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1 Introduction

Gauge theory is the language of the standard model of particle physics. Even more than

50 years after its first modern formulation by Yang and Mills [1], it remains a hard task to

compute observables even in a perturbative expansion in the coupling constants. Beyond

perturbation theory much less is known in general, with the particular exception of those

theories that admit a dual description in the strongly coupled sector, such as that provided

by the AdS/CFT correspondence [2]. This correspondence is by far best understood for
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the maximally supersymmetric, N = 4, Yang-Mills (SYM) theory based on the SU(Nc)

gauge group, in ’t Hooft’s planar limit [3]. In this limit, where Nc → ∞, remarkable

simplifications occur. A lighthouse result in this direction is the Beisert-Eden-Staudacher

equation [4]: this equation describes a certain observable known as the planar lightlike

cusp anomalous dimension (CAD) at all values of the coupling in N = 4 and ties into

integrability ideas. Weak and strong coupling expansions of this anomalous dimension

have been matched to independently obtained results, see e.g. [5–12]. However, beyond the

planar limit much less is known in general despite some very recent progress in [13, 14]. For

the cusp anomalous dimension no nonplanar correction had been computed in any theory

until recently the first numerical result at four loops in N = 4 was presented by us in [15].

Beyond the AdS/CFT correspondence and especially at weak coupling, the N = 4

super-Yang Mills theory is also a time-tested sandbox to explore computational ideas, such

as those motivated by Witten’s twistor string theory [16]. These have ignited a long-running

program to explore the space of on-shell observables, using on-shell methods. This article

is a part of this program, aimed at computing the so-called Sudakov form factor in N = 4

SYM theory. This form factor can be used to isolate several interesting universal functions

that are contained within it. Prime among these is the lightlike cusp anomalous dimension

mentioned above. The cusp anomalous dimension plays a central role in the analysis of

infra-red (IR) divergences, as first pointed out in [17]. By extrapolating structures found

through three loops a general conjecture was formulated in [18] that the nonplanar part

of the CAD vanishes in any perturbative gauge theory. This became known as quadratic

Casimir scaling of the CAD, see e.g. [18–24]. It was noted that the quadratic Casimir

scaling may be violated to higher orders of perturbative expansion due to the appearance

of higher Casimir operators of the gauge group [25], see also [26]. At strong coupling, this

scaling is known to break down in N = 4 SYM [27]. In addition, instanton effects break

the scaling [28]. Finally, ref. [15] disproved the conjecture in perturbation theory, see also

the two recent works [29, 30] which apply directly to quantum chromodynamics and also

report violation of Casimir scaling.

The Sudakov form factor we consider is an observable which involves two on-shell

massless states and a gauge invariant operator in the stress tensor multiplet in N = 4 SYM,

F =

∫
d4x e−iq·x〈p1, p2|O(x)|0〉 . (1.1)

In N = 4 SYM, form factors were first studied thirty years ago in [31] and revived in

the past few years at weak coupling [32–61] and at strong coupling [62–64]. There have

been interesting recent studies of loop form factors of non-Bogomolnyi-Prasad-Sommerfield

(BPS) operators [65–73]. For reviews, see the theses [74, 75]. The present paper is aimed

at elucidating the evaluation of the integrals that appear in the four-loop Sudakov form

factor, with the expectation that the presented techniques can be applied more widely.

A key idea in this article is to make transparent the transcendentality properties of the

Feynman integrals that make up the Sudakov form factor. It is known quite generally that

at fixed orders in the expansion in the dimensional regularisation parameter ε of Feynman

integrals only rational linear combinations of certain constants appear. These constants
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are known as multiple zeta values (MZV). In principle, also more general constants such

as Euler sums can appear, but in the known terms of the Sudakov form factor through

to three loops in N = 4 SYM, MZVs are sufficient. MZVs have a property known as

transcendental weight which takes integer values. The number of independent MZVs is

small for low weight, and a basis for these constants is formed by (see e.g. [76])

{1}0, { }1, {π2}2, {ζ3}3, {π4}4, {π2ζ3, ζ5}5, . . . (1.2)

with increasing weight denoted by the subscripts. At fixed order in ε in a generic integral

only terms up to a maximal weight appear. This maximal weight increases stepwise with

the order of expansion. A special class of integrals is formed by those where only the

maximal weight terms appear at each order in the ε-expansion. Assigning to ε a transcen-

dental weight −1, these integrals have a well-defined overall transcendental weight, and

will be referred to as uniformly transcendental (UT) integrals. The concept of transcen-

dental weight is important as it is observed in many examples that in N = 4 SYM (and

superstring theory) only terms with maximal weight appear. Although the origin of this is

somewhat ill-understood, it at the very least makes for a useful tool. Moreover, a general

conjecture [8, 77] relates the maximal transcendental terms appearing in QCD directly to

N = 4 SYM for certain quantities. An example of this kind is given by the quark and

gluon form factors in QCD [78–82] and the Sudakov form factor in N = 4 SYM, where the

maximal transcendentality principle was verified through to three loops and for all terms

up to transcendental weight eight [37]. Examples for two-loop remainders were also found

in [38, 73].

For the three-loop form factor in N = 4 SYM, an expression in terms of UT integrals

was obtained in [37]. In that case the master integrals were known analytically, facilitating

the analysis. In the four-loop case generically the basis of UT integrals was unknown. In

this article, it will be shown how to identify UT candidates systematically, and how to

write the four-loop Sudakov form factor as a rational linear combination of UT candidate

integrals. The result in the nonplanar sector will then be integrated numerically, yielding

a large list of new integral results. What is surprising is the empirical observation that

obtaining numerical results for UT integrals turns out to be substantially simpler than for

generic non-UT integrals in the class under study, even though the integration techniques

themselves do not make use of the UT property. The result is combined into the nonplanar

cusp and collinear anomalous dimensions at four loops. The result for the cusp anomalous

dimension was first announced by us in [15], while the result on the collinear anomalous

dimension is new. We comment extensively on the numerics below, making use of the UT

property to inform the error analysis.

This article is structured as follows: section 2 contains a review and setup of the

problem. In section 3, uniformly transcendental integrals are discussed both at the general

level as well as for the specific observable under study. Of special interest is a general

technique for obtaining candidate-UT integrals. The full form factor is expanded in terms

of the UT basis in section 4. In section 5 we discuss the numerical integration of the

appearing integrals in the nonplanar sector, present our results and perform a thorough

analysis of the reported numerical uncertainties. We conclude in section 6. The article
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is supplemented by several appendices. In appendix A we give explicit results of the UT

integrals in the nonplanar sector, while appendix B contains the parametrisation of the

integral topologies in terms of loop and external momenta.

2 Review and setup

2.1 Infra-red divergent structure of the form factor in N = 4 SYM

The perturbative expansion of the Sudakov form factor is fixed by supersymmetry and

dimensional analysis as

F = F tree
∞∑
l=0

g2l(−q2)−lεF (l) , (2.1)

where p1, p2 are two on-shell momenta, and q = (p1 + p2) is off-shell. In dimensional

regularisation with D = 4−2ε, F (l) is a purely numerical function of gauge group invariants

and ε. The coupling constant is normalised as g2 =
g2YMNc

(4π)2
(4πe−γE)ε. We consider explicitly

the SU(Nc) gauge group, although our results apply to any Lie group: up to the order

considered, there is a one-to-one map from Nc to Casimir invariants, see below.

The form factor is free of ultraviolet (UV) divergences, since the operator O in the

stress tensor multiplet is protected. On the other hand, there are IR divergences due to

soft and collinear singularities from the massless states. Setting q2 = −1 and defining the

normalised form factor as F = 1+
∑∞

l=1 g
2lF (l), the IR structure is described in the following

form [83] (exponentiation structure of Sudakov form factor in more general theories was

original studied in [84–87])

logF = −
∞∑
l=1

g2l

[
γ

(l)
cusp

(2lε)2
+
G(l)

coll

2lε
+ Fin(l)

]
+O(ε) , (2.2)

where the leading singularity is determined by the cusp anomalous dimension (CAD)

γcusp, and the sub-leading divergence is related to the so-called collinear anomalous di-

mension Gcoll.
1

Besides analysing the IR structure of the form factor, one also has to investigate its

colour structure. For a classical Lie-group with Lie-algebra [T a, T b] = ifabc T c and structure

constants fabc, the quadratic Casimir operators in the fundamental (F ) and adjoint (A)

representation are defined via (see e.g. [88])

[T aT a]ij =CF δij , facdf bcd = CAδ
ab , (2.3)

respectively. The building block of the quartic Casimir invariant dabcdR dabcdR is the fully

symmetric tensor

dabcdR =
1

6
Tr[T aRT

b
RT

c
RT

d
R + perms.(b, c, d)] , (2.4)

1There are different conventions of defining cusp and collinear anomalous dimensions in the literature.

In our convention, the cusp anomalous dimension γcusp =
∑

l γ
(l)
cuspg

2l is the same as the function f(g) in [4].
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where R = F,A denotes the fundamental or adjoint representation, with [T aF ]ij = [T a]ij
and [T aA]bc = −ifabc. The values of the relevant Casimir invariants in the case of gauge

group SU(Nc) read CF = NA/(2Nc), CA = Nc, and dabcdA dabcdA /NA = N2
c /24 (N2

c + 36).

Here, NA = (N2
c − 1) is the number of generators of SU(Nc). The colour structure of the

form factor at l loops in N = 4 SYM theory with matter in the adjoint representation is

simply (CA)l up to l = 3. Starting from four loops, the quartic Casimir invariant arises in

addition, and hence in SU(Nc) gauge theory one has, besides the planar (i.e. N l
c leading-

colour) contribution a nonplanar (i.e. N l−2
c subleading-colour) correction. Starting from

six loops, additional group invariants appear [42].

The planar form factor has leading divergence ∝ 1/ε2l at l-loop order. To compute the

CAD, this function needs to be expanded down to ε−2 at l loops, combined together with

higher terms in the Laurent expansion in ε from lower-loop contributions. As mentioned

above, the first nonplanar correction starts at four loops, due to the appearance of a quartic

Casimir invariant. The nonplanar part of the four-loop form factor takes the following form

F
(4)
NP = −

γ
(4)
cusp, NP

(8ε)2
−
G(4)

coll,NP

8ε
− Fin

(4)
NP +O(ε) . (2.5)

In particular, it has only a double pole in ε since, upon taking the logarithm in (2.2),

this piece cannot mix with any planar contribution from lower loops. We emphasise that

individual integrals that contribute to F
(4)
NP will typically have the full 1/ε8 divergence. The

cancellation of these higher-order poles in the final result therefore provides a very strong

constraint on as well as a non-trivial consistency check of the computation.

The form factor exhibits a Laurent expansion in the dimensional regularisation param-

eter ε. In this expansion, each term is expected to be a rational-coefficient polynomial of

Riemann Zeta values ζn, or their multi-index generalizations, ζn1,n2,..., known as multiple

zeta values (MZVs) (see e.g. [76]). In principle, even more general objects such as Euler

sums can appear. However, as mentioned earlier, any analytically known piece of the form

factor does not go beyond MZVs. The MZVs have a transcendentality degree which is the

sum of their indices,
∑

i ni. Also, the regularisation parameter ε is assigned transcenden-

tality −1. In N = 4 SYM, the finite part of the form factor is expected to have (maximal)

uniform transcendentality, which at l loops is 2l, and which suggests that the CAD at l

loops is of uniform transcendental weight 2l − 2. Indeed, the planar CAD at four loops in

N = 4 SYM has transcendentality six and was computed as [9, 10, 12]

(logF )
(4)
P = −

−1752ζ6 − 64ζ2
3

(8ε)2
+
G(4)

coll,P

8ε

+O(ε0) . (2.6)

We will provide strong evidence that also the nonplanar form factor and in particular the

CAD are of uniform transcendentality at four loops. A numerical result of the planar four-

loop collinear anomalous dimension G(4)
coll,P was obtained in [89]. Recently, also the analytic

value of this quantity was presented [90].

2.2 Integrand and integral relations

The full four-loop Sudakov form factor including the nonplanar part in N = 4 SYM was

obtained as a linear combination of a number of four-loop integrals in [42] based on colour-
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Figure 1. Integral topologies that contribute only to the planar form factor at four loops.
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Figure 3. Integral topologies that do not have dLog numerators.

kinematics duality [91, 92]. Similar five-loop result was also obtained recently in [57]. For

more details on colour-kinematics duality, see e.g. the lecture [93]. The explicit form of the

integrals for the problem at hand can be found in [42]. There are 34 distinct cubic integral

topologies, each with 12 internal lines, that contribute to the four-loop form factor. They

are labelled (1) – (34) in [42] and we provide them in figures 1–3 for convenience and further

reference throughout the present paper.

The four-loop integrals take the generic form as

I = (−q2)2+4εe4εγE

∫
dDl1

iπD/2
. . .

dDl4

iπD/2
N(li, pj)∏12
k=1Dk

, (2.7)

where Di are twelve propagators and N(li, pj) are dimension-four numerators in terms of
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q
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2

Figure 4. Example of rational IBP relations.

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice

is not unique. Below we use as propagator basis D
(n)
i , where the superscript (n) indicates

the topology, and the subscript i, i = 1, . . . , 18 refers to the basis given explicitly in ap-

pendix B (see also appendix C of [48]). We define D
(n)
19 = (p1 + p2)2. Any given numerator

can then be represented uniquely in the chosen basis.

A fundamental property of Feynman integrals, as those in equation (2.7), is that they

obey integration-by-parts (IBP) identities [94, 95], which follow from∫
dDl1 . . . d

DlL
∂

∂lµi
(integrand) = 0 . (2.8)

Working out the left-hand side gives a linear relation between different integrals. By solving

linear systems of such equations, a generic Feynman integral can be expressed in terms of

a set of basis integrals. This procedure is known as IBP reduction, and the set of basis

integrals is also known as the set of master integrals. The form factor was expressed in

terms of a set of master integrals in [48] using the Reduze code [96].2 The master integrals,

however, have evaded full integration so far due to their overwhelming complexity. In

addition, the full IBP reduction generically leads to coefficients that contain higher-order

poles in ε. This requires to evaluate the master integrals to higher orders in the ε expansion,

which further increases the size of the problem. In this paper a different strategy will be

used by expanding the form factor in terms of a set of integrals which are each simple

enough to integrate and have ε-independent prefactors.

A particular subset of the IBP relations turns out to be very useful for our purpose.

These are the IBP relations in which the coefficients in front of integrals are pure rational

numbers and independent of ε. These ‘rational IBP’ relations have been obtained in [105]

for the form factor presently under study as a subset of the full reduction. An example

is shown in figure 4. Note that integral relations derived from graph symmetries are a

particular subset of the rational IBP relations.

3 Uniformly transcendental basis

A key idea of the present study is to expand the form factor in a set of integrals that all

have uniform transcendentality (UT), which will be referred to as UT integrals. Such a

2There exist various private and public implementations of IBP reduction, mainly based on Laporta’s

algorithm [97], such as AIR [98], FIRE [99–101] and Reduze [96, 102]. See LiteRed [103, 104] for an alternative

approach to IBP reduction.
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representation of the form factor will make manifest the expected maximal transcenden-

tality property of N = 4 SYM, and has been achieved at three loops in [37]. As will

be shown in the next section, the UT integrals turn out to be much simpler to integrate

numerically compared to generic non-UT integrals of similar complexity, which is crucial

for the computation at hand.

We will now turn to the question how to find UT integrals prior to explicitly computing

them. There are basically three ways to show whether an integral is UT.

• A UT integral can be written in the so-called dLog form [106, 107].

• The leading singularities, or equivalently, the residues at all poles of a UT integral

must always be a constant [107–109]. This is conjectured to be a necessary and

sufficient condition.

• A set of UT integral basis can lead to certain simple differential equations [110].

The last point regarding differential equations is not directly applicable to the Sudakov

form factor at hand since it is a single-scale problem, and thus not ‘differentiable’. See

however [109, 111] for a work-around by deforming an on-shell leg to be massive, thus

creating a two-scale problem. Below we illustrate the first two UT properties using a

simple one-loop example. Then their application to four-loop form factor integrals will

be discussed.

3.1 Warm up: a one-loop example

A one-loop UT example is given by the following scalar triangle integral:

I
(1)
3 = (−q2)1+ε eεγE

∫
dDl

iπD/2
1

l2(l − p1)2(l + p2)2
. (3.1)

This is a UT integral as evidenced by the explicit result in the ε expansion

I
(1)
3 = − e

εγEΓ(−ε)2Γ(1 + ε)

Γ(1− 2ε)
= − 1

ε2
+

1

2
ζ2 +

7

3
ζ3ε+

47

16
ζ4ε

2 +O(ε3) . (3.2)

An important interesting point is that, despite that the integral requires regularisation

to be well defined, the UT property can be understood in exactly four dimensions at the

integrand level. In the following, we consider only the integral in four dimensions as

I
(1)
3 = (−q2)

∫
d4l

1

l2(l − p1)2(l + p2)2
. (3.3)

It is convenient to parametrise the loop momenta such that only scalar integration

parameters remain. The four-dimensional loop momentum can be parametrised as

l = α1p1 + α2p2 + α3q1 + α4q2 , (3.4)

where pi = λiλ̃i, i = 1, 2 are the external on-shell momenta, and q1, q2 can be chosen as

the two complex solutions to

q2
i = qi · pj = 0 ∀i, j and q1 · q2 = −p1 · p2 , (3.5)

– 8 –
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for example, q1 = λ1λ̃2, q2 = λ2λ̃1. The integral in the parametric form is

I
(1)
3 =

∫
dα1 dα2 dα3 dα4

(α1α2 − α3α4)(−α2 + α1α2 − α3α4)(α1 + α1α2 − α3α4)
. (3.6)

This can be written in the following dLog form

I
(1)
3 =

∫
dLog(α1α2 − α3α4) dLog(−α2 + α1α2 − α3α4) dLog(α1 + α1α2 − α3α4) dLog(α3) ,

(3.7)

which, in terms of momenta, is equivalent to the form

I
(1)
3 =

∫
dLog

[
l2
]
dLog

[
(l − p1)2

]
dLog

[
(l + p2)2

]
dLog

[
− 2(l · q2)

]
. (3.8)

The existence of the dLog representation implies that the integral is UT.

As mentioned above, an alternative way to prove UT property is to consider the leading

singularity. In the parametric form like (3.6), this is equivalent to check the residues

at all poles of the integral: the constant leading singularity property translates to the

simple pole condition for all parameters. Let us explain this in more detail. To check the

simple pole condition, one needs to pick up a certain order of the parameters to take the

residue. Consider the one-loop example, we can first take residue for α1 at the pole of the

first propagator

Residue at pole α1 =
α3α4

α2
→

∫
dα2dα3dα4

1

α2(−α2 + α2
2 + α3α4)

. (3.9)

Next, we take the residue for α2 at pole 0

Further residue at pole α2 = 0 →
∫

dα3dα4
1

α3α4
. (3.10)

The remaining parameters obviously have only simple poles and the final residue is a

constant. One needs to check all different orders of taking residues, and in all occurring

poles. In any intermediate step, after taking a residue in a particular parameter, if one

encounters other than a simple pole in a remaining parameter, the integral is not UT.

We would like to emphasise that the simple pole requirement should also apply to poles

at infinity. To be more concrete, consider following simple examples. For the integral∫
dα1dα2

α2

α1(1− α2)2
, (3.11)

there is a double pole for α2 at 1, thus it is not UT. As for another example,∫
dα1dα2

1

α1
or

∫
dα1dα2

α2

α1(1− α2)
(3.12)

both have a double pole for α2 at infinity, so they are not UT either.3

3We would also like to point that for amplitudes in N = 4 SYM as studied in [107, 108], an additional

requirement is imposed: here even a simple pole at infinity is not allowed. In that case, this is closely

related to the hidden dual conformal symmetry of amplitudes [107, 108]. For the form factor, we must

allow simple pole at infinity.
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The condition that only simple poles are allowed is related to the required existence of

a dLog form where only a logarithmic singularity is allowed. However, it does not require

to find the explicit transformation to the dLog form which can be very complicated in

general. This simple-pole condition provides an essential constraint for the construction of

UT integrals below. A related strategy was also used in [107–109].

3.2 Systematic construction

The aforementioned condition of simple poles is used here both to construct and as well as

to check UT integral candidates. Given a four-loop form factor integral in four dimensions,

there are 16 integration parameters, so in principle there are 16! ∼ 2 × 1013 different

orders in which the residues can be taken. Practically therefore, the simple-pole condition

is verified by choosing a large number of random orders of taking residues. A non-UT

integral typically fails the UT test well within a few hundred of such random checks.

This UT test strategy can be used to constrain the space of potential UT integrals

when combined with an Ansatz for the numerator. For the four-loop form factor integrals,

one can start with a linear Ansatz of mass dimension four numerators of a given topology.

We then perform the above described residue tests. The requirement of absence of higher

order poles provides linear constraints on the set of coefficients in the Ansatz by computing

the residues of the higher order poles. Solving these linear constraints then yields a smaller

Ansatz, and the process is repeated. For speed, it is better to first identify a sequence of

residues leading to a higher pole by choosing the Ansatz coefficients to be random integer

numbers. This sequence can then be used to derive the analytic constraint on the full

Ansatz. Below we provide more technical details.

A full four-loop topology contains 12 lines (i.e. propagators). For many topologies one

can simply ask the following question: which sets of 10- and 11-line integrals can be added

to a given topology in the four-loop form factor such that the sum is UT? Suppose such a

linear combination exists. Then it is obvious this is likely not unique: adding any linear

combination of 10- or 11-line UT integrals will satisfy the same constraint. To find a basis

for all these UT integrals, we take the form factor numerators Nff as they appear in the

N = 4 theory as input and add to this the set of all 10- and 11-line integrals (of which

there are 162). In this case the initial Ansatz looks like

Nansatz = a0Nff +
12∑
j=1

Dj

(
19∑

k=13

aj,kDk

)
+

∑
1≤j≤k≤12

bj,kDjDk , (3.13)

where D19 := q2 and the D’s are the propagators as given in appendix B. Inserting the

parametrisation (3.4) for each of the four-loop momenta gives a rational expression of 16

α-type parameters. Now one needs to identify a sequence of residues yielding a double or

higher pole in the α parameters. Demanding that the pole becomes a simple one yields at

least one constraint equation for the 162 + 1 parameters {a0, aj,k, bj,k}. Explicitly solving

these linear constraint equations gives a smaller Ansatz. Now one repeats by again trying

to find a sequence of residues that will yield additional constraints. After a number of

iterations for the integrals in the case at hand, one has obtained a set consisting of one
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integral containing the 12-line parts of the form factor contribution and other integrals

which contain at most 11 lines. These are a set of UT candidate (UTC) integrals.

One can also ask the question which UT integrals with unit exponent propagators exist

in a given topology, worrying later about expressing the N = 4 form factor in terms of

these. To answer this question one chooses a more general initial Ansatz such as

Nansatz =
∑

1≤j≤k≤19

bj,kDjDk . (3.14)

Here the simple pole condition will provide a set of linear equations of 190 parameters

{bj,k}. The end-result for this wider initial ansatz will be a set which contains all possible

UT candidate integrals in a given topology (with unit exponents for the propagators).

If, after deriving constraints with a certain number of random checks and no new

further constraints are found in typically a few hundred more random pole checks, the

remaining Ansatz contains a set of good UT candidates.

The choice of initial Ansatz is dictated to a large part by practical ease of subsequent

numerical integration. For many public codes, the numerator of integrals is in general

preferred to be a product of two factors, each quadratic in momenta. If a single such

integral is to contain the full 12-line parts of a particular integral topology k, a necessary

but not sufficient condition is to check that the irreducible numerators of a given integral

form a product form separately. Concretely, one sets all propagators of this topology

to zero, and verifies if a product form emerges for the irreducible numerators. In our

chosen set of expressions, the propagators of a topology are always the first 12 entries (see

appendix B), so to check is:

UTC|
topk

(
D

(k)
i =0 ∀1≤i≤12

) ?
= product form , (3.15)

where the product form is a quadratic function of Di, i = 13, . . . , 19. This condition is

satisfied for all topologies in the four-loop form factor under study, except for topologies

(12), (17), (19), and (26). Note this condition is independent of the exact choice of propa-

gator basis. If this condition is satisfied, then the smaller Ansatz approach of form factor

integral plus 10- and 11-liners has a chance of sufficing. This is usually much quicker and

more transparent. If the 12-line parts do not have a product form, the larger Ansatz must

be used. Examples of both possibilities are, for instance, topology (19)

UTC|
top19

(
D

(19)
i =0 ∀1≤i≤12

) = −D(19)
14 D

(19)
16 −D

(19)
13 D

(19)
19 , (3.16)

which does not have a product form, and topology (23)

UTC|
top23

(
D

(23)
i =0 ∀1≤i≤12

) = (D
(23)
13 +D

(23)
19 )2 , (3.17)

which does.

From a generic set of UT candidates UTCi, the product form can be found by solving

the following equation ∑
i

λi UTCi =

(∑
j

αjDj

)(∑
k

βkDk

)
, (3.18)
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for non-trivial parameters λ, α and β which are rational numbers. This is a quadratic set

of equations, obtained by matching coefficients of products of D’s. Since we are interested

in integrals that can be used to express the form factor in, more constraints can be added

to the problem for specific purposes. For instance, the constraint can be added that

the twelve-line parts match known form factor numerator contribution in the topology

under study,(∑
i

λi UTCi − FF

)
12-line parts

= 0 as possible constraint. (3.19)

Note this constraint only makes sense in a topology where the form factor has a product

form on the left hand side of equation (3.15). Alternatively, one can simply demand one

specific coefficient to be unity,(∑
i

λi UTCi

)
DjDk coefficient

= 1 as possible constraint. (3.20)

This in particular avoids finding trivial solutions to the general problem in equation (3.18)

(λi = αj = βk = 0). This constraint is particularly useful when looking for very general

solutions to the quadratic problem, matching only to some terms appearing in the form

factor. Finally, one can add manifest graph symmetry constraints on the UT candidates:

this we did in almost all cases. Which constraint to use in a particular situation depends

on the generality of the solution sought for.

Having set up the quadratic problem (3.18), the first step is to solve the linear sub-

problem for λ. Then, one can impose graph symmetry patterns on the product form. The

remaining set of quadratic equations can be analysed completely, or a particular solution

can be guessed by computer algebra.4 In several cases, it can be shown that no solution

to a given problem exists. In these cases, after exhausting all options, one can widen

the Ansatz in equation (3.18) by adding a linear combination of ten-line integrals (which

are expected to be simple to integrate). These cases can be clearly seen in the results in

section 4, e.g. (4.7)–(4.9). Also, sometimes residual parameter-containing solutions to the

product-form problem are obtained. In these cases educated guesses were employed, aimed

at as parametrically simple as possible integrals.

The result is a list of product-form UT candidates for each topology. The ones listed

in this article have all individually been checked to pass at least 10, 000 simple residue

checks, giving ample evidence for their uniform transcendentality. As will be discussed

later, checking a set of found integrals individually also serves as a useful cross-check on

computational errors.

3.3 dLog forms

Writing a four-loop integral in dLog form will give a direct proof of UT property. However,

the construction of a dLog form for a generic four-loop form factor integral is a difficult

4In Mathematica, these options are represented by the commands Reduce and FindInstance, respectively.
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(6)

q

p1

p2

(13)

q

p1

p2

(1)

q

p1

p2

(21)

q

p1

p2

(23)

q

p1

p2

(28)

q

p1

p2

Figure 5. Topologies for which it is straightforward to construct a dLog form.

task, and hence this method is more suitable to show the UT property of a given integral

rather than to derive a UT numerator.

A useful strategy to construct a dLog form is loop by loop [107, 108]. With proper

numerators, all one-loop triangle and box integrals can be written explicitly in dLog forms.

For example, the three-mass box is known to have a dLog form (see e.g. [107], k1 is massless,

K2 and K4 are massive)∫
d4`

N3m

`2(`− k1)2(`− k1 −K2)2(`+K4)2
, (3.21)

with given numerator

N3m = (k1 +K2)2(k1 +K4)2 −K2
2K

2
4 , (3.22)

which is the Jacobian of the quadruple cut of the box, such that the leading singularity is a

kinematics-independent constant. So when there is a three-mass sub-box in the four-loop

integral, one can write this sub-box in a dLog form, and the remaining integral is a three-

loop integral involving a new propagator 1/N3m. In some topologies, such a procedure

can be done recursively loop by loop, so that the full integral can be written explicitly in

the dLog form. This normally happens when the topology involves at least one box with

at least one massless leg, and has some ladder structure.5 Such cases include topology

(1), (6), (13), (21), (23), (28), as shown in figure 5, whose dLog numerators are given,

respectively, by{
(q2)2, (l4 − p1)2q2, (`3 − p1)2(q2 − 2`4 · p2)− (`4 − p1)2(q2 − 2`3 · p2), (3.23)

[(l3 − p1)2]2, [(l3 − p1)2]2, (`3 − `4 − p2)2 (`3 − p1)2
}
.

4 Full form factor in UT basis

Finding an expansion of the full form factor in terms of generic UT candidate integrals can

be obtained by relatively straightforward linear algebra techniques. In addition, we dis-

5It is also possible to write a dLog form for four-mass box and three-mass triangle integrals, with

numerators in a square-root form. This makes it difficult to find a dLog form for the remaining part, since

it introduces a square-root propagator. It would be interesting to see if there is a systematic way to solve

such cases.
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cussed above how to find product-form numerators for candidate UT integrals. Combining

the two involves quite a wealth of choices that can be made in intermediate steps. For the

nonplanar form factor, we first found a linear combination of 12-line UT candidates which

satisfies the requirement that the difference to the full result contained at most 11-line inte-

grals. Combining the remaining expression into UT candidates in the nonplanar sector was

then a relatively easy task. In the planar sector, it turned out that more work was required.

An obscuring factor is the existence of many relations between different integrals from the

rational IBP relations. A choice that works is given below. This choice was driven by the

attempt to find as simple expressions as possible and to express the end-result in as small a

number of integrals as possible. This includes both aiming at graph-symmetric expressions

as well as trying to find an expansion involving only small integer or half-integer expansion

coefficients. This necessarily involves some heuristics. It would be very interesting to find

concise target integral expressions more easily, ideally driven by integration convenience or

accuracy, but this would lead us beyond the scope of this work.

One important result that follows is that both the planar as well as the nonplanar

sector of the form factor can be expressed in terms of rational (i.e. ε-independent) linear

combinations of UT integral candidates. We regard this as strong evidence for the maximal

transcendentality of the form factor. By extension, this implies maximal transcendentality

for the cusp and collinear anomalous dimensions at the four-loop order in maximal SYM

theory, both in the planar and nonplanar sectors. Moreover, the smallness of the expan-

sion coefficients clearly suggests this expansion is natural. In the nonplanar sector we have

checked explicitly that the form factor integrals found originally in [42] when taken as com-

plete topologies can only be expressed in terms of UT integrals in one unique combination

of the 14 topologies: the one in which they appear. This provides a cross-check on the

symmetry and colour factors.

4.1 UT integrals for the nonplanar form factor

Below we list 23 UT integrals I
(n)
1− 23 that combine into the nonplanar form factor. The

superscript (n) denotes the twelve propagators from topology (n) in figure 2. In this

notation, we only have to list the numerator of each integral. Moreover, each integral I
(ni)
i

gets multiplied by a rational pre-factor ci according to

~c = {1/2, 1/2, 1/2,−1, 1/4,−1/4,−1/4, 2, 1, 4, 1, 1,−1/2, 1, 1, 1, 1, 1, 1, 1,−1, 1/4, 1/2} .
(4.1)

The nonplanar form factor is then obtained as

F
(4)
NP =

48

N2
c

23∑
i=1

ci I
(ni)
i , (4.2)

where the prefactor 48/N2
c = 2× 24/N2

c is the normalisation stemming from the permuta-

tional sum of external legs and the colour factor [42], and the UT integrals are

I
(21)
1 = [(`3 − p1)2]2 (4.3)

I
(22)
2 = (`3 − p1)2 [`24 + `26 − `23 + (`3 − `4 + p1)2 + (`3 − `6 − p1)2] (4.4)
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I
(23)
3 = [(`3 − p1)2]2 (4.5)

I
(24)
4 = (`3 − p1)2 [(q − `3 − `5)2 + (`5 + p2)2] (4.6)

I
(25)
5 =

[
(p1 − `5)2 + 2(`4 − `5)2 + (`3 − `4)2 − (`3 − `5)2 − (p1 − `4)2

]2
− 4 (`4 − `5)2 (p1 − `3 + `4 − `5)2 (4.7)

I
(26)
6 = [(`3 − `4 − `5)2 − (`3 − `4 − p1)2 − (`6 − p2)2 − `25][`25 − `24 − `26 + (`4 − `6)2]

+ 4 `25 (`6 − p2)2 + (`4 − `5)2 (`3 − `4 + `6 − p2)2 (4.8)

I
(26)
7 = 4 [(`4 − `5)(`3 − `4 + `5 − p1)][(`4 − `6)(`3 − `4 + `6 − p2)]

− 4 (`4 − `5)2 (`3 − `4 + `6 − p2)2 − (`3 − `4)2 (`5 + `6 − `4)2

− `26 (`5 − p1)2 − `25 (`6 − p2)2 − `24 (`3 − `4 + `5 + `6 − q)2 (4.9)

I
(27)
8 =

1

2

[
`23 − `24 − (`4 − `3 − p1)2

] [
(`3 − `4 − `5)2 + (`5 + p2)2

]
(4.10)

I
(28)
9 = (`3 − `4 − p2)2

[
(`3 − `4)2 − (`3 − p1)2

]
(4.11)

I
(29)
10 =

1

2

[
`23 − `24 − (`4 − `3 − p1)2

]
[`6 · (`6 − `4 + `3 − p2)] (4.12)

I
(30)
11 = (`3 − `4 − p2)2[(p1 − `4)2 + (`3 − `4)2 − (`3 − p1)2] (4.13)

I
(27)
12 =

1

2
(`3 − `4)2

[
2 (`4 − p2)2 + (`6 − p1)2 − `24 + `25 − (`4 − `6)2 + 2 (p1 + p2)2

]
(4.14)

I
(28)
13 =

1

2
(`3 − `4)2

[
2 (`3 − `4 − p2)2 + (`6 − p1)2 + `24 − (`4 − `6)2

]
(4.15)

I
(29)
14 = (`4 − p1)2

[
(`3 − `4 + `6)2 + (`6 − p2)2 − `26

]
(4.16)

I
(29)
15 =

1

2
(`3 − p1 − p2)2

[
(`4 − `6)2 − (`4 − p2)2 − (`6 − p1)2 − (p1 + p2)2

]
(4.17)

I
(30)
16 = (`3 − p1 − p2)2 (`5 + p2)2 (4.18)

I
(30)
17 =

1

2
(`4 − p1)2

[
2 (`5 + p2)2 − (`5 + p2 + `4 − `3)2

]
(4.19)

I
(30)
18 =

1

2
(`3 − `4)2

[
2 (`6 − `4 + p1)2 − 3 `26

]
(4.20)

I
(22)
19 = (`3 − `4)2 (p1 − `3 + `6)2 (4.21)

I
(22)
20 = `26 (p1 − `4)2 (4.22)

I
(24)
21 = (p1 − `3 − `5)2 (`3 − p1 − p2)2 (4.23)

I
(24)
22 = `25 (`3 − p1 − p2)2 (4.24)

I
(28)
23 = (`4 − p1)2 (`3 − `4 + `5 − p2)2 . (4.25)

We note that integrals I1− 11, I12− 18, and I19− 23, are 12-, 11-, and 10-line integrals,

respectively.

The integral I
(25)
5 in topology (25) is the only one which does not carry the symmetry

of the topology explicitly. This was done to arrive at a simpler form to integrate. In

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

general topologies (25) and (26) are the hardest topologies to find UT integrals which are

reasonably compact. Note that topologies (31) through (34) do not appear: there are no

UT candidate integrals at all in these topologies.

4.2 UT integrals for the planar form factor

Similar to the nonplanar part, we also provide an expansion of the planar form factor in

terms of 32 UT integrals I
(n)
p,1− 32. To distinguish from the nonplanar integrals, we add ‘p’ in

subscription to denote it is for the planar form factor. Each integral I
(ni)
p,i gets supplemented

by a rational pre-factor cp,i according to

~cp =
{

8, 2,−2, 2, 1/2, 2, 4, 2,−2, 1, 1, 2, 2,−2, 2,−2, 1, 1, 1/2, 2, 2, 4,−2,−1, 4,−1,−2,−2,

− 1,−1, 1,−1/2
}
. (4.26)

The planar form factor is then obtained as

F
(4)
P = 2

32∑
i=1

cp,i I
(ni)
p,i , (4.27)

where the prefactor 2 is the normalisation stemming from the permutational sum,6 and

the UT integrals are (as in nonplanar case, we only indicate the numerator)

I
(1)
p,1 = (D

(1)
19 )2 (4.28)

I
(2)
p,2 = (−D(2)

2 −D
(2)
11 +D

(2)
19 )D

(2)
19 (4.29)

I
(3)
p,3 = (D

(3)
1 +D

(3)
3 +D

(3)
9 +D

(3)
10 −D

(3)
19 )D

(3)
19 (4.30)

I
(4)
p,4 = (−D(4)

2 −D
(4)
10 +D

(4)
19 )D

(4)
19 (4.31)

I
(5)
p,5 = (D

(5)
2 +D

(5)
9 −D

(5)
19 )2 − 4D

(5)
2 D

(5)
9 (4.32)

I
(6)
p,6 = (D

(6)
3 +D

(6)
10 −D

(6)
18 −D

(6)
19 )D

(6)
19 (4.33)

I
(7)
p,7 = (−D(7)

3 −D
(7)
9 +D

(7)
19 )(−D(7)

3 +D
(7)
5 +D

(7)
6 +D

(7)
17 +D

(7)
19 ) (4.34)

I
(9)
p,8 = D

(9)
13 D

(9)
19 (4.35)

I
(10)
p,9 = (2D

(10)
5 + 2D

(10)
7 +D

(10)
9 − 2D

(10)
15 )(D

(10)
2 +D

(10)
10 −D

(10)
19 ) (4.36)

I
(12)
p,10 = (−D(12)

1 −D(12)
2 +D

(12)
3 +D

(12)
5 +D

(12)
7 −D(12)

8 +D
(12)
10 −D

(12)
13 +D

(12)
14

+D
(12)
15 −D

(12)
17 +D

(12)
18 +D

(12)
19 )(D

(12)
5 +D

(12)
6 −D(12)

11 +D
(12)
14

+D
(12)
18 +D

(12)
19 )−D(12)

3 D
(12)
5 −D(12)

6 D
(12)
10 −D

(12)
8 D

(12)
11 (4.37)

I
(12)
p,11 = (−D(12)

1 −D(12)
2 +D

(12)
3 +D

(12)
4 +D

(12)
5 − 2D

(12)
8 +D

(12)
9 +D

(12)
10 −D

(12)
12

−D(12)
13 +D

(12)
14 −D

(12)
17 +D

(12)
18 )(2D

(12)
1 + 2D

(12)
2 −D(12)

5 −D(12)
6 + 2D

(12)
11

−D(12)
14 −D

(12)
18 − 2D

(12)
19 ) +D

(12)
3 D

(12)
5 +D

(12)
1 D

(12)
7 +D

(12)
6 D

(12)
10

+ 4D
(12)
8 D

(12)
11 +D

(12)
2 D

(12)
12 (4.38)

6Note that unlike the nonplanar case, there is no color factor contribution.
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I
(13)
p,12 = (D

(13)
4 +D

(13)
9 −D(13)

14 −D
(13)
19 )(−D(13)

3 +D
(13)
7 +D

(13)
15 +D

(13)
19 ) (4.39)

I
(14)
p,13 = (−D(14)

4 +D
(14)
6 +D

(14)
7 +D

(14)
16 +D

(14)
19 )(−D(14)

3 +D
(14)
6 +D

(14)
17 +D

(14)
19 ) (4.40)

I
(17)
p,14 = (D

(17)
2 −D(17)

3 +D
(17)
4 +D

(17)
6 −D(17)

7 −D(17)
9 +D

(17)
11 −D

(17)
15 +D

(17)
17 )

(D
(17)
2 −D(17)

7 −D(17)
15 −D

(17)
19 ) (4.41)

I
(17)
p,15 = (D

(17)
3 −D(17)

4 +D
(17)
7 −D(17)

11 +D
(17)
15 )(−D(17)

2 +D
(17)
3 −D(17)

4 −D(17)
5 −D(17)

11

+D
(17)
12 +D

(17)
13 +D

(17)
15 −D

(17)
17 +D

(17)
19 ) (4.42)

I
(19)
p,16 = (D

(19)
2 −D(19)

4 −D(19)
11 +D

(19)
13 −D

(19)
14 )(−D(19)

12 +D
(19)
14 +D

(19)
19 ) +D

(19)
2 D

(19)
11

(4.43)

I
(19)
p,17 = (2D

(19)
2 − 2D

(19)
6 + 2 D

(19)
10 −D

(19)
11 + 2D

(19)
13 − 2D

(19)
14 − 2D

(19)
16 − 2D

(19)
19 )

(D
(19)
14 − 2D

(19)
2 )−D(19)

2 D
(19)
11 (4.44)

I
(21)
p,18 = (D

(21)
4 +D

(21)
10 −D

(21)
13 −D

(21)
19 )2 (4.45)

I
(25)
p,19 = (D

(25)
5 + 2 D

(25)
6 +D

(25)
8 −D(25)

13 −D
(25)
16 )2 − 4D

(25)
6 D

(25)
11 (4.46)

I
(30)
p,20 = (−D(30)

3 +D
(30)
4 −D(30)

5 −D(30)
13 +D

(30)
15 )(D

(30)
4 −D(30)

5 −D(30)
8 +D

(30)
9 −D(30)

13

−D(30)
19 ) (4.47)

I
(13)
p,21 = (D

(13)
6 −D(13)

8 +D
(13)
17 )D

(13)
5 (4.48)

I
(14)
p,22 = D

(14)
7 D

(14)
18 (4.49)

I
(14)
p,23 = (D

(14)
1 − 2(D

(14)
3 −D(14)

4 + 3D
(14)
7 +D

(14)
14 −D

(14)
15 ))D

(14)
6 (4.50)

I
(14)
p,24 = (−2D

(14)
3 + 2D

(14)
5 + 2D

(14)
6 − 2D

(14)
8 +D

(14)
11 + 2D

(14)
17 + 2D

(14)
18 + 2D

(14)
19 )D

(14)
10

(4.51)

I
(17)
p,25 = (D

(17)
5 −D(17)

12 )(D
(17)
2 − 2D

(17)
3 +D

(17)
16 +D

(17)
17 ) (4.52)

I
(17)
p,26 = (4D

(17)
3 −D(17)

4 + 2D
(17)
7 +D

(17)
19 )D

(17)
8 (4.53)

I
(17)
p,27 = (−D(17)

2 + 2D
(17)
3 + 2D

(17)
5 +D

(17)
7 + 2D

(17)
9 − 2D

(17)
10 −D

(17)
11 − 2D

(17)
14

+D
(17)
15 + 2D

(17)
18 +D

(17)
19 )D

(17)
7 (4.54)

I
(17)
p,28 = (D

(17)
2 −D(17)

3 +D
(17)
4 −D(17)

7 +D
(17)
11 −D

(17)
13 −D

(17)
15 +D

(17)
17 −D

(17)
19 )D

(17)
11

(4.55)

I
(19)
p,29 = D

(19)
10 D

(19)
14 (4.56)

I
(19)
p,30 = (−2D

(19)
2 − 2D

(19)
3 +D

(19)
19 )D

(19)
1 (4.57)

I
(19)
p,31 = (3D

(19)
2 − 4D

(19)
3 + 4D

(19)
7 + 6D

(19)
9 − 3D

(19)
14 + 4D

(19)
17 )D

(19)
11 (4.58)

I
(30)
p,32 = (−4D

(30)
3 + 4D

(30)
4 − 4D

(30)
5 +D

(30)
11 − 4D

(30)
13 + 4D

(30)
15 )D

(30)
9 , (4.59)

where we use propagator basis D
(n)
i given in appendix B; note we also define D

(n)
19 =

(p1 + p2)2.
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The full four-loop form factor can be obtained as:

F (4) = F
(4)
P + F

(4)
NP . (4.60)

5 Numerical integration in the nonplanar sector

Although preferably one would want analytic results for the integrals that appear in the

four-loop form factor, they appear to be somewhat beyond the current state-of-the-art for

computing integrals analytically. Two promising analytic approaches are: (1) the detour

via introducing an additional scale and subsequent use of differential equations [109, 112,

113], and (2) the finite integral approach of [114]. In both approaches, the IBP reduction

seems to be the main bottleneck. For instance, the latter would also enable the use of

dimensional recurrences [79, 115], but requires the solution to the IBP problem of so-called

four-dotted integrals.

In the present work, we choose a numerical approach. While numerical integration of

the four-loop form factor integrals remains quite hard for generic numerators, we make the

surprising empirical observation that UT integrals are numerically much easier to integrate

than generic numerators of the class under study. We may offer an intuitive explanation

for this. The constant leading transcendentality criterion used to find candidate UT inte-

grals guarantees that these integrals have very mild singularity properties. An algorithm

like sector decomposition is bound to be more efficient in cases where internal singularities

are simpler. Note however that sector decomposition algorithm works in Feynman param-

eter space, whereas constant leading singularity criteria are applied in parametric form

like (3.6). Whatever the precise origin, the relative simplicity of UT integrals is a boon for

explicit computation, leading to a remarkable reduction in intermediate expression sizes

and integration times. Moreover, the obtained coefficients in the expansion appear to be

numerically much smaller than for generic integrals; this is beneficial for reducing potential

cancellation errors.

Because of the physical motivation, we will only focus on integration of the integrals in

the nonplanar sector of the form factor. We leave integration of the integrals in the colour-

planar sector to future work, mostly because all terms of the latter through to O(ε−1)

are already known: the ε−{8,6,5,4,3} poles are dictated by contributions from lower loops

according to eq. (2.2), and the cusp [4, 9, 12] and collinear [89, 90] anomalous dimensions

are already known analytically.

5.1 Mellin-Barnes representations

Mellin-Barnes (MB) representations constitute a powerful tool for evaluating Feynman

integrals [116–118]. They rely on the fact that one can factorise sums of terms at the cost

of introducing line integrals in the complex plane. The basic formula reads

1

(A1 +A2 + . . . +Am)α
=

c1+i∞∫
c1−i∞

dw1

2πi
· · ·

cm−1+i∞∫
cm−1−i∞

dwm−1

2πi
Aw1

1 · · · Awm−1

m−1 A−α−w1− ...−wm−1
m

×Γ(−w1) · · · Γ(−wm−1) Γ(α+ w1 + . . . + wm−1)

Γ(α)
. (5.1)
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The curves are usually straight lines parallel to the imaginary axis whose constant real

parts are chosen such as to separate all left from all right poles of Γ-functions. This is

achieved by choosing the real parts of all MB variables wi together with that of ε such

that the arguments of all Γ-functions have positive real parts. The poles in ε are then

extracted by analytical continuation to ε → 0, for which several algorithms exist [118–

122]. Subsequently, the terms can be Laurent-expanded about ε = 0 and integrated, which

proceeds mostly numerically with MB.m [121], but also examples of analytical evaluation of

MB integrals exist [123, 124].

To get from a loop integral to an MB representation, one first introduces Feynman

parameters, e.g. like∫
dDk1

1

k2
1 (k1 + q1)2 (k1 + q2)2 (k1 + q3)2

= Γ(4)

∫
dDk1

∫ 1

0
dx1dx2dx3dx4

× δ(1− x1 − x2 − x3 − x4)[
k2

1 +x1x2q2
1 +x1x3q2

2 +x1x4q2
3 +x2x3(q1−q2)2+x2x4(q1−q3)2+x3x4(q2−q3)2

]4 .
(5.2)

After integration over k1 the remaining terms can be factorised using eq. (5.1), and subse-

quently integrated over the xi via∫ 1

0
dx1dx2 · · · dxn xa1−1

1 xa2−1
2 · · · xan−1

n δ

(
1−

n∑
i=1

xi

)
=

Γ(a1) Γ(a2) · · · Γ(an)

Γ(a1 + a2 + . . .+ an)
. (5.3)

The procedure is then repeated until all loop momenta are integrated out. In our case

where no kinematic thresholds are present one has to obtain positive definite terms at all

stages of the calculation if q2 is space-like (we put q2 = −1 for definiteness). Moreover, all

terms in the ε expansion are real. For planar topologies this so-called loop-by-loop approach

is always applicable, and we will refer to MB representations coming exclusively from

positive definite terms as valid MB representations. However, valid MB representations

for a given loop integral are not unique, even their dimensionality can differ depending on

the order the loop momenta are integrated over.

For crossed topologies, the situation is more complicated as one encounters cases in

which the loop-by-loop approach yields polynomials in the Feynman parameters xi which

are not positive definite, even in the absence of kinematic thresholds. Consequently, the

MB integrals will be highly oscillating and hence their numerical evaluation will be difficult

to handle, although steps in this direction have been undertaken [125–128].

One way of circumventing this problem in the case of crossed topologies is to not

integrate over the loop momenta one by one, but to simultaneously integrate over all loop

momenta. This is done by means of the Symanzik graph polynomials U and F [129–132],

which at L loops are homogeneous of order L and L + 1, respectively. In the absence of

kinematic thresholds they are positive definite and hence automatically lead to valid MB

representations. The price to pay is the fact that the number of terms in U and F scales

as L!. As L increases this therefore quickly leads to MB representations that are too high-

dimensional to be integrated in practice. A partial remedy to this problem is to group the
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lengthy sum of terms xixj . . . in U and F into a short sum of products (xi+. . .)(xj+. . .) . . .,

see our example below.

To take advantage of both the loop-by-loop and the FU approach we apply a hybrid of

the two approaches here (see also [125]): to keep the dimension of the MB representation

at a manageable level, we first integrate via the loop-by-loop method over as many (say,

`) loop momenta as possible such as to not generate non-positive definite expressions.

Afterwards, we use the FU method for the remaining 4 − ` loops. This ensures that we

deal with positive definite terms at all stages of the calculation and hence automatically

obtain valid MB representations, and still keep the dimension of the resulting MB integral

moderate since the number of terms in U and F only scales as (4−`)! instead of 4!. To give

examples we look at different integral topologies from the nonplanar part of the four-loop

form factor.

In topology (24) (see figure 2) for instance, we can integrate out the box that is

attached to the external p2-line. Contrary to expectations the loop-by-loop approach fails

if one tries to integrate out next the box attached to the external p1-line or any other

loop. Consequently, the remaining three loop momenta have to be treated by means of

the FU approach. The obtained MB representation is 21-fold and hence at the edge of

what is doable in practice. We did some checks through to O(ε−4), where at most 7-fold

integrals appear in the numerical evaluation with MB.m [121]. Topology (23) with numerator[
(`3 − p1)2

]2
is even worse since we didn’t find a single loop that can be integrated over

before one is enforced to switch to the FU method. Consequently, the MB method was not

applied to this topology. In topology (25), on the other hand, one can integrate over the two

boxes attached to the external p1 and p2-lines, respectively, and switch to the FU method

afterwards. Still, the obtained MB representation is 20-fold. We use it for some checks

through to O(ε−5), where at most 5-fold integrals appear in the numerical evaluation.

One example where the hybrid method works particularly well is topology (30) with

numerator (`3 − `4 − p2)2 [(p1 − `4)2 + (`3 − `4)2 − (`3 − p1)2], i.e. I
(30)
11 . Let us therefore

give more details on this case. After shifting the loop momenta according to

`3 = p1 − k4, `5 = k3 − k1,

`4 = p1 − k3, `6 = k2, (5.4)

the numerator becomes (k3−k4−p2)2 [k2
3 + (k3−k4)2−k2

4]. We now integrate out the two

boxes parameterised by the loop momenta k2 and k1. Using eqs. (5.1)–(5.3) this introduces

eight MB parameters and we are left with the propagators

{(k4 − p1)2, (k4 + p2)2, (k3 − k4)2, k2
3, (k3 − p1)2, (k3 + p2)2, (k3 − k4 − p2)2} (5.5)

that are raised to various powers which can also depend on the MB variables. At this stage

it becomes obvious that all terms in the numerator except k2
4 can be treated as inverse

propagators, giving rise to shifted propagator powers. While in principle also k2
4 could be

treated in this way, it would introduce an additional propagator and hence longer F and

U polynomials. We therefore use the formulas in section 3.2.4 of [133] (which are based on

ideas in [120, 134]) for explicit numerator factors in case of k2
4.
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The F and U graph polynomials for this two-loop topology can now be written down,

and a crucial step consists of writing the expanded sum of terms as a short sum of products

which still happens to be positive definite. One obtains

U = x1x3 + x2x3 + x4x3 + x5x3 + x6x3 + x1x4 + x2x4 + x1x5

+ x2x5 + x1x6 + x2x6 + x1x7 + x2x7 + x4x7 + x5x7 + x6x7

= (x1 + x2) (x4 + x5 + x6) + (x3 + x7) (x4 + x5 + x6) + (x1 + x2) (x3 + x7) ,

F = x1x2x3 + x2x5x3 + x1x6x3 + x5x6x3 + x1x2x4 + x1x2x5

+ x1x2x6 + x1x5x6 + x2x5x6 + x1x2x7 + x1x4x7 + 2x1x6x7 + x5x6x7

= x2x5 (x3 + x6) + x1x2 (x4 + x5 + x6) + x1 (x4 + x6)x7

+ (x1x2 + x5x6) (x3 + x7) + x1x6 (x3 + x5 + x7) , (5.6)

and hence U and F are sums of three and five terms only, respectively. Moreover, they do

have various factors such as (x4 + x5 + x6) and (x3 + x7) in common. The factorisation of

the terms in F and U via eq. (5.1) now proceeds in several steps. The final integration over

the xi is performed by means of eq. (5.3) and requires the introduction of an additional

regulator δ in order to avoid a Γ(0) in the denominator. We choose to add δ to the

power of x4.

After application of Barnes’ lemmas the resulting MB representation is 14-fold. The

subsequent analytic continuation δ → 0 is done with MB.m [121] and the dimension is

reduced to 13. This integrand is attached to the arXiv submission of the present article.

The package MB.m is also used for most of the remaining steps: analytic continuation to

ε = 0, expansion in ε, application of Barnes’ lemmas, and numerical integration. After these

steps, at most six-fold MB integrands appear through to O(ε−2). At O(ε−1) the maximum

dimension of the integrand is seven. We use the algorithms CUHRE and VEGAS from the

CUBA library with up to 2.1 billion sampling points. The result is given in appendix A.

5.2 Sector decomposition

Sector decomposition [132, 135] regularises the ε-expansion of Feynman integrals by per-

forming a blow-up at singularities of the Feynman parameter representation of a given

integral. Sector decomposition has been implemented in several public codes, e.g. FI-

ESTA [134, 136–138] and SecDec [133, 139, 140]. For our production runs, we have used

the FIESTA code, with cross-checks in simpler cases from SecDec. After resolving the sin-

gularities, a list of remaining integrals is obtained. These could be integrated analytically

in principle, but most often these are integrated numerically. The numerical integration

is performed using mainly the VEGAS algorithm [141] as implemented in the CUBA li-

brary [142], with some cross-checks using CUHRE and DIVONNE from the same library.

For our production runs, we have typically used several 100 million sampling points per

integral in the Monte Carlo-based numerical integration algorithms. This requires large

computing resources.

In the course of computation several tricks were used to speed up computation and

to control the arising errors. The sector decomposition programs involve choices of how
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ε order −8 −7 −6 −5

result −3.8× 10−8 +4.4× 10−9 −1.2× 10−6 −1.2× 10−5

uncertainty — ±5.7× 10−7 ±1.0× 10−5 ±1.2× 10−4

ε order −4 −3 −2 −1

result +3.5× 10−6 + 0.0007 +1.60 −17.98

uncertainty ±1.5× 10−3 ± 0.0186 ±0.19 ± 3.25

Table 1. Nonplanar form factor result and errors. The prefactor 48/N2
c in (4.2) is not included.

to regularise the integrals, which are encapsulated in different strategies for resolving the

singularities. This is a feature of which the problem at hand benefits a lot since the oc-

curring integrals are complicated multivariate expressions. Whenever it finishes, FIESTA’s

“strategy X” typically leads to smallest sector counts which we will take to be a proxy for

the ease of integration. In cases where this strategy fails for one or more sectors, one can

split the computation into those sectors treated with strategy X and a remainder tackled

with “strategy S”. This can be done using the option “SectorCoefficients” in FIESTA. A

further trick to use is that of graph symmetries. These can be used to gather exponents

of several sectors into a single one, with a numerical pre-factor counting the number of

sectors related to the base sector. For choosing the base sector, one first runs FIESTA

on all sectors, selecting representatives which have the smallest sector count as a proxy

for simplicity.

Note it is very important to verify that the integral in question has the explicit graph

symmetry used; otherwise a wrong result may be the consequence. Here the UT properties

of the integrals offer some protection: if an error with respect to graph symmetries is made

during computation, the obtained final result is typically not UT and this manifests itself

for instance by a non-vanishing ε−7 coefficient. Moreover, in these cases the numerical

value of the coefficients tends to grow very fast with increasing orders of ε. In addition, if

a graph symmetry is misused one cannot rationalise the coefficients of the ε expansion as

described below.

5.3 Nonplanar cusp and collinear anomalous dimensions

We gather the numerical results for all integrals needed for the nonplanar part of the

Sudakov form factor in appendix A. When combined to give the Sudakov form factor, the

results are gathered in table 1. Errors are added in quadrature, see below for the rationale

behind this. Due to the high precision of the computation at order ε−8, there is no sensible

reported error in FIESTA. Note that in table 1 the prefactor 48/N2
c in (4.2) is not included.

As mentioned above, physics dictates that the coefficients of orders ε{−8,−7,−6,−5,−4,−3}

vanish in the final result, which is numerically indeed the case and provides a strong

consistency check of our computation. The coefficients of order ε−7 must even vanish in

each of the 23 UT integrals separately. The orders ε{−8,−6,−5,−4,−3} are in most cases non-

zero in individual integrals but cancel in the final result. As described below, the precision

of the orders ε{−8,−6,−5,−4} is good enough to translate the reported numbers into small
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rational multiples of {1, ζ2, ζ3, ζ4}. After doing so, these orders also vanish analytically in

the final result of the nonplanar form factor.

As can be seen from table 1, the first non-zero term is at order ε−2. The result

1.60 ± 0.19 has a statistical significance to deviate from zero of 8.4σ. Adding individual

uncertainties linearly to account for potential systematic effects would yield 1.60±0.58; still

significantly non-zero.7 We will argue below that there is no evidence for systematically

underestimated error bars in our calculation.

Translating the result of the order ε−2 of the nonplanar form factor into a result for

the sought-after nonplanar four-loop CAD yields for gauge group SU(Nc)

γ
(4)
cusp, NP = −3072× (1.60± 0.19)

1

N2
c

, (5.7)

where the prefactor 3072 = 2 × 24× 64 is the normalisation stemming from the permuta-

tional sum, the colour factor [42], and the denominator of (2.5), respectively. Compared

to the planar result γ
(4)
cusp,P = −1752ζ6 − 64ζ2

3 ∼ −1875, we observe that the nonplanar

CAD has the same sign. If we use Nc = 3, its value becomes γ
(4)
cusp, NP ∼ −546 ± 65, i.e.

the planar contribution is a factor of 3–4 larger.

The result at order ε−1 is also given in table 1. This contains the nonplanar four-loop

collinear anomalous dimension:

G(4)
coll, NP = −384× (−17.98± 3.25)

1

N2
c

, (5.8)

where the prefactor 384 = 2×24×8 has the similar origin as γ
(4)
cusp, NP above. Interestingly,

compared to the four-loop planar collinear AD result, G(4)
coll, P ∼ −1240 [89, 90], we observe

that the nonplanar central value result +(6904 ± 1248)/N2
c indicates the sign is different;

it is also different from the sign of the nonplanar cusp AD above. This is a new feature

comparing to all known planar results in which collinear AD always has same sign as cusp

AD.8 Note that our result is in tension with a vanishing result at the 5.5σ level. The

largest contribution to the error budget within the integrals at this order comes from I
(27)
8 ,

which contributes ∼ 1.86, followed by four integrals which contribute between 0.95 and 1

each, whereas all others are below 0.75. We mention that the linearly summed error is

obtained as −17.98± 11.89.

To improve the reported uncertainties significantly within our numerical approach

would come at a high price, both with respect to computing time and power, since the

resources required for pushing this computation through sector decomposition are fairly

large. It would certainly be interesting though to confirm the sign of the collinear AD.

5.3.1 Rationalisation

Since the used integrals pass all applied UT checks, their ε-expansion is expected to be

UT. Assuming that MZVs are sufficient and no genuine Euler sums occur, for the orders

7Note that these numbers are slightly improved compared to those in [15].
8One should also keep in mind that unlike cusp AD, collinear AD is scheme dependent, thus the sign

may change in different schemes.
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ε{−8,−6,−5,−4} it is expected that the numerical coefficients can be written as a rational

number times {1, ζ2, ζ3, ζ4}. Hence, by dividing the numerical result by the appropriate

MZV constant, a numerical result is obtained which should be expressible as a rational

number. For the case at hand, we typically have at least five to six digits available and

the found integers have on the order of three digits in numerator and denominator. This

indicates that the obtained rational numbers are reasonable, which gets supported by the

fact that their contribution in the final result of the nonplanar form factor cancels exactly.

In appendix A the results of the rationalisation are listed.

For ε{−3,−2} the UT property still holds, but at these orders there are two MZVs of

transcendentality 5 and 6 respectively. For weight 5 these could for instance be taken to be

ζ2ζ3 and ζ5, and one can attempt a solution with the PSLQ algorithm [143], for instance

through Mathematica’s command FindIntegerNullVector. The appropriate integer re-

lation then contains three unknowns: one for the numerical result, and two for the MZVs.

For integer coefficients to be reliably isolated one needs much more digits in these cases,

certainly more than 10. Since we have typically only four to five digits available at these

orders, the PSLQ algorithm is currently not feasible. Moreover, many of our numerical re-

sults were obtained using sector decomposition where the price of integration roughly scales

quadratically with increasing precision. This makes PSLQ unfeasible for the coefficients at

orders ε{−3,−2,−1} within the numerical setup employed here. It would be highly interesting

to obtain high precision numerics at these orders, or even better of course analytic results

that do not rely on PSLQ.

5.3.2 Error analysis

Since numerical integration methods are used, a thorough discussion of the errors in these

integrals is called for. Both for MB as well as for sector decomposition methods an error

is reported. As is well-known, if an efficient MB representation can be found, the error in

its integration is in general small, especially compared to sector decomposition. For the

integrals at hand typically a difference in precision of three to five digits arises. Hence, the

discussion here will focus on sector decomposition.

FIESTA employs the CUBA [142] integration library. Although we have cross-checked

some simple integrals as well as leading expansion coefficients of more complicated ones,

most of the coefficients needed for the cusp anomalous dimension at order ε−2 were obtained

using exclusively the VEGAS [141] algorithm. VEGAS employs an adaptive sampling al-

gorithm. It should be noted that the integrals under study do not have any physical

singularities, and do not have to be analytically continued, two common sources of error.

For sufficiently many evaluation points, the VEGAS error is of Gaussian type. To check

that this regime is reached, one evaluates the integrals for several evaluation points settings.

In the Gaussian regime, the error scales as 1/
√

eval points. For all integrals in the set inte-

grated here, this was reached very quickly. In rare cases involving much more complicated

integrals, it has been reported in [144] that the error in FIESTA can be underestimated. In

those cases the central value of certain coefficients changed outside the reported error with

increasing evaluation points. We have checked for this as well, and have never observed

variations outside of reported error upon increasing the number of evaluation points for the
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(a) (b)

Figure 6. Scatterplot of the relative error of FIESTA results compared to PSLQ results for

ε{−6,−5,−4} orders. (a) Plot of cases FIESTA error
IPSLQ−IFIESTA

> 0. (b) Plot of cases FIESTA error
IFIESTA−IPSLQ

> 0. A

logarithmic scale is used for the vertical axis, and all ratios larger than 200 are not shown in the

figures. We can see that all ratios are larger than unity, which suggests that the FIESTA errors are

conservative estimates. Besides, we find that the deviation of FIESTA results from PSLQ results

are both positive and negative, which indicates that there is no source of systematic errors.

integrals under study. Several simpler integrals have been computed using SecDec with the

DIVONNE and CUHRE algorithms as a further crosscheck. More cross-checks for integral

I
(21)
1 and I

(30)
16 follow from available MB results, as well as an exact result for integral I

(21)
1 .

For the leading coefficients of the individual integrals an additional cross-check is en-

abled by their UT properties: having obtained a product of a rational number times a zeta

value for the leading coefficients from the expansion (see section 5.3.1), one can use this to

obtain an estimate of the true precision. For this, we compute the ratio between FIESTA

errors and the assumed ‘true’ errors obtained by comparing to the PSLQ result at order

ε{−6,−5,−4}, namely,
FIESTA errork

Ik,PSLQ − Ik,FIESTA
, (5.9)

where k labels the 23 integrals in section 4.1. The results are plotted in figure 6. Two

panels are provided for positive and negative deviations separately. Note that for all 23

integrals, all absolute ratios are larger than one, corresponding to reported FIESTA errors

larger than the discrepancy between PSLQ result and numerical integration. Moreover, by

comparing figure 6(a) and figure 6(b), it is clear there is no definite sign of the deviation:

positive and negative deviations are about as likely. If this had been different, this might

have indicated a systematic error.

Finally, physics provides a strong cross-check of the numerics. The leading coefficient

of the nonplanar form factor should be of order ε−2, while individual integrals generically

contribute from order ε−8. Hence, in the sum there should be numerical cancellations

between the integrals to give zero within error bars for the first six orders of expansion,

down to ε−3. With the errors added in quadrature and the result for the sum of the

central value, one can compare to the exact answer, 0, for these coefficients. These results

are contained in table 1 and clearly indicate that reported errors are not underestimated,

giving further support for our error analysis.
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In total, the above analysis shows that the errors reported by FIESTA are stable and

in general conservatively estimate the errors for the form factor integrals in the present

study. This strongly indicates that the final error for CAD is not underestimated either,

and hence there is no need to manually inflate the reported uncertainty. Conservatively,

we will interpret the FIESTA reported error as the standard deviation of a Gaussian error.

For a true single standard deviation in a Gaussian error, one would expect deviations from

the true result to exceed the standard deviation of the Gaussian distribution roughly 32%

of the time, while here this never occurs. As a consequence of the error interpretation, the

obtained errors are added in quadrature. For reference, also the result of adding errors

linearly is provided, which is recommended in cases which involve a small systematic error.

However, we emphasise that there is no sign of systematic errors in the case at hand.

6 Discussion and conclusion

In this article a set of tools and techniques have been discussed for the integration of

four-loop form factor integrals, especially focussed on the nonplanar sector of the Sudakov

form factor in maximally supersymmetric Yang-Mills theory. This sector contains among

others information on the nonplanar correction to the cusp anomalous dimension. Four

loops is the first time a nonplanar correction enters into the form factor as well as into

the cusp and collinear anomalous dimensions. Although conjectures existed that the CAD

vanished generically in gauge theories, our results, first announced in [15], show this is not

the case. In this article we also present the first numerical result for the nonplanar collinear

anomalous dimension. The numerics of especially the latter result leave quite some room

for improvement. Even more interesting would be to obtain an analytic result. Besides

settling conjectures, of much wider interest is how the results reported in this article were

obtained: the tools and techniques are certainly applicable to a wider context than just

this particular computation in this particular theory.

Inspired by similar computations in the literature [106–109], an algorithm was pre-

sented to find complete sets of uniformly transcendental integrals in a given set of topolo-

gies. The algorithm is based on the conjecture that these integrals always have constant

leading singularities. Importantly, the algorithm stabilises to a result in finite time in our

current Mathematica implementation. A surprising amount of uniformly transcendental

integrals were found for each integral topology for the problem at hand. With some combi-

nation techniques, a set of integrals was obtained to express the maximally supersymmetric

form factor in. However, the number of UT integrals involved in this physical problem is

much smaller than the total number of UT integrals in each topology. This points towards

applications of these integrals beyond maximal supersymmetric Yang-Mills. Intriguingly,

the numbers obtained are comparable to the total number of IBP master integrals. It would

be very interesting to explore this further, but this will have to involve IBP-reducing the

pure, non-supersymmetric Yang-Mills form factor, which is beyond currently (publicly)

available technology.

Having obtained a suitable basis of UT master integrals to express the form factor in,

the next step is the integration of these integrals. A pleasant surprise is the observation that
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even though many integration techniques such as sector decomposition spoil UT properties

in intermediate steps, the UT integrals appear to be much easier to integrate than generic

integrals in the form factor class. Within sector decomposition, this manifests itself in

term counts which are an order of magnitude better. This in turn leads to much more

compact expressions in the integration steps which lead to much improved performance in

both speed and accuracy. Intuitively, this corresponds well to the notion that UT integrals

are inherently simple. More mathematically, the absence of higher order singularities in

the integrand in parametric form (as discussed in section 3.1) translates very likely to

less singular integrands in Feynman parameter form. This in turn should then explain

the observed much improved behaviour of sector decomposition methods. It would be

interesting to explore this further, especially a criterion which would allow one to decide

if an integral is UT in Feynman parameter form would be highly desired. Since there are

considerably fewer integrations in Feynman parameter form than in parametric form, this

is potentially even much more powerful.

Special attention is paid to the numerical integration of the form factor integrals in the

nonplanar sector. Apart from the central value, the error analysis in numerical applications

is important. Here the UT property of the integrals informs the error analysis. The

integration of leading coefficients allows one to check the error analysis by using the PSLQ

algorithm to find the exact value of the integrals. This combination of number theory

and numerical integration shows that the errors reported by FIESTA are in general very

conservative estimates. Added to knowledge of a single exact integrals and several results

obtained using Mellin-Barnes integrals, this gives comprehensive evidence for our error

analysis for the computation of the nonplanar cusp and collinear anomalous dimensions at

four loops.
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A UT integrals

A.1 UT integrals with 12 lines

For the UT integrals we use the parametrizaton in terms of loop momenta from [48] and

the normalisation used by FIESTA, i.e. we work in D = 4 − 2ε-dimensional Minkowskian

space-time and our integration measure is eεγE dD`/(iπD/2) per loop. Moreover, we set

(p1 + p2)2 = −1 and suppress the fact that the ε-expansion continues in all equations.

Below we give our numerical results as well as the PSLQ up to ε−4 order.
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Topology 21:

I
(21)
1 =

q

p1

p2

ℓ3

× [(`3 − p1)2]2

=
1

576ε8
+

ζ2

36ε6
+

151ζ3

864ε5
+

865ζ4

576ε4
+

505
216ζ2ζ3 + 5503

1440ζ5

ε3
+

44219
1152 ζ6 + 9895

2592ζ
2
3

ε2

+
89593
864 ζ3ζ4 + 3419

45 ζ2ζ5 − 169789
4032 ζ7

ε
. (A.1)

The integral I
(21)
1 is known analytically from [109]. Our numerical results obtained by MB

and FIESTA agree with the analytical one well within error bars.

I
(21)
1,MB =

0.001736111111111111

ε8
+

0.04569261296800628(1)

ε6
+

0.2100817041401606(1)

ε5

+
1.6253638839586(7)

ε4
+

8.5855125581(10)

ε3
+

44.566338023(40)

ε2
, (A.2)

I
(21)
1,FIESTA =

0.00173611

ε8
− 0.0000000004(837)

ε7
+

0.0456926(14)

ε6
+

0.210082(17)

ε5

+
1.62537(18)

ε4
+

8.5853(19)

ε3
+

44.564(20)

ε2
. (A.3)

Topology 22:

I
(22)
2 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× (`3 − p1)2 [`24 + `26 − `23 + (`3 − `4 + p1)2 + (`3 − `6 − p1)2]

=
0.00520833

ε8
− 0.000000003(130)

ε7
− 0.4340801(26)

ε6
− 2.291419(35)

ε5

− 9.56243(42)

ε4
− 51.4505(51)

ε3
− 333.021(67)

ε2
− 1705.78± 1.46

ε
, (A.4)

I
(22)
2,PSLQ =

1

192ε8
− 19ζ2

72ε6
− 61ζ3

32ε5
− 5089ζ4

576ε4
+O(ε−3) . (A.5)

Topology 23:

I
(23)
3 =

q

p1

p2

ℓ3

× [(`3 − p1)2]2

=
0.00694444

ε8
− 0.000000001(45)

ε7
− 0.45692600(98)

ε6
− 2.231590(11)

ε5

+
3.21314(10)

ε4
+

73.5027(9)

ε3
+

351.351(8)

ε2
+

664.498(633)

ε
, (A.6)

I
(23)
3,PSLQ =

1

144ε8
− 5ζ2

18ε6
− 401ζ3

216ε5
+

95ζ4

32ε4
+O(ε−3) . (A.7)
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Topology 24:

I
(24)
4 =

q

p1

p2

ℓ3

ℓ5 × (`3 − p1)2 [(q − `3 − `5)2 + (`5 + p2)2]

= − 0.00868056

ε8
+

0.00000002(34)

ε7
+

0.7425050(65)

ε6
+

2.288640(86)

ε5

− 7.37337(101)

ε4
− 78.1528(116)

ε3
− 220.386(91)

ε2
+

176.718(990)

ε
, (A.8)

I
(24)
4,PSLQ = − 5

576ε8
+

65ζ2

144ε6
+

1645ζ3

864ε5
− 109ζ4

16ε4
+O(ε−3) . (A.9)

Topology 25:

I
(25)
5 =

q

p1

p2

ℓ3
ℓ4

ℓ5

×
{[

(p1 − `5)2 + 2(`4 − `5)2 + (`3 − `4)2 − (`3 − `5)2

− (p1 − `4)2
]2 − 4 (`4 − `5)2 (p1 − `3 + `4 − `5)2

}
=

0.00347222

ε8
− 0.000000002(63)

ε7
+

0.0114231(13)

ε6
+

1.163106(20)

ε5

+
14.04762(26)

ε4
+

109.8742(34)

ε3
+

647.669(44)

ε2
+

3530.846± 1.921

ε
, (A.10)

I
(25)
5,PSLQ =

1

288ε8
+

ζ2

144ε6
+

209ζ3

216ε5
+

623ζ4

48ε4
+O(ε−3) . (A.11)

Topology 26:

I
(26)
6 =

q

p1

p2

ℓ3
ℓ4

ℓ5

ℓ6

×
{

[(`3 − `4 − `5)2 − (`3 − `4 − p1)2 − (`6 − p2)2 − `25]

× [`25 − `24 − `26 + (`4 − `6)2] + 4 `25 (`6 − p2)2

+ (`4 − `5)2 (`3 − `4 + `6 − p2)2
}

= − 0.0434028

ε8
− 0.00000002(59)

ε7
+

1.787720(6)

ε6
+

6.90626(7)

ε5

− 13.7958(8)

ε4
− 225.841(9)

ε3
− 864.635(105)

ε2
− 9.144± 2.933

ε
, (A.12)

I
(26)
6,PSLQ = − 25

576ε8
+

313ζ2

288ε6
+

1241ζ3

216ε5
− 3671ζ4

288ε4
+O(ε−3) . (A.13)

I
(26)
7 =

q

p1

p2

ℓ3
ℓ4

ℓ5

ℓ6

×
{

4 [(`4−`5)(`3−`4+`5 − p1)] [(`4−`6)(`3−`4+`6−p2)]

− `25 (`6 − p2)2 − 4 (`4 − `5)2 (`3 − `4 + `6 − p2)2

− `26 (`5 − p1)2 − (`3 − `4)2 (`5 + `6 − `4)2

− `24 (`3 − `4 + `5 + `6 − p1 − p2)2
}
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=
0.00347222

ε8
− 0.0000000013

ε7
+

0.0114231(17)

ε6
+

1.16310(3)

ε5
+

2.90880(35)

ε4

− 12.2720(43)

ε3
+

29.708(57)

ε2
+

3185.60± 2.63

ε
, (A.14)

I
(26)
7,PSLQ =

1

288ε8
+

ζ2

144ε6
+

209ζ3

216ε5
+

43ζ4

16ε4
+O(ε−3) . (A.15)

Topology 27:

I
(27)
8 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2

[
`23 − `24 − (`4 − `3 − p1)2

] [
(`3 − `4 − `5)2 + (`5 + p2)2

]
= − 0.015625

ε8
+

0.00000001(14)

ε7
+

0.3426942(17)

ε6
+

1.377357(20)

ε5

+
0.41430(24)

ε4
− 18.1972(33)

ε3
− 155.896(52)

ε2
− 1304.61(93)

ε
, (A.16)

I
(27)
8,PSLQ = − 1

64ε8
+

5ζ2

24ε6
+

55ζ3

48ε5
+

49ζ4

128ε4
+O(ε−3) . (A.17)

Topology 28:

I
(28)
9 =

q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6

× (`3 − `4 − p2)2
[
(`3 − `4)2 − (`3 − p1)2

]
= − 0.0104167

ε8
+

0.000000002(253)

ε7
+

0.554023(5)

ε6
+

2.26219(5)

ε5

− 3.56367(64)

ε4
− 60.6800(73)

ε3
− 182.180(84)

ε2
+

395.094(952)

ε
, (A.18)

I
(28)
9,PSLQ = − 1

96ε8
+

97ζ2

288ε6
+

271ζ3

144ε5
− 3793ζ4

1152ε4
+O(ε−3) . (A.19)

Topology 29:

I
(29)
10 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× 1

2

[
`23 − `24 − (`4 − `3 − p1)2

]
[`6 · (`6 − `4 + `3 − p2)]

= − 0.000868056

ε8
+

0.0000000005

ε7
− 0.00285575(22)

ε6
− 0.0090438(31)

ε5

+
0.714516(37)

ε4
+

10.2737(4)

ε3
+

76.5178(52)

ε2
+

370.489(160)

ε
, (A.20)

I
(29)
10,PSLQ = − 1

1152ε8
− ζ2

576ε6
− 13ζ3

1728ε5
+

169ζ4

256ε4
+O(ε−3) . (A.21)
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Topology 30:

I
(30)
11 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× (`3 − `4 − p2)2 [(p1 − `4)2 + (`3 − `4)2 − (`3 − p1)2]

=
0.00347222

ε8
− 0.05140419

ε6
− 0.2601674

ε5
− 1.5145009

ε4

− 17.34721164(4)

ε3
− 133.31287(3)

ε2
− 671.48(24)

ε
. (A.22)

This result was obtained with MB. FIESTA performs poorly in this topology.

I
(30)
11,PSLQ =

1

288ε8
− ζ2

32ε6
− 187ζ3

864ε5
− 403ζ4

288ε4
+O(ε−3) . (A.23)

A.2 UT integrals with 11 lines

Topology 27:

I
(27)
12 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2
(`3 − `4)2

[
2 (`4 − p2)2 + (`6 − p1)2

−(`4 − `6)2 − `24 + `25 + 2 (p1 + p2)2
]

=
0.0303819

ε8
− 0.00000002(87)

ε7
− 0.625418(2)

ε6
− 2.824274(22)

ε5
− 7.64568(40)

ε4

− 22.7148(82)

ε3
+

0.160(47)

ε2
+

1354.58(99)

ε
. (A.24)

This result is obtained by combining FIESTA and MB results.

I
(27)
12,PSLQ =

35

1152ε8
− 73ζ2

192ε6
− 1015ζ3

432ε5
− 4069ζ4

576ε4
+O(ε−3) . (A.25)

Topology 28:

I
(28)
13 =

q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6

× 1

2
(`3−`4)2

[
2 (`3−`4−p2)2+(`6−p1)2−(`4−`6)2+`24

]
= − 0.0112847

ε8
+

0.000000001(95)

ε7
+

0.299858(2)

ε6
+

0.848669(24)

ε5

+
0.86617(24)

ε4
+

10.3884(22)

ε3
+

107.036(19)

ε2
+

184.841± 1.038

ε
, (A.26)

I
(28)
13,PSLQ = − 13

1152ε8
+

35ζ2

192ε6
+

305ζ3

432ε5
+

461ζ4

576ε4
+O(ε−3) . (A.27)
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Topology 29:

I
(29)
14 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× (`4 − p1)2
[
(`3 − `4 + `6)2 + (`6 − p2)2 − `26

]
= − 0.03756430(3)

ε5
+

0.0761009(7)

ε4
− 0.258654(13)

ε3

+
1.68939(17)

ε2
+

81.404(26)

ε
, (A.28)

I
(29)
14,PSLQ = − ζ3

32ε5
+

9ζ4

128ε4
+O(ε−3) . (A.29)

I
(29)
15 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× 1

2
(`3 − p1 − p2)2

[
(`4 − `6)2 − (`4 − p2)2

− (`6 − p1)2 − (p1 + p2)2
]

= − 0.0555556

ε8
+

0.000000003(192)

ε7
+

1.816280(3)

ε6
+

7.29303(4)

ε5

− 2.67392(45)

ε4
− 134.463(5)

ε3
− 642.326(56)

ε2
− 1530.04(97)

ε
, (A.30)

I
(29)
15,PSLQ = − 1

18ε8
+

53ζ2

48ε6
+

2621ζ3

432ε5
− 1423ζ4

576ε4
+O(ε−3) . (A.31)

Topology 30:

I
(30)
16 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× (`3 − p1 − p2)2 (`5 + p2)2

=
0.036458333

ε8
− 0.5997155452(1)

ε6
− 2.2622043108(1)

ε5
− 0.828653725(2)

ε4

+
19.82059(28)

ε3
+

94.8794(349)

ε2
+

232.242(541)

ε
, (A.32)

I
(30)
16,PSLQ =

7

192ε8
− 35ζ2

96ε6
− 271ζ3

144ε5
− 49ζ4

64ε4
+O(ε−3) . (A.33)

I
(30)
17 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2
(`4 − p1)2

[
2 (`5 + p2)2 − (`5 + p2 + `4 − `3)2

]
= − 0.03756430(4)

ε5
+

0.1042870(7)

ε4
+

1.64150(1)

ε3

+
8.56434(14)

ε2
+

35.4679(216)

ε
, (A.34)

I
(30)
17,PSLQ = − ζ3

32ε5
+

37ζ4

384ε4
+O(ε−3) . (A.35)

I
(30)
18 =

q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2
(`3 − `4)2

[
2 (`6 − `4 + p1)2 − 3 `26

]
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=
0.00347222

ε8
− 0.0000000002(316)

ε7
+

0.0628273(8)

ε6
− 0.001391(11)

ε5

− 4.07561(14)

ε4
− 35.6750(18)

ε3
− 211.233(25)

ε2
− 1162.74(39)

ε
, (A.36)

I
(30)
18,PSLQ =

1

288ε8
+

11ζ2

288ε6
− ζ3

864ε5
− 241ζ4

64ε4
+O(ε−3) . (A.37)

A.3 UT integrals with 10 lines

Topology 22:

I
(22)
19 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× (`3 − `4)2 (p1 − `3 + `6)2

=
0.00173611111

ε8
+

0.165635722(1)

ε6
+

0.74850303(1)

ε5
+

4.1564218626(4)

ε4

+
36.5261(6)

ε3
+

315.366(13)

ε2
+

2180.03(19)

ε
, (A.38)

I
(22)
19,PSLQ =

1

576ε8
+

29ζ2

288ε6
+

269ζ3

432ε5
+

553ζ4

144ε4
+O(ε−3) . (A.39)

I
(22)
20 =

q

p1

p2

ℓ3

ℓ4

ℓ6

× `26 (p1 − `4)2 =
1.34678628(2)

ε2
− 6.89677(9)

ε
. (A.40)

Topology 24:

I
(24)
21 =

q

p1

p2

ℓ3

ℓ5 × (p1 − `3 − `5)2 (`3 − p1 − p2)2

=
0.00868056

ε8
− 0.0000000009(316)

ε7
+

0.211328(1)

ε6
+

0.637202(14)

ε5

− 4.06623(11)

ε4
− 48.3099(8)

ε3
− 242.796(6)

ε2
− 819.895(471)

ε
, (A.41)

I
(24)
21,PSLQ =

5

576ε8
+

37ζ2

288ε6
+

229ζ3

432ε5
− 541ζ4

144ε4
+O(ε−3) . (A.42)

I
(24)
22 =

q

p1

p2

ℓ3

ℓ5 × `25 (`3 − p1 − p2)2

=
0.00694444

ε8
− 0.000000001(32)

ε7
− 0.0913852(12)

ε6
− 1.46362(1)

ε5

− 11.7515(1)

ε4
− 66.0916(9)

ε3
− 236.916(8)

ε2
− 59.966(634)

ε
, (A.43)

I
(24)
22,PSLQ =

1

144ε8
− ζ2

18ε6
− 263ζ3

216ε5
− 3127ζ4

288ε4
+O(ε−3) . (A.44)
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Topology 28:

I
(28)
23 =

q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6

× (`4 − p1)2 (`3 − `4 + `5 − p2)2

=
0.6764520(3)

ε4
+

2.779140(4)

ε3
+

3.67317(5)

ε2
− 26.2248(38)

ε
, (A.45)

I
(28)
23,PSLQ =

5ζ4

8ε4
+O(ε−3) . (A.46)

B Basis of propagators and numerators

This appendix contains the basis of 12 propagators and 6 irreducible numerators, which

are used in section 4.2. The numbering of the equations corresponds to the topologies

in figure 1–2. In each case, the first twelve entries parametrise the twelve propagators of

the respective integral and the last six entries the chosen numerators. We have defined

q = p1 + p2.

{l6, l5, l4, l3, l6 − l5, l4 − l3, p1 − l6, l5 − l4,
− l6 + q, −l4 + q, −l3 + q, −l5 + q,

l3 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l5 − p2} , (B.1)

{l6, l5, l4, l3, l5 − l4, l6 − l5, p1 − l6, l3 − l4,
− l3 + q, −l6 + q, −l5 + q, −l3 + l4 − l5 + q,

l3 − l5, l3 − l6, l4 − l6, l4 − p1, l5 − p2, l3 − p2} , (B.2)

{l6, l5, l4, l3, l4 − l3, l4 − l5, l6 − l5, p1 − l6,
− l4 + q, −l6 + q, −l3 + q, −l4 + l5 − l6 + q,

l5 − p1, l3 − p2, l4 − p2, l5 − p2, l3 − l5, l3 − l6} , (B.3)

{l6, l5, l4, l3, p1 − l6, l4 − l3, l5 − l6, l5 − l4,
− l5 + l6 + p2, −l5 + q, −l3 + q, −l4 + q,

l3 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l6 − p2} , (B.4)

{l6, l5, l4, l3, l3 − l4, l5 − l4, p1 − l6, l5 − l6,
− l5 + q, −l5 + l6 + p2, −l3 + q, −l3 + l4 − l5 + q,

l3 − p2, l3 − l6, l4 − l6, l4 − p1, l4 − p2, l6 − p2} , (B.5)

{l6, l5, l4, l3, p1 − l5, l4 − l5, l4 − l3, p2 − l6,
− l3 + q, −l4 + q, −l4 − l6 + q, −l5 − l6 + q,

l3 − l5, l3 − l6, l4 − l6, l5 − l6, l3 − p2, l4 − p2} , (B.6)
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{l6, l5, l4, l3, p1 − l5, l4 − l5, l4 − l3, p2 − l6,
− l4 + q, −l4 + l5 + l6, −l3 + q, −l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l3 − p2, l4 − p2, l5 − p2} , (B.7)

{l6, l5, l4, l3, p2 − l6, l4 − l5, l4 − l3, p1 − l5,
− l4 + q, −l3 + q, −l4 − l6 + q, l4 − l5 + l6 − p2,

l3 − l5, l3 − l6, l4 − l6, l5 − l6, l3 − p2, l5 − p2} , (B.8)

{l6, l5, l4, l3, l4 − l3, p1 − l5, l4 − l5, −l5 + q,

− l3 + q, −l4 − l6 + q, l5 + l6 − q, −l3 − l6 + q,

l3 − l5, l3 − p2, l4 − p2, l4 − l6, l5 − l6, l6 − p2} , (B.9)

{l6, l5, l4, l3, l4 − l5, p1 − l5, l3 − l4, l3 − l4 + l6,

− l3 + q, −l5 + q, −l3 − l6 + q, l3 − l4 + l5 + l6 − q,
l5 − l6, p2 − l6, l3 − l5, l4 − p2, l3 − p2, l4 − l6} , (B.10)

{l6, l5, l4, l3, l4 − l5, p1 − l5, l4 − l3, −l3 + q,

− l5 + q, l5 + l6 − q, −l3 − l6 + q, l3 − l4 + l5 + l6 − q,
l3 − l5, l3 − p2, l4 − p1, l4 − p2, l5 − l6, l6 − p2} , (B.11)

{l6, l5, l4, l3, p2 − l6, p1 − l5, l3 − l4, l5 − l4,
− l3 + q, −l4 + l5 + l6, −l5 − l6 + q, −l3 + l4 − l5 − l6 + q,

l3 − l6, l5 − p2, l3 − p2, l4 − p1, l4 − p2, l6 − p1} , (B.12)

{l6, l5, l4, l3, l3 − l4, p2 − l6, p1 − l4, l6 − l5,
− l3 + q, −l4 − l6 + q, −l3 − l5 + q, −l4 − l5 + q,

l3 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.13)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l3 − l4, l6 − l5,
− l3 + l4 + l5, −l3 + q, −l4 − l5 + q, −l4 − l6 + q,

l4 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l5 − p2} , (B.14)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l3 − l4, l5 − l6,
− l3 + q, −l4 − l5 + l6 + p1, −l3 − l5 + q, −l4 − l5 + q,

l3 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.15)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l6 − l5, l3 − l4,
− l3 + q, l3 − l4 + l5 − l6, −l3 − l5 + q, −l4 − l6 + q,

l3 − l6, l3 − p2, l4 − l5, l4 − p2, l5 − p1, l6 − p1} , (B.16)
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{l6, l5, l4, l3, p2 − l6, l5 − l4, p1 − l5, l4 − l3,
− l3 + q, −l5 − l6 + q, −l3 + l4 − l5 + q, −l3 + l4 − l5 − l6 + q,

l3 − p2, l4 − l6, l5 − p2, l4 − p1, l4 − p2, l6 − p1} , (B.17)

{l6, l5, l4, l3, p1 − l5, p2 − l6, l3 − l4, l5 − l4,
l3 − l4 − l6, −l3 + q, −l3 + l4 − l5 + q, −l3 + l4 − l5 + l6 + p1,

l3 − p2, l3 − l5, l4 − l6, l4 − p2, l5 − p2, l6 − p1} , (B.18)

{l6, l5, l4, l3, p2 − l6, p1 − l5, l4 − l5, l3 − l4,
− l4 + l5 + l6, −l3 + q, −l3 + l5 + l6, −l5 − l6 + q,

l3 − l6, l5 − l6, l4 − p1, l3 − p2, l4 − p2, l5 − p2} , (B.19)

{l6, l5, l4, l3, p2 − l6, l4 − l3, p1 − l5, l5 − l4,
− l3 + l5 + l6, −l3 + q, −l3 + l4 + l6, −l5 − l6 + q,

l4 − l6, l5 − l6, l4 − p1, l3 − p2, l4 − p2, l5 − p2} , (B.20)

{l6, l5, l4, l3, p1 − l4, l3 − l4, p2 − l6, l5 + l6,

− l4 − l5 + p1, −l3 + q, −l3 + l6 + p1, −l3 − l5 + p1,

l3 − p2, l4 − p2, l5 − p2, l6 − p1, l4 − l6, l3 − l5} , (B.21)

{l6, l5, l4, l3, l3 − l4, l5 + l6, p2 − l6, p1 − l4,
− l3 + l6 + p1, −l3 + q, −l4 − l5 + p1, −l3 + l4 + l5 + l6,

l3 − l5, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.22)

{l6, l5, l4, l3, l6 − p2, p1 − l4, l6 − l5, l3 − l4,
− l3 + q, l3 − l4 − l5, −l3 + l6 + p1, −l3 + l5 + p1,

l3 − p2, l4 − p2, l5 − p1, l6 − p1, l5 − p2, l4 − l6} , (B.23)

{l6, l5, l4, l3, p2 − l6, l5 + l6, l3 − l4, p1 − l4,
− l3 − l5 + p1, −l4 − l5 + p1, −l3 + q, −l3 − l5 − l6 + q,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.24)

{l6, l5, l4, l3, p1 − l5, l5 − l4, p2 − l6, l3 − l4,
− l4 + l5 + l6, −l3 + q, −l3 + l4 − l5 + p1, −l3 + l4 − l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l4 − p1, l4 − p2, l5 − p2} , (B.25)

{l6, l5, l4, l3, l5 − l4, l3 − l4, p1 − l5, p2 − l6,
− l4 + l5 + l6, −l3 + q, l3 − l4 + l6 − p2, −l3 + l4 − l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l4 − p1, l4 − p2, l5 − p2} , (B.26)
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{l6, l5, l4, l3, l5 + l6, p2 − l6, p1 − l4, l3 − l4,
− l4 − l5 + p1, −l3 + q, −l3 + l4 + l5 + p2, −l3 + l4 + l5 + l6,

l4 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.27)

{l6, l5, l4, l3, l3 − l4, p1 − l4, p2 − l6, l5 − l6,
− l3 + q, l3 − l4 + l5 − p2, −l3 − l5 + q, −l3 + l4 − l6 + p2,

l3 − p2, l4 − l5, l4 − l6, l4 − p2, l5 − p2, l6 − p1} , (B.28)

{l6, l5, l4, l3, p1 − l4, l4 − l3, p2 − l6, l5 + l6,

− l4 − l5 + p1, −l3 + q, −l3 + l4 − l6 + p2, −l3 − l5 − l6 + q,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1} , (B.29)

{l6, l5, l4, l3, l3 − l4, l5 + l6, p2 − l6, p1 − l4,
− l3 + q, −l4 − l5 + p1, −l3 + l4 + l5 + p2, −l3 + l4 − l6 + p2,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1} . (B.30)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.-N. Yang and R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance,

Phys. Rev. 96 (1954) 191 [INSPIRE].

[2] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[3] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461

[INSPIRE].

[4] N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech.

0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

[5] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, A semiclassical limit of the gauge/string

correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051] [INSPIRE].

[6] S. Frolov and A.A. Tseytlin, Semiclassical quantization of rotating superstring in

AdS5 × S5, JHEP 06 (2002) 007 [hep-th/0204226] [INSPIRE].

[7] M. Kruczenski, A note on twist two operators in N = 4 SYM and Wilson loops in

Minkowski signature, JHEP 12 (2002) 024 [hep-th/0210115] [INSPIRE].

[8] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys.

Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

[9] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar

amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRev.96.191
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,96,191%22
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/0550-3213(74)90154-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B72,461%22
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1016/S0550-3213(02)00373-5
https://arxiv.org/abs/hep-th/0204051
https://inspirehep.net/search?p=find+EPRINT+hep-th/0204051
https://doi.org/10.1088/1126-6708/2002/06/007
https://arxiv.org/abs/hep-th/0204226
https://inspirehep.net/search?p=find+EPRINT+hep-th/0204226
https://doi.org/10.1088/1126-6708/2002/12/024
https://arxiv.org/abs/hep-th/0210115
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210115
http://dx.doi.org/10.1016/j.physletb.2004.05.078
http://dx.doi.org/10.1016/j.physletb.2004.05.078
https://arxiv.org/abs/hep-th/0404092
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404092
http://dx.doi.org/10.1103/PhysRevD.75.085010
https://arxiv.org/abs/hep-th/0610248
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610248


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[10] F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from

obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [INSPIRE].

[11] R. Roiban and A.A. Tseytlin, Strong-coupling expansion of cusp anomaly from quantum

superstring, JHEP 11 (2007) 016 [arXiv:0709.0681] [INSPIRE].

[12] J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in N = 4 super

Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013)

147 [arXiv:1304.6418] [INSPIRE].

[13] L.F. Alday and A. Bissi, Loop Corrections to Supergravity on AdS5 × S5, Phys. Rev. Lett.

119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].

[14] F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Quantum gravity from conformal field

theory, arXiv:1706.02822 [INSPIRE].

[15] R.H. Boels, T. Huber and G. Yang, Four-loop nonplanar cusp anomalous dimension in

N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 201601

[arXiv:1705.03444] [INSPIRE].

[16] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math.

Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

[17] G.P. Korchemsky and A.V. Radyushkin, Loop space formalism and renormalization group

for the infrared asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].

[18] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory

amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126]

[INSPIRE].

[19] G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton

distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

[20] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

[21] L.J. Dixon, Matter dependence of the three-loop soft anomalous dimension matrix, Phys.

Rev. D 79 (2009) 091501 [arXiv:0901.3414] [INSPIRE].

[22] T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons,

Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021]

[INSPIRE].

[23] L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP

02 (2010) 081 [arXiv:0910.3653] [INSPIRE].

[24] V. Ahrens, M. Neubert and L. Vernazza, Structure of infrared singularities of gauge-theory

amplitudes at three and four loops, JHEP 09 (2012) 138 [arXiv:1208.4847] [INSPIRE].

[25] J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation, Nucl. Phys. B 246 (1984)

231 [INSPIRE].

[26] L.F. Alday and J.M. Maldacena, Comments on operators with large spin, JHEP 11 (2007)

019 [arXiv:0708.0672] [INSPIRE].

[27] A. Armoni, Anomalous dimensions from a spinning D5-brane, JHEP 11 (2006) 009

[hep-th/0608026] [INSPIRE].

[28] G.P. Korchemsky, Instanton effects in correlation functions on the light-cone, JHEP 12

(2017) 093 [arXiv:1704.00448] [INSPIRE].

– 38 –

http://dx.doi.org/10.1103/PhysRevD.75.105011
https://arxiv.org/abs/hep-th/0612309
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612309
https://doi.org/10.1088/1126-6708/2007/11/016
https://arxiv.org/abs/0709.0681
https://inspirehep.net/search?p=find+EPRINT+arXiv:0709.0681
https://doi.org/10.1007/JHEP09(2013)147
https://doi.org/10.1007/JHEP09(2013)147
https://arxiv.org/abs/1304.6418
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6418
http://dx.doi.org/10.1103/PhysRevLett.119.171601
http://dx.doi.org/10.1103/PhysRevLett.119.171601
https://arxiv.org/abs/1706.02388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02388
https://arxiv.org/abs/1706.02822
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.02822
http://dx.doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03444
http://dx.doi.org/10.1007/s00220-004-1187-3
http://dx.doi.org/10.1007/s00220-004-1187-3
https://arxiv.org/abs/hep-th/0312171
https://inspirehep.net/search?p=find+EPRINT+hep-th/0312171
http://dx.doi.org/10.1016/0370-2693(86)91439-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B171,459%22
https://doi.org/10.1088/1126-6708/2009/06/081
https://arxiv.org/abs/0903.1126
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1126
http://dx.doi.org/10.1142/S0217732389001453
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A4,1257%22
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1091
http://dx.doi.org/10.1103/PhysRevD.79.091501
http://dx.doi.org/10.1103/PhysRevD.79.091501
https://arxiv.org/abs/0901.3414
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3414
http://dx.doi.org/10.1103/PhysRevD.79.125004
https://arxiv.org/abs/0904.1021
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1021
https://doi.org/10.1007/JHEP02(2010)081
https://doi.org/10.1007/JHEP02(2010)081
https://arxiv.org/abs/0910.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3653
https://doi.org/10.1007/JHEP09(2012)138
https://arxiv.org/abs/1208.4847
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4847
http://dx.doi.org/10.1016/0550-3213(84)90294-3
http://dx.doi.org/10.1016/0550-3213(84)90294-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B246,231%22
https://doi.org/10.1088/1126-6708/2007/11/019
https://doi.org/10.1088/1126-6708/2007/11/019
https://arxiv.org/abs/0708.0672
https://inspirehep.net/search?p=find+EPRINT+arXiv:0708.0672
https://doi.org/10.1088/1126-6708/2006/11/009
https://arxiv.org/abs/hep-th/0608026
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608026
https://doi.org/10.1007/JHEP12(2017)093
https://doi.org/10.1007/JHEP12(2017)093
https://arxiv.org/abs/1704.00448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.00448


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[29] A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation in the cusp

anomalous dimension at small angle, JHEP 10 (2017) 052 [arXiv:1708.01221] [INSPIRE].

[30] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-loop non-singlet splitting

functions in the planar limit and beyond, JHEP 10 (2017) 041 [arXiv:1707.08315]

[INSPIRE].

[31] W.L. van Neerven, Infrared behavior of on-shell form-factors in a N = 4 Supersymmetric

Yang-Mills field theory, Z. Phys. C 30 (1986) 595 [INSPIRE].

[32] A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super

Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

[33] L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02

(2011) 063 [arXiv:1011.2440] [INSPIRE].

[34] A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of super

form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].

[35] L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV form factors in superspace for \ = 4

SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].

[36] J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4

SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057]

[INSPIRE].

[37] T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super

Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].

[38] A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM,

JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].

[39] L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP

01 (2013) 049 [arXiv:1203.2596] [INSPIRE].

[40] O.T. Engelund and R. Roiban, Correlation functions of local composite operators from

generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].

[41] H. Johansson, D.A. Kosower and K.J. Larsen, Two-loop maximal unitarity with external

masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].

[42] R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic duality for form

factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].

[43] B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS

operators in N = 4 super Yang-Mills, JHEP 04 (2014) 083 [arXiv:1402.1300] [INSPIRE].

[44] A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders,

JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].

[45] L.V. Bork, On form factors in N = 4 SYM theory and polytopes, JHEP 12 (2014) 111

[arXiv:1407.5568] [INSPIRE].

[46] L.V. Bork and A.I. Onishchenko, On soft theorems and form factors in N = 4 SYM theory,

JHEP 12 (2015) 030 [arXiv:1506.07551] [INSPIRE].

[47] R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians

and integrability for form factors, JHEP 01 (2016) 182 [arXiv:1506.08192] [INSPIRE].

[48] R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor,

Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].

– 39 –

https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.01221
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08315
http://dx.doi.org/10.1007/BF01571808
https://inspirehep.net/search?p=find+%22Z.Phys,C30,595%22
https://doi.org/10.1007/JHEP01(2011)134
https://arxiv.org/abs/1011.1899
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1899
https://doi.org/10.1007/JHEP02(2011)063
https://doi.org/10.1007/JHEP02(2011)063
https://arxiv.org/abs/1011.2440
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2440
https://doi.org/10.1007/JHEP10(2011)046
https://arxiv.org/abs/1107.5067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5067
https://doi.org/10.1007/JHEP10(2011)133
https://arxiv.org/abs/1107.5551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5551
https://doi.org/10.1007/JHEP12(2011)024
https://arxiv.org/abs/1109.5057
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5057
https://doi.org/10.1007/JHEP03(2012)101
https://arxiv.org/abs/1112.4524
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4524
https://doi.org/10.1007/JHEP05(2012)082
https://arxiv.org/abs/1201.4170
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4170
https://doi.org/10.1007/JHEP01(2013)049
https://doi.org/10.1007/JHEP01(2013)049
https://arxiv.org/abs/1203.2596
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2596
https://doi.org/10.1007/JHEP03(2013)172
https://arxiv.org/abs/1209.0227
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0227
http://dx.doi.org/10.1103/PhysRevD.87.025030
https://arxiv.org/abs/1208.1754
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1754
https://doi.org/10.1007/JHEP02(2013)063
https://arxiv.org/abs/1211.7028
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.7028
https://doi.org/10.1007/JHEP04(2014)083
https://arxiv.org/abs/1402.1300
https://inspirehep.net/search?p=find+EPRINT+arXiv:1402.1300
https://doi.org/10.1007/JHEP08(2014)100
https://arxiv.org/abs/1406.1443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1443
https://doi.org/10.1007/JHEP12(2014)111
https://arxiv.org/abs/1407.5568
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5568
https://doi.org/10.1007/JHEP12(2015)030
https://arxiv.org/abs/1506.07551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07551
https://doi.org/10.1007/JHEP01(2016)182
https://arxiv.org/abs/1506.08192
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08192
http://dx.doi.org/10.1016/j.nuclphysb.2015.11.016
https://arxiv.org/abs/1508.03717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.03717


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[49] R. Huang, Q. Jin and B. Feng, Form factor and boundary contribution of amplitude, JHEP

06 (2016) 072 [arXiv:1601.06612] [INSPIRE].

[50] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite operators in the twistor

formulation of N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016)

011601 [arXiv:1603.04471] [INSPIRE].

[51] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in

N = 4 SYM from twistor space, JHEP 06 (2016) 162 [arXiv:1604.00012] [INSPIRE].

[52] D. Chicherin and E. Sokatchev, Composite operators and form factors in N = 4 SYM, J.

Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].

[53] L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q2 = 0 in N = 4

SYM theory, JHEP 12 (2016) 076 [arXiv:1607.00503] [INSPIRE].

[54] S. He and Y. Zhang, Connected formulas for amplitudes in standard model, JHEP 03

(2017) 093 [arXiv:1607.02843] [INSPIRE].

[55] A. Brandhuber, E. Hughes, R. Panerai, B. Spence and G. Travaglini, The connected

prescription for form factors in twistor space, JHEP 11 (2016) 143 [arXiv:1608.03277]

[INSPIRE].

[56] S. He and Z. Liu, A note on connected formula for form factors, JHEP 12 (2016) 006

[arXiv:1608.04306] [INSPIRE].

[57] G. Yang, Color-kinematics duality and Sudakov form factor at five loops for N = 4

supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 271602 [arXiv:1610.02394]

[INSPIRE].

[58] L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, On form factors and correlation

functions in twistor space, JHEP 03 (2017) 131 [arXiv:1611.08599] [INSPIRE].

[59] D. Chicherin, P. Heslop, G.P. Korchemsky and E. Sokatchev, Wilson loop form factors: a

new duality, arXiv:1612.05197 [INSPIRE].

[60] L.V. Bork and A.I. Onishchenko, Four dimensional ambitwistor strings and form factors of

local and Wilson line operators, arXiv:1704.04758 [INSPIRE].

[61] D. Meidinger, D. Nandan, B. Penante and C. Wen, A note on NMHV form factors from the

Graßmannian and the twistor string, JHEP 09 (2017) 024 [arXiv:1707.00443] [INSPIRE].

[62] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[63] J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11

(2010) 104 [arXiv:1009.1139] [INSPIRE].

[64] Z. Gao and G. Yang, Y-system for form factors at strong coupling in AdS5 and with

multi-operator insertions in AdS3, JHEP 06 (2013) 105 [arXiv:1303.2668] [INSPIRE].

[65] M. Wilhelm, Amplitudes, form factors and the dilatation operator in N = 4 SYM theory,

JHEP 02 (2015) 149 [arXiv:1410.6309] [INSPIRE].

[66] D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross

sections of non-protected operators in N = 4 SYM, JHEP 06 (2015) 156

[arXiv:1410.8485] [INSPIRE].

[67] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the

two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012

[arXiv:1504.06323] [INSPIRE].

– 40 –

https://doi.org/10.1007/JHEP06(2016)072
https://doi.org/10.1007/JHEP06(2016)072
https://arxiv.org/abs/1601.06612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06612
http://dx.doi.org/10.1103/PhysRevLett.117.011601
http://dx.doi.org/10.1103/PhysRevLett.117.011601
https://arxiv.org/abs/1603.04471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04471
https://doi.org/10.1007/JHEP06(2016)162
https://arxiv.org/abs/1604.00012
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00012
http://dx.doi.org/10.1088/1751-8121/aa72fe
http://dx.doi.org/10.1088/1751-8121/aa72fe
https://arxiv.org/abs/1605.01386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.01386
https://doi.org/10.1007/JHEP12(2016)076
https://arxiv.org/abs/1607.00503
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00503
https://doi.org/10.1007/JHEP03(2017)093
https://doi.org/10.1007/JHEP03(2017)093
https://arxiv.org/abs/1607.02843
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.02843
https://doi.org/10.1007/JHEP11(2016)143
https://arxiv.org/abs/1608.03277
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.03277
https://doi.org/10.1007/JHEP12(2016)006
https://arxiv.org/abs/1608.04306
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04306
http://dx.doi.org/10.1103/PhysRevLett.117.271602
https://arxiv.org/abs/1610.02394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.02394
https://doi.org/10.1007/JHEP03(2017)131
https://arxiv.org/abs/1611.08599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.08599
https://arxiv.org/abs/1612.05197
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05197
https://arxiv.org/abs/1704.04758
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.04758
https://doi.org/10.1007/JHEP09(2017)024
https://arxiv.org/abs/1707.00443
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.00443
https://doi.org/10.1088/1126-6708/2007/11/068
https://arxiv.org/abs/0710.1060
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
https://doi.org/10.1007/JHEP11(2010)104
https://doi.org/10.1007/JHEP11(2010)104
https://arxiv.org/abs/1009.1139
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1139
https://doi.org/10.1007/JHEP06(2013)105
https://arxiv.org/abs/1303.2668
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.2668
https://doi.org/10.1007/JHEP02(2015)149
https://arxiv.org/abs/1410.6309
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6309
https://doi.org/10.1007/JHEP06(2015)156
https://arxiv.org/abs/1410.8485
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8485
https://doi.org/10.1007/JHEP10(2015)012
https://arxiv.org/abs/1504.06323
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06323


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[68] S. Caron-Huot and M. Wilhelm, Renormalization group coefficients and the S-matrix,

JHEP 12 (2016) 010 [arXiv:1607.06448] [INSPIRE].

[69] A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini and D. Young, The SU(2|3)

dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].

[70] T. Ahmed et al., Konishi form factor at three loops in N = 4 supersymmetric Yang-Mills

theory, Phys. Rev. D 95 (2017) 085019 [arXiv:1610.05317] [INSPIRE].

[71] F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and

Maximal Transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].

[72] P. Banerjee, P.K. Dhani, M. Mahakhud, V. Ravindran and S. Seth, Finite remainders of the

Konishi at two loops in N = 4 SYM, JHEP 05 (2017) 085 [arXiv:1612.00885] [INSPIRE].

[73] A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from

N = 4 super Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 161601 [arXiv:1707.09897]

[INSPIRE].

[74] M. Wilhelm, Form factors and the dilatation operator in N = 4 super Yang-Mills theory

and its deformations, Ph.D. thesis, Humboldt University, Berlin, Germany (2016),

arXiv:1603.01145 [INSPIRE].

[75] B. Penante, On-shell methods for off-shell quantities in N = 4 Super Yang-Mills: from

scattering amplitudes to form factors and the dilatation operator, Ph.D. Thesis, Queen

Mary, University of London, London, U.K. (2016), arXiv:1608.01634 [INSPIRE].

[76] J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple Zeta value data mine,

Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [INSPIRE].

[77] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4

supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004)

405] [hep-ph/0208220] [INSPIRE].

[78] P.A. Baikov et al., Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009)

212002 [arXiv:0902.3519] [INSPIRE].

[79] R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form

factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].

[80] T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the

quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094

[arXiv:1004.3653] [INSPIRE].

[81] T. Gehrmann et al., The quark and gluon form factors to three loops in QCD through to

O(ε2), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].

[82] A. von Manteuffel, E. Panzer and R.M. Schabinger, On the computation of form factors in

massless QCD with finite master integrals, Phys. Rev. D 93 (2016) 125014

[arXiv:1510.06758] [INSPIRE].

[83] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005)

085001 [hep-th/0505205] [INSPIRE].

[84] A.H. Mueller, On the asymptotic behavior of the Sudakov Form-factor, Phys. Rev. D 20

(1979) 2037 [INSPIRE].

[85] J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22

(1980) 1478 [INSPIRE].

– 41 –

https://doi.org/10.1007/JHEP12(2016)010
https://arxiv.org/abs/1607.06448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06448
https://doi.org/10.1007/JHEP08(2016)134
https://arxiv.org/abs/1606.08682
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.08682
http://dx.doi.org/10.1103/PhysRevD.95.085019
https://arxiv.org/abs/1610.05317
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.05317
https://doi.org/10.1007/JHEP12(2016)090
https://arxiv.org/abs/1610.06567
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.06567
https://doi.org/10.1007/JHEP05(2017)085
https://arxiv.org/abs/1612.00885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00885
http://dx.doi.org/10.1103/PhysRevLett.119.161601
https://arxiv.org/abs/1707.09897
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.09897
https://arxiv.org/abs/1603.01145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.01145
https://arxiv.org/abs/1608.01634
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01634
http://dx.doi.org/10.1016/j.cpc.2009.11.007
https://arxiv.org/abs/0907.2557
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2557
http://dx.doi.org/10.1016/S0550-3213(03)00264-5
https://arxiv.org/abs/hep-ph/0208220
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0208220
http://dx.doi.org/10.1103/PhysRevLett.102.212002
http://dx.doi.org/10.1103/PhysRevLett.102.212002
https://arxiv.org/abs/0902.3519
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3519
https://doi.org/10.1007/JHEP04(2010)020
https://arxiv.org/abs/1001.2887
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2887
https://doi.org/10.1007/JHEP06(2010)094
https://arxiv.org/abs/1004.3653
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3653
https://doi.org/10.1007/JHEP11(2010)102
https://arxiv.org/abs/1010.4478
https://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4478
http://dx.doi.org/10.1103/PhysRevD.93.125014
https://arxiv.org/abs/1510.06758
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.06758
http://dx.doi.org/10.1103/PhysRevD.72.085001
http://dx.doi.org/10.1103/PhysRevD.72.085001
https://arxiv.org/abs/hep-th/0505205
https://inspirehep.net/search?p=find+EPRINT+hep-th/0505205
http://dx.doi.org/10.1103/PhysRevD.20.2037
http://dx.doi.org/10.1103/PhysRevD.20.2037
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D20,2037%22
http://dx.doi.org/10.1103/PhysRevD.22.1478
http://dx.doi.org/10.1103/PhysRevD.22.1478
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D22,1478%22


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[86] A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD, Phys. Rev. D 24 (1981)

3281 [INSPIRE].

[87] L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD,

Phys. Rev. D 42 (1990) 4222 [INSPIRE].

[88] T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for

Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].

[89] F. Cachazo, M. Spradlin and A. Volovich, Four-loop collinear anomalous dimension in

N = 4 Yang-Mills theory, Phys. Rev. D 76 (2007) 106004 [arXiv:0707.1903] [INSPIRE].

[90] L.J. Dixon, The principle of maximal transcendentality and the four-loop collinear

anomalous dimension, arXiv:1712.07274.

[91] Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for Gauge-theory amplitudes,

Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[92] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy

of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

[93] J.J.M. Carrasco, Gauge and gravity amplitude relations, in the proceedings of the

Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2014), June

2–27, Boulder, U.S.A. (2014), arXiv:1506.00974 [INSPIRE].

[94] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate

β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[95] F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group

functions, Phys. Lett. 100B (1981) 65 [INSPIRE].

[96] A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction,

arXiv:1201.4330 [INSPIRE].

[97] S. Laporta, High precision calculation of multiloop Feynman integrals by difference

equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[98] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order

perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].

[99] A.V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008) 107

[arXiv:0807.3243] [INSPIRE].

[100] A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve

integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820

[arXiv:1302.5885] [INSPIRE].

[101] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput.

Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

[102] C. Studerus, Reduze-Feynman integral reduction in C++, Comput. Phys. Commun. 181

(2010) 1293 [arXiv:0912.2546] [INSPIRE].

[103] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685

[INSPIRE].

[104] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf.

Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

[105] R.H. Boels, B.A. Kniehl and G. Yang, On a four-loop form factor in N = 4,

PoS(LL2016)039 [arXiv:1607.00172] [INSPIRE].

– 42 –

http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.24.3281
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D24,3281%22
http://dx.doi.org/10.1103/PhysRevD.42.4222
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D42,4222%22
http://dx.doi.org/10.1142/S0217751X99000038
https://arxiv.org/abs/hep-ph/9802376
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9802376
http://dx.doi.org/10.1103/PhysRevD.76.106004
https://arxiv.org/abs/0707.1903
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1903
https://arxiv.org/abs/1712.07274
http://dx.doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3993
http://dx.doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0476
https://arxiv.org/abs/1506.00974
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00974
http://dx.doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B192,159%22
http://dx.doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B100,65%22
https://arxiv.org/abs/1201.4330
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4330
http://dx.doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0102033
https://doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/hep-ph/0404258
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0404258
https://doi.org/10.1088/1126-6708/2008/10/107
https://arxiv.org/abs/0807.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3243
http://dx.doi.org/10.1016/j.cpc.2013.06.016
https://arxiv.org/abs/1302.5885
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5885
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://dx.doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2372
http://dx.doi.org/10.1016/j.cpc.2010.03.012
http://dx.doi.org/10.1016/j.cpc.2010.03.012
https://arxiv.org/abs/0912.2546
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.2546
https://arxiv.org/abs/1212.2685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2685
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://dx.doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1145
https://pos.sissa.it/contribution?id=PoS(LL2016)039
https://arxiv.org/abs/1607.00172
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.00172


J
H
E
P
0
1
(
2
0
1
8
)
1
5
3

[106] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of

maximally supersymmetric scattering amplitudes, Phys. Rev. Lett. 113 (2014) 261603

[arXiv:1410.0354] [INSPIRE].

[107] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic singularities and

maximally supersymmetric amplitudes, JHEP 06 (2015) 202 [arXiv:1412.8584] [INSPIRE].

[108] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a nonplanar

amplituhedron, JHEP 06 (2016) 098 [arXiv:1512.08591] [INSPIRE].

[109] J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form

factor and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126]

[INSPIRE].

[110] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[111] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar

diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

[112] J. Henn et al., Four-loop photon quark form factor and cusp anomalous dimension in the

large-Nc limit of QCD, JHEP 03 (2017) 139 [arXiv:1612.04389] [INSPIRE].

[113] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The N2
f contributions to

fermionic four-loop form factors, Phys. Rev. D 96 (2017) 014008 [arXiv:1705.06862]

[INSPIRE].

[114] A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop

Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].

[115] O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with

arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].

[116] V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box,

Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].

[117] J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys.

Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

[118] C. Anastasiou and A. Daleo, Numerical evaluation of loop integrals, JHEP 10 (2006) 031

[hep-ph/0511176] [INSPIRE].

[119] V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Modern Physics volume 211,

Springer, Germany (2004).

[120] V.A. Smirnov, Feynman integral calculus, Springer, Berlin, Germany (2006).

[121] M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys.

Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

[122] A.V. Smirnov and V.A. Smirnov, On the resolution of singularities of multiple

Mellin-Barnes integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].
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