
m2−1∑
k′=0

2m2
C2k′+1e

−k′w . (5.44)

Proceeding just as for the case of even m, we find

IC1 = −P ȦḂP ĊḊεĊȦεḊḂ
π

22m2

(m2−1)
2
−1∑

k′=0

2m2
C2k′+1

(
(m2 − 1)

2
− k′

)

= −P ȦḂP ĊḊεĊȦεḊḂ

√
π

8

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.45)

We also find, as before,

IC2 = IC1 , IC3, renormalized → 0 . (5.46)

Thus, for odd m we get the same expression as for even m

lim
T→∞

X(m) = −P ĊḊP ȦḂεĊȦεḊḂ

√
π

4

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.47)

5.5 Expectation values

We shall now compute the expectation value of the energy (2.54) for the states (3.8):

〈E(2)〉 = −π lim
T→∞

X(m) = P ĊḊP ȦḂεĊȦεḊḂ
π

3
2

4

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.48)

We set the polarization P ȦḂ to correspond to a perturbation with no quantum numbers

P ȦḂ = εȦḂ . (5.49)

We expect such a perturbation to correspond to the direction towards the supergravity

spacetime AdS3 × S3 × T 4. Then we obtain

〈E(2)〉 =
π

3
2

2

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (5.50)

This is the main result of this section. We will generalise this result to arbitrary values of

N in section 7.
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6 No lift for global modes

The chiral algebra generators of the CFT at the orbifold point are described by a sum over

the generators of each copy:

J+
−n = J

+(1)
−n + J

+(2)
−n + · · ·+ J

+(N)
−n . (6.1)

If we act with such a current on any state then the dimension of the state will rise as

h→ h+ n . (6.2)

There cannot be any anomalous contribution since the change (6.2) is determined by the

chiral algebra. We can use this fact as a check on the computations that we have performed;

we will perform this check for a simple case in this section.

Let us assume that we have two copies (as in the above sections); so N = 2. First

consider the case where we apply J+
−1; this gives the state

|χ1〉 =
1√
2
J+
−1 |0〉

(1)|0〉(2) =
1√
2

(
J

+(1)
−1 + J

+(2)
−1

)
|0〉(1)|0〉(2) , (6.3)

where we have added a normalization factor to normalize the state to unity. This is the

same as the state |Φ(1)〉 defined in (3.8). From (5.50) we see that the lift vanishes in

this case.

Next consider the state

|χ2〉 =
1√
8
J+
−3J

+
−1 |0〉

(1)|0〉(2)

=
1√
8

(
J

+(1)
−3 J

+(1)
−1 + J

+(2)
−3 J

+(2)
−1

)
|0〉(1)|0〉(2)

+
1√
8

(
J

+(1)
−3 J

+(2)
−1 + J

+(2)
−3 J

+(1)
−1

)
|0〉(1)|0〉(2)

≡ |χ2,1〉+ |χ2,2〉. (6.4)

The conjugate state is written in a similar way in two parts

〈χ2| = 〈χ2,1|+ 〈χ2,2| . (6.5)

Note that the state |χ2,1〉 is (upto a normalization factor) the same as the state |Φ(2)〉
defined in (3.8).

We now consider the lift of the state |χ2〉. There are four contributions to this lift.

The first has |χ2,1〉 as the initial and final states, and this is proportional to the lift we

have computed for |Φ(2)〉, see eq. (5.50). Thus, this contribution is nonzero. But there are

three other contributions which involve |χ2,2〉. When we add all these contributions and

subtract the identity contribution in (4.29), the lift is expected vanish as we now check.
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Computing the amplitudes by the same method as in the above sections, we find

〈χ2,1|
(
G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)
|χ2,1〉 = εĊȦ

1

4

(
cosh8

(
∆w
4

)
4 sinh2

(
∆w
2

) +
sinh8

(
∆w
4

)
4 sinh2

(
∆w
2

)) ,
〈χ2,2|

(
G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)
|χ2,1〉 = εĊȦ

1

4

(
−

cosh8
(

∆w
4

)
4 sinh2

(
∆w
2

) − sinh8
(

∆w
4

)
4 sinh2

(
∆w
2

) +

+
1

4 sinh2
(

∆w
2

)) ,
〈χ2,1|

(
G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)
|χ2,2〉 = εĊȦ

1

4

(
−

cosh8
(

∆w
4

)
4 sinh2

(
∆w
2

) − sinh8
(

∆w
4

)
4 sinh2

(
∆w
2

) +

+
1

4 sinh2
(

∆w
2

)) ,
〈χ2,2|

(
G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)
|χ2,2〉 = εĊȦ

1

4

(
cosh8

(
∆w
4

)
4 sinh2

(
∆w
2

) +
sinh8

(
∆w
4

)
4 sinh2

(
∆w
2

) +

+
2

4 sinh2
(

∆w
2

)) . (6.6)

We add up all four contributions and obtain

〈χ2|
(
G+
Ċ,− 1

2

σ−(w2)
)(
G−
Ȧ,− 1

2

σ+(w1)
)
|χ2〉 = εĊȦ

1

4 sinh2
(

∆w
2

) . (6.7)

Collecting the left at right parts of the correlator we find

〈χ2|D(w, w̄)D(0)|χ2〉 = P ȦḂP ĊḊεĊȦεḊḂ
1

16 sinh2
(

∆w
2

) 1

sinh2
(

∆w̄
2

) . (6.8)

Comparing with (2.44) we have

Q = P ȦḂP ĊḊεĊȦεḊḂ
1

16
. (6.9)

We want to compute IC1 , IC2 and IC3, renormalized in eqs. (2.48)–(2.50). For IC1 , insert-

ing (6.9) into (2.48) yields

IC1 = −P ȦḂP ĊḊεĊȦεḊḂ
∫ 2π

σ=0
dσ

(
1

16 sinh2
(
w
2

) coth
(
w̄
2

))
. (6.10)

Inserting the expansions (5.32) and (5.33) give

IC1 = −1

4

∫ 2π

σ=0
dσ

(
e−w

∞∑
l=0

−2Cl(−1)le−lw

)(
(1 + e−w̄)

∞∑
n=0

−1Cn(−1)ne−nw̄

)
. (6.11)

This contour is evaluated at τ = T
2 with T → ∞. Since our expression only contains

negative powers of w and w̄, every term vanishes and we find that

IC1 = 0 . (6.12)
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Similarly, for IC2 we find

IC2 = −1

4

∫ 2π

σ=0
dσ

(
ew

∞∑
l=0

−2Cl(−1)lelw

)(
(1 + ew̄)

∞∑
n=0

−1Cn(−1)nenw̄

)
. (6.13)

This contour is evaluated at τ = −T
2 with T →∞. Our expression only contains positive

powers of w and w̄ and we find

IC2 = 0 . (6.14)

For IC3 , inserting (6.9) into (2.50) yields

IC3 = −P ȦḂP ĊḊεĊȦεḊḂi
∫
|w|=ε

dw

(
1

16 sinh2(w2 )
coth

( w̄
2

))
. (6.15)

Inserting the expansions (5.37) and (5.38) and taking the leading order term in the inte-

grand we have

IC3 → −P ȦḂP ĊḊεĊȦεḊḂ
i

2

∫
|w|=ε

dw

w2w̄
= P ȦḂP ĊḊεĊȦεḊḂ

π

ε2
. (6.16)

Using (5.41), we find

IC3, renormalized
= IC3 + IC3, counterterm = 0 . (6.17)

The expectation value (2.54) then reads

〈E(2)〉 = −π lim
T→∞

(
IC1 + IC2 + IC3, renormalized

)
= 0 , (6.18)

proving the absence of lifting for the global mode in (6.4). From (2.27) we can now argue

that the global mode does not mix with any eigenstate that lifts. We have E
(2)
a′ ≥ 0 for all

a′, since the states φ̃a′ are chiral primaries in the right-moving sector, and therefore must

have ∆h̄ = ∆h ≥ 0. Thus, a vanishing of 〈E(2)〉 = 0 means a vanishing overlap of |χ2〉
with each of the φ̃a′ which lift; from this it follows that |χ2〉 remains an unlifted eigenstate

of the Hamiltonian.

7 General values of N

So far we have considered two copies of the c = 6 CFT: N = 2. The initial state had

two singly-wound copies; the twist operators twisted these together and then untwisted

them, so that we ended with two singly-wound copies again. In general, the orbifold CFT

has an arbitrary number N = n1n5 of copies of the CFT. But as we will now see, for our

situation, the computation with two copies that we have carried out allows us to obtain

the expectation values for arbitrary N .
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7.1 The initial state

We have N copies of the c = 6 CFT and each copy is singly-wound. Each copy is in the

NS sector. Out of these copies, we assume that n copies are excited as

J
+(i)
−(2m−1) . . . J

+(i)
−3 J

+(i)
−1 |0〉

(i) , i ∈ {1, · · · , n} (7.1)

in the left moving sector, while the right moving sector is in the vacuum state |0〉. The

remaining N −n copies are in the vacuum state |0〉 on both the left and right sectors. This

state is depicted in figure 1.

There are NCn ways to choose which strings are excited. Thus, the initial state is

composed of NCn different terms, with each term describing one set of possible excitations.

The sum of these terms must be multiplied by a factor

N =
(
NCn

)− 1
2 (7.2)

in order that the overall state is normalised to unity.

7.2 Action of the deformation operator

When we were dealing with just two copies, we denoted the twist operator of the deforma-

tion by σ±; it was implicit that this operator would twist together the two copies that we

had, see subsection 3.1. But when we have N > 2 copies, then we need to specify which

two copies are being twisted. If the (i) and (j) copies are twisted, we denote the twist

operator by σ±(i)(j). Thus the deformation operator (3.1) now has the form

D = P ȦḂG−
Ȧ,− 1

2

Ḡ−
Ḃ,− 1

2

∑
i<j

σ++
(i)(j) , (7.3)

where 1 ≤ i, j ≤ N . The supercurrents G−
Ȧ

are given by a sum over the contributions from

each copy:

G−
Ȧ
≡

N∑
i=1

G
−(i)

Ȧ
. (7.4)

7.3 Expectation values for general values of N

We argue in the following steps:

(i) Consider the action of the first deformation operator on the initial state. Suppose this

first deformation operator twists together the copies (i), (j). Since we are computing

an expectation value, the final state must be the same as the initial state; thus the

final state must also have all copies singly-wound. So the second deformation operator

must twist the same copies i, j to produce a state with all copies singly-wound.

(ii) Copies other than the two copies that get twisted act like ‘spectators’; thus we get an

inner product between their initial state and their final state. If the initial state for

such a copy is unexcited, then the final state must also be unexcited, and if the initial
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state is excited then the final state has to be excited. The inner product between

copies with the same initial and final state is unity.

Since the state of the spectator copies does not change, the number of spectator

copies which are excited are also the same between the initial and final states. As a

consequence, for the pair i, j which do get twisted, the number of excited copies in

the initial and final states is the same.

(iii) We therefore find that there are three possibilities for the excitations among the

twisted copies i, j:

(a) Neither of the copies (i), (j) are excited. In this case there is no contribution to

the lifting, as the vacuum state |0〉(i)|0〉(j) is not lifted.

(b) Both the copies (i), (j) are excited. But the state where both copies are excited

is a spectral flow of the state where neither copy is excited, as we have seen in

section 6. So again there is no lift.

(c) One of the copies out of (i), (j) is excited and one is unexcited. There are four

contributions here: (1) Copy (i) excited in the initial state, copy (i) excited in

the final state; (2) Copy (j) excited in the initial state, copy (i) excited in the

final state; (3) Copy (i) excited in the initial state, copy (j) excited in the final

state; (4) Copy (j) excited in the initial state, copy (j) excited in the final state.

These are the four contributions we had in eq. (5.1). Thus summing these four

contributions gives the same anomalous dimension E(2) that we computed for

the case N = 2, see eq. (5.50), with an extra factor of 2 since we do not here

have the normalization factors 1√
2

in the initial and final state. Thus, the pair

(i), (j) contribute 2E(2), with E(2) given by eq. (5.50).

(iv) Let us now collect combinatoric factors. First we select the pair (i), (j) out of the

N copies. This is done in NC2 ways. Out of these two copies, one has to be excited

(as noted in (iii) above). Thus, out of the remaining N − 2 copies, n− 1 are excited.

These n − 1 copies can be chosen in N−2Cn−1 ways, so this is the number of terms

which have the contribution 2E(2). We note that 1 ≤ n ≤ N − 1.

(v) Let us finally collect all the factors. We have a normalization factor (7.2) both

from the initial and final configurations, so we get a factor |N |2. Together with the

combinatorial factors from the previous paragraph, we find that the expectation value

is of the form:

〈(E − Eorbifold)〉 = λ2(NCn)−1 (NC2) (N−2Cn−1) (2〈E(2)〉)
= λ2n(N − n)〈E(2)〉

= λ2 1

2
π

3
2 n(N − n)

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (7.5)

The above expression gives the lifting to order O(λ2) for the case where we have

N copies of the seed c = 6 CFT, and n of these are excited by application of the
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k k k k

Figure 6. A total of N singly wound copies that have been linked into N
k ‘multiwound’ copies

each of winding k. A number n of these twisted sets have been excited by current operators.

operator J (+,m) (eq. (5.2)) which is composed of m currents. We note that N = 2

and n = 1 corresponds to the case studied in section 5, see eq. (5.50).

8 Multi-wound initial states

So far our initial state has consisted of N singly-wound copies of the seed c = 6 CFT. We

now consider the case where we link together k of these copies to make a ‘multi-wound

copy’. We assume that all copies are grouped into such sets; i.e. there are N
k sets of linked

copies, with each set having winding k. Note that this requires that N be divisible by k.

This case is depicted in figure 6.

For the case where the copies are singly-wound, the ground state of each copy was the

vacuum |0〉 with h = j = 0. A set of linked copies, however, has a nontrivial dimension,

see, e.g. [47] for the computation of the ground state energies in both odd and even twisted

sectors. We start with each set being in a chiral primary state |k〉 with

h =
k − 1

2
, j =

k − 1

2
, h̄ =

k − 1

2
, j̄ =

k − 1

2
. (8.1)

We now take n of these linked sets, and excite each of these by the application of current

operators:

|k〉ex ≡ J+

− (2m−1)
k

. . . J+
− 3
k

J+
− 1
k

|k〉 . (8.2)

This excitation adds a momentum

1

k
+

3

k
+ · · ·+ (2m− 1)

k
=
m2

k
(8.3)

to this set of linked copies. This momentum must be an integer [49], so m2 should be

divisible by k.

We wish to find the expectation value of the energy of the state constructed in this

way, see eq. (2.54). It turns out that this computation is related to the ones we performed

in the above sections by having multiply wound copies in the initial state instead of singly-

wound copies. We will now see that we obtain the expectation value for the multi-wound

case by going to a covering space of the cylinder, where we undo the multi-winding, and

then relating the computation to the singly-wound case.
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8.1 The action of the twist operator

Consider the action of the first twist operator σ+
(i)(j). There are two possibilities:

(i) The copies i, j are from the same set of linked copies.

(ii) The copies i, j belong to different sets of linked copies.

In case (i), the twist will break up the set of linked copies into two sets with windings

k′, k− k′. Since we are computing an expectation value, the second twist has to link these

two sets back to a single set of k linked copies.

But we can easily see that such an action of twist operators will give no contribution to

the expectation value, 〈E(2)〉. The set of linked copies that we started with could be either

unexcited, i.e. in the state |k〉 (8.1), or excited, i.e. in the state |k〉ex (8.2). The copies

other than the ones in our set of k linked copies play no role in the computation. Thus,

the action of the two deformation operators tells us the correction E(2) to |k〉 or |k〉ex. But

|k〉 is a chiral primary state; this means that its dimension is determined by its charge and

so its anomalous dimension E(2) will have to vanish. The state |k〉ex arises from a spectral

flow of |k〉, so again its anomalous dimension will vanish. Thus we get no contributions

from the case (i).

In case (ii), the first twist takes the two sets of k linked copies and joins them into

one set of 2k linked copies. Since we are looking for an expectation value, the second twist

must break up this set of 2k linked copies back to two sets of copies with linking k each.

This is the situation that we will analyze in more detail now.

8.2 The k-fold cover of the cylinder

Since each set of linked copies has winding number k, we can go to a covering space of the

cylinder where the spatial coordinate σ̃ runs over the range 0 ≤ σ̃ < 2πk. It is convenient

to think of the range of σ̃ to be subdivided into the k intervals

0 ≤ σ̃ < 2π , 2π ≤ σ̃ < 4π, . . . 2π(k − 1) ≤ σ̃ < 2πk . (8.4)

We have not changed the time τ in going to the cover, so we have

τ̃ = τ . (8.5)

Now we look at the factors emerging from going to this cover:

(i) For the first set of linked copies, we label the copies 1, 2, · · · , k. For the second set,

we label them 1′, 2′, · · · , k′. Then the first twist operator has the form σ+
(i)(j′), where

i is from the first set and j′ is from the second set. Suppose we consider a twist at

the point σ = 0. Then there are k2 ways of joining the two sets into one set of 2k

linked copies.

On the covering space σ̃, there are k images of the point σ = 0, and we can apply a

twist at any of these points. Thus we get k rather than k2 similar interaction points.

Thus we must multiply the result we get from the covering space by an extra factor
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k.(The origin of this factor can be understood alternatively as follows: we can choose

any of the copies i = 1, . . . k to be the first copy i = 1, and use this to set the origin

σ̃ = 0; the factor k then describes the different ways we can choose the copy i′ = 1

from the second set of k linked copies.)

(ii) The second twist acts on a set of 2k linked copies labeled by i = 1, · · · , 2k. Suppose

this twist is at the location σ = 0 on the cylinder. This time there are only k possible

ways for the twist to act: once we choose one of the copies i, the second copy must

be i′ = i + k, since otherwise the set will not break up into two sets of winding k

each. Because the twist is symmetric between i and i′, the different possibilities are

given by choosing i = 1, . . . k; i.e., there are k possible choices.

We now see that on the covering space σ̃, these k different choices are accounted for

by the k different images of σ = 0 on the space σ̃. Thus there is no additional factor

(analogous to case (i)) from the second twist.

(iii) We now make a conformal map from the covering space σ̃, τ̃ to a cylinder where the

spatial coordinate has the usual range (0, 2π):

σ′ =
1

k
σ̃ , τ ′ =

1

k
τ̃ . (8.6)

Under this map the deformation operators scale as

D(w̃1, ¯̃w1)→ 1

k2
D(w′1, w̄

′
1) , D(w̃2, ¯̃w2)→ 1

k2
D(w′2, w̄

′
2) , (8.7)

so we get an overal factor of 1
k4

from this scaling.

(iv) Let us now recall the computation of the amplitude A(2)(T ) in subsection 2.2, see

eqs. (2.33) and (2.53). This amplitude involved integrals over the positions w1, w2 of

the two deformation operators. (We later recast these integrals in the form of contour

integrals in eq. (2.53), but it is simpler to see the scalings in terms of the original

integrals in eq. (2.33)). We have∫
d2w̃1 → k2

∫
d2w′1 ,

∫
d2w̃2 → k2

∫
d2w′2 , (8.8)

so we obtain a overall factor of k4.

(v) The integral over ∆w̃ = (w̃2 − w̃1) converges, but the integral over s = 1
2(w̃1 + w̃2)

gives a factor of T̃ . We need to multiply by a factor 1
T̃

, which scales as

1

T̃
→ 1

k

1

T ′
. (8.9)

(vi) We have now mapped the problem to the cylinder w′, which is just like the cylinder w

which worked with in the situation with k = 1. Collecting all the factors we obtained

from (i)–(v) above, we find that the factors of k cancel out. We thus find the following:
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suppose we have N = n1n5 copies of the CFT. These copies are grouped into N
k sets

of copies, with each set having k linked copies. A number 0 ≤ n ≤ N
k of these sets is

excited in the form |k〉ex, while the remainder are in the state |k〉. Then the lifting

of the energy is given by

〈(E − Eorbifold)〉 = λ2π
3
2

2
n(N − n)

Γ
[
m2 − 1

2

]
Γ[m2 − 1]

. (8.10)

The above expression gives the lifting to order O(λ2) for the case where we have N

copies of the c = 6 CFT, with these copies being grouped into N
k sets (with N being

divisible by k) with each set having winding k. Of these sets, n are excited in the

form (8.2) which describes the action of m fractionally moded currents.

9 The maximally wound sector

We have computed the lifting of certain states which are excited on the left, but are a chiral

primary on the right. Apart from special cases this lifting was found to be nonzero. In [21],

the lifting of a more general class of states was computed in a certain approximation; again

it was found that generic states were lifted.

Let us analyze this lifting in the context of the elliptic genus [50] which tells us how

many unlifted states we expect at a given energy for the left movers. The elliptic genus for

the case where the compactification was K3 × S1 was computed in [51, 52]. The elliptic

genus vanishes for the compactification T 4 × S1 that we have considered, but a modified

index was defined in [53]. This index protects very few states for low levels of the left

moving energy. Thus in the Ramond (R) sector, there are very few unlifted states for

h ≤ N

4
. (9.1)

But for h > N
4 the number of states that are unlifted is very large; in fact their number N

has to reproduce the black hole entropy which behaves as

S = lnN ≈ 2π
√
Nh . (9.2)

Thus we need to ask: what changes when we cross the threshold h = N
4 ? Since we have

been working in the NS sector, let us first spectral flow to the NS sector. Consider the R

sector ground state with maximal twist k = N . This state has dimension

h =
c

24
=
N

4
. (9.3)

and charge j = ±1
2 ; let us take j = −1

2 . The spectral flow of this state to the NS sector

gives a chiral primary with

h = j =
N − 1

2
. (9.4)

This is the state |k〉 we defined above with k = N . We can obtain states contributing to

the entropy (9.2) by acting with left moving creation and annihilation operators on |N〉.
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Let us now ask if there is a special property shared by states in the maximally wound

sector, which is not present for states in sectors where we do not have maximal winding.

We will now argue that there is indeed such a property: the nature of the linkage that is

produced by the action of twists.

If a state is not in the maximally wound sector, then the twist σ(i)(j) present in the

deformation operator can do one of two things:

(i) It can join two different set of linked copies, with windings k1, k2, into one linked

copy with winding k1 + k2. The second deformation operator will break this back to

two sets with windings k1, k2, since we are computing an expectation value and so

need the final state to be the same as the initial state.

(ii) If we have a subset of strings with winding k1 + k2 > 1, then it can break this subset

into two sets of linked copies, with windings k1, k2. The second deformation operator

will join these sets back to one set with winding k1 + k2.

If on the other hand we have a state in the maximally wound sector, then there are no

other sets of copies in the state; thus we are allowed possibility (ii) but not possibility (i).

We must now ask if there is a difference in the action of the deformation operators in

the cases (i) and (ii). We will see that there is indeed a difference: in case (i), the covering

space obtained when we ‘undo’ the twist operators is a sphere (genus g = 0), while in case

(ii) the covering space is a torus (genus g = 1).

To see this, we recall how we compute the genus of the covering space obtained from

undoing the action of twist operators [46]. Suppose we have twists of order ki, i = 1, . . . imax.

The ramification order at a twist σki is ri = ki − 1. Let the number of sheets (i.e. copies)

over a generic point be s. Then the genus of the covering surface is given by the Riemann-

Hurwitz relation

g =
1

2

∑
i

ri − s+ 1 . (9.5)

Let us now compute g in the two cases above. We focus only on the copies which are

involved in the interaction:

(i’) In case (i), we create the initial set of linked strings using twist operators σk1 , σk2 .

The final state is created by the twists of the same order. The two deformation

operators carry twists σ2 each. The number of sheets is s = k1 + k2. Thus

g =
1

2
[2(k1 − 1) + 2(k2 − 1) + 2]− (k1 + k2) + 1 = 0 . (9.6)

(ii’) In case (ii), we create the initial state by a twist σk1+k2 . The final state is created by

a twist of the same order. The two deformation operators carry twists σ2 each. The

number of sheets is s = k1 + k2. Thus

g =
1

2
[2(k1 + k2 − 1) + 2]− (k1 + k2) + 1 = 1 . (9.7)
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In the present paper we have considered an example of case (i), where the covering

space t was a sphere. In this situation we found that the lift 〈E(2)〉 was nonzero. It is

possible that when the covering space is a torus, then the lift vanishes, at least for some

class of states. If that happens, then such states in the maximally wound sector will not

be lifted. We hope to return to this issue elsewhere.

10 Discussion

We have considered the family of states depicted in figure 1, and computed the correction

to the expectation value of their energy - the ‘lift’ - upto second order in the deformation

parameter λ. The results, depicted in figure 2, suggest a heuristic picture for this lift; this

picture was discussed in section 1.2.

We know that the lift vanishes in two extreme cases: (i) when no copies are excited

and (ii) when all copies are excited. (The state in (ii) is just a spectral flow of the state in

(i).) But in between these two extremes, the energy does rise. The heuristic picture aims

to explain this phenomenon as follows.

Each set of linked copies corresponds, in this heuristic picture, to one elementary object

in the dual gravity configuration. The excitations (3.8) for m > 1 do not correspond to

supergravity quanta; thus we must think of them as ‘string’ states. String states will have

more mass than charge, and will therefore ‘lift’. But the gravitational attraction between

the strings will cause the overall energy to reduce. If we have enough strings so that all

the copies in the CFT are excited, then the negative potential energy cancels the energy

from string tension, and we end up with no lift.

We noted in section 8 that this picture holds also for the case where the copies of the

c = 6 CFT are linked together in sets of k copies each. Thus if none of these sets is excited

then we have no lift, and again if all the sets are excited we have no lift. But when some

of the sets are excited, then we do have a lift in general.

Now consider the limiting case where all the N copies of the CFT are linked into one

copy with winding k = N . If we excite this multi-wound set, then we have excited all the

sets, since there is only one set to excite. If we extrapolate our heuristic picture above to

this limiting case, then we see that the energy lift of this string state will be cancelled by

the self-gravitation of the state, and the state will not lift at all. This suggests that states

in the maximally wound sector will not lift.4 This is interesting, because we know that at

high energies we have to reproduce the large entropy of the extremal hole [1], so we need

a large class of states that will not lift.

This picture also tells us how we should think about states in the fuzzball paradigm.

There are certainly some states in general winding sectors that are not lifted, and the

gravity description of many of these states have been constructed. But as we have seen,

many states will lift. The fuzzball paradigm says that all states are fuzzballs; i.e., they

have no regular horizon. Thus the class of states obtained in the fuzzball construction

will in general cover both extremal and non-extremal states. It turns out that it is often

4It has been argued earlier [54] that states relevant for the dynamics of the near-extremal hole should

be in the highly wound sectors.
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easier to take a limit where the non-extremal states are in fact near-extremal. We can

then look for the subclass of extremal states as limits of the construction that gives the

near-extremal states.

We also note that one should not make a sharp distinction between ‘supergravity’

states and ‘stringy’ states. In figure 2 the state with n = 0 is a supergravity state with no

strings. As n rises, we add more and more strings, but at n = N this collection of strings

again behaves like a supergravity state with no lift.

In [21], the lifting of D1D5P states was computed in the pp-wave limit. In this compu-

tation, one component string is taken to have a large winding k, while the other component

strings are singly wound. Only the multiwound string is taken to have excitations. One

takes the approximation 1 � k � N . In this limit, for low lying excitation levels, the

lifting is a sum of liftings for each individual excitation on the multiwound component

string. For an excitation of the form J−− l
k

, the lifting is

∆h ≈ 1

2
g2
sQ

2
5

(
l

k

)2

(10.1)

where gs is the string coupling and Q5 is the number of D5 branes. We find, for the scaling

with N (and using the coupling λ that we have assumed)

δh ∼ λ2N (10.2)

We cannot compare this directly to our results, since we have taken all component strings

to have the same winding k. We can get some rough comparison, however, by taking (8.2)

and setting n = 1; i.e., only one component string is excited. We see from (8.10) that the

combinatorial factor is n(N − n) ≈ N for this case. Together with the coupling constant,

we find a lift that is δh ∼ λ2N , in rough agreement with (10.2). We hope to study the

lifting of more general states elsewhere, and then a more accurate comparison to (10.1)

should be possible.

We have suggested above that a large class of extremal states might lie in the maximally

wound sector. We noted in section 8 that the O(λ2) lift of such states has contributions

only from genus 1 covering surfaces while states with lower winding have both genus 0

and genus 1 contributions; this fact may be relevant to the relation between lifting and

maximal winding. But maximally wound sectors are difficult to study in the classical limit:

the classical limit corresponds to N → ∞, and a winding k = N will typically produce

a conical defect with conical angle 1/k = 1/N → 0 [56–58]. Thus such states should be

thought of as limits of states with finite k. If the general k states are near-extremal, and

the k = N state is extremal, then the extremal state can be seen as a limit of a family of

near-extremal states.

Finally, we note that we have considered only a special family of D1-D5-P states in

this paper. It is of interest to ask if there is a general characterization of which D1-D5-P

states lift and which do not. We hope to study this issue elsewhere.

– 38 –



J
H
E
P
0
1
(
2
0
1
9
)
0
7
5

Acknowledgments

We would like to thank Shouvik Datta, Lorenz Eberhardt, Matthias Gaberdiel, Christoph

Keller, Alessandro Sfondrini, and David Turton for helpful discussions. We especially thank

Stefano Giusto and Rodolfo Russo for extended discussions on this problem. IGZ thanks the

STAG Research Centre at Southampton University for hospitality and the organisers of the

Workshop on holography, gauge theories and black holes for the stimulating environment.

The work of SH and SDM is supported in part by the DOE grant DE-SC0011726. The

work of IGZ is supported by the Swiss National Science Foundation through the NCCR

SwissMAP.

A Notation and conventions

A.1 Field definitions

Here we give the notation and conventions used in our computations. We have 4 real left

moving fermions ψ1, ψ2, ψ3, ψ4 which are groupped into doublets ψαA as follows:(
ψ++

ψ−+

)
=

1√
2

(
ψ1 + iψ2

ψ3 + iψ4

)
(A.1)(

ψ+−

ψ−−

)
=

1√
2

(
ψ3 − iψ4

−(ψ1 − iψ2)

)
. (A.2)

The index α = (+,−) corresponds to the subgroup SU(2)L of rotations on S3 and the

index A = (+,−) corresponds to the subgroup SU(2)1 from rotations in T 4. The 2-point

functions read

〈ψαA(z)ψβB(w)〉 = −εαβεAB 1

z − w
(A.3)

where we have

ε12 = 1, ε12 = −1 (A.4)

The 4 real left-moving bosons X1, X2, X3, X4 are grouped into a matrix

XAȦ =
1√
2
Xiσi =

1√
2

(
X3 + iX4 X1 − iX2

X1 + iX2 −X3 + iX4

)
(A.5)

where σi = (σa, iI). The bosonic field 2-point functions are then of the form

〈∂XAȦ(z)∂XBḂ(w)〉 = εABεȦḂ
1

(z − w)2
. (A.6)

The chiral algebra is generated by the R-currents, supercurrents, and the stress-energy

tensor:

Ja =
1

4
εαγεACψ

γC(σTa)αβψ
βA, a = 1, 2, 3

Gα
Ȧ

= ψαA∂XAȦ, α = +,−

T =
1

2
εABεȦḂ∂XBḂ∂XAȦ +

1

2
εαβεABψ

βB∂ψαA (A.7)
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A.2 OPE algebra

We note the OPEs between the various operators of interest.

A.2.1 OPE’s of currents with ∂XAȦ(z) and ψαA(z)

T (z)∂XAȦ(w) ∼
∂XAȦ(w)

(z − w)2
+
∂2XAȦ(w)

z − w

T (z)ψαA(w) ∼
1
2ψ

αA(w)

(z − w)2
+
∂ψαA(w)

z − w

Gα
Ȧ

(z)ψβB(w) ∼ εαβεBA
∂XAȦ(w)

z − w

Gα
Ȧ

(z)∂XBḂ(w) ∼ εABεȦḂ
ψαA(w)

(z − w)2
+ εABεȦḂ

∂ψαA(w)

z − w

Ja(z)ψαA(w) ∼ 1

2

1

z − w
(σTa)αβψ

βA(w)

J+(z)ψ+A(w) = 0, J−(z)ψ+A(w) =
ψ−A(w)

z − w

J+(z)ψ−A(w) =
ψ+A(w)

z − w
, J−(z)ψ−A(w) = 0 (A.8)

A.2.2 OPE’s of currents with currents

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

Ja(z)Jb(w) ∼
c

12δ
ab

(z − w)2
+
iεabcJ

c(w)

z − w

Gα
Ȧ

(z)Gβ
Ḃ

(w) ∼ −εȦḂ

[
εβα

c
3

(z−w)3
+ εβγ(σaT )αγ

(
2Ja(w)

(z−w)2
+
∂Ja(w)

z−w

)
+ εβα

1

z−w
T (w)

]
Ja(z)Gα

Ȧ
(w) ∼ 1

z − w
1

2
(σaT )αβG

β

Ȧ
(w)

T (z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w

T (z)Gα
Ȧ

(w) ∼
3
2G

α
Ȧ

(w)

(z − w)2
+
∂Gα

Ȧ
(w)

z − w
(A.9)

We convert the relations involving J1, J2 to those involving J+, J−. Defining J+, J− as

J+ = J1 + iJ2

J− = J1 − iJ2 (A.10)
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yield the following OPE’s

J+(z)J−(w) ∼
c
6

(z − w)2
+

2J3(w)

z − w
, J−(z)J+(w) ∼

c
6

(z − w)2
− 2J3(w)

z − w

J3(z)J+(w) ∼ J+(w)

z − w
, J3(z)J−(w) ∼ −J

−(w)

z − w

J+(z)J3(w) ∼ −J
+(w)

z − w
, J−(z)J3(w) ∼ J−(w)

z − w

T (z)J+(w) ∼ J+(w)

(z − w)2
+
∂J+(w)

z − w
, T (z)J−(w) ∼ J−(w)

(z − w)2
+
∂J−(w)

z − w

J+(z)G−
Ȧ

(w) ∼
G+
Ȧ

(w)

z − w
, J−(z)G+

Ȧ
(w) ∼

G−
Ȧ

(w)

z − w
(A.11)

A.3 Mode and contour definitions of the fields

The modes are defined in terms of contours through

Lm =

∮
dz

2πi
zm+1T (z)

Jam =

∮
dz

2πi
zmJa(z)

Gα
Ȧ,r

=

∮
dz

2πi
zr+

1
2Gα

Ȧ
(z)

αAȦ,m = i

∮
dz

2πi
zm∂XAȦ(z)

dαAr =

∮
dz

2πi
zr−

1
2ψαA(z) (A.12)

The inverse relations are

T (z) =
∑
m

z−m−2Lm

Ja(z) =
∑
m

z−m−1Jam

Gα
Ȧ

(z) =
∑
r

z−r−
3
2Gα

Ȧ,r

∂XAȦ(z) = −i
∑
m

z−m−1αAȦ,m

ψαA(z) =
∑
m

z−m−
1
2dαAm (A.13)

A.4 Commutation relations

A.4.1 Commutators of αAȦ,m and dαAr

[αAȦ,m, αBḂ,n] = −mεAȦεBḂδm+n,0

[dαAr , dβBs ] = −εαβεABδr+s,0 (A.14)
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A.4.2 Commutators of currents with αAȦ,m and dαAr

[Lm, αAȦ,n] = −nαAȦ,m+n

[Lm, d
αA
r ] = −

(m
2

+ r
)
dαAm+r

{Gα
Ȧ,r
, dβBs } = iεαβεABαAȦ,r+s

[Gα
Ȧ,r
, αBḂ,m] = −imεABεȦḂd

αA
r+m

[Jam, d
αA
r ] =

1

2
(σTa)αβd

βA
m+r

[J+
m, d

+A
r ] = 0, [J−m, d

+A
r ] = d−Am+r

[J−m, d
+A
r ] = d−Am+r, [J+

m, d
+A
r ] = 0 (A.15)

A.4.3 Commutators of currents with currents

[Lm, Ln] =
c

12
m(m2 − 1)δm+n,0 + (m− n)Lm+n

[Jam, J
b
n] =

c

12
mδabδm+n,0 + iεabcJ

c
m+n

{Gα
Ȧ,r
, Gβ

Ḃ,s
} = εȦḂ

[
εαβ

c

6

(
r2 − 1

4

)
δr+s,0 + (σaT )αγ ε

γβ(r − s)Jar+s + εαβLr+s

]
[Jam, G

α
Ȧ,r

] =
1

2
(σaT )αβG

β

Ȧ,m+r

[Lm, J
a
n ] = −nJam+n

[Lm, G
α
Ȧ,r

] =
(m

2
− r
)
Gα
Ȧ,m+r

[J+
m, J

−
n ] =

c

6
mδm+n,0 + 2J3

m+n

[Lm, J
+
n ] = −nJ+

m+n, [Lm, J
−
n ] = − nJ−m+n

[J+
m, G

+
Ȧ,r

] = 0, [J−m, G
+
Ȧ,r

] = G−
Ȧ,m+r

[J+
m, G

−
Ȧ,r

] = G+
Ȧ,m+r

, [J−m, G
−
Ȧ,r

] = 0

[J3
m, J

+
n ] = J+

m+n, [J3
m, J

−
n ] = − J−m+n (A.16)

A.5 Current modes written in terms of αAȦ,m and dαAr

Jam =
1

4

∑
r

εABd
γB
r εαγ(σaT )αβd

βA
m−r, a = 1, 2, 3

J3
m = −1

2

∑
r

d++
r d−−m−r −

1

2

∑
r

d−+
r d+−

m−r

J+
m =

∑
r

d++
r d+−

m−r, J−m =
∑
r

d−−r d−+
m−r

Gα
Ȧ,r

= −i
∑
n

dαAr−nαAȦ,n

Lm = −1

2

∑
n

εABεȦḂαAȦ,nαBḂ,m−n −
1

2

∑
r

(
m− r +

1

2

)
εαβεABd

αA
r dβBm−r (A.17)
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B Spectral flow

In this appendix we review the rules for spectral flow transformations [55]. Under spectral

flow by α units, the dimension, h, and the charge, j, transform like

h′ = h+ αj +
cα2

24
, j′ = j +

αc

12
, (B.1)

where c is the central charge of the CFT. Consider an operator O(z) of charge q. Under

spectral flow by α units at a point z0, the operator transforms as

O(z)→ (z − z0)−αqO(z) . (B.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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