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1 Introduction

Searches for new physics and measurements of Standard Model parameters at the Large

Hadron Collider and possible future colliders require ever increasing precision in the analysis

of multi-scale events. Large scale hierarchies in such reactions will generally result in

large Bremsstrahlung effects. In order to reliably predict measurable quantities, such as

a fiducial cross section, the radiative corrections determined in QCD perturbation theory

must be resummed to all orders. Resummation was first performed for energy-energy

correlations in e+e− collisions [1–3], transverse momentum dependent cross sections in

Drell-Yan events [4–6] and e+e− hadronic event shapes [7]. Several observables in hadron

collisions have also been resummed analytically [8]. Such calculations have been extended to

very high precision and used, for example, to extract the strong coupling from experimental

data in e+e− annihilation to hadrons [9, 10]. Effective field theory methods [11, 12] also

contribute to rapid progress in this field. General semi-analytic approaches to the problem

have been constructed [13–19] and automated [20] based on direct QCD resummation.

They depend only on universal coefficients and are applicable to different processes and

a large class of observables. An alternative to analytical calculations is the simulation of

events in a Markov-Chain Monte-Carlo known as a parton shower [21–24]. While the formal

precision of this approach is comparable to analytic resummation only in processes with a
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trivial color structure at the leading order, parton-showers typically give a good description

of experimental measurements and are therefore an integral part of the high-energy physics

toolkit.

Even in the simplest scenarios the resummation performed by a parton shower is

not identical to an analytic computation. This study will investigate the differences in

some detail. We first show how a parton shower can be constructed that reproduces

the pure next-to-leading logarithmic (NLL) resummed result as obtained by the semi-

analytic CAESAR formalism [18]. For simplicity we will focus on additive observables in

e+e− annihilation to jets. Starting from this algorithm, we successively include effects

beyond NLL accuracy that arise from momentum and probability conservation, such that

a traditional parton shower in the coherent branching formalism is recovered eventually. To

our knowledge this is the first time that a systematic study of this type has been performed.

While we focus on a very simple setup, for which parton showers have been shown to achieve

NLL accuracy [25], we argue that most differences investigated here will also arise in more

complicated scenarios, such as hadron-hadron collisions and processes with a non-trivial

color structure at the Born level. They will impact any prediction made for the Large

Hadron Collider and possible future colliders, and — while formally sub-leading — they

may be numerically large and should be taken into account as a systematic uncertainty.

This paper is organized as follows: section 2 recalls those parts of the CAESAR for-

malism and of the parton shower formalism needed in this study. Section 3 presents the

technical details of a modified parton shower reproducing exactly the analytic NLL result.

Section 4 analyzes the role of NLL approximations in detail by removing them from the

previously constructed shower one-by-one. Section 5 compares the full parton-shower result

against a more conventional parton-shower implementation, where soft double counting is

removed by partial fractioning of the soft eikonal. Section 6 presents our conclusions.

2 NLL resummation and the parton shower formalism

We first review the methods used for analytic resummation in CAESAR [18] as well as the

parton shower algorithm [21–24]. They are cast into a common language in order to allow

an easy comparison between the two. We focus on the simplest case of resummation of a

2-jet observable in e+e− → jets, i.e. resummation of soft gluons emitted from a pair of two

hard quark lines.

2.1 Prerequisites and notation

Following the CAESAR formalism, we denote the momenta of the hard partons as p1, . . . , pn.

Additional soft emissions are denoted by k, and the observable we wish to compute by v.

In general, the observable will be a function of both the hard and the soft momenta,

v = V ({p}, {k}), while in the soft approximation it reduces to a function of the soft

momenta alone, v = V ({k}). In the rest frame of two hard legs, i and j, considered to be

the radiating color dipole, we can parametrize the momentum of a single emission as

k = zi,jpi + zj,ipj + kT,ij , where k2T,ij = 2pipj zi,j zj,i . (2.1)

– 2 –
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We define the rapidity of the emission in this frame as ηij = 1/2 ln(zi,j/zj,i). The observable,

computed as a function of k when radiated collinear to the hard parton, l, can then be

written as1

V (k) =

(
kT,l
Q

)a
e−blηl , (2.2)

where, in the collinear limit, we have kT,l = kT,lj and ηl = ηlj for any j ∦ l. We restrict

our analysis to the case of additive observables, which can be calculated in the presence

of multiple soft gluons as a simple sum, V (k1, . . . , kn) =
∑n

i V (ki). Such observables are

of great interest phenomenologically and, while relatively easy to compute, already exhibit

most complications associated with the effects of NLL approximations.

The parton shower used in our study will be based on DGLAP evolution [26–29]. At

NLL, for recursive infrared and collinear safe observables, gluon splitting only contributes

at the inclusive level and is therefore taken into account effectively by working in the

CMW scheme [25]. In analogy to the NLL CAESAR formalism, our parton shower will

therefore only implement gluon radiation off the hard partons, and soft double counting

will be removed by sectorization of the soft-emission phase space. Technical details are

given in section 3, and a comparison to more conventional parton showers, which include

gluon splitting, is performed in section 5. The basis for DGLAP evolution are the collinear

factorization properties of QCD matrix elements. With |Mn(1, . . . , n)|2 being the squared

n-parton matrix element, the factorization formula in the limit that partons i and j become

collinear reads

dΦn+1 |Mn+1(1, . . . , i, . . . , j, . . . , n)|2 ≈ dΦn |Mn(1, . . . , ij, . . . , n)|2 dt

t
dz

dφ

2π

αs
2π
Pij i(z) .

(2.3)

In this context, dΦn is the n-particle phase space element, and Pij i(z) is the Altarelli-Parisi

splitting kernel associated with the branching of an intermediate parton ij into partons i

and j. Except for the analysis in section 5, the only relevant splitting kernel in our study

is the quark-to-quark transition

Pqq (z) = CF

[
2

1− z − (1 + z)

]
. (2.4)

The treatment of gluon radiators is discussed in appendix A. We denote the unregularized

splitting probability between two scales, t and t′, as

R(t′, t) =

∫ t

t′

dt̄

t̄
R′(t̄) where R′(t) =

∫ zmax(t)

zmin(t)
dz

αs
2π
Pqq(z) . (2.5)

Following standard practice to improve the logarithmic accuracy of the resummation, the

strong coupling is evaluated at the transverse momentum of the gluon [30], and the soft

enhanced term of the splitting functions is rescaled by 1 +αs/(2π)K, where K = (67/18−
π2/6)CA − 10/9TR nf [25]. The latter method is known as the CMW scheme.

1Note that because of the simplified setup that we use for this comparison, the dependence on dlgl(φ
(l))

has been dropped, and that we will use b = bl in the following.
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The integration boundaries for z depend on the evolution variable and are given by

the constraint that the momentum in the anti-collinear direction must be preserved. For

the case of evolution in collinear transverse momentum, k2T = 2pipj z(1 − z), we obtain

zmin/max = (1∓
√

1− 4k2T /Q
2)/2 (cf. section 4). The probability for no splitting between

two scales can be inferred from a unitarity constraint, i.e. the condition that the parton

shower be probability conserving. For final-state evolution the no-branching probability is

given by

Π(t′, t) = e−R(t,t′) . (2.6)

Note that this particular form of the no-branching probability is equivalent to the Sudakov

form factor only at leading order, cf. appendix A. Since we neglect gluon splitting, the

functional form of R is unchanged until the shower terminates, which greatly simplifies the

calculation.2 The parton shower algorithm solves for the scale t′, based on a starting scale

t and the total branching probability (differential in ln t),

P(t′, t) =
dΠ(t′, t)

d ln t′
. (2.7)

It terminates when a cutoff scale tc is reached. Typically, tc is defined such as to mark the

transition to the non-perturbative regime, i.e. the region where αs/(2π) ≈ 1.

2.2 Casting analytic resummation into the parton shower language

To enable a comparison with the semi-analytic resummation framework of CAESAR, we

consider the cumulative cross section in an arbitrary observable, v, defined as

Σ (v) :=
1

σ

∫ v

dv̄
dσ

dv̄
. (2.8)

The calculation is simplified by choosing a parton shower evolution variable, ξ, that (up to

a power) corresponds to V (k)

ξ = k2T (1− z)−
2b
a+b . (2.9)

This implies that splittings giving the largest contribution to the observable are produced

first. We will compare the shower ordered in ξ to a standard DGLAP shower ordered in

k2T in section 5. Note that here and in the following we use kT = kT,l and η = ηl.

If the effects of multiple emissions could be ignored, the cumulative cross section in

eq. (2.8) would be given by the square of the survival probability, eq. (2.6), corresponding to

the fact that radiation of a single gluon can originate from either of the two hard legs in the

two-quark leading-order final state. It would then be sufficient to compute the probability

R(v) = R(v, 1) for emissions resulting in observable values larger than v. Already at

the level of a single emission this would lead to double counting [22]. The problem can

be circumvented by sectorizing the phase space using the requirement η > 0. Note that

this constraint is not strictly necessary for the collinear part of the splitting function if the

parton shower implementation is capable of handling negative weights. However, this is not

2In the general case of multiple hard legs the situation is complicated by the need to perform non-abelian

exponentiation of next-to-leading logarithmic corrections originating in soft-gluon interference [31–35].
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the case for most traditional shower algorithms, which prompts us to apply the condition

to the entire splitting function. The combined probability for a single emission from any

of the two hard legs at ξ > Q2v2/(a+b) can then be written as

RPS(v) = 2

∫ Q2

Q2v
2

a+b

dξ

ξ

∫ zmax

zmin

dz
αs

(
ξ(1−z)

2b
a+b

)
2π

CF

[
2

1−z−(1+z)

]
Θ

(
ln

(1−z)
2a
a+b

ξ/Q2

)
.

(2.10)

This should be compared to eq. (2.17) of ref. [18], which can be rewritten in our parametriza-

tion as

RNLL(v) = 2

∫ Q2

Q2v
2

a+b

dξ

ξ

∫ 1

0
dz

αs

(
ξ(1−z)

2b
a+b

)
2π

2CF
1−z Θ

(
ln

(1−z)
2a
a+b

ξ/Q2

)
−αs(ξ)

π
CFBq

 .

(2.11)

A brief summary of semi-analytic resummation based on [18] and using eq. (2.11) can be

found in appendix B. The no-emission probability based on RNLL(v) can also be computed

in a Markovian Monte-Carlo simulation, by starting from the parton-shower expression,

eq. (2.10), and performing the following manipulations:

• The z-integration in the soft term runs from 0 to 1 − (ξ/Q2)(a+b)/2a, where the

upper bound stems from the requirement that η > 0 (the Θ-function in eq. (2.10)),

eliminating the double counting of soft-gluon radiation.

• The collinear term proportional to (1+z) is integrated from 0 to 1 in order to produce

the collinear anomalous dimension, Bq. At the same time, αs is evaluated at ξ.

Note in particular that the z-integration is extended beyond the values zmin (and zmax in

the collinear case) allowed by local four-momentum conservation. This will be one of the

effects investigated in section 4.

The complete parton-shower prediction of the cumulative cross section, Σ(v), includ-

ing effects from arbitrarily many emissions, and using the approximation V ({p}, {k}) =∑
i V (ki) is given by

ΣPS (v) =
∞∑
m=0

(
m∏
i=1

∫ ξi−1

ξc

dξi
ξi
R′PS(ξi) e

−RPS(ξi−1,ξi)

)
e−RPS(ξm,ξc) Θ

v− m∑
j=1

V (ξj)

∣∣∣∣∣∣
ξ0=Q2

= e−RPS(Q
2,ξc)

∞∑
m=0

1

m!

(
m∏
i=1

∫ Q2

ξc

dξi
ξi
R′PS(ξi)

)
Θ

v− m∑
j=1

V (ξj)

 .

(2.12)

We compare eq. (2.12) to the main result of [17], which reads

ΣNLL (v) = e−RNLL(v)F (v) . (2.13)

The exponential corresponds to the pure survival probability in terms of eq. (2.11). The

function F (v) accounts for the effect of multiple emissions. For the simple observables

– 5 –
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considered here it can be written as [18]:3

F (v) = lim
ε→0
Fε (v) , where Fε (v) = eR

′
NLL(v) ln ε

∞∑
m=0

1

m!

(
m∏
i=1

R′NLL(v)

∫ 1

ε

dζi
ζi

)
Θ

1−
m∑
j=1

ζj

 .

(2.14)

Following the notation of ref. [18], R′NLL(v) is the derivative of R with respect to L = − ln v,

excluding all terms formally not relevant at NLL accuracy. Note that eq. (2.14) is a pure

NLL contribution to ΣNLL(v), as R′(v) by itself is sub-leading. If we intend to generate

eq. (2.14) using a parton shower, the branching probability, eq. (2.10), must be modified

such as to reflect the differentiation w.r.t. the lower integration limit in eq. (2.11), which

leads to ξ = Q2v2/(a+b), as well as the condition that higher logarithmic terms are dropped

in R′(v). We can satisfy these constraints using the following modifications of the plain

parton shower:

• The z-integration in the soft term runs from 0 to 1 − v1/a.

• The strong coupling runs at one loop and is evaluated at v2/(a+b)(1− z)2b/(a+b).

• The collinear term is dropped.

We can now rewrite eq. (2.13) in a form that is similar to eq. (2.12)

Σ (v) = exp

{
−
∫
v

dξ

ξ
R′>v(ξ)−

∫ v

vmin

dξ

ξ
R′<v(ξ)

}
×
∞∑

m=0

1

m!

(
m∏
i=1

∫
vmin

dξi
ξi
R′<v(ξi)

)
Θ

(
v −

m∑
j=1

V (ξj)

)
,

(2.15)

with R′ given by

R′≶v(ξ) =
α≶v,soft
s

(
µ2≶

)
π

∫ zmax
≶v,soft

zmin

dz
CF

1− z −
α≶v,coll
s

(
µ2≶v

)
π

∫ zmax
≶v,coll

zmin

dz CF
1 + z

2
. (2.16)

The choices of αs, z
max and µ2 corresponding to NLL resummation in the CAESAR for-

malism and in a DGLAP-based parton shower are given in table 1. The physical limits on

the z-integral in eq. (2.10), which are a consequence of local four-momentum conservation,

are not easily formulated in terms of ξ and will be investigated separately in section 4.

It is interesting to note that F (v) by itself can be extracted from the same formalism by

starting the shower evolution at Q2v
2

a+b . This fact has been used in the past to construct

a dipole shower for the resummation of non-global logarithms [36].

3 Markov-Chain Monte Carlo implementation

As described in section 2, the NLL resummation is nearly equivalent to a parton shower at

the single-emission level. The differences lie in the treatment of the collinear term and of

the lower integration boundary on z. These differences also introduce a change in the scale

of the running coupling in eq. (2.15). The choice of integration boundaries in the analytic

3The ε→ 0 limit can be taken analytically [17], cf. appendix B, eq. (B.5).

– 6 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
8

Resummation Parton Shower Figure

zmax
>v,soft 1− (ξ/Q2)

a+b
2a n.a.

µ2>v,soft ξ(1− z)
2b
a+b n.a.

α>v,softs 2-loop CMW n.a.

zmax
<v,soft 1− v 1

a 1− (ξ/Q2)
a+b
2a 3

µ2<v,soft Q2v
2

a+b (1− z)
2b
a+b ξ(1− z)

2b
a+b 3

α<v,softs 1-loop 2-loop CMW 5

Resummation Parton Shower Figure

zmax
>v,coll 1 1− (ξ/Q2)

a+b
2a 2

µ2>v,coll ξ ξ(1− z)
2b
a+b 2

α>v,colls 1-loop 2-loop CMW 5

zmax
<v,coll 0 1− (ξ/Q2)

a+b
2a 6

µ2<v,coll n.a. ξ(1− z)
2b
a+b 6

α<v,colls n.a. 2-loop CMW 6

Table 1. Choices of parameters in eq. (2.15) leading to eq. (2.13) (NLL resummation) and eq. (2.12)

(parton shower). The effects of switching between the two parametrizations are investigated in the

figure referred to in the last column. More details can be found in section 4.

resummation implies that the splitting function turns negative in parts of the phase space.

To deal with this situation in the Monte Carlo simulation, we use the methods discussed

in [37, 38]. Splittings are generated according to an overestimate of the strong coupling

and the splitting kernel

αmax
s Pmax (z) = αmax

s CF

[
2

1− zΘ
(
z′max − z

)
+ γΘ

(
z − z′max

)]
(3.1)

with an in principle arbitrary constant γ. For practical calculations we choose γ = 2. Note

that the values of zmax
soft and zmax

coll are overestimated by a common value in Pmax, which we

have made explicit by writing z′max. Splittings are vetoed with a constant probability 1/C

and are associated with a weight

ω =
C αres

s Pres (z)

αmax
s Pmax (z)

×
{

1 if accepted
αmax
s Pmax(z)−αres

s Pres(z)
(C−1)αres

s Pres(z)
if rejected.

(3.2)

This correction accounts in particular for the negative sign of the integrand, eq. (3.3), in

the region z > zsoftmax. In addition, it is possible to veto emissions violating the condition∑
i V (ki) < v, which would contribute with zero weight, to improve numerical accuracy [38].

The value of C determines how many emissions are proposed, and thus potentially vetoed.

It can again in principle be an arbitrary constant larger than 1, but is relevant for the

speed of convergence. We choose C = 2 in our implementation.

The kernel eventually used for NLL resummation is given by

αres
s Pres = CF

[
αs(µ

2
soft)

2

1− zΘ (zmax
soft − z)− αs(µ2coll)(1 + z)Θ (zmax

coll − z)

]
, (3.3)

with zmax and µ2 chosen according to table 1.

For multiple emissions Pres explicitly depends on v. We therefore first choose a value

for v and then run the parton shower, implementing the z integration bounds and the

scale of the strong coupling as defined in table 1. This is a highly inefficient procedure to

compute the cumulative cross section. If probability was conserved, the same distribution

– 7 –
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(a) Thrust.

Analytic NLL ǫ → 0
Shower ǫ = 0.001
Shower ǫ = 0.01
Shower ǫ = 0.1

10−1

1

P
(B

K
S 1

/
2
<

v)

-3
-2
-1
0
1
2
3

D
ev

ia
ti
on

-3
-2
-1
0
1
2
3

Analytic NLL ǫ = 0.01

D
ev

ia
ti
on

-2 -1.5 -1 -0.5 0
-3
-2
-1
0
1
2
3

Analytic NLL ǫ = 0.1

log10(v)

D
ev

ia
ti
on

(b) BKS1/2.

Analytic NLL ǫ → 0
Shower ǫ = 0.001
Shower ǫ = 0.01
Shower ǫ = 0.1

10−3

10−2

10−1

1

P
(F

C
1
<

v)

-3
-2
-1
0
1
2
3

D
ev

ia
ti
on

-3
-2
-1
0
1
2
3

Analytic NLL ǫ = 0.01

D
ev

ia
ti
on

-2 -1.5 -1 -0.5 0
-3
-2
-1
0
1
2
3

Analytic NLL ǫ = 0.1

log10(v)

D
ev

ia
ti
on

(c) FC1.

Figure 1. Thrust variable 1 − T (a), BKS observable with x = 1/2 (b) and fractional energy

correlation with x = 1 (c) for different values of the cutoff ε in eq. (2.14). The respective analytic

results for Fε(v) are used as a reference in the ratio plots.

could be obtained by running the parton shower, computing v, filling the histogram in

each bin with lower edge larger than v, and filling the histogram in the bin containing v

with weight (vmax − v)/∆v, where vmax is the upper bin edge and ∆v is the bin width.

This will be the method used to compute the predictions in figure 6 and section 5. While

at the level of accuracy we are interested in, it is sufficient to set the cutoff scale of the

parton shower to some numerically small value in ξ, exact agreement with the analytic

calculation is expected only if the calculation is performed for a finite ε, and the parton-

shower cutoff is set to ξc = εv. We can verify that in this situation we reproduce the

analytic result for finite ε in eq. (2.14) and investigate the convergence towards the analytic

result for ε → 0. Figure 1 presents the corresponding comparison for different values of

ε in the case of the thrust (a) [39], a BKS observable (b) [40, 41] and a fractional energy

correlation (c) [18]. The definitions of the observables and related resummation coefficients

are listed in appendix C.

4 Effects of approximations

This section is dedicated to the detailed investigation of the effects of local four-momentum

conservation and approximations made in the NLL calculation compared to the parton

shower. In order to cover different choices of the parameters a and b, we again present

results for the thrust, a BKS observable (x = 1/2) and a fractional energy correlation

(x = 1). All distributions are shown for Q = 91.2 GeV, and for a strong coupling defined

by αs(Q
2) = 0.118 and a fixed number of flavors, nf = 5. We have cross-checked all of our

predictions using two independent Monte-Carlo implementations based on [42].

We first investigate constraints arising from momentum conservation in the anti-

collinear direction at single emission level, which reads

Q2 > 2pipj =
k2T

z(1− z)
. (4.1)
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(c) FC1.

Figure 2. Effects arising from momentum-conservation in the anti-collinear direction and from

phase-space sectorization (removal of soft double counting in typical parton-shower implementa-

tions). Both are effects at the single-emission level, impacting terms in R(v), cf. table 1.

This induces both a lower and an upper bound on z given by zmin/max=(1∓
√

1−4k2T /Q
2)/2.

Figure 2 shows a comparison between the pure NLL predictions and those where this

constraint has been implemented. The effect on the cumulative distributions is moderate,

about 5% in the medium and low-v region. In addition, we investigate the effect of choosing

the scale in the collinear term to be k2T . This alters the slope of the thrust and BKS1/2

distributions in the small-v region, due to additional sub-leading logarithmic terms in R(v).

The upper bound zmax is generally weaker than the constraint arising from the condi-

tion η > 0, listed in table 1. Figure 2 displays the additional effect on the NLL prediction

when this constraint is applied in form of zmax
≶v,coll as used in typical parton showers (cf.

eq. (2.10)). The effects are about 10% on all observables, and they lower the prediction

for Σ(v) due to an increased branching probability. Again, we also investigate the effect of

choosing the scale in the collinear term to be k2T , which generates the same slope differences

at small v observed before.

Next we investigate the effect of lifting the restriction on the z integration in the

calculation of F(v), i.e. removing the constraint z < 1−v1/a if ξ < Q2v2/(a+b) and replacing

it by the constraint η > 0. In this case R′(v) must be computed down to very small scales

in eq. (2.14), (except for FC1) and it becomes mandatory to introduce an additional cutoff,

as one would otherwise need to evaluate αs at values where perturbation theory is no

longer valid. We choose to implement this by adding the requirement kmin
T = 0.5 GeV. The

difference to the pure NLL result is shown in figure 3. Independent of the observable, this

change is one of the largest differences observed in this study. The large relative difference

between the pure NLL result and the modified prediction at small v shows that sub-leading

logarithmic effects become important.

We also study the effect originating in the evaluation of the running coupling at

Q2v2/(a+b)(1 − z)2b/(a+b) if ξ < Q2v2/(a+b). Again we implement the constraint kmin
T =

0.5 GeV. Figure 3 shows that the predictions for all observables exhibit relatively large

changes. They also show convergence issues at small values, which arise from the lower

cutoff in kT , leading to an insufficient sampling of F at higher number of emissions. This

effect is most pronounced in FC1, where it starts to appear around 10−1.5. Note, however,
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(c) FC1.

Figure 3. Effect of replacing the constraint z < 1 − v1/a for ξ < Q2v2/(a+b) by the phase-space

sectorization constraint, η > 0 and effects arising from the evaluation of the strong coupling at k2T
with kmin

T = 0.5 GeV.
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(c) FC1.

Figure 4. Effects of replacing 2-loop CMW running of αs in the leading terms of the NLL result.

The red line is computed without the CMW scheme, while the green line is computed by using the

CMW scheme at 1-loop.

that practical measurements of FC1 would be impacted by non-perturbative corrections in

this regime. The problem is therefore purely academic in nature, hence we do not attempt

to solve it here.

Formally the CMW scheme is the key to achieving NLL accuracy in a parton-shower

computation of the observables considered here [25]. The numerical impact on R(v) is

investigated in figure 4. Figure 5 displays the effect of replacing 1-loop by 2-loop running

couplings and of using the CMW scheme in sub-leading terms of the NLL calculation (cf.

table 1). The red line is computed by making the replacements only in the soft-enhanced

part of the splitting function for ξ < Q2v2/(a+b), and the red dotted line corresponds to

not using the CMW scheme if ξ < Q2v2/(a+b). It is evident that the effects are sizable

over most of the observable range, and most pronounced at small v. The use of the CMW

scheme has the biggest impact. Note in particular that not using the CMW scheme in the

computation of F(v) has nearly the same impact as not using the CMW scheme in the

computation of R(v).

Figure 6 shows the cumulative effect of all changes discussed so far. In addition we

present results from a simulation where the observable is computed using its definition in
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Figure 5. Effects of replacing 1-loop by 2-loop CMW running of αs in the sub-leading terms of the

NLL result. The red line is computed by making the replacements only in the soft-enhanced term

if ξ < Q2v2/(a+b), the red dotted line corresponds to not using the CMW scheme in this region.
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(c) FC1.

Figure 6. Comparison of pure NLL resummation and plain DGLAP parton shower, effects of

approximating the observable compared to exact calculation using four-momenta and evolution in

dipole-kT .

terms of four-momenta rather than using the soft approximation in eq. (2.2) (see appendix C

for details). In this context it becomes important to take into account that emissions away

from the strict soft limit inevitably change the momenta of the hard partons. Subsequent

emissions are then computed based on the momenta of the quark lines with recoil effects

taken into account. This can have a significant impact on the result, depending on the

precise definition of the transverse momentum and momentum fraction. The magenta line

in figure 6 corresponds to the conventions of [43], while the green line corresponds to the

conventions of [44]. In the latter case the transverse momentum coincides with eq. (2.5)

of [18].4 Note that the phase-space sectorization constraint, η > 0, generates a different

restriction on z once recoil is taken into account, and that this condition depends on the

choice of evolution and splitting variable.

4Note that the constraint z(1− z) > k2T /Q
2 arising from minus momentum conservation applies to this

definition in the case of final-state emitter with final-state spectator, such that the results in figure 2 remain

valid.
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Figure 7. Comparison between plain DGLAP parton shower ordered in ξ to DGLAP parton

shower ordered in dipole-kT and dipole shower with and without gluon splitting.

5 Comparison with a dipole-like parton shower

This section presents a comparison of our previous results with predictions from a dipole-

like parton shower. In such parton showers the soft enhanced part of the collinear splitting

function is typically replaced by a partial fraction of the soft eikonal matched to the collinear

limit [43, 45]. At the same time, the phase-space sectorization is removed, i.e. the restriction

η > 0 is lifted. A complete description of the parton-shower algorithm employed here can

be found in [44].

Figure 7 shows a comparison between results from the dipole-like parton shower in its

default configuration (including gluon splitting) and from a modified version, tailored to

match the settings of the parton shower used in section 4, figure 6. Note that the dipole-

like parton shower is ordered in k2T rather than ξ. The fixed choice of ordering variable

impacts the different observables in different ways. To highlight these effects we present

in the same figure results obtained with our full DGLAP shower but ordered in k2T, rather

than ξ. The difference between the two versions is moderate, and much smaller than the

cumulative effect of the changes investigated in section 4. It is interesting to observe that

the dipole-shower prediction lies between the parton-shower result and the analytic result

for all observables, and in the case of thrust agrees very well with the analytic NLL result.

In the measurable range at LEP energies, the predictions for FC1 also agree fairly well

between the dipole-shower and the analytic result.

Figure 8 displays a cross-check on the logarithmic terms implemented by the dipole

shower as compared to the parton shower and the analytic result. We extract R(kT /Q)

for a fixed value of the strong coupling, αs = 0.118, using the technique described in [38].

The slope of the distribution corresponds to the leading logarithm, while the offset of the

analytic result corresponds to the next-to-leading logarithm. Any parton- or dipole-shower

prediction must approach the analytic result as kT → 0, which is verified by the convergence

of the predictions at small kT .

6 Conclusions

We have performed a detailed comparison between pure NLL resummation and parton

showers for additive observables in e+e− annihilation to hadrons. We have isolated their
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Figure 8. Comparison of analytic and parton-shower predictions for the emission probabilities

in eqs. (2.10) and (2.11). The plot shows the average number of emissions per bin as a proxy

observable [38].

differences, which can broadly be classified as related to probability or momentum conser-

vation as well as the choice of evolution variable. While a different treatment of these effects

leads to formally subleading corrections on the resummed prediction, it can have a numer-

ically sizable impact (20% or more) in the region where experimental measurements are

performed. Similar effects can reasonably be expected to arise in other observables, as well

as in processes with hadronic initial states and with a more complicated color structure at

the Born level. When comparing analytic resummation to parton showers it should be kept

in mind that such differences may exist, in which case they should be taken into account

as a systematic uncertainty. We have shown in a simple scenario that the differences can

be assessed quantitatively by casting analytic resummation into a Markovian Monte-Carlo

simulation and introducing momentum and probability conservation. Conversely, parton

showers can be modified to violate momentum and probability conservation to reproduce

pure NLL resummation. From the practical point of view this approach is disfavored, as

it leads to numerically inefficient Monte-Carlo algorithms.
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A Gluon radiators

Although we only deal with radiation off quark lines in this study, we argue that the

same conclusions hold for radiating gluons. The basic reasoning is that the Sudakov form

factor, eq. (2.6) is an alternative form of the equations in [46] that holds for leading-order

DGLAP splitting functions due to their symmetries. If we use the correct form of the

Sudakov factor, then we can extend the lower integration boundary for z to zero without

encountering a singularity, and we obtain the correct collinear anomalous dimensions. The

detailed argument is as follows.

While the DGLAP equations are schematically identical for initial and final state,

their implementation in parton-shower programs usually differs between the two, owing

to the fact that Monte-Carlo simulations are inclusive over final states. The evolution

equations for the fragmentation functions Da(x,Q
2) for parton of type a to fragment into

a hadron read

dxDa(x, t)

d ln t
=
∑
b=q,g

∫ 1

0
dτ

∫ 1

0
dz

αs
2π

[zPab(z)]+ τDb(τ, t) δ(x− τz) , (A.1)

where the Pab are the unregularized DGLAP evolution kernels, and where the plus pre-

scription is defined such as to enforce the momentum sum rule:

[zPab(z)]+ = lim
ε→0

zPab(z) Θ(1− z − ε)− δab
∑

c∈{q,g}

Θ(z − 1 + ε)

ε

∫ 1−ε

0
dζ ζ Pac(ζ)

 .

(A.2)

For finite ε, the endpoint subtraction in eq. (A.2) can be interpreted as the approximate

virtual plus unresolved real corrections, which are included in the parton shower because

the Monte-Carlo algorithm naturally implements a unitarity constraint [47]. For 0 < ε� 1,

eq. (A.1) changes to

1

Da(x, t)

dDa(x, t)

d ln t
= −

∑
c=q,g

∫ 1−ε

0
dζ ζ

αs
2π
Pac(ζ) +

∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
.

(A.3)

Using the Sudakov form factor

∆a(t0, t) = exp

{
−
∫ t

t0

dt̄

t̄

∑
c=q,g

∫ 1−ε

0
dζ ζ

αs
2π
Pac(ζ)

}
(A.4)

the generating function for splittings of parton a is defined as

Da(x, t, µ2) = Da(x, t)∆a(t, µ
2) . (A.5)

Equation (A.3) can now be written in the simple form

d lnDa(x, t, µ2)
d ln t

=
∑
b=q,g

∫ 1−ε

x

dz

z

αs
2π

Pab(z)
Db(x/z, t)

Da(x, t)
. (A.6)
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The generalization to an n-parton final state, ~a = {a1, . . . , an}, resolved at scale t can be

made in terms of fragmenting jet functions, G [48, 49]. If we define the generating function

for this state as F~a(~x, t, µ2), we can formulate its evolution equation in terms of a sum

of the right hand side of eq. (A.6). For unconstrained evolution, we can use eq. (A.3), to

write the differential decay probability as

d

d ln t
ln

(
F~a(~x, t, µ2)∏
j∈FS Gaj (xj , t)

)
=
∑
j∈FS

∑
b=q,g

∫ 1−ε

0
dz z

αs
2π

Pajb(z) . (A.7)

Thus, as highlighted in [47], it is generally necessary to use the Sudakov factor, eq. (A.4),

in final-state parton shower evolution. At the leading order, the factor ζ in eq. (A.4) simply

replaces the commonly used symmetry factor for g → g splitting and it also accounts for the

proper counting of the number of active flavors.5 However, this reasoning applies only if the

boundaries of the ζ-integration are defined by momentum conservation, and are therefore

symmetric around ζ = 1/2. In our analysis we attempt to extend the lower integration

limit to zero, which would generate a spurious singularity arising from the symmetry of

the gluon splitting function. Therefore, the commonly used technique of implementing the

symmetrized gluon splitting function without an additional factor ζ cannot be used, and

the only correct way to treat the problem is to work with eq. (A.4).

B Analytic results at NLL accuracy

This section summarizes the components of the CAESAR formalism [18] that are needed

for our analysis. The resummed cumulative cross section at NLL is given in this formalism

by ΣNLL(v) = e−RNLL(v)F(v), cf. eq. (2.13). The unregularized branching probability R(v)

follows from eq. (2.11). It is typically written in terms of λ = αsβ0L, where L = − ln v.

One obtains

R(v) = 2CF

(
r(L) +BqT

(
L

a+ b

))
, (B.1)

where r(L) is separated into a leading and a sub-leading logarithmic piece as r(L) =

Lr1(αsL) + r2(αsL).

r1(αsL) =
1

2πβ0λb

(
(a− 2λ) ln

(
1− 2λ

a

)
− (a+ b− 2λ) ln

(
1− 2λ

a+ b

))
,

r2(αsL) =
1

b

(
K

(2πβ0)2

(
(a+ b) ln

(
1− 2λ

a+ b

)
− a ln

(
1− 2λ

a

))
+

β1
2πβ30

(
a

2
ln2

(
1− 2λ

a

)
− a+ b

2
ln2

(
1− 2λ

a+ b

)
+a ln

(
1− 2λ

a

)
− (a+ b) ln

(
1− 2λ

a+ b

)))
.

(B.2)

5In this context it is interesting to note that the factor ζ has a convenient physical interpretation: it

represent the “tagging” of the resolved parton, for which the evolution is performed. This is apparent when

extending the evolution to higher orders [46].

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
1
8

The beta function coefficients and the two-loop cusp anomalous dimension in the MS

scheme are given by

β0 =
1

2π

(
11

6
CA −

2

3
TRnf

)
,

β1 =
1

(2π)2

(
17

6
C2
A −

(
5

3
CA + CF

)
TRnf

)
,

K =

(
67

18
− π2

6

)
CA −

10

9
TRnf .

(B.3)

The sub-leading logarithmic term T (L) is defined as

T (L) =

∫ Q2

Q2e−2L

dk2T
k2T

αs(k
2
T )

π
= − 1

πβ0
ln(1− 2λ) . (B.4)

The F -function, eq. (2.14), for additive observables is given by

F(v) =
e−γER

′(v)

Γ(1 +R′(v))
. (B.5)

Since both T (L) and r2(L) are sub-leading in L, we have

R′(v) = 2CF r
′(L) , where r′(L) = ∂LLr1(L) =

1

b

(
T

(
L

a

)
− T

(
L

a+ b

))
. (B.6)

Using eq. (B.6) it can be verified that the combination of zmax
<v,soft and µ2<v,soft listed in table 1

generates the correct value of r′(L), and therefore the correct value of the F -function.

C Definition of observables

This appendix summarizes the definitions of observables used in our study and lists their

parametrizations in terms of the coefficients a and b in eq. (2.2). Note that ~qi stands for

any momentum in the event, no matter if this momentum is hard or soft.

The thrust observable for arbitrary e+e− events is defined as [39]

τ = 1−max
~n

∑
i |~qi~n|∑
i |~qi|

. (C.1)

The maximization procedure defines a unit vector, ~nT , which is referred to as the thrust

axis. In the 2-jet limit, eq. (C.1) can be written as

τ = min
~n

∑
i |~qi|(1− | cos θi|)∑

i |~qi|
, (C.2)

where θi are the angles of the momenta with respect to ~nT . The coefficients in eq. (2.2)

are given by a = b = 1 [18].

The BKS observable is defined as [40, 41]

BKSx =

∑
iEi| sin θi|x(1− | cos θi|)1−x∑

i |~qi|
, (C.3)
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where θi are again the angles of the momenta with respect to the thrust axis. For this

study we set x = 1/2, which implies a = 1 and b = 1/2 [18].

The fractional energy correlation is defined as [18]

FCx =
∑
i 6=j

EiEj | sin θij |x(1− | cos θij |)1−x
(
∑

iEi)
2 Θ ((~qi~nT )(~qj~nT )) , (C.4)

where ~nT is the thrust axis. For this study we set x = 1, which implies a = 1 and b = 0 [18].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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