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1 Introduction

Conformal field theories, as fixed points of renormalization group flow, occupy a special

place in the space of quantum field theories, and have been successfully used to describe a

wide range of phenomena, such as boiling water at the critical point [1].

The conformal bootstrap is a computational method whose main idea is to leverage the

constraint of OPE associativity into non-perturbative statements. In the most common ap-

proach one first expands a four-point function in terms of a basis of conformal blocks, which

captures all the contributions from intermediate states in a particular channel, and one sub-

sequently checks that crossing symmetry is satisfied, i.e. that the result is independent from

the choice of expansion channel (for an alternative approach in Mellin space, see [2, 3]).
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Since the method only relies on crossing symmetry, it is genuinely non-perturbative and,

since it is independent of a Lagrangian description, its results are very general.

An early success of the conformal bootstrap was to fully solve the minimal models in 2d

CFT [4]; however generalizing the method to higher dimensions proved very difficult, and

the bootstrap lay dormant for many years. In [5] the bootstrap was revived and successfully

applied to CFTs in dimension d > 2, which kicked off the ‘numerical bootstrap’, in which

linear operators into R are applied to the crossing symmetry equation. The existence or

non-existence of linear operators with specific properties then constrains the spectrum. We

refer the interested reader to the excellent reviews [6, 7].

There has also been increased interest in the ‘analytic bootstrap’, in which the crossing

symmetry equation is used to derive analytic results for CFTs. For example, in [8] a method

is given for studying CFTs at points of large twist degeneracy. At this degenerate point, the

contributions to a 4-point function G(0)(u, v) from operators around an accumulation point

τ in the twist spectrum, are summed into ‘Twist Conformal Blocks’ (TCBs) H
(0)
τ (u, v):

G(0)(u, v) =
∑
τ

H(0)
τ (u, v) . (1.1)

The theory is then perturbed by a small parameter ε, which induces anomalous dimensions

and OPE coefficient corrections, thereby breaking the twist degeneracy and changing the

twist conformal blocks:

H(0)
τ (u, v)→

∑
ρ

Bτ,ρH
(ρ)
τ (u, v) , G(0)(u, v)→

∑
τ,ρ

Bτ,ρH
(ρ)
τ (u, v) , (1.2)

where ρ measures powers of the spin in the breaking of the twist degeneracy. These twist

conformal blocks can be effectively calculated since they satisfy a recurrence relation

CH(m+1)
τ (u, v) = H(m)

τ (u, v) , (1.3)

where C = Cτ,d is a differential Casimir operator. Studying the analytic properties of

the twist conformal blocks then constrains the spectrum of scaling dimensions and OPE

coefficients of a wide variety of theories.

For example, an interesting result is found in [9, 10], where it is shown that if a

CFT in d > 2 has two operators with non-zero twists τ1 and τ2 respectively, then τ1 + τ2

is an accumulation point of the twist spectrum of the CFT, i.e. there are infinitely many

operators with twist arbitrarily close to τ1+τ2.1 This can be easily shown from the analytic

properties of conformal blocks. Consider two scalar bosonic operators ϕ1, ϕ2 of twists τ1, τ2,

and study its four-point correlator 〈ϕ1ϕ1ϕ2ϕ2〉, which satisfies the crossing relation

G2112(u, v) = u
τ1+τ2

2 v−τ1G1122(v, u) . (1.4)

On the right-hand side, the identity operator gives a contribution of 1 to G1122(u, v), which

implies the existence of a term u
τ1+τ2

2 v−τ1 on the left-hand side. Since conformal blocks

Gτ,l(u, v) behave like uτ/2 for small u, we see that there must be operators of approximate

1Recall that the twist τ of a primary operator of scaling dimension ∆ and spin l is defined as τ = ∆− l.
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twist τ1+τ2
2 . Individual conformal blocks Gτ,l(u, v) have only a logarithmic divergence in

v; therefore to produce the power-law divergence u
τ1+τ2

2 v−τ1 on the left-hand side of equa-

tion (1.4), there in fact need to be an infinite number of operators whose twists accumulate

at τ1 + τ2. This is just a taste of the powerful constraints that crossing symmetry imposes

on CFTs.

Combined with any further constraints, such as exact conservation of the stress-energy

tensor or conservation of currents associated to exact global symmetries, one may hope to

fully constrain the spectrum order by order in ε. This was successfully done for several

theories breaking higher spin symmetry in [11], for example reproducing results to first

order in ε in the O(N) model at large N , and in N = 4 super Yang-Mills.

All these computations rely on the specific form of conformal blocks, and as such mainly

focus on scalar bosonic theories — or occasionally on correlators in supersymmetric theories

where the superconformal primary is a boson. Recently there have been some results in

applying the bootstrap to 3d theories with fermions, in which universal numerical bounds

on some operators were computed [12, 13].

In this paper we apply the analytic bootstrap to fermionic theories that are a pertur-

bation of the theory of free Dirac fermions. We study four-point functions of composite

operators formed out of the fundamental fermions. To the orders in the ε-expansion to

which we study these theories, their intermediate operators can be divided into bilinear

operators (formed out of two fundamental fields) and quadrilinear operators (formed out of

four fundamental fields). Known anomalous dimensions of bilinear currents in the Gross-

Neveu model in d = 2+ε and in the Gross-Neveu-Yukawa model in d = 4−ε are reproduced,

and new results are found for OPE coefficient corrections of these bilinear currents, and for

anomalous dimensions and OPE coefficient corrections of quadrilinear operators. Further-

more a non-trivial solution in the d = 2 + ε expansion is found for a fermionic theory in

which anomalous dimensions scale logarithmically with the spin at first order in ε, which we

conjecture to describe theories in which the fundamental field is not part of the spectrum.

The results are summarized in appendix A.

The structure of this paper is as follows. Section 2 discusses the relevant background

on crossing symmetry, twist conformal blocks and the free fermion theory. Section 3 intro-

duces, in generality, the main method to study conformal field theories with weakly broken

higher spin symmetry. These methods are then applied in sections 4 and 5 to study the

fermionic theories in the d = 2 + ε and d = 4 − ε expansions, paying special attention to

the Gross-Neveu and Gross-Neveu-Yukawa models.

2 Setup

In this section we recall some basic facts about CFTs, twist conformal blocks, and free

fermions.

Recall that a CFT is completely determined by its ‘CFT data’, i.e. the spectrum of

primary operatorsOi of scaling dimension ∆i and spin li, together with the OPE coefficients

cijk, which specify the OPE algebra:

Oi ×Oj ∼
∑
k

cijk (Ok + descendants) . (2.1)

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
1
0
4

Consider the four-point function of four scalars ϕi. Conformal invariance restricts the

correlator to be of the following form [14]:

〈ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4)〉 =

(
x2

24

x2
14

)∆ij
2
(
x2

14

x2
13

)∆kl
2 Gijkl(u, v)

x
∆i+∆j

12 x∆k+∆l
34

, (2.2)

where xij = xi − xj , where ∆ij = ∆i − ∆j , and where u, v are the standard conformal

cross-ratios:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.3)

This correlator may be evaluated by taking operator product expansions of O1 × O2 and

O3 ×O4, or by expanding O1 ×O4 and O2 ×O3, with associativity of the OPE implying

that both methods must give the same result. This is called crossing symmetry, and yields

the following relation:

v
∆j+∆k

2 Gijkl(u, v) = u
∆i+∆j

2 Gkjil(v, u) . (2.4)

One can expand Gijkl(u, v) in terms of conformal blocks G
∆ij ,∆kl
τ,s (u, v), which capture the

contribution of a specific intermediate primary operator and all its descendants:

Gijkl(u, v) =
∑
Oτ,s

cijOτ,scklOτ,sG
∆ij ,∆kl
τ,s (u, v) , (2.5)

where the sum is over primary operators Oτ,s, of twist τ and spin s that appear in the

OPE of both ϕi × ϕj and ϕk × ϕl, with OPE coefficients c••O.2

In the case of identical operators the expression reduces to

G(u, v) =
∑
τ,s

aτ,sGτ,s(u, v) , (2.6)

where the sum is over operators Oτ,s of twist τ and spin s, aτ,s is the squared OPE

coefficient, and Gτ,s is the conformal block with identical external operators. In a unitary

theory the OPE coefficients are real and hence the aτ,s are positive, a fact that is crucial

to the numerical bootstrap program.

In the presence of a global symmetry group G intermediate states will decompose

into representations of G. Suppose that the operators ϕi in the crossing relation (2.4)

transform in representations Ri of the global symmetry group G. Taking the OPE in

the ‘direct’ channel involves operators transforming in representations RD ⊆ Ri ⊗ Rj and

R̃D ⊆ Rk ⊗ Rl, such that the singlet representation, under which the identity operator

transforms, satisfies 1 ⊆ RD ⊗ R̃D. For intermediate operators in the ‘crossed’ channel,

one is interested in representations RC ⊆ Rk⊗Rj and R̃C ⊆ Ri⊗Rl with 1 ⊆ RC⊗ R̃C . In

some common cases RD = R̃D; however we shall encounter the case of the tensor product

2Technically one needs operators Oτ,s and Oτ,s that transform dually under any symmetry group, so

that 〈Oτ,sOτ,s〉 6= 0. That is, if they transform under representations R and R of some symmetry group,

one requires that the singlet representation satisfies 1 ⊆ R⊗R.
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of two adjoint representations (n2 − 1) of U(n), which contains two unequal conjugate

representations. The relevant representations RD and RC may also be different in both

channels, as is the case in the mixed correlators we shall consider later.

The conformal blocks are not known in general dimensions, but some exact results are

known [15]. For example, the leading u-behaviour of the conformal blocks is known to all

orders in v in arbitrary dimensions. Factoring the leading u-behaviour out of the conformal

blocks: G∆12,∆34

τ,l (u, v) = uτ/2g∆12,∆34

τ,l (u, v), they satisfy:

g∆12,∆34

τ,l (u, v) =

(
−1

2

)l
(1− v)l 2F1

(
τ

2
+ l − ∆12

2
,
τ

2
+ l +

∆34

2
, τ + 2l; 1− v

)
+O(u) .

(2.7)

Furthermore, the conformal blocks in 2d and 4d conformal blocks are known in closed form.

They are most easily expressed in the variables z, z, which are related to u, v through

u = zz , v = (1− z)(1− z) . (2.8)

The 4d conformal blocks are then given by

G∆12,∆34

τ,l (z, z) =

(
−1

2

)l zz

z − z

(
k∆12,∆34

τ+2l (z)k∆12,∆34
τ−2 (z)− k∆12,∆34

τ−2 (z)k∆12,∆34

τ+2l (z)
)
, (2.9)

and the 2d conformal blocks by3

G∆12,∆34

τ,l (z, z) =

(
−1

2

)l (
1− 1

2
δ0,l

)(
k∆12,∆34

τ+2l (z)k∆12,∆34
τ (z) + k∆12,∆34

τ (z)k∆12,∆34

τ+2l (z)
)
,

(2.10)

where

k∆12,∆34

β (x) = xβ/2 2F1

(
β

2
− ∆12

2
,
β

2
+

∆34

2
, β, x

)
. (2.11)

From the definition of the (z, z) coordinates, it is clear that they provide a double covering

of the (u, v) coordinates, related by z ↔ z. Where appropriate, we make the choice of

mapping the small u limit onto the small z limit, and the small v limit onto the small

(1− z) limit.

2.1 Twist conformal blocks

Consider a tree-level four-point function G(0)(u, v) of identical scalars ϕ at the point of large

twist degeneracy, which can be decomposed into twist conformal blocks which capture the

contributions of each degenerate twist in the spectrum:

G(0)(u, v) =
∑
τ

H(0)
τ (u, v) =

∑
τ,l

aτ,lGτ,l(u, v) . (2.12)

Here we have assumed for simplicity that the external operators are identical; the definitions

and properties in this section carry over in an obvious manner to the case of non-identical

external operators.

3These are the conformal blocks associated to the global conformal group in 2d, i.e. they are not the

Virasoro conformal blocks.
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The four-point function satisfies a crossing relation

v∆
(0)
ϕ G(0)(u, v) = u∆

(0)
ϕ G(0)(v, u) . (2.13)

We now turn on some small deformation away from the twist degenerate point, which

we measure in a small parameter ε, for example by turning on a coupling g ∼ ε. We assume

that the four-point function G(u, v) admits the following expansion in terms of ε:

G(u, v) = G(0)(u, v) + εG(1)(u, v) + ε2G(2)(u, v) + . . . , (2.14)

and that the twists and OPE coefficients of intermediate operators can also be expanded

in such powers:

τl = τ0 + ε γ
(1)
τ0,l

+ ε2 γ
(2)
τ0,l

. . . , (2.15)

aτ,l = a
(0)
τ0,l

+ εa
(1)
τ0,l

+ ε2a
(2)
τ0,l

+ · · · = a
(0)
τ,l

(
1 + εα

(1)
τ0,l

+ . . .
)
. (2.16)

We now use the result that the anomalous dimensions can be expanded in inverse powers

of the conformal spin J2
τ,l =

(
l + τ

2

) (
l + τ

2 − 1
)

[16, 17]:

γ
(m)
τ0,l

= 2
∑
ρ

B(m)
τ0,ρJ

−2ρ
τ0,l

, (2.17)

where ρ∈N0, and where, by an abuse of notation, we refer to terms of the form (logk J)/J2m

as J−2ρ, where (ρ) = (m, logk J). The same holds true for the α̂
(m)
τ0,l

, which are shifted

versions of the OPE coefficient corrections α
(m)
τ0,l

(see section 3.2 for the precise definition).

From the decomposition in equation (2.12), we can see how the various contributions to

G(1)(u, v) arise. For example, the corrections to the OPE coefficients create a correction to

the correlator

G(1)(u, v) ⊇
∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l

∂

∂τ

∣∣∣∣
τ=τ0

Gτ,l(u, v) ⊇ log u
∑
τ0,ρ

B(1)
τ0,ρH

(ρ)
τ0 (u, v) , (2.18)

where we defined the twist conformal blocks

H(ρ)
τ0 (u, v) ≡

∑
l

a
(0)
τ0,l
J−2ρ
τ0,l

Gτ0,l(u, v) , (2.19)

and where by ‘f ⊇ g’ we mean that f contains terms of the form g, i.e. f = g + . . . .

The conformal blocks satisfy an eigenvalue equation under the quadratic Casimir D2 of the

conformal group [8, 15, 18]

D2Gτ,l(u, v) =

(
l2 + l(τ − 1) +

1

2
τ(τ − d)

)
Gτ,l(u, v) . (2.20)

Introducing the shifted Casimir operator Cτ,d = D2 + 1
4τ(2d− τ − 2), the conformal blocks

satisfy the eigenvalue equation Cτ,dGτ,l(u, v) = J2
τ,lGτ,l(u, v), which in turn implies a recur-

sion relation for the twist conformal blocks:

Cτ,dH(m+1)
τ (u, v) = H(m)

τ (u, v) . (2.21)

– 6 –
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This is a differential equation that can be solved to find all the H
(m)
τ iteratively once the

tree-level result H
(0)
τ is known.

The behaviour of the twist conformal blocks for small u and v is generally as follows:

H(m)
τ (u, v) ∼ uτ/2

vk0
vm
(
h

(m)
0 (u) + h

(m)
1 (u)v + h

(m)
2 (u)v2 + . . .

)
, (2.22)

for some k0 ≥ 0, and where h
(m)
n (0) 6= 0. This is consistent with the expectation that

since J−2
τ,l ∼ l

−2 for large l, the twist conformal blocks should become less divergent as one

inserts more powers of J−2
τ,l .

As demonstrated in the introduction, the study of ‘enhanced divergences’ in the cross-

ing equation can prove very fruitful. We shall define enhanced divergences to be terms

f(u, v) for which there exists an n ∈ N>0 such that Cnτ,d (f(u, v)) has a power-law diver-

gence in v, i.e. a divergence of the form v−β , where β > 0. Specifically, this implies that

they cannot be the sum of a finite number of conformal blocks. Enhanced divergences

therefore include all terms of the form u•vβ where β > 0 is not integer, and u• logk v where

k > 2 is integer.

Generically all twist conformal blocks will possess enhanced divergences. The type

that they possess, depends on whether k0, the tree-level v-divergence, is integer or not.

• If k0 /∈ N is not an integer, then all H
(m)
τ (u, v) contain enhanced divergences from

non-integer powers of v.

• If k0 ∈ N is integer, then H
(0)
τ (u, v), . . . ,H

(k0−1)
τ (u, v) have enhanced divergences that

are powers in v. The twist conformal blocks H
(k0)
τ (u, v), H

(k0+1)
τ (u, v), . . . all develop

enhanced divergences of the form log2 v. This shall prove to be one of our most

powerful tools, since such log2 v terms can often only be produced on one side of the

crossing equation.

2.2 Free fermion CFT

The theory of Nf free massless Dirac fermions in d dimensions has the action

S =

∫
ddx ψi/∂ψ

i . (2.23)

From this it is clear that the fermions ψ have scaling dimension ∆ψ = d−1
2 , and that there

is a global U(Nf ) symmetry, under which the fermions ψ, ψ transform in the fundamental,

respectively anti-fundamental, representation.

The spectrum of bilinear primary operators in the theory consists of [19, 20]:

• A U(Nf ) scalar operator O ≡ ψψ = ψ
i
ψi of dimension ∆O = d − 1. Spinor indices

have been traced over, so that O is a spacetime scalar.

• A U(Nf ) adjoint operator Oij = ψ
i
ψj − 1

Nf
δijψψ of dimension ∆A = d−1, again with

spinor indices traced over. When suppressing U(Nf ) indices, we shall also refer to

this operator as OA.

– 7 –
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• A tower of totally symmetric conserved tensors Jµ1...µl ∼ ψγµl∂µ1 · · · ∂µl−1
ψ of dimen-

sion ∆Jl = d− 2 + l. These correspond to the traceless symmetric representation of

the d-dimensional Lorentz group, and the singlet representation of the global U(Nf )

symmetry. Suppressing spacetime indices, we shall refer to the U(Nf ) singlet opera-

tors as JS,l, and to the U(Nf ) adjoint operators as JA,l.

The operator JS,2 is the stress-energy tensor, while the operator JA,1 is the global

symmetry current.

• A tower of mixed symmetry conserved tensors Bµ1···µlν1...νk ∼ ψγµ1ν1...νk∂µ2 . . . ∂µlψ

(with 1 6 k < d), where γµ1ν1...νk = γ[µ1
γν1 . . . γνk]. They correspond to repre-

sentations of SO(d) with highest weight (l, 1, . . . , 1, 0, . . . , 0), i.e. to Young tableaux

with l boxes in the first row, and k rows in total, and can transform in either the

singlet or adjoint representation of U(Nf ). They also saturate the unitarity bound

∆Bl = d− 2 + l [21].

The two-point function of the fermions is as follows:

〈ψi(x1)ψj(x2)〉 = δij
Cψψ/x12

(x2
12)∆ψ+ 1

2

, Cψψ =
Γ(d2)

2πd/2
, (2.24)

with the two-point functions 〈ψiψj〉 and 〈ψiψj〉 necessarily vanishing due to their spacetime

representations. With this normalization, all other correlators can be calculated from

judicious use of Wick’s theorem.

Our primary point of study will be the four-point correlators formed out of O and

OA. Using Wick contractions, and with the help of Mathematica (and the package

‘Gamma’ [22]), the free theory result for 〈OOOO〉 can be found:

〈O(x1)O(x2)O(x3)O(x4)〉 = N2C4
ψψ

G(u, v)

(x2
12x

2
34)d−1

, (2.25)

G(u, v) = 1 +
1

N
u
d
2
−1 (1− v)(1− v

d
2 )

v
d
2

− 1

N
u
d
2

1 + v
d
2

v
d
2

+ ud−1

(
1 +

1

vd−1
− 1

N

1 + v

v
d
2

)
+

1

N
ud

1

v
d
2

, (2.26)

where N ≡ Nf Tr(1), with the trace over spinor indices. In the large N limit, the dis-

connected diagrams should dominate. Combining this with the fact that 〈O(x1)O(x2)〉 =

NC2
ψψ(x2

12)−(d−1), the four-point function should in the large N limit be that of a free

boson of dimension ∆ = d− 1, as is indeed the case.

In the four-point function of adjoints, there are multiple U(Nf ) tensor structures, aris-

ing from the possible representations of the exchanged intermediate operators.4 Therefore

this correlator decomposes:5

〈Oi1j1(x1)Oi2j2(x2)Oi3j3(x3)Oi4j4(x4)〉 ∝
6∑

k=1

Gk(u, v) (Tk)
i1...i4
j1...j4

, (2.27)

4For Nf > 4 there are seven different irreducible representations: (n2 − 1)⊗ (n2 − 1) =
⊕7

i=1 Ri.
5Two of the representations in the product of two U(Nf ) adjoints are conjugate representations and

combine into one tensor structure.
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where Tk is the tensor structure corresponding to the representation Rk in the tensor prod-

uct of two U(Nf ) adjoints. We have also calculated all Gk, and shall give their properties

in the main body when necessary.

Using the leading-u behaviour of the conformal blocks from equation (2.7), we see that

the exchanged operators at least contain operators of twist τ = d − 2, corresponding to

the conserved currents, and operators of twist τ = 2d − 2, corresponding to quadrilinear

operators Oquad ∼ ψ∂l1ψ∂l2ψ∂l3ψ of spin l = l1 + l2 + l3. The leading-u behaviour can

also be used to fix the squared OPE coefficients a
(0)
S,τ,l for these operators. For example, the

squared OPE coefficients a
(0)
S,d−2,l of the bilinear currents Jl in the OPE O×O, are given by

a
(0)
S,d−2,l =

(
1 + (−1)l

) 2lΓ
(
d
2 + l − 1

)2
Γ(d+ l − 2)

NΓ
(
d
2

)2
Γ(l)Γ (d− 3 + 2l)

, l > 2. (2.28)

Only operators of even spins appear, as necessary in the OPE of two identical operators.

The question remains whether the ud/2 and ud terms in equation (2.26) are the result

of further operators appearing, or whether they arise from the sub-leading u-contributions

in the conformal blocks Gd−2,l(u, v) and G2d−2,l(u, v). Checking in 2d and 4d, where we

have closed form expressions for the conformal blocks, we find that the ud/2 contribution is

explained from the conformal blocks Gd−2,l(u, v), while there needs to be an infinite tower

of operators of twist τ = 2d− 2 + 2n for n ∈ Z>0 to account for all the terms of the form

ud−1+n. This is a general feature of all the Gk(u, v) encountered in this paper.

3 Crossing analysis

In this section we perform a detailed analysis of the crossing equations, in its general form.

We study a perturbation of the free fermion theory in d0 > 2, in which no additional op-

erators enter at first loop order. Since the Gross-Neveu and Gross-Neveu-Yukawa theories

we are interested in both violate one of these assumptions, this shall merely be a toy model

to introduce the methods used in sections 4 and 5. We restrict ourselves to studying the

correlator 〈OOOO〉 because its analysis already contains the main ideas used in the paper.

Recall the free theory result in d dimensions, equation (2.26):

G(0),(d)(u, v) = 1 + G(0),(d)
bil (u, v) + G(0),(d)

quad (u, v) = 1 +H
(0),(d)
d−2 (u, v) +

∞∑
n=0

H
(0),(d)
2d−2+2n(u, v) ,

(3.1)

where the (0) refers to the fact that this is the free theory, where (d) indicates the dimension

of space, and where

G(0),(d)
bil (u, v) ≡ H(0),(d)

d−2 (u, v) =
1

N
u
d
2
−1 (1− v)(1− v

d
2 )

v
d
2

− 1

N
u
d
2

1 + v
d
2

v
d
2

, (3.2)

G(0),(d)
quad (u, v) ≡

∞∑
n=0

H
(0),(d)
2d−2+2n(u, v) = ud−1

(
1 +

1

vd−1
− 1

N

1 + v

v
d
2

)
+

1

N
ud

1

v
d
2

. (3.3)
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For clarity we shall first consider a situation in which the dimension d of spacetime

is unrelated to the small expansion parameter ε, before adding the ε-dependence that is

encountered in the d = 2 + ε and d = 4− ε expansions.

The external dimension of the operator O is given by

∆O = d− 1 + γO = d− 1 + εγ
(1)
O + ε2γ

(2)
O + . . . . (3.4)

Furthermore, we assume that the correlator can be expanded in terms of ε:

G(u, v) = G(0)(u, v) + εG(1)(u, v) + ε2G(2)(u, v) + . . . (3.5)

Now take the crossing equation, v∆OG(u, v) = u∆OG(v, u), and expand it in powers of ε:

vd−1

(
1 + εγ

(1)
O log v + ε2

(
γ

(2)
O log v +

1

2

(
γ

(1)
O

)2
log2 v

)
+ . . .

)
×
(
G(0)(u, v) + εG(1)(u, v) + ε2G(2)(u, v) + . . .

)
=
(
u↔ v

)
(3.6)

Taking the results order by order in ε, the crossing relation decomposes into a set of

equations

vd−1G(0)(u, v) = ud−1G(0)(v, u) (3.7)

vd−1
(
γ

(1)
O log v G(0)(u, v) + G(1)(u, v)

)
= ud−1

(
γ

(1)
O log uG(0)(v, u) + G(1)(v, u)

)
(3.8)

...

Generally the crossing equations of lower order in ε can be used to simplify the crossing

equations of higher orders. For example, substituting the order ε0 equation (3.7) into the

order ε1 equation (3.8) simplifies the latter to

γ
(1)
O log v G(0)(u, v) + G(1)(u, v) = γ

(1)
O log uG(0)(u, v) +

ud−1

vd−1
G(1)(v, u) . (3.9)

3.1 Dimension shift

In the theories in this paper the small parameter ε is related to the dimension in which

the theory lives. Specifically the Gross-Neveu model lives in d = 2 + ε, while the Gross-

Neveu-Yukawa model lives in d = 4 − ε [23]. In this case there will be corrections to the

free theory correlators, OPE coefficients and scaling dimensions, entirely because of this

dimensional shift. In an interacting theory living in e.g. d = d0 + ε, we want to define

anomalous dimensions and OPE coefficient corrections with respect to the dimensions and

OPE coefficients of the free theory in d = d0 + ε dimensions — and not with respect to

those of the free theory in d0 dimensions. For computational purposes however, we will

want to calculate twist conformal blocks in d0 dimensions, so that we need to carefully

keep track of the changes to twist conformal blocks from this dimensional shift.

For example, take the bilinear operators in the free fermion theory and consider a small

change in dimension away from some fixed dimension: d = d0 → d0 + ε. This changes the

OPE coefficients and conformal blocks, leading to a change in the TCB:

H
(0),(d0+ε)
d0−2+ε (u, v) = H

(0),(d0)
d0−2 (u, v) + ε H̃

(1),(d0)
d0−2 (u, v) +O(ε2) . (3.10)
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In our analyses of the crossing equation, we shall always need to keep these terms in mind.

We shall now describe precisely the contributions to H̃
(1),(d0)
d0−2 (u, v) resulting in this change.

The free theory OPE coefficients change because of their explicit dependence on the

dimension d; therefore the change can simply be found by substituting d = d0+ε and Taylor

expanding. The changes to the conformal blocks are twofold: firstly, the blocks are simply

different in different dimensions (even if the twist and spin are the same), and secondly,

the free theory twist τ = d− 2 of the intermediate operators depends on the dimension.

Let us capture these changes as follows:

a
(0)
d0+ε−2,l = a

(0)
d0−2,l

(
1+εα̃

(0)
d0−2,l+O(ε2)

)
, (3.11)

G
(d0+ε)
d0−2+ε,l(u,v) =G

(d0)
d0−2,l(u,v)+ε

∂

∂d

∣∣∣∣
d=d0

G
(d)
d0−2,l(u,v)+ε

∂

∂τ

∣∣∣∣
τ=d0−2

G
(d0)
τ,l (u,v)+O(ε2) ,

(3.12)

so that

H̃
(1),(d0)
d0−2 (u, v) (3.13)

=
∞∑
l=0

a
(0)
d0−2,l

(
α̃

(0)
d0−2,lG

(d0)
d0−2,l(u, v) +

∂

∂τ

∣∣∣∣
τ=d0−2

G
(d0)
τ,l (u, v) +

∂

∂d

∣∣∣∣
d=d0

G
(d0)
d0−2,l(u, v)

)
.

In equation (2.28) the squared OPE coefficients a
(0)
d−2,l were given as a function of d.

By Taylor expanding this around d = d0, the correction α̃
(0)
d0−2,l can be found.

While we might also be able to compute ∂
∂τ

∣∣
τ=d0−2

G
(d0)
τ,l (u, v) directly (for example

in d0 = 2, 4, 6, where the blocks are known in their full form), we are unable to com-

pute ∂
∂d

∣∣
d=d0

G
(d)
d0−2,l(u, v) since we do not know the (full) conformal blocks in arbitrary

dimensions. Instead we shall rely on an expansion of the free theory result in terms of the

dimension to find the collective sum (3.13).

Since the correlator G(0),(d)(u, v) depends explicitly on the dimension d, we can simply

set d = d0 + ε and Taylor expand:

G(0),(d0+ε)(u, v) = G(0),(d0)(u, v) + ε G̃(1),(d0)(u, v) +O(ε2) , (3.14)

where

G̃(1),(d0)(u, v) = log u

(
1

2
G(0),(d0)

bil (u, v) + G(0),(d0)
quad (u, v)

)
− log v Ĝ(d0)(u, v) , (3.15)

with Ĝ(d)(u, v) satisfying the equation

ud−1

vd−1
Ĝ(d)(v, u) = 1 +

1

2
G(0),(d)

bil (u, v) . (3.16)

Let us now finally turn to crossing. The external operators O have anomalous dimen-

sions γO defined with respect to the free theory in d0 + ε dimensions:

∆O = d− 1 + γO = d0 − 1 + ε+ γO = d0 − 1 + ε
(
γ

(1)
O + 1

)
+O(ε2) . (3.17)
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The crossing equation takes the form

vd0−1+ε(γ
(1)
O +1)+...

(
G(0),(d0)(u,v)+εG̃(1),(d0)(u,v)+εG(1)(u,v)+. . .

)
=
(
u↔ v

)
, (3.18)

where G(1) captures the corrections arising from the departure from the free theory. Ex-

panding this in ε, and keeping only the first-order terms in ε, yields the first order crossing

equation(
γ

(1)
O + 1

)
G(0)(u, v) log v + G̃(1)(u, v) + G(1)(u, v)

=
(
γ

(1)
O + 1

)
G(0)(u, v) log u+

ud0−1

vd0−1
G̃(1)(v, u) +

ud0−1

vd0−1
G(1)(v, u) , (3.19)

where all the G are measured with respect to dimension d0, and where the crossing equation

for the free theory result, vd0−1G(0),(d0)(u, v) = ud0−1G(0),(d0)(v, u), was used.

Plugging the results from equation (3.15) and (3.16) into this equation, we find that(
γ

(1)
O + 1

)
G(0)(u, v) log v + log u

(
1

2
G(0)

bil (u, v) + G(0)
quad(u, v)

)
− log v Ĝ(u, v) + G(1)(u, v)

=
(
γ

(1)
O + 1

)
G(0)(u, v) log u+

ud0−1

vd0−1
log v

(
1

2
G(0)

bil (v, u) + G(0)
quad(v, u)

)
− log u

(
1 +

1

2
G(0)

bil (u, v)

)
+
ud0−1

vd0−1
G(1)(v, u) . (3.20)

By direct computation one finds that the extra terms in equation (3.20) (compared to

equation (3.9)) all cancel.6 Thus the first order crossing equation reduces to (3.9):

γ
(1)
O log v G(0)(u, v) + G(1)(u, v) = γ

(1)
O log uG(0)(u, v) +

ud0−1

vd0−1
G(1)(v, u) . (3.21)

Note that we performed an expansion d→ d0 + ε; in the case of an expansion d→ d0 − ε,
some of the signs in the intermediate equations would change, but equation (3.21) would

remain the same.

3.2 Further analysis

To analyse the consequences of equation (3.21), consider the effect of some intermediate

operators of twist τ0 gaining a non-zero anomalous dimension γ
(1)
τ0,l

, or an OPE coefficient

correction α
(1)
τ0,l

as per equation (2.15). This creates a correction to the first order correlator:

G(1)(u, v) ⊇
∑
τ0,l

a
(0)
τ0,l

(
α

(1)
τ0,l

+ γ
(1)
τ0,l
∂τ

)
Gτ,l(u, v) . (3.22)

From the form of the conformal blocks, we can deduce that this has a log u piece of the form∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l
∂τGτ (u, v)

∣∣∣
log u

=
1

2

∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l
Gd0−2(u, v) =

1

2

∞∑
τ0,ρ

B(1)
τ0,ρH

(ρ)
τ0 (u, v) , (3.23)

6An alternative quick way to see this, which only works at first order in ε, is that the free theory, with

γ
(1)
O = 0 and G(1) = 0, should be a solution. After plugging this into equation (3.20), only the extra terms

from the dimension shift remain, so that they must cancel against each other.
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where γ
(1)
τ0,l

was expanded in terms of the conformal spin as in equation (2.17). The full

log v part of equation (3.22) is hard to identify in general dimensions d0. Let us instead

consider dimensions d0 = 2, 4 and focus only on enhanced divergent parts proportional to

log v, that is, terms of the form log v
vk

and logm v for k > 1,m > 2.

We follow the arguments in [24]. Firstly recall that the 2d and 4d conformal blocks

take the special form:

2d:G∆12,∆34

τ,l (z,z) =

(
−1

2

)l(
1− 1

2
δ0,l

)(
k∆12,∆34

τ+2l (z)k∆12,∆34
τ (z)+k∆12,∆34

τ (z)k∆12,∆34

τ+2l (z)
)
,

(3.24)

4d:G∆12,∆34

τ,l (z,z) =

(
−1

2

)l zz

z−z

(
k∆12,∆34

τ+2l (z)k∆12,∆34
τ−2 (z)−k∆12,∆34

τ−2 (z)k∆12,∆34

τ+2l (z)
)
. (3.25)

Let us now define (
τ̃ , l̃
)

=
(
τ, l +

τ

2

)
, (3.26)

so that

∂τ = ∂τ̃ +
1

2
∂l̃ , ∂l = ∂l̃ . (3.27)

It follows that ∂τ̃k
∆12,∆34

τ+2l (z) = 0. We can therefore rewrite the ∂τ part of equation (3.22)

as follows:∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l
∂τGτ (u, v) =

∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l

(
∂τ̃ +

1

2
∂l̃

)
Gτ,l(u, v) (3.28)

=
∑
τ0,l

a
(0)
τ0,l
γ

(1)
τ0,l
∂τ̃Gτ,l(u, v)− 1

2

∑
τ0,l

∂l̃

(
a

(0)
τ0,l
γ

(1)
τ0,l

)
Gτ,l(u, v) +

∑
τ0,l

∂l̃

(
a

(0)
τ0,l
γ

(1)
τ0,l
Gτ,l(u, v)

)
.

The last term is a boundary term, so that it will not contain any enhanced divergences

(see appendix B for a more detailed discussion). From the special form of the conformal

blocks, (3.24) and (3.25), the first term can be seen to not contain any enhanced diver-

gences of the form log v
vk

or log2 v, since the tree-level twist conformal blocks do not contain

such terms.

Plugging this back into equation (3.22), we find that, ignoring the log u log v

divergences:∑
τ0,l

a
(0)
τ0,l

(
α

(1)
τ0,l

+ γ
(1)
τ0,l
∂τ

)
Gτ,l(u, v)

∣∣∣∣
log v, enh. div.

=
∑
τ0,l

a
(0)
τ0,l
α̂

(1)
τ0,l
Gτ,l(u, v)

∣∣∣∣
log v, enh. div.

,

(3.29)

where α̂
(1)
τ0,l

is defined by

α̂
(1)
τ0,l

= α
(1)
τ0,l
− 1

2a
(0)
τ0,l

∂l

(
a

(0)
τ0,l
γ

(1)
τ0,l

)
= α

(1)
τ0,l
− 1

2
∂lγ

(1)
τ0,l
− 1

2
γ

(1)
τ0,l
∂l log a

(0)
τ0,l

. (3.30)

Let us now expand the anomalous dimensions and OPE coefficient corrections of the

bilinears in terms of the conformal spin J2
τ,l, assuming there are no log J terms in the

– 13 –



J
H
E
P
0
1
(
2
0
1
8
)
1
0
4

expansion of the anomalous dimensions:

γ
(1)
τ0,l

= 2
∞∑
m=0

B
(1)
τ0,m

J2m
d−2,l

, α̂
(1)
τ0,l

= 2
∞∑
m=0

A(1)
τ0,m

log J

J2m
d−2,l

+ 2
∞∑
m=0

Ã
(1)
τ0,m

J2m
d−2,l

. (3.31)

These will contribute to log u terms in equation (3.22) as follows:

G(1)(u, v)
∣∣∣
v−• log u

⊇
∞∑
m=0

B
(1)
d0−2,mH

(m)
d0−2(u, v) , (3.32)

G(1)(v, u)
∣∣∣
u−• log u

⊇ −
∞∑
m=0

A
(1)
d0−2,mH

(m)
d0−2(v, u) . (3.33)

Here we used the result H
(k,log J)
τ (u, v)

∣∣∣
v−• log v

= −1
2H

(k)
τ (u, v)

∣∣
v−•

, which follows from

analytically continuing in k, identifying

H(k0,log J)
τ (u, v) = −1

2

∂

∂k

∣∣∣∣
k=k0

H(k)
τ (u, v) , (3.34)

and the assumption that the k-dependence of H
(k)
τ (u, v) takes the form in equation (2.22).

To see how this can be used to constrain the anomalous dimensions and OPE coeffi-

cients, let us assume that the dimension satisfies d0 > 2, so that there is a ‘gap’ between u
d0
2 ,

the highest power of u in the bilinear TCB, and ud0−1, the lowest power of u in the quadri-

linear TCBs. This gap allows for the bilinear enhanced divergences, i.e. those of the form7

u
d0
2
−1

v
d0
2
−m

,
u
d0
2

v
d0
2
−m

for m ∈ Z>0 , (3.35)

to be studied without reference to the quadrilinear operators, since crossing maps the set

of these bilinear divergences onto itself. Define h
(m)
d0−2(u, v) by

H
(m)
d0−2(u, v)

∣∣∣
enh. div.

=
u
d0
2
−1

v
d0
2

h
(m)
d0−2(u, v) (3.36)

Focusing on the log u part of equation (3.22), and looking at these divergences yields, after

substitution of (3.32):∑
m

B
(1)
d0−2,mh

(m)
d0−2(u, v) = γ

(1)
O h

(0)
d0−2(u, v)−

∑
m

A
(1)
d0−2,mh

(m)
d0−2(v, u) . (3.37)

From the tree-level result and our knowledge of the asymptotic behaviour of TCBs, we

find that {
h

(0)
d0−2(u, v) = 1− u− v ,
h

(m)
d0−2(u, v) ∼ u0vm for small u, v .

(3.38)

7If d0 is an even integer, then not all such terms are enhanced divergences, since v−
d0
2

+m may become

regular in v. Furthermore powers of u can recombine with the quadrilinear TCBs. Special care needs to be

taken in such dimensions, and in the definition of h
(m)
d0−2(u, v) below, one needs to discard these terms.
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Equating terms of orders u0v0, umv0 and u0vm, we find that

B
(1)
d0−2,0 +A

(1)
d0−2,0 = γ

(1)
O , B

(1)
d0−2,m = A

(1)
d0−2,m = 0 for m > 1 . (3.39)

This result holds in perturbations of the free theory in which the intermediate operators

do not change. As we shall see in the Gross-Neveu-Yukawa model, there can be non-zero

B
(1)
d0−2,m if there is a coupling to new operators.

3.3 Crossing in the presence of a global symmetry

Consider the crossing equation for the correlator 〈ϕ1ϕ2ϕ3ϕ4〉 of four spacetime scalars that

transform under representations R1, . . . R4 of some global symmetry group.

As mentioned in section 2, the intermediate operators in the ‘direct’ channel transform

under representations RD ⊆ R1 ⊗ R2 and R̃D ⊆ R3 ⊗ R4 which satisfy RD ⊗ R̃D ⊇ 1.

Similarly in the ‘crossed channel’ one encounters intermediate operators in representations

RC ⊆ R2 ⊗R3 and R̃C ⊆ R1 ⊗R4 which satisfy RC ⊗ R̃C ⊇ 1.

The crossing equations similarly decompose. The correlators in the two channels de-

compose as

G1234(u, v) =
∑
i

GRD,i(u, v)TD,i , G3214(v, u) =
∑
j

GRC,j (v, u)TC,j , (3.40)

where the T range over bases of tensor structures for the intermediate operators. Crossing

relates these two:

v
1
2

(∆2+∆3)
∑
i

GRD,i(u, v)TD,i = u
1
2

(∆1+∆2)
∑
j

GRC,j (v, u)TC,j . (3.41)

By projecting either side onto the other’s basis of tensor structures, one finds crossing

relations of the form

v
1
2

(∆2+∆3)GRD,i(u, v) = u
1
2

(∆1+∆2)
∑
j

βijGRC,j (v, u) . (3.42)

Since we are interested in correlators of U(Nf ) singlets and adjoints, we consider the

following tensor products of U(n) representations:8

1⊗ 1 = 1 , 1⊗ (n2 − 1) = (n2 − 1) , (n2 − 1)⊗ (n2 − 1) =

7⊕
i=1

Ri . (3.43)

Therefore the crossing relation for a mixed correlator such as 〈OOOAOA〉 always relates

two different G directly, while the crossing relation for the adjoint correlator 〈OAOAOAOA〉
is of the form

v∆AGi(u, v) = u∆A
∑
j

βijGj(v, u) . (3.44)

To describe the Ri, it is easiest to consider two operators Oi1j1 and Oi2j2 transforming in

the adjoint representation of U(n). Then the seven representations Ri correspond to the

following intermediate operators in the OPE Oi1j1 ×O
i2
j2

:

8We assume that n > 4. For n < 4, the tensor product of two adjoint representations contains fewer

representations.
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• The singlet representation, containing the singlet bilinear currents of even spin.

• An adjoint representation containing operators that are symmetric under an inter-

change (i1 ↔ i2) or (j1 ↔ j2). This contains adjoint bilinear currents of even spin.

• An adjoint representation containing operators that are antisymmetric under an in-

terchange (i1 ↔ i2) or (j1 ↔ j2). This contains adjoint bilinear currents of odd spin.

• Four representations containing the quadrilinears. They consist of tensors with 4

indices, and can be classified according to their symmetry properties: V
(i1i2)

(j1j2) , V
(i1i2)

[j1j2] ,

V
[i1i2]

(j1j2), V
[i1i2]

[j1j2] . Note that the second and third representations in this list are conju-

gate representations.

3.4 Finite-support solutions and analyticity in spin

The study of enhanced divergences of twist conformal blocks as outlined above uses the

assumption that the CFT data is analytic in the spin l. However it is known that this

analyticity can fail to hold for all spins: in this case we need to consider solutions with a

finite support on the spin [11, 25].

Recently it has been shown that the OPE coefficients and anomalous dimensions, under

some mild assumptions regarding Regge behaviour in the theory, are in fact analytic in the

spin all the way down to spin l = 2 [17], thereby limiting the finite support solutions to

l = 0, 1. In the theories in this paper, operators of spin l = 0 often do not appear in the

correlators we consider, leaving only spin l = 1 open to a finite support solution.

There is one caveat here: the argument in [17] shows that the CFT data for spin l > 2

is analytic in l non-perturbatively, while our analysis is perturbative in ε. Perturbatively

one expects, from the violation of Regge behaviour, that the CFT data will be analytic in

the spin down to some minimal spin L proportional to the loop order. We shall explicitly

state in the rest of the paper whenever we use this result.

3.5 Degeneracy

It is possible that there are multiple operators with the same tree-level twist and spin, so

that they enter the crossing equation on the same footing. That is, if there are different

operators Oi with twists τi = τ0 + . . . and OPE coefficients aτ,l,i, then they enter the

crossing equation as ∑
i

aτ,l,iGτi,l(u, v) . (3.45)

In such a case our analysis does not find the CFT data of the individual operators, but a

weighted average. For example, the sum in equation (3.45) has an ε log u part equal to:

∑
i

aτ,l,iGτi,l(u, v)

∣∣∣∣∣
ε log u

=

∑
i

a
(0)
τ0,l,i

γ
(1)
τ0,l,i

2

Gτ0,l(u, v) , (3.46)
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and as such, the crossing equation is only sensitive to the average9

〈γ(1)
τ0,l
〉 ≡

∑
i a

(0)
τ0,l,i

γ
(1)
τ0,l,i∑

i a
(0)
τ0,l,i

. (3.47)

We similarly define for any function the average 〈fτ0,l〉 to be

〈fτ0,l〉 ≡
∑

i a
(0)
τ0,l,i

fτ0,l,i∑
i a

(0)
τ0,l,i

. (3.48)

For notational purposes, we shall also define the following sum over degenerate states:

⟪fτ0,l⟫ ≡
∑
i

fτ0,l,i . (3.49)

Specifically, note that knowledge of 〈fτ0,l〉 does not determine 〈f2
τ0,l
〉, a problem that we

will need to consider in section 4.2.10

In our paper, this type of degeneracy is present for the quadrilinear operators in both

models. Furthermore, in the Gross-Neveu-Yukawa model there is a degeneracy in the

bilinear currents, which is resolved in section 5.2.2 by considering multiple correlators

simultaneously.

4 The d = 2 + ε expansion and the Gross-Neveu model

In this section we study fermionic CFTs that weakly break higher spin symmetry, in di-

mension d = 2 + ε, order by order in ε. We pay particular attention to the (critical)

Gross-Neveu model, which can be described by the following action

S =

∫
d2+εx

(
ψ
i
/∂ψi +

1

2
gψ

i
ψi

)
, (4.1)

where g ∼ ε, so that at ε = 0 it reduces to the free fermion in 2 dimensions.

Section 4.1 discusses first order corrections to the CFT data of both the bilinear and

quadrilinear operators in the singlet representation, and of bilinears in the adjoint repre-

sentation. Section 4.2 discusses the second order corrections to the anomalous dimensions

of bilinear currents in the Gross-Neveu model.

4.1 First order

4.1.1 Results

To summarize the results in this section: through an analysis of the correlator 〈OOOO〉,
we find that a highly non-trivial solution to the first-order crossing equation exists, which

9Theorems regarding analyticity or convergence of the OPE that rely on crossing symmetry, such as

in [17], generally apply to these averages.
10For a different perspective: the a

(0)
τ0,l,i

> 0 can be considered as a probability distribution on the different

operators of fixed twist τ0 and spin l, with fτ0,l a random variable. Knowledge of the first moment E [fτ0,l]

does not fix the second moment E
[
f2
τ0,l

]
; to fully determine the values fτ0,l,i, or equivalently all moments

E
[
fnτ0,l

]
, one needs access to at least as many moments as there are degenerate operators.
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reduces to the Gross-Neveu model upon demanding that the first order anomalous dimen-

sions do not scale logarithmically with the spin. After demanding this, further results about

the non-singlet operators are found through the study of the correlator 〈OAOAOAOA〉 and

mixed correlators such as 〈OAOOOA〉.
The full solution for the singlets is of a similar form to that for 4d (bosonic) gauge

theories studied in [24]. We find that the singlet bilinear operators of even spin l > 2 have

the following anomalous dimensions and OPE coefficient corrections:11

γ
(1)
S,0,l = β (S1(l − 1)− 1) , (4.2)

α̂
(1)
S,0,l =

(
2γ

(1)
O + β

)
S1(l − 1) + ξ̂−1 , (4.3)

where it is assumed that there is a unique twist 0, spin 2 operator corresponding to the

stress-energy tensor, and where ξ̂−1 is a constant related to the central charge. The full

OPE coefficient correction α
(1)
S,0,l can then be found using the definition (3.30); we do not

produce it here.

Almost all the U(Nf ) singlet quadrilinear operators are degenerate, and we find the

following results for their infinite support solution:

〈γ(1),inf.
S,τ0,l

〉 = βτ0S1

(
l +

τ0

2
− 1
)

+ κτ0 , (4.4)

〈α̂(1),inf.
S,τ0,l

〉 = α̂τ0S1

(
l +

τ0

2
− 1
)

+ ξ̂τ0 , (4.5)

where

βτ0 = − η

N + η
β , (4.6)

κτ0 = 2γ
(1)
O
N + 2η

N + η
+

ηβ

N + η

(
2− S1

(τ0

2
− 1
)

+
1

2
δτ0,2

)
, (4.7)

α̂τ0 = 2γ
(1)
O +

ηβ

N + η

(
1− 2S1

(τ0

2
− 1
)

+ S1 (τ0 − 2) +
1

4
δτ0,2

)
, (4.8)

ξ̂τ0 =
η

N + η

(
ξ̂−1 + βξ̂(β)

τ0 + γ
(1)
O ξ̂(γO)

τ0

)
, (4.9)

where we defined η = (−1)
τ0
2 , and where, in equation (4.9):

ξ̂(β)
τ0 = ζ2+3S1

(τ0

2
−1
)
−S1

(τ0

2
−1
)2
−2S1 (τ0−2)

+S1

(τ0

2
−1
)
S1 (τ0−2)+

1

2
S2

(τ0

2
−1
)
− 5

4
δτ0,2 , (4.10)

ξ̂(γO)
τ0 = 6S1

(τ0

2
−1
)
−4S1 (τ0−2)−δτ0,2+Nη

(
4S1

(τ0

2
−1
)
−2S1 (τ0−2)

)
, (4.11)

where ζ2 = ζ(2) = π2

6 .

We find that the above solution with β 6= 0 requires the existence of a solution with

finite support on the spin, i.e. with γ
(1)
l 6= 0 only for l = 0, . . . , L. As per the results of [17],

11Sr(n) denotes the r-th order harmonic number: Sr(n) =
∑n
k=1

1
kr

.
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we would expect L = 1 to first order in ε. Indeed such a solution exists, and for the U(Nf )

quadrilinear singlets it takes the form

〈γ(1),fin.
S,τ0,0

〉 =
N

N + η

1

τ0 − 1

(
γfin +

β

4N
(1− δτ0,2)

)
, (4.12)

where γfin is a constant not fixed by our analysis. The part of the solution that is indepen-

dent of the infinite support solution, which is found by setting β = 0, matches the form of

the solutions found in [25].

Logarithmic scaling and results for Gross-Neveu. Logarithmic scaling of the

anomalous dimensions with the spin is known to occur in CFTs, for example at order

ε3 in the Gross-Neveu model [19] or at order ε2 in the critical nonlinear sigma model in

d = 2 + ε [26]. This behaviour can be understood from the fact that the nearly conserved

currents of twist τ = d−2 contribute a term of the form 1/sd−2 in the large spin expansion,

which generates a logarithmic term in d = 2 + ε. However, we are unaware of any known

theories in which such behaviour already occurs at first order in ε, and we would expect

this to correspond to a theory in which ψ is not part of the spectrum, for example because

it is prohibited by gauge symmetry.

Demanding that the first order anomalous dimensions do not scale logarithmically

with the spin, which sets β = 0, reduces our results to those in the Gross-Neveu model in

d = 2+ε. To motivate this, let us consider the analogous bosonic case in d = 4 dimensions.

A full analysis of those theories is performed in [24], which studies the implications of

crossing symmetry of the correlator 〈ϕ2ϕ2ϕ2ϕ2〉 for the CFT data. Their results include

the possibility of log J terms in the anomalous dimensions, and in fact, they find a theory

in which these appear, namely N = 4 SYM. However in theories in which the fundamental

field ϕ appears, such as the Wilson-Fisher model, an analysis like that of [11] shows that

no such terms may appear; the reason that the corrections in N = 4 SYM could have

logarithmic behaviour is because gauge symmetry prevented the field ϕ from appearing

in the spectrum. A similar thing is likely happening here, where a full analysis of the

correlator 〈ψψψψ〉 of fundamental fields may be able to conclude that β = 0 if ψ is part

of the spectrum.

When β = 0 our results reduce to

γ
(1)
S,0,l = 0 , (4.13)

α
(1)
S,0,l = 2γ

(1)
O S1(l − 1) + ξ̂−1 . (4.14)

Furthermore the quadrilinear operators have corrections of the form

〈γ(1)
S,τ0,l
〉 = κτ0 , (4.15)

〈α̂(1)
S,τ0,l
〉 = 2γ

(1)
O S1

(
l +

τ0

2
− 1
)

+ ξ̂τ0 , (4.16)

where

κτ0 = 2γ
(1)
O
N + 2η

N + η
, (4.17)

ξ̂τ0 =
η

N + η

(
ξ̂−1 + γ

(1)
O ξ̂(γO)

τ0

)
, (4.18)
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with ξ̂
(γO)
τ0 as before. To fix ξ̂−1, we use the relation for the OPE coefficient of an operator

O with the stress-energy tensor T [9]:

aOOT =
1

cT

d2

(d− 1)2
∆2
O , (4.19)

with cT the central charge of the theory. Evaluating at d = 2 + ε, with c
(0)
T = N , and

subtracting the free theory correction to the OPE coefficient, one deduces that

α
(0)
S,0,2 = 2γ

(1)
O −

1

N
c

(1)
T = 2γ

(1)
O , (4.20)

where the full central charge of the theory is cT = c
(0)
T +εc

(1)
T +. . ., and where we used the re-

sult that the central charge corrections in the Gross-Neveu model only start at order ε3 [27].

From these results for the singlet operators in the Gross-Neveu model, we deduce

results for the non-singlet operators. Specifically, we find for the bilinear adjoint operators

of even spin l > 2:

γ
(1)
A,0,l = 0 , (4.21)

λ
(1)
AAl = γ

(1)

OAS1(l − 1) + kA , (4.22)

λ
(1)
SAl =

1

2

(
γ

(1)
O + γ

(1)

OA

)
S1(l − 1) + kSA . (4.23)

Here the λ
(1)
••• are the (multiplicative) corrections to the (non-squared) OPE coefficients

c•••, i.e. they satisfy

c••• = c
(0)
••• + εc

(1)
••• + · · · = c

(0)
•••

(
1 + ελ

(1)
••• + . . .

)
, (4.24)

with cAAl = cOAOAJS,l and cSAl = cOOAJA,l .

Furthermore, we have found that for bilinear currents of odd spin l:

γ
(1)
A,0,l = 0 . (4.25)

The odd spin singlets cannot be directly accessed by our method since they do not appear

as intermediate operators in the four-point correlators we consider.

The bilinear anomalous dimensions γ
(1)
S,0,l and γ

(1)
A,0,l match known results for the Gross-

Neveu model in 2 + ε dimensions, found for example in [19].

4.1.2 Singlets — 〈OOOO〉

We first analyse the bilinear currents on their own and later add the quadrilinear operators

to the analysis.

Bilinear currents. From the general tree-level result, equation (2.28), the tree-level

squared OPE coefficients of the U(Nf ) singlet currents can be found in d0 = 2:

a
(0)
S,0,l =

(
1 + (−1)l

) 2lΓ(l)2

NΓ (2l − 1)
. (4.26)
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We repeat here the first-order crossing equation (3.21), and evaluate it at d0 = 2:

γ
(1)
O log v G(0)(u, v) + G(1)(u, v) = γ

(1)
O log uG(0)(u, v) +

u

v
G(1)(v, u) . (4.27)

As in section 3.2, corrections to the OPE coefficients and anomalous dimensions create a

correction to the correlator:

G(1)(u, v) =
∑
τ0,l

a
(0)
τ0,l

(
α

(1)
τ0,l

+ γ
(1)
τ0,l
∂τ

)
Gτ,l(u, v) . (4.28)

When we expand the anomalous dimensions and OPE coefficient corrections in terms of

the conformal spin J2
0,l = l(l−1), these corrections will organize themselves in terms of the

twist conformal blocks H
(ρ)
0 (u, v); let us therefore investigate their analytical properties.

The free theory result is

H
(0)
0 (u, v) =

1

N

(
(1− v)2

v
− u(1 + v)

v

)
. (4.29)

This has enhanced divergences of the form 1
v and u

v , so that one expects log2 v divergences

in H
(1)
0 (u, v), H

(2)
0 (u, v), . . . . Indeed this is what happens: in terms of the z, z coordinates,

for m > 1, there is a term of the form

H
(m)
0 (z, z) ⊇ h(m)(z) log(1− z)2 , h(m)(z) ∼ (1− z)m−1 for (1− z)� 1 . (4.30)

To see the consequences of this, consider terms in the crossing equation (4.27) of the

form log2 v. These cannot be produced on the right-hand side, and hence must also be

absent on the left-hand side. Consider now an expansion of α̂0,l, which we recall encodes

all the enhanced divergences proportional to log v in equation (4.28) (excluding log u log v

divergences), in terms of the conformal spin J2 = J2
0,l

α̂
(1)
0,l =

∞∑
m=0

(
A

(1)
0,m

log J

J2m
+ Ã

(1)
0,m

1

J2m

)
. (4.31)

This contributes a term

G(1)(u, v) ⊇
∑
l

a
(0)
0,l α̂

(1)
0,lG0,l(u, v) =

∞∑
m=0

(
A

(1)
0,mH

(m,log J)
0 (u, v) + Ã

(1)
0,mH

(m)
0 (u, v)

)
. (4.32)

We immediately conclude that A
(1)
0,m = 0 for m > 1, since these would produce terms of

the form log3 v. Furthermore, note that a non-zero A
(1)
0,0 produces log2 v terms that can be

cancelled by the Ã
(1)
0,m with m > 1. In fact, we find that this imposes that they are of the

following form

Ã
(1)
0,1

A
(1)
0,0

=
1

6
,

Ã
(1)
0,2

A
(1)
0,0

= − 1

30
,

Ã
(1)
0,3

A
(1)
0,0

=
4

315
,

Ã
(1)
0,4

A
(1)
0,0

= − 1

105
, . . . (4.33)
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which the astute reader may recognize as the coefficients of the expansion of the harmonic

number S1(l − 1) in terms of the conformal spin J2 = J2
0,l:

S1(l − 1) = γe + log J +
1

6J2
− 1

30J4
+

4

315J6
− 1

105J8
+ . . . , (4.34)

with γe the Euler-Mascheroni constant. Hence we conclude that the general form of the

OPE correction is

α̂
(1)
S,0,l = α̂−1S1(l − 1) + ξ̂−1 , (4.35)

where α̂−1 and ξ̂−1 are constants to be fixed. Similarly we demand absence of terms of the

form u0 log u log2 v, which arise as follows:

G(1)(u, v)

∣∣∣∣
log u

⊇
∑
l

a
(0)
0,l γ

(1)
0,l ∂τ

∣∣
τ=0

Gτ,l(u, v)

∣∣∣∣
log u

=
∑
l

a
(0)
0,l

γ
(1)
0,l

2
G0,l(u, v) . (4.36)

In the last line we used the fact that conformal blocks are of the form Gτ,l(u, v) =

uτ/2gτ,l(u, v), with gτ,l(u, v) analytic in u. In the crossing equation, we then come to

the same conclusion as for the α̂
(1)
0,l , i.e. that the anomalous dimensions are of the form:

γ
(1)
S,0,l = β (S1(l − 1)− 1) , (4.37)

where exact conservation of the stress-energy tensor was used to fix γ
(1)
S,0,2 = 0.

Let us now explicitly show how to fix the constant α̂−1. We look at the u0v−1 log v

part of the crossing equation:

γ
(1)
O G

(0)(u, v)

∣∣∣∣
u0 log v

v

+ G(1)(u, v)

∣∣∣∣
u0 log v

v

=
u

v

(
G(1)(v, u)

∣∣∣∣
v0 log v

u

)
, (4.38)

and use the known expansions of α̂
(1)
S,0,l and γ

(1)
S,0,l to find that

G(1)(u, v)

∣∣∣∣
u0 log v

v

= −1

2
α̂−1H

(0)
0 (u, v)

∣∣∣∣
u0

v

= − α̂−1

2N
, (4.39)

G(1)(v, u)

∣∣∣∣
v0 log v

u

= −1

2
βH

(0)
0 (v, u)

∣∣∣∣
v0

u

= − β

2N
. (4.40)

Combining this with the tree-level result, we find that equation (4.38) reduces to

γ
(1)
O −

1
2 α̂−1 = −1

2β, so that

α̂−1 = 2γ
(1)
O + β . (4.41)

At this point we can fix no further constants using our analysis.

Summation. Given the form of the anomalous dimensions and OPE coefficient correc-

tions, it is natural to consider the full bilinear part of the correction (4.28). While the full

correction can in fact be found, for our analysis we shall only need its leading-u behaviour.

This is because on the left-hand side of the crossing equation, the infinite support CFT data
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of the quadrilinear operators is fully determined by the part that has an enhanced diver-

gence of the form 1
v . Since the crossing equation is of the form G(1)(u, v) = u

vG
(1)(v, u)+. . . ,

on the right-hand side these terms are fully determined by the leading behaviour of cor-

rections from the bilinear currents.

Following the notation in [24], let us write the bilinear CFT data as

γ
(1)
S,0,l = α1,1S1(l − 1) + α1,0 , (4.42)

α̂
(1)
S,0,l = α0,1S1(l − 1) + α0,0 . (4.43)

The leading-u behaviour of the correction to the four-point correlator will then be a function

f(u, v) that can be expanded as

f(u, v) = α1,1f1,1(u, v) + α1,0f1,0(u, v) + α0,1f0,1(u, v) + α0,0f0,0(u, v) . (4.44)

Explicitly summing, the functions are as follows:

f1,1(u, v) =

(
−1 + v2

4Nv

)
log u log v +

(
−1 + v2

2Nv

)
Li2(1− v) + ζ2

(1− v)2

2Nv
, (4.45)

f1,0(u, v) =
(1− v)2

2Nv
log u+

(
1− v
2N

)
log v , (4.46)

f0,1(u, v) =
(1− v)2

2Nv
log v , (4.47)

f0,0(u, v) =
(1− v)2

Nv
, (4.48)

where (1−v)2

Nv is the leading-u part of the tree-level H
(0)
0 (u, v), and where −1+v2

2Nv is the

leading-u part of H
(0),harm
0 (u, v) ≡

∑
l a

(0)
S,0,lS1(l − 1)G0,l(u, v).

Quadrilinears. Recall that generally the quadrilinear operators are degenerate: there are

multiple operators with the same twist and spin. Let us define τ0(n) = 2+2n for n > 0, and

denote by 〈γ(1)
n,l 〉 the (average) first-order anomalous dimension of the quadrilinear operators

of twist τ0(n) and spin l.12 Then the free theory twist conformal blocks H
(0)
τ0(n)(u, v) can

be found from the free theory correlator, equation (3.3). Decomposing these, the following

formula can be found for the OPE coefficients:

⟪a(0)
n,l⟫ =

(
1 +

(−1)n+1

N

)
21+lΓ(n+ 1)2Γ(l + n+ 1)2

Γ (2n+ 1) Γ (2l + 2n+ 1)
, (4.49)

where ⟪a(0)
n,l⟫ is defined as in equation (3.49). Like their bilinear counterpart, the quadri-

linear TCBs have the property that for m > 1:

H
(m)
τ0(n)(z, z) ⊇ zτ0(n)/2h(m)(z) log2(1−z) , h(m)(z) ∼ (1−z)m−1 for (1−z)� 1 . (4.50)

12Since we only discuss quadrilinears that are U(Nf ) singlets, we shall often omit the subscript ‘S’, and

for further ease of notation we write terms like γ
(1)
n,l to denote γ

(1)

S,τ0(n),l.
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so that no linear combination of them is free of log2 v divergences. Another property they

share with H
(0)
0 (u, v) is that if one demands that the sum

H
(0,log J)
τ0(n) (u, v) +

∞∑
m=0

B
(m)
τ0(n)H

(m)
τ0(n)(u, v) (4.51)

is free of log2 v divergences, then the B
(m)
τ0(n) must be coefficients in the expansion of the

harmonic number S1(l+n) in terms of J−2
τ0(n),l. That is, the sum

∑
l a

(0)
n,lS1(l+n)Gτ0(n),l(u, v)

is free of log2 v divergences. From this we deduce that the CFT data of the quadrilinear

operators must have the following form

〈γ(1)
n,l 〉 = βnS1(l + n) + κn , (4.52)

〈α̂(1)
n,l 〉 = α̂nS1(l + n) + ξ̂n . (4.53)

On the other hand, the quadrilinear TCBs have an interesting property not shared by

their bilinear counterpart: namely, while their sum G(0)
quad(u, v) =

∑∞
n=0H

(0)
τ0(n)(u, v) is free

of log v terms, each H
(0)
τ0(n)(u, v) contains log v terms, in such a way that only the following

combination is free of log v terms:

α0

∑
n∈2N

H
(0)
τ0(n)(u, v) + α1

∑
n∈2N+1

H
(0)
τ0(n)(u, v) . (4.54)

This restricts the form that anomalous dimensions and OPE coefficients may take.

For example, since there can be no terms of the form log u log2 v in the first-order crossing

equation, we see that the anomalous dimensions must be of the following form:

〈γ(1)
n,l 〉 =

{
β0S1(l + n) + κn , if n even,

β1S1(l + n) + κn , if n odd.
(4.55)

Recall the crossing equation, and consider the part that has a power-law divergence in v:

γ
(1)
O (log v − log u)G(0)(u, v)

∣∣∣∣
1
v

+ G(1)(u, v)

∣∣∣∣
1
v

=
u

v
f(v, u) . (4.56)

By looking at specific terms in this equation order by order in u, we are able to fix the

CFT data of the quadrilinear operators.13 Specifically, we fix:

• βn by looking at the log u log v part of equation (4.56).

• κn by looking at the log u part of equation (4.56). Note we do not need to consider

the log u log v part, which has already been fixed by the βn.

• α̂n by looking at the log v part of equation (4.56). Again the log u log v part has

already been fixed by the βn.

• ξ̂n by looking at the remaining part of equation (4.56), i.e. the terms without

logarithms.

13For technical reasons, we used the coordinates (z, z) in our computation, and looked at power-law

divergent terms in (1− z), order by order in z. This only affects some technical details of the computation:

the idea is the same if one replaces log u 7→ log z and log v 7→ log(1− z) in the discussion below.
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Doing this full computation, we find the results in equations (4.4)–(4.11), which we do

not reproduce here due to their length. This completely fixes the infinite support solution

in terms of three constants: (β, γ
(1)
O , c

(1)
T ), where we used the relation (4.19) to exchange

dependence on ξ̂−1 into dependence on the central charge correction c
(1)
T .

Note that finite support solutions may exist. Specifically, assuming the argument from

section 3.4, one would expect to find a finite support solution for operators of spin l = 0.

We analyze this possibility by looking at the full log u log v part of the crossing equation,

and truncating to a finite order by sending u 7→ δu, v 7→ δv and truncating in powers of δ.

Doing this, we find that such a finite support solution must exist, and it takes the form

〈γ(1),fin.
S,τ0,0

〉 =
N

N + η

1

τ0 − 1

(
γfin +

β

4N
(1− δτ0,2)

)
, (4.57)

for some undetermined constant γfin.

The part of this finite support solution that is independent of the infinite support

solution, takes the same form as in [25], equation (4.13), after setting ∆, the dimension of

the external operator, to 1, and writing τ0 = τ0(k) = 2+2k. Similarly to the results in [25],

our analysis shows that there are further finite support solutions in which the spin cutoff

L satisfies L > 2, which we would not expect to see given the analyticity results of [17].

4.1.3 Adjoints: 〈Oi1
j1
Oi2

j2
Oi3

j3
Oi4

j4
〉

Having determined the anomalous dimensions and OPE coefficients of the singlets, and

having found the Gross-Neveu model as the theory in which β = 0, let us focus on the

anomalous dimensions of the adjoint currents by considering the four-point function of

adjoint operators in the Gross-Neveu model.

Recall that the four-point function of adjoints decomposes according to the U(Nf )

representations of the intermediate operators, which are the representations occurring in the

tensor product of two adjoints. Let us denote the function corresponding to the symmetric

adjoint representation by GA,S(u, v), and that of the antisymmetric adjoint by GA,A(u, v).

Let us also denote the function corresponding to the singlet representation by GS(u, v).

Even spin. The bilinear part of G(0)
A,S(u, v), i.e. the conformal block H

(0)
d−2,AS(u, v), is, up

to an overall normalization, the same as the conformal block H
(0)
d−2(u, v) in the correlator

〈OOOO〉.
The crossing relation is of the form

v∆AGA,S(u, v) = u∆A

6∑
j=1

β2jGj(v, u) , (4.58)

where the βij are constants fixed by the representation theory of U(Nf ).

Analysing crossing to first order in ε yields

γ
(1)
A log v G(0)

A,S(u, v) + G(1)
A,S(u, v) = γ

(1)
A log uG(0)

A,S(u, v) +
u

v

6∑
j=1

β2jG(1)
j (v, u) , (4.59)
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where crossing was used in its tree-level form. Since the tree-level result is the same as for

the bilinear twist conformal block in section 4.1.2, we conclude that the expansion of γ
(1)
A,l

must be constant to ensure that there is no log u log2 v term in the crossing equation:

γ
(1)
A,0,l = γ

(1)
A,0,2 l > 2 even . (4.60)

Odd spin. The bilinear part of G(0)
A,A(u, v) is different from that in the correlator 〈OOOO〉:

up to an overall normalization, we find it to be, in general dimension d:

H
(0)
d−2,AA(u, v) = u

d
2
−1

(1− v)
(

1 + v
d
2

)
v
d
2

+ u
d
2

1− v
d
2

v
d
2

, (4.61)

so that in 2 dimensions

H
(0)
0,AA(u, v) =

1− v2

v
+ u

1− v
v

. (4.62)

The crossing relation is of the form

v∆AGA,A(u, v) = u∆A

6∑
j=1

β3jGj(v, u) . (4.63)

The crossing relation at first order in ε gives a very similar result to that for GA,S :

γ
(1)
A log v G(0)

A,A(u, v) + G(1)
A,A(u, v) = γA log uG(0)

A,A +
u

v

6∑
j=1

β3jG(1)
j (v, u) . (4.64)

From the explicit form of the twist conformal block H
(0)
0,AA(u, v) in equation (4.62), all

higher TCBs H
(m)
0,AA(u, v) can be calculated. We find that for m > 1, they have log2(1− z)

contributions that are precisely the same as for the even spin case; the standard argument

of demanding no log u log2 v divergences then implies that the γ
(1)
A,0,l are constant for odd l.

Whether this constant can be non-zero depends on the existence of solutions with finite

support on the spin.14 Since the solution in the quadrilinears can be unbounded (in both

spin and twist), we cannot rule out this possibility easily, and we shall revisit this issue in

section 4.1.5. For now, we can only make the following ansatz:

γ
(1)
A,0,l = ω∞ +

L∑
m=1

ωmδk,l , l > 1 odd. (4.65)

Imposing exact conservation of the global symmetry current, which is a spin 1 current

in the U(Nf ) adjoint representation, then shows that ω∞ + ω1 = 0. We shall show in

section 4.1.5 that there is no such finite support solution, so that in fact

γ
(1)
A,0,l = 0 , l > 1 odd. (4.66)

14Note that an expansion in inverse powers of the conformal spin J2
0,l = l(l− 1) makes no sense at l = 1.
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4.1.4 Mixed correlators

There is a plethora of mixed four-point correlators to consider:

〈OAOOOA〉 → GA(u, v) (4.67)

〈OOAOAO〉 → G′A(u, v) (4.68)

〈OOOAOA〉 → GS(u, v) (4.69)

〈OOAOOA〉 → G̃A(u, v) (4.70)

In the free theory all these G have the same bilinear contribution. Using the property

of conformal blocks [15]:

G
∆ij ,∆kl
τ,s (u, v) = v

∆ij−∆kl

2 G
−∆ij ,−∆kl
τ,s (u, v) , (4.71)

and the fact that only even spin bilinear operators appear in the relevant OPEs, it can be

shown that to all orders in ε:

v∆O GA(u, v)|bil. = v∆AG′A(u, v)
∣∣
bil.

. (4.72)

Since the external dimensions are no longer identical, there will be extra contributions

to the conformal blocks:

G∆AS ,∆SA

τ,l (u, v) = G0,0
τ0,l

(u, v) + ε G̃τ0,l(u, v) + εG′τ0,l(u, v) + . . . , (4.73)

where G̃τ0,l is the correction due to the fact that the dimensions ∆AS ≡ ∆A − ∆O and

∆SA = −∆AS in G∆AS ,∆SA

τ,l may get corrections at order ε, and where G′τ0,l(u, v) captures

the changes to the blocks due to a dimensional correction and possibly non-zero anomalous

dimensions. Note that the following holds for the correction of G∆SA,∆AS

τ,l = G−∆AS ,−∆SA

τ,l :

G∆SA,∆AS

τ,l (u, v) = G0,0
τ0,l

(u, v)− ε G̃τ0,l(u, v) + εG′τ0,l(u, v) + . . . . (4.74)

Expanding equation (4.72) to order ε, we find that:

v
(

1+εγ
(1)
O logv+. . .

)∑
l

a
(0)
SAl

(
1+εα

(1)
SAl+. . .

)(
G0,0

0,l (u,v)+εG̃0,l(u,v)+εG′0,l(u,v)+. . .
)

= v
(
1+εγ

(1)
A logv+. . .

)∑
l

a
(0)
SAl

(
1+εα

(1)
SAl+. . .

)(
G0,0

0,l (u,v)−εG̃0,l(u,v)+εG′0,l(u,v)+. . .
)
.

(4.75)

Matching the order ε part, we find that

∑
l

a
(0)
SA,lG̃0,l(u, v) =

γ
(1)
A − γ

(1)
O

2
log v

∑
τ0,l

a
(0)
SAlG

0,0
0,l (u, v) =

γ
(1)
A − γ

(1)
O

2
log v H

(0)
0,A(u, v) ,

(4.76)

an identity that shall prove useful later.
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Crossing for 〈OOAOOA〉. The crossing relation for G̃A(u, v) maps it onto itself:

v
∆O+∆A

2 G̃A(u, v) = u
∆O+∆A

2 G̃A(v, u) (4.77)

This makes the analysis slightly simpler; however, just like in the crossing relation for

〈OAOOOA〉, the conformal blocks have unequal external dimensions. The relevant confor-

mal blocks are

G∆SA,∆SA

τ,l (u, v) = G0,0
τ,l (u, v) + ε F̃0,l(u, v) + . . . , (4.78)

where F̃ is the correction due to the fact that ∆SA may acquire an anomalous dimension

at order ε. However the identity (4.71) applied to G∆SA,∆SA

τ,l (u, v) = GεγSA,εγSAτ,l (u, v) + . . .

implies that

GεγSA,εγSAτ,l (u, v) = G−εγSA,−εγSAτ,l (u, v) , (4.79)

so that the corrections due to the external dimensions must be an even function in ε, thus

forcing F̃ to vanish. We may therefore ignore the added subtleties of different external

dimensions, and simply get the first order crossing equation

γ
(1)
O +γ

(1)
A

2
logv G̃(0)

A (u,v)+G̃(1)
A (u,v) =

γ
(1)
O +γ

(1)
A

2
logu G̃(0)

A (u,v)+
u

v
G̃(1)
A (v,u) . (4.80)

From the standard argument of being free of log2 v, we find that the bilinear anomalous

dimensions are all constant.15 Projecting onto the u0v−1 log v part of the equation, so as

to isolate the bilinear operators, we find that

γ
(1)
A +γ

(1)
O

2
G̃(0)
A (u,v)

∣∣∣
u0v−1

+
∑
l

a
(0)
SAlα̂

(1)
SAlG

0,0
0,l (u,v)

∣∣∣∣∣
u0v−1 logv

=
u

v

γ
(1)
A,0,2

2
H̃

(0)
0,A(v,u)

∣∣∣
v0u−1

=
u

v

γ
(1)
A,0,2

2
G̃(0)
A (u,v)(v,u)

∣∣∣
v0u−1

. (4.81)

Crossing for 〈OAOOOA〉. Consider the crossing equation relating GA and GS :

v∆OGA(u, v) = u
∆O+∆A

2 GS(v, u) , (4.82)

and expand it to order ε to find

v
(
γ

(1)
O logvG(0)

A (u,v)+G(1)
A (u,v)

)
=u

(
γ

(1)
O +γ

(1)
A

2
loguG(0)

S (v,u)+G(1)
S (v,u)

)
. (4.83)

15Harmonic number terms can be excluded by the crossing equation for 〈OAOOOA〉, since they would

imply the presence of harmonic number terms in the singlet operators.
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log(v) term. Let us take the log v term in equation (4.83). We use the fact that γ
(1)
S,0,l = 0

to conclude that G(1)
S (v, u)

∣∣∣
v0 log v

= 0. Projecting out the bilinear part of the crossing

equation again, we see that

γ
(1)
O G

(0)
A (u, v)

∣∣∣
u0v−1

+ G(1)
A (u, v)

∣∣∣
u0v−1 log v

= 0 . (4.84)

We find this term:

G(1)
A (u, v)

∣∣∣
u0v−1 log v

=
∑
l

a
(0)
SAlG̃0,l(u, v)

∣∣∣∣∣
u0v−1 log v

+
∑
l

a
(0)
SAlα̂

(1)
SAlG

0,0
0,l (u, v)

∣∣∣∣∣
u0v−1 log v

=
γ

(1)
A − γ

(1)
O

2
H

(0)
0,A(u, v)

∣∣∣∣∣
u0v−1

+
∑
l

a
(0)
SAlα̂

(1)
SAlG

0,0
0,l (u, v)

∣∣∣∣∣
u0v−1 log v

=
γ

(1)
A − γ

(1)
O

2
G(0)
A (u, v)

∣∣∣∣∣
u0v−1

+
∑
l

a
(0)
SAlα̂

(1)
SAlG

0,0
0,l (u, v)

∣∣∣∣∣
u0v−1 log v

,

(4.85)

where we used equation (4.76).

Putting this in the crossing equation (4.84), we find that

γ
(1)
A + γ

(1)
O

2
G(0)
A (u, v)

∣∣∣
u0v−1

+
∑
l

a
(0)
SAlα̂

(1)
SAlG

0,0
0,l (u, v)

∣∣∣∣∣
u0v−1 log v

= 0 . (4.86)

Comparing equations (4.81) and (4.86), and using the fact that G(0)
A (u, v) and G̃(0)

A (u, v)

have the same bilinear part, we conclude that

γ
(1)
A,0,l = 0 , l > 2 even. (4.87)

Specifically note that then α
(1)
SAl = α̂

(1)
SAl. Furthermore, matching terms of the form u0

v in

equation (4.86), we find that

α
(1)
SAl = 2λ

(1)
SAl =

(
γ

(1)
O + γ

(1)
A

)
S1(l − 1) + kSA , (4.88)

for some constant kSA.

log(u) term. Let us take the log u term in equation (4.83). We use the fact that γ
(1)
A,0,l = 0

to conclude that G(1)
A (u, v)

∣∣∣
u0 log u

= 0, so that

γ
(1)
O + γ

(1)
A

2
G(0)
S (v, u)

∣∣∣∣
u−1

+ G(1)
S (v, u)

∣∣∣∣
u−1 log u

= 0 . (4.89)

Recall that the exchanged currents in GS are singlets, which have trivial first-order anoma-

lous dimensions, and which produce conformal blocks with equal external dimensions,

so that

G(1)
S (v, u)

∣∣∣
v0u−1 log u

=
∑
l

c
(0)
SSlc

(0)
AAl

(
λ

(1)
SSl + λ

(1)
AAl

)
G0,0

0,l (v, u)

∣∣∣∣∣
v0u−1 log u

. (4.90)
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The standard analysis then implies that

λ
(1)
SSl + λ

(1)
AAl =

(
γ

(1)
O + γ

(1)
A

)
S1(l − 1) + kS + kA , (4.91)

for some constant kA. From this we deduce that

λ
(1)
AAl = γ

(1)
A S1(l − 1) + kA . (4.92)

4.1.5 Bilinear finite support solutions

We would like to discount the possibility of finite support solutions for the bilinear γ
(1)
S,0,l.

From the analysis in section 4.1.2, it is clear that in the singlet correlator G(1)(u, v), there

are no terms of the form log u log v
vk

with k ≥ 0, since there are no log J terms in the expansion

of any anomalous dimensions.

By considering crossing for the mixed correlator 〈OOOAOA〉, which relates CFT

data for even spin singlet and adjoint operators, the same conclusions hold for the even

spin adjoint operators: there are no log J terms in the expansions of bilinear anomalous

dimensions.

For the odd spin adjoint operators, we need to consider the crossing equation for the

correlator 〈OAOAOAOA〉, which is

G(1)
i (u, v)

∣∣∣
log u log v

=
u

v

6∑
j=1

βijG(1)
j (v, u)

∣∣∣∣∣∣
log u log v

i = 1, . . . , 6 . (4.93)

From the above: G(1)
1 (u, v)

∣∣∣
u0 log u log v

= G(1)
2 (u, v)

∣∣∣
u0 log u log v

= 0. Therefore we find that

G(1)
3 (u, v)

∣∣∣
u0 log u log v

=
u

v

6∑
j=3

β3j G(1)
j (v, u)

∣∣∣
u−1 log u log v

(4.94)

G(1)
i (u, v)

∣∣∣
u0 log u log v

=
u

v

6∑
j=3

βij G(1)
j (v, u)

∣∣∣
u−1 log u log v

= 0 for i 6= 3 . (4.95)

We may view the last equation as a set of five linear constraints on four functions

G(1)
j (u, v)

∣∣∣
v−1 log u log v

. Generally we expect this to have no non-trivial solutions, and indeed

we find that the βij are such that all G(1)
j (u, v)

∣∣∣
v−1 log u log v

vanish. Hence we conclude that

G(1)
3 (u, v)

∣∣∣
u0 log u log v

= 0 , (4.96)

so that there are no finite support solutions, nor any log J terms in the expansion of the

anomalous dimensions of any of the bilinear currents.

4.2 Second order

Once again we need to take into account the dimensional shift due to the theory living in

d = 2 + ε. Let us consider a fixed TCB of twist τ0 and expand the various contributions to

the twist conformal blocks due to the dimensional shift. For ease of notation, we shall omit

the fact that all functions and derivatives are to be evaluated at d = d0 = 2 and τ = τ0.
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Consider the free theory TCB in d = d0 = 2:

H(0)
τ0 (u, v) =

∑
l

a
(0)
τ0,l
G

(d0)
τ0,l

(u, v) . (4.97)

In the Gross-Neveu theory in d = 2 + ε, there are corrections:

a
(0)
τ0,l
→ a

(0)
τ0,l

(
1+εα̃

(1)
τ0,l

+εα
(1)
τ0,l

+ε2α̃
(2)
τ0,l

+ε2α
(2)
τ0,l

+. . .
)
, (4.98)

G
(d0)
τ0,l

(u,v)→
[
1+ε∂d+ε

(
γ

(1)
τ0,l

+ζ
)
∂τ+ε2γ

(2)
τ0,l
∂τ+

+
1

2
ε2

((
γ

(1)
τ0,l

+ζ
)2
∂2
τ +
(
γ

(1)
τ0,l

+ζ
)
∂τ∂d+∂2

d

)
+. . .

]
G

(d)
τ,l (u,v) , (4.99)

where α̃
(1)
τ0,l
, α̃

(2)
τ0,l

are corrections to the free theory due to the dimensional shift, where

α
(1)
τ0,l
, α

(2)
τ0,l

are corrections due to the departure from the free theory in d = 2 + ε. Further-

more ζ = ∂τ
∂d is the spacetime dependence of τ , i.e. ζ = 1 for the bilinear currents and ζ = 2

for the quadrilinear operators. Gathering the terms in equation (4.97), we find to order ε

the combination with which we are familiar:∑
l

a
(0)
τ0,l

(
α̃

(1)
τ0,l

+ ζ∂τ + ∂d

)
G

(d)
τ,l (u, v)︸ ︷︷ ︸

Free theory correction G̃(1)(u,v)

+
∑
l

a
(0)
τ0,l

(
α

(1)
τ0,l

+ γ
(1)
τ0,l
∂τ

)
G

(d)
τ,l (u, v)︸ ︷︷ ︸

Gross-Neveu data G(1)(u,v)

. (4.100)

To order ε2, we find the following correction:∑
l

a
(0)
τ0,l

[
α̃

(2)
τ0,l

+ α̃
(1)
τ0,l

(ζ∂τ + ∂d) +
1

2

(
ζ2∂2

τ + 2ζ∂τ∂d + ∂2
d

)]
G

(d)
τ,l (u, v)︸ ︷︷ ︸

Free theory correction G̃(2)(u,v)

+
∑
l

a
(0)
τ0,l

[
α

(2)
τ0,l

+ γ
(2)
τ0,l
∂τ + α

(1)
τ0,l
γ

(1)
τ0,l
∂τ +

1

2

(
γ

(1)
τ0,l

)2
∂2
τ

]
G

(d)
τ,l (u, v)︸ ︷︷ ︸

Gross-Neveu data G(2)(u,v)

+
∑
l

a
(0)
τ0,l

[
α

(1)
τ0,l

(ζ∂τ + ∂d) + γ
(1)
τ0,l

(
α̃

(1)
τ0,l

+ ∂d + ζ∂τ

)
∂τ

]
G

(d)
τ,l (u, v)︸ ︷︷ ︸

Cross-term C(2)(u,v)

. (4.101)

The free theory correction G̃(2)(u, v) can again be calculated by expanding the free theory

correlator in 2 + ε dimensions. The novelty at this order is the appearance of a cross term

C(2)(u, v) that combines first-order corrections to the free theory, and first-order departures

from the free theory.

Expanding the full crossing relation for the singlets, v∆OG(u, v) = u∆OG(v, u) to second

order, we find, after much simplification, the relation

γ
(2)
O G

(0)(u, v) log v +
(
γ

(1)
O + 1

)
G(1)(u, v) log v + γ

(1)
O G̃

(1)(u, v) log v+

+ γ
(1)
O

(
1

2
γ

(1)
O + 1

)
G(0)(u, v) log2 v + G(2)(u, v) + C(2)(u, v) =

u

v
(u↔ v) . (4.102)
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Let us consider the u0 log u log2 v terms on both sides. Firstly, note that the cross-

term could contain divergences of the form u0 log u log2 v. On the left-hand side of equa-

tion (4.102), the relevant term would be

C(2)(u, v)
∣∣∣
log u

=
∑
l

a
(0)
τ0,l
α

(1)
τ0,l
∂τG

(d0)
τ,l (u, v)

∣∣∣∣∣
log u

=
1

2

∑
l

a
(0)
τ0,l
α

(1)
τ0,l
G

(d0)
τ,l (u, v) , (4.103)

where we used the fact that the bilinear currents satisfy γ
(1)
S,0,l = 0. Recall that α

(1)
τ0,l

has

been specifically constructed so that this sum is free of log2 v divergences, so that C(2)(u, v)

does not contain a log u log2 v term. On the right-hand side, the relevant term is due to

the quadrilinear operators:

C(2)(v, u)
∣∣∣
log u log2 v

=
∑
n,l

⟪a(0)
n,l⟫〈γ(1)

n,l 〉∂
2
τG

(d0)
τ,l (v, u)

∣∣∣∣∣∣
log u log2 v

=
∑
n,l

1

4
⟪a(0)

n,l⟫〈γ(1)
n,l 〉G

(d0)
τ,l (v, u)

∣∣∣∣∣∣
log u

. (4.104)

However, recall that the 〈γ(1)
n,l 〉 are precisely of the form guaranteeing that this sum is free

of log u terms. We therefore see that we can ignore the cross-term in this analysis.

Taking the u0 log u log2 v term in equation (4.102), we then find the constraint

G(2)(u, v)
∣∣∣
u0 log u log2 v

=
u

v
G(2)(v, u)

∣∣∣
log u log2 v

u

(4.105)

On the left-hand side, G(2)(u, v) may contain a u0 log u log2 v term, generated by γ
(2)
S,0,l, if

its expansion in terms of J−2
0,l is not constant:

G(2)(u, v)
∣∣∣
log u log2 v

⊇
∑
ρ

B
(2)
0,ρH

(ρ)
0 (u, v) , γ

(2)
S,0,l = 2

∑
ρ

B
(2)
0,ρJ

−2ρ
0,l . (4.106)

On the right-hand side, the contribution must be as follows:

u

v
G(2)(v, u)

∣∣∣
log u log2 v

u

⊇ u

v

∑
n,l

1

8
⟪a(0)

n,l⟫〈(γ(1)
n,l )

2〉Gτ0(n),l(v, u)

∣∣∣∣∣∣
log u log2 v

u

. (4.107)

Note that we had previously found 〈γ(1)
n,l 〉; however this does not determine 〈(γ(1)

n,l )
2〉. Ex-

panding this sum in terms of the conformal spin:

1

8

∑
i

⟪a(0)
n,l⟫〈(γ(1)

n,l )
2〉 =

∑
ρ

C
(ρ)
2n+2J

−2ρ
2n+2,l , (4.108)

we get in equation (4.107) a contribution

u

v
G(2)(v, u)

∣∣∣
log u log2 v

u

⊇ u

v

∑
n,ρ

C
(ρ)
2n+2H

(ρ)
2n+2(v, u)

∣∣∣∣∣
log u
u

. (4.109)
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This term in fact vanishes, which follows from the fact that only the H
(0)
2n+2(v, u) have 1

u

divergences, but do not have any log u
u divergences. Hence

G(2)(u, v)
∣∣∣
u0 log u log2 v

= 0 , (4.110)

from which it follows that γ
(2)
S,0,l is constant. Imposing stress-energy tensor conservation

then implies that

γ
(2)
S,0,l = 0 . (4.111)

4.2.1 Adjoints

The above analysis applies in the same way to the four-point function of adjoints, and

hence we find that the adjoint anomalous dimensions are constant. Assuming analyticity

down to spin l = 2, there may be a finite support solution for γ
(1)
A,0,1, so that our ansatz for

the adjoint anomalous dimensions is:

γ
(2)
A,0,l = γ

(2)
A,0,2 l > 2 even,

γ
(2)
A,0,l = γ

(2)
A,0,3 (1− δl,1) l > 1 odd . (4.112)

These results match the known results in [19].

5 The Gross-Neveu-Yukawa model in d = 4− ε

The Gross-Neveu-Yukawa model is a CFT in d = 4−ε dimensions providing a perturbation

of the free fermion theory. It has the following action

S =

∫
d4−εx

(
ψ
i
/∂ψi +

1

2
(∂σ)2 + g1ψ

i
ψiσ + g2σ

4

)
, (5.1)

where ψ, ψ are conjugate Dirac fermions and σ is a scalar field. The theory is conformal

for a specific value of the pair (g1, g2), satisfying g1 ∼
√
ε and g2 ∼ ε, so that at ε = 0 it

reduces to a 4-dimensional theory of a decoupled free boson and Nf free fermions.

Our results are for the first order anomalous dimensions of the bilinear currents. For

the adjoint bilinear currents, these are:

γ
(1)
A,2,l = 2γ

(1)
ψ

(
1− 2

l(l + 1)

)
, (5.2)

for both odd and even spin l.

The singlet bilinear currents Jψ,l ∼ ψγ∂l−1ψ mix with the currents Jσ,l ∼ σ∂lσ, and

the anomalous dimensions of the resulting primary operators are, for even spin l,

γ
(1)
±,l = 2γ

(1)
ψ

(
N+1

2
− 1

l(l+1)
±
√

4+(−4+20N)l(l+1)+(N−1)2l2(l+1)2

2l(l+1)

)
, (5.3)

which were found as the eigenvalues of the following matrix

H = 2γ
(1)
ψ

1− 2
l(l+1) ±

2
√
N√

l(l+1)

± 2
√
N√

l(l+1)
N

 . (5.4)

This reproduces the results in [19].
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5.1 Naive attempt at crossing analysis

Let us first look at the four-point correlator of singlets. As per the discussion in section 3,

the crossing equation reads, to first order in ε:

γ
(1)
O log v G(0)(u, v) + G(1)(u, v) = γ

(1)
O log uG(0)(u, v) +

u3

v3
G(1)(v, u) . (5.5)

We would like to analyse in equation (5.5) the power-law divergences in v caused by

the bilinears, as in section 3.2. As such, we want to compare on both sides the terms
u
v2 ,

u2

v ,
u2

v2 ,
u2

v . We define16

H
(m)
2 (u, v) =

u

v2
h̃

(m)
2 (u, v) =

u

v2

(
h

(m)
2 (u, v) +O(u2) +O(v2)

)
, (5.6)

Using the tree-level result and our knowledge of the asymptotic behaviour of TCBs,

we deduce that 
h

(0)
2 (u, v) = 1− u− v ,
h

(1)
2 (u, v) = v ,

h
(m)
2 (u, v) = 0 , m > 2 .

(5.7)

Expanding γ
(1)
S,2,l and α̂

(1)
S,2,l as before:

γ
(1)
S,2,l = 2

∞∑
m=0

B
(1)
2,m

J2m
2,l

, α̂
(1)
S,2,l = 2

∞∑
m=0

A
(1)
2,m

log J

J2m
2,l

+ 2
∞∑
m=0

Ã
(1)
2,m

J2m
2,l

, (5.8)

we conclude from the crossing equation that

B
(1)
2,0 +A

(1)
2,0 = γ

(1)
O , B

(1)
2,1 = 0 = A

(1)
2,1 . (5.9)

The higher B
(1)
2,m for m > 2 can be set to zero because the H

(m)
2 (u, v) develop log2 v

divergences for m > 2, in such a way that no sum of them is free of log2 v terms. Similarly

the higher A
(1)
2,m terms can be set to zero since they would create log3 v terms. The Ã

(1)
2,m

are then fixed by demanding that the sum

2A
(1)
2,0H

(0,log J)
2 (u, v) + 2

∑
ρ

Ã
(1)
2,mH

(ρ)
2 (u, v) (5.10)

is free of log2 v terms. As in the 2-dimensional case, we find that this forces the Ã2,m to

be coefficients in the expansion of the harmonic number S1(l).

To summarize: we find for the singlets that, in perturbations of the free theory in

which the intermediate operators do not change:

γ
(1)
S,2,l = 2B

(1)
2,0 , α̂S,2,l = 2A

(1)
2,0S1(l) +K , (5.11)

where K is a constant and B
(1)
2,0 +A

(1)
2,0 = γ

(1)
O .

16This definition differs slightly from that in section 3.2 because H
(0)
2 (u, v) has an integer power-law

divergence v−2, so that we do not get any power-law divergent terms in H
(m)
2 (u, v) for m > 2.
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Since the relevant twist conformal blocks are the same for the correlator of four adjoints

(up to overall normalizations), the same result can be found for the adjoint currents, in

both odd and even spin. Furthermore, the argument in section 4.1.4 establishing that the

anomalous dimensions of the even singlet and adjoint currents are the same, in facts holds

true in any dimension. Imposing stress-energy conservation, γ
(1)
S,2,l = 0, would then fix

anomalous dimensions and OPE coefficients of the bilinears to be essentially the same as

for the Gross-Neveu model in 4.

5.2 Coupling

The results in section 5.1 would hold in a CFT which is a ‘pure’ perturbation of the free

fermion theory, i.e. one with no additional operators appearing. We are however not aware

of any such CFT, and will therefore be interested primarily in the Gross-Neveu-Yukawa

model. The Yukawa interaction in the action (5.1) shows that at order ε one should expect

additional operators to appear in the OPE of O ×O.

This leads to two effects. Firstly, the anomalous dimensions and OPE coefficients

in the previous section may acquire corrections. Secondly, there will be a another set of

bilinear currents Jσ,l ∼ σ∂lσ of twist 2, which mix with the bilinear currents Jψ,l.

Let us therefore do a more conservative analysis than that in section 5.1, and focus

on making sure the crossing relation contains no terms of the form log u logm v for m > 2.

From the free theory result for the twist conformal block H
(0)
2 (u, v) of the bilinears, we can

calculate all H
(m)
2 (u, v). We find that H

(m)
2 (u, v) contains a term of the form h(m)(v) log2 v

for m > 2, with h(m)(v) ∼ vm−2 for small v. Therefore, we exclude any terms of the form

J−2m with m > 2 in the expansion of γ
(1)
S,2,l, and in fact we claim that there can be no

terms of the form logk J
J2m in its expansion, so that it is of the form

γ
(1)
S,2,l = A

(
1− B

l(l + 1)

)
. (5.12)

To see why this holds, consider the case k = 0. From the above, we see that any terms log J
J2m

with m > 2 will contain divergences of the form log3 v, and must therefore be discarded.

We focus on the log u log v part of the crossing equation:

G(1)(u, v)
∣∣∣
log u log v

=
u3

v3
G(1)(v, u)

∣∣∣
log u log v

, (5.13)

and specifically terms of the form u1v−2, u1v−1, u2v−2, u2v−1. These terms arise only from

bilinears with infinite support on the spin, and are taken onto themselves under crossing

symmetry. Specifically additional operators appearing in the OPE cannot give a log u log v

term, so we may ignore them. An analysis of the precise divergences then shows that no

term of the form log J
J2 can appear. To show there is no term of the form γ

(1)
S,2,l = 2βS1(l)+. . . ,

we analyse all terms in the crossing equation of the form un

vm log u log v, where m > 0. These

terms can only arise from harmonic number behaviour of anomalous dimensions. Note

that the quadrilinear operators of τ0(n) = 6 + 2n cannot have a log J behaviour in their

anomalous dimensions, since under crossing this would create a correction to the identity
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operator. We therefore make the ansatz

γ
(1)
S,2,l = 2βS1(l) + . . . , γ

(1)
S,6+2n,l = 2βn

S1(l + n+ 2)

J2
6+2n,l

+ . . . . (5.14)

Matching the log u log v part of the crossing equation then yields:

βH
(0),harm
2 (u, v)

∣∣∣∣
log v

+
∞∑
n=0

βnH
(1),harm
6+2n (u, v)

∣∣∣∣
log v

·
= β

u3

v3
H

(0),harm
2 (v, u)

∣∣∣∣
log u

, (5.15)

where by
·
= we mean that only power-divergent terms in v are matched, and where

H
(m),harm
τ0 (u, v) is the m-th twist conformal block with a harmonic number insertion:

H(m),harm
τ0 (u, v) ≡

∑
l

a
(0)
τ0,l
J−2m
τ0,l

S1

(
l +

τ0

2
− 1
)
Gτ0,l(u, v) . (5.16)

We find that this equation has only the trivial solution β = βn = 0.

We therefore conclude that no terms of the form log J
J2m appear in the expansions of the

anomalous dimensions of any of the intermediate operators. Terms with higher powers of

log J are similarly excluded.

Note that the argument relies on the assumption that the CFT data is analytic in the

spin down to spin l = 2, so that finite support solutions for the bilinear operators could be

excluded.

5.2.1 Finite support solutions

Like for the 2d Gross-Neveu model, we would like to discount the possibility of finite support

solutions for the bilinear γ
(1)
A,2,l. The discussion is isomorphic to that in section 4.1.5, with

as its only difference that some of the powers of u and v change. Specifically, consideration

of terms of the form uk log u log v for k = 0, 1, 2 show that there are no terms of the

form v−k log u log v for k = 1, 2, 3, i.e. there are no enhanced divergences proportional

to log u log v. We therefore conclude that there are no finite support solutions for the

anomalous dimensions of the bilinear currents.

5.2.2 Mixing of singlet currents

In the Gross-Neveu-Yukawa model, there are two sets of singlet operators of twist τ = d−2:

the currents Jψ,l, and the currents Jσ,l ∼ σ∂lσ. These currents mix due to a coupling

between ψ and σ, so that they are no longer eigenstates of the Hamiltonian/dilatation

operator. Instead, the eigenstates of the Hamiltonian will be

Σ−,l = A− Jψ,l +B− Jσ,l , (5.17)

Σ+,l = A+ Jψ,l +B+ Jσ,l , (5.18)

whose eigenvalues ∆±,l = d− 2 + γ±,l under the Hamiltonian are their scaling dimensions.

Phrased differently: in the basis {Jψ,l, Jσ,l} the Hamiltonian does not act diagonally.

Let us represent it as a matrix in this basis:

H =

(
〈Jψ,l|Ĥ|Jψ,l〉 〈Jσ,l|Ĥ|Jψ,l〉
〈Jψ,l|Ĥ|Jσ,l〉 〈Jσ,l|Ĥ|Jσ,l〉

)
= H0 + εHε + · · · = H0 + ε

(
al cl
cl dl

)
+ . . . , (5.19)
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which is symmetric since the Hamiltonian is self-adjoint. Our goal shall be to find al, cl, dl,

and deduce from it the anomalous dimensions γ
(1)
±,l.

Since O only couples to σ at order ε, we find that

〈OOΣ±〉 = A±〈OOJψ〉+O(ε) , (5.20)

so that, to zeroth order in ε,

A± =
〈OOΣ±〉
〈OOJψ〉

. (5.21)

The γ
(1)
S,2,l calculated in sections 5.1 and 5.2 is then defined as the average over both

eigenstates:

γ
(1)
S,2,l〈OOJψ〉

2 =
∑
i

〈OOΣ±〉2γ(1)
±,l . (5.22)

However since the Σ± are precisely the vectors that diagonalize the symmetric matrix Hε,

the above is simply an entry of Hε

γ
(1)
S,2,l =

∑
i

A2
±γ

(1)
±,l = al . (5.23)

Furthermore, recall that at ε = 0, σ is a free boson, so that the analysis from [11]

applies. It shows that the first order correction dl to 〈Jσ,l|Ĥ|Jσ,l〉, is of the form

dl = 2γ(1)
σ . (5.24)

Then Hε is of the form

Hε =

(
A
(

1− B
l(l+1)

)
Cl

Cl 2γ
(1)
σ

)
. (5.25)

The twist spectrum additivity property of [9, 10] implies that:

lim
l→∞
{γ−,l, γ+,l} =

{
2γ

(1)
ψ , 2γ(1)

σ

}
. (5.26)

Assuming that γ
(1)
ψ 6= γ

(1)
σ , this imposes the constraint A = 2γ

(1)
ψ , and that liml→∞Cl = 0,

so that

Hε =

(
2γ

(1)
ψ

(
1− B

l(l+1)

)
Cl

Cl 2γ
(1)
σ

)
(5.27)

with liml→∞Cl = 0.

In order to proceed we need to find the off-diagonal terms Cl = 〈Jψ,l|H|Jσ,l〉. This

naturally leads us to consider the mixed correlator 〈OOσσ〉, which maps to 〈σOOσ〉 under

crossing:

GσOOσ(u, v) =
u2

v3
GOOσσ(u, v) . (5.28)

Using Wick contractions, we can calculate the free theory results:

G(0)
OOσσ(u, v) = 1 , G(0)

σOOσ(u, v) =
u2

v3
. (5.29)
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We will also need the free theory result for the related correlator 〈OσOσ〉, which satisfies

G(0)
OσOσ(u, v) = u2 , GOσOσ(u, v) =

u2

v2
GOσOσ(v, u) . (5.30)

In the “direct channel” expansion of 〈OOσσ〉, we simply see the contribution of the identity.

In particular, we see no contribution from the bilinear currents Jψ,l ∼ ψγ∂l−1ψ and Jσ,l ∼
σ∂lσ. This is expected, since at tree-level these currents only couple to one of O and σ,

and thus cannot function as intermediate states. However, at tree-level the Hamiltonian is

diagonal in the space spanned by Jψ,l, Jσ,l; therefore, with the benefit of foresight, let us

define the rotated states Σ±,l by

Σ−,l = cos θl Jψ,l − sin θl Jσ,l , (5.31)

Σ+,l = sin θl Jψ,l + cos θl Jσ,l . (5.32)

As ε turns on, we shall choose the θl so that these are the eigenstates of Ĥ. Note the

(potential) l-dependence of the angle θl.
17

The Hamiltonian still acts diagonally on these states, and thus we may view them as

two different intermediate states propagating in the direct channel. They give cancelling

contributions of

± H̃(0)
2 (u, v) = ±

∑
l∈2N

sin θl cos θlc
(0)
OOJψ,lc

(0)
σσJσ,l

G2,l(u, v) (5.33)

to the tree-level result.

In the Gross-Neveu-Yukawa model there will be some θl for which Σ±,l are the eigen-

states of the Hamiltonian. These states may acquire different anomalous dimensions, and

as such, the contribution above will generally change to include an order ε term∑
l∈2N

1

2
sin θl cos θl

(
γ

(1)
+,l − γ

(1)
−,l

)
c

(0)
OOJψ,lc

(0)
σσJσ,l

∂τ
∣∣
τ=2

Gτ,l(u, v) . (5.34)

We would like to consider this sum in the language of twist conformal blocks; as such it

would be useful to calculate

H
(0)
2 (u, v) ≡

∑
l∈2N

c
(0)
OOJψ,lc

(0)
σσJσ,l

G2,l(u, v) . (5.35)

An interesting point to note here is that the OPE coefficients c
(0)
OOJψ,l and c

(0)
σσJσ,l

in the

free fermion and boson theories are related:

c
(0)
OOJψ,l =

√
l(l + 1)c

(0)
σσJσ,l

(5.36)

which is the reason that in the free fermion theory correlator 〈OOOO〉, the twist conformal

block H
(1)
2,F is the H

(0)
2,B of the free boson correlator 〈σσσσ〉. Phrased differently, the free

17We assume here that these bases of states can be related by a rotation. There is also the possibility of

the transformation being a reflection; however this will not affect the discussion in this section.
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fermion TCB is simply the result of applying the Casimir operator C to the free boson

TCB. Therefore equation (5.36) implies that

H
(0)
2 (u, v) = H

(− 1
2)

2,B (u, v) = H
( 1

2)
2,F (u, v) , (5.37)

where H
(m)
2,B and H

(m)
2,F are the free boson, respectively free fermion, twist conformal blocks

of twist 2.

Using the method in [16], we have been able to evaluate the small-u limit:18

H
(0)
2 (u, v) =

π

4

u

v3/2

(
1− v − v2

2
− 7v3

18
− 203v4

600
+ . . .

)
+O(u2) . (5.38)

Let us investigate the implications of this. The twist conformal blocks have the following

behaviour:

H
(ρ)
2 (u, v) ≡

∑
l∈2N

J−2ρ
2,l c

(0)
OOJψ,lc

(0)
σσJσ,l

G2,l(u, v) ∼ u

v
3
2
−ρ

(1 +O(v)) +O(u2) . (5.39)

Expanding, as usual:

1

2
sin θl cos θl

(
γ

(1)
+,l − γ

(1)
−,l

)
=
∑
ρ

BρJ
−2ρ
2,l , (5.40)

we are interested in the sum ∑
ρ

BρH
(ρ)
2 (u, v) ⊂ G(1)

OOσσ(u, v) , (5.41)

where the sum over ρ now includes half-integers to allow for the possibility of odd powers

of J−1
2,l in the expansion of sin θl cos θl

(
γ

(1)
+,l − γ

(1)
−,l

)
.

From equation (5.37) and the earlier discussion in section 5.2, one deduces that

H
(ρ)
2 (u, v) contains log2 v terms for ρ = 3

2 ,
5
2 ,

7
2 , . . . , in such a way that no linear com-

bination of them is free of log2 v terms. Thus

Bρ = 0 , for ρ =
3

2
,

5

2
,

7

2
,

9

2
, . . . . (5.42)

Furthermore, we shall show that Bρ = 0 for all ρ = 0, 1, 2, 3 . . . . To see this, we use the

crossing equation

GσOOσ(u, v) =
u2

v3
GOOσσ(v, u) ⊃ εu

2

v3

∑
ρ=0, 1

2
,1,2,3,...

BρH
(ρ)
2 (v, u) log v . (5.43)

Note that
u2

v3
H

(ρ)
2 (v, u) ∼ uρ+ 1

2

v2
. (5.44)

18We have been able to compute it to a finite order in v. Theoretically we can calculate to any order in v,

but computation time prevents us from doing this to higher order. Regardless, the discussion that follows

only relies on the structure of this function, not its precise coefficients.
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Therefore GσOOσ(u, v) contains a term of the form uρ+ 1
2 v−2 log v. Then GOσOσ(u, v) will

necessarily contain a term of the form uρ+ 1
2 v−2+k log v for some integer k > 0. The crossing

equation for GOσOσ(u, v) implies that then also

GOσOσ(u, v) ⊇ uk

v
3
2
−ρ

log u . (5.45)

This term must arise from a non-zero anomalous dimension for any operator that is already

present in the free theory.19 It is easy to see that in the free theory, 〈OσΣ±,l〉 = 0, so that

k > 2. From the tree-level result G(0)
OσOσ(u, v) = u2, we conclude that there are operators of

twists 4, 6, . . .. Decomposing the tree-level result, we see that the intermediate operators

of odd and even spin give similar, almost cancelling contributions that have a power-law

divergence of the form v−2:

G(0)
OσOσ(u, v) = G(0),even

OσOσ (u, v) + G(0),odd
OσOσ (u, v)

= u2

(
1 +

(
1

4v2
+

1

4v
− 1

2

))
− u2

(
1

4v2
+

1

4v
− 1

2

)
+O(u3) . (5.46)

We have shown this property here for the twist 4 operators, but due to the special form of

the 4d conformal blocks, it in fact holds for all higher twist operators as well. If the even

and odd spin intermediate operators acquire different anomalous dimensions, then there

can be log u corrections to the correlator of the form unvm for integer n > 2,m > −2.

Specifically note that integrality of the powers of v forces, by virtue of equation (5.45),

that 3
2 − ρ ∈ Z, so that all integer ρ are excluded. Therefore ρ = 1

2 is the only remaining

possibility, from which it follows that

1

2
sin θl cos θl

(
γ

(1)
+,l − γ

(1)
−,l

)
=
B1/2

J2,l
. (5.47)

Looking at the diagonalization of the Hamiltonian H, this is precisely the off-diagonal

entry! That is, we have found that, in the basis {Jψ,l, Jσ,l}, the order ε correction to the

Hamiltonian takes the form

Hε =

2γ
(1)
ψ

(
1− B

l(l+1)

)
2B1/2√
l(l+1)

2B1/2√
l(l+1)

2γ
(1)
σ .

 (5.48)

To fix the constants B,B1/2, we factor out 2γ
(1)
ψ to get the matrix

H̃ =

(
1− B

J2
C
J

C
J ω ,

)
(5.49)

where ω = γ
(1)
σ /γ

(1)
ψ .

19In the definition of present we also allow mixed operators such as Σ±,l that give cancelling contributions

to the tree-level result, since they can yield terms of the form ε log u in G(1)(u, v).
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We now use a central charge argument to fix B and C in terms of ω and N . Recall that

a 4d free theory of NB free scalar fields and Nf free Dirac fermions has a central charge

CT = cB + cF =
4

3
NB + 8Nf =

4

3
NB + 2N , (5.50)

where N = Nf tr1 = 4Nf . Furthermore, recall the relation between the central charge cT
and OPE coefficients with the stress-energy tensor: for any operator O in a d-dimensional

theory with a (unique) stress-tensor T , the following relation holds [9]:

aOOT ≡
C2
OOT

CTTC2
OO

=
1

cT

d2

(d− 1)2
∆2
O , (5.51)

where the C•• are two-point normalizations. Thus, in the theory of free fermions and free

bosons:

1

cF

d2

(d− 1)2
∆2
ψ2 =

C2
ψ2ψ2TF

CTFTFC
2
ψ2ψ2

,
1

cB

d2

(d− 1)2
∆2
σ =

C2
σσTB

CTBTBC
2
σσ

. (5.52)

In the GNY model at ε = 0, there are two decoupled free theories, with central charges

cB = 4
3 , cF = 2N and two separate stress-energy tensors TB = Jσ,2, TF = Jψ,2 satisfying

equation (5.52). As we turn on ε, there will be a unique stress tensor T = Σ−,2, and a

single central charge cT satisfying

lim
ε→0

cT = cB + cF =
4

3
+ 2N, (5.53)

and

1

cT

d2

(d− 1)2
∆2
ψ2 = a2

ψ2ψ2T =
C2
ψ2ψ2T

CTTC2
ψ2ψ2

, (5.54)

1

cT

d2

(d− 1)2
∆2
σ = a2

σσT =
C2
σσT

CTTC2
σσ

. (5.55)

We find that the last two equations give the same constraint, so we shall only use equa-

tion (5.54). Furthermore, we shall only be interested in the free theory limit ε→ 0.

Assuming proper normalization of Jψ,l and Jσ,l (i.e. CJ•,lJ•,l = 1), we can write(
Σ−,l
Σ+,l

)
=

(
αl βl
γl δl

)(
Jψ,l
Jσ,l

)
, (5.56)

where both the columns and rows of the matrix form orthonormal vectors.20 Note that

αl, βl, γl, δl are functions of B,C, ω and l. Considering only ε0 terms, we find that

〈ψ2ψ2Σ−,2〉2 = α2
2〈ψ2ψ2Jψ,2〉2 (5.57)

and that

〈Σ−,2Σ−,2〉 = α2
2〈Jψ,2Jψ,2〉2 + β2

2〈Jσ,2Jσ,2〉2 = α2
2 + β2

2 . (5.58)

20We are explicitly allowing for a reflection as well as a rotation here.
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Then equation (5.54) yields

1

cF + cB

d2

(d− 1)2
∆2
ψ2 =

α2
2C

2
ψ2ψ2TF

C2
ψ2ψ2(α2

2 + β2
2)

=
C2
ψ2ψ2TF

C2
ψ2ψ2

1

1 +
(
β2

α2

)2 =
1

cF

d2

(d− 1)2

1

1 + x2
∆2
ψ2 ,

(5.59)

where x(B,C, ω) ≡ β2

α2
. Thus we get a constraint on B,C: x(B,C, ω)2 = cB

cF
.

Furthermore, since Σ−,2 is the stress tensor, we also have the constraint

γ−,2(B,C, ω) = 0. These two constraints are independent and yield the following solutions

for B,C:

B = 6− 4
ω

N
, C = ±2

ω√
N
. (5.60)

Unfortunately we are not able to fix the sign on C; however note that the anomalous

dimensions are not sensitive to the sign of C.

Finally, we are unable to fix ω from a bootstrap argument and instead get the value

ω = N from the literature, so that

〈Jψ,l|Ĥ|Jψ,l〉 = 2γ
(1)
ψ

(
1− 2

l(l + 1)

)
. (5.61)

The argument from section 4.1.4 that the even spin singlet and even spin adjoint currents

have the same anomalous dimensions,21 is in fact independent of the dimension of the space,

so that the adjoint currents of even spin have an anomalous dimension as in equation (5.61).

Furthermore, the conservation of the global symmetry current implies that the anomalous

dimensions of the odd spin adjoint currents take the same form, so that for both odd and

even l:

γ
(1)
A,2,l = 2γ

(1)
ψ

(
1− 2

l(l + 1)

)
l > 1 . (5.62)

Using the minus sign for C in equation (5.60), we reproduce the known result for the

singlet currents [19]:

H = 2γ
(1)
ψ

1− 2
l(l+1) −

2
√
N√

l(l+1)

− 2
√
N√

l(l+1)
N

 , (5.63)

which gives the anomalous dimensions as

γ
(1)
±,l = 2γ

(1)
ψ

(
N+1

2
− 1

l(l+1)
±
√

4+(−4+20N)l(l+1)+(N−1)2l2(l+1)2

2l(l+1)

)
. (5.64)

6 Discussion

In this paper we have used crossing symmetry to constrain fermionic CFTs that weakly

break higher spin symmetry through the study of the analytic properties of the twist

conformal blocks occurring in the four-point correlators of composite operators. Novel to

the use of composite operators is that, in contrast to the previous study of correlators of

21To be more precise: the argument that 〈Jψ,l|Ĥ|Jψ,l〉 = 〈JAψ,l|Ĥ|JAψ,l〉 for even spin l > 2.
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fundamental scalar fields [11], quadrilinear operators appear as intermediate states already

in the free theory correlator. Their CFT data mixes under crossing with that of the

bilinear operators, making it harder to isolate the CFT data of the bilinear operators. As

has been found in previous work (see e.g. [28]), the bootstrap gains tremendously in power

when several different correlators are studied simultaneously, demonstrated in our paper

by the study of mixed correlators such as 〈OOAOAO〉 in both models, and the study of

〈OOσσ〉 in the Gross-Neveu-Yukawa model. Our method reproduces known results for

the anomalous dimensions of bilinear currents [19], produces some new results for bilinear

OPE coefficients, and finds CFT data of the quadrilinear operators. Furthermore it finds

a solution in 2 dimensions for a potential fermionic CFT in which the fundamental field ψ

is not in the spectrum. Some extensions of our work are clear.

Compared with the analysis of correlators of fundamental scalar fields [11], our method

suffers from the obvious drawback that there are a larger number of intermediate operators,

making it harder to isolate contributions of any particular intermediate operator to the four-

point correlator. It would be interesting to extend the method of the large spin bootstrap

to include correlators of non-scalar operators to facilitate the study of the correlator of four

fundamental fermion fields. In [29] a formalism to study such correlators in four dimensions

is established; it would be interesting to try to study the Gross-Neveu-Yukawa model using

these methods.

The Gross-Neveu model can be defined in any dimension 2 < d < 4 through the large N

expansion, and results for CFT data are known perturbatively in 1/N [19]. They have the

interesting property that they are essentially identical to corrections in the bosonic critical

large N model; it would be interesting to apply the method of the large spin bootstrap to

try to understand this. Unfortunately the computations become a lot more complicated

in the large N model; see for example the increased complexity in the discussion of the

bosonic critical large N model in [11].

Finally we have had to deal in an ad-hoc manner with the dimensional shift arising

from the non-integer dimension of spacetime. The difficulty of dealing with this increases

significantly with each order in ε. The development of a systematic method to deal with

these issues should simplify calculations and hopefully allow an (easier) analysis of higher-

order corrections. Of particular interest would be an application of such methods to the

Wilson-Fisher model in d = 4− ε, where the extension of the large spin bootstrap to new

orders in ε is hampered by the issues of dealing with the non-integer dimension of the

spacetime in which the theory lives.
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A Summary of results

The bilinear operators of spin l are of the form Jl ∼ ψγ∂l−1ψ, and occur both in the singlet

and adjoint representation of the global U(Nf ) symmetry. We shall refer to them as JS,l
and JA,l respectively. The quadrilinear operators are operators built of four fundamental

fields, with a number of derivatives acting on them. For example, twist 4 quadrilinear

operators are of the form ψ∂l1ψ∂l2ψ∂l3 , where l = l1 + l2 + l3 is the spin; higher twist

quadrilinear operators can be formed through the action of � ≡ ∂µ∂µ on these operators.

The quadrilinear operators are generally highly degenerate: there are many different pri-

mary operators with the same twist and spin. Where this happens we report the weighted

average of CFT data that occurs in the crossing symmetry equation. If the degenerate

operators of a fixed twist τ0 and spin l are labelled by an index i, and a
(0)
τ0,l,i

are their

OPE coefficients in the free theory, then, as per equation (3.48), our results apply to the

weighted average defined as follows:

〈fτ0,l〉 ≡
∑

i a
(0)
τ0,l,i

fτ0,l,i∑
i a

(0)
τ0,l,i

. (A.1)

The subscripts on our results indicate the U(Nf ) representation, twist and spin of the

operators; e.g. γ
(1)
S,2,6 refers to the order ε1 part of the anomalous dimension of the singlet

operator of twist 2 and spin 6. Furthermore, we give results for the α̂, which are related

to the multiplicative OPE coefficient corrections α by

α̂
(1)
τ0,l

= α
(1)
τ0,l
− 1

2a
(0)
τ0,l

∂l

(
a

(0)
τ0,l
γ

(1)
τ0,l

)
= α

(1)
τ0,l
− 1

2
∂lγ

(1)
τ0,l
− 1

2
γ

(1)
τ0,l
∂l log a

(0)
τ0,l

. (A.2)

The d = 2 + ε expansion

For the singlet sector we find a non-trivial solution at first order in ε that depends on three

constants: the external operator dimension γ
(1)
O , the central charge correction c

(1)
T , and a

constant β.

The bilinear currents satisfy

γ
(1)
S,0,l = β (S1(l − 1)− 1) , (A.3)

α̂
(1)
S,0,l =

(
2γ

(1)
O + β

)
S1(l − 1) + ξ̂−1 , (A.4)

where ξ̂−1 can be determined in terms of γ
(1)
O , c

(1)
T , and β through the equation for the

stress-tensor OPE coefficient:

aS,0,2 =
1

cT

d2

(d− 1)2
∆2
O . (A.5)

For the quadrilinear operators of twist τ0 = 2, 4, 6, . . ., we find that

〈γ(1),inf.
S,τ0,l

〉 = βτ0S1

(
l +

τ0

2
− 1
)

+ κτ0 , (A.6)

〈α̂(1),inf.
S,τ0,l

〉 = α̂τ0S1

(
l +

τ0

2
− 1
)

+ ξ̂τ0 , (A.7)
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where

βτ0 = − η

N + η
β , (A.8)

κτ0 = 2γ
(1)
O
N + 2η

N + η
+

ηβ

N + η

(
2− S1

(τ0

2
− 1
)

+
1

2
δτ0,2

)
, (A.9)

α̂τ0 = 2γ
(1)
O +

ηβ

N + η

(
1− 2S1

(τ0

2
− 1
)

+ S1 (τ0 − 2) +
1

4
δτ0,2

)
, (A.10)

ξ̂τ0 =
η

N + η

(
ξ̂−1 + βξ̂(β)

τ0 + γ
(1)
O ξ̂(γO)

τ0

)
, (A.11)

where we defined η = (−1)
τ0
2 , and where, in equation (A.11):

ξ̂(β)
τ0 = ζ2+3S1

(τ0

2
−1
)
−S1

(τ0

2
−1
)2
−2S1 (τ0−2)

+S1

(τ0

2
−1
)
S1 (τ0−2)+

1

2
S2

(τ0

2
−1
)
− 5

4
δτ0,2 , (A.12)

ξ̂(γO)
τ0 = 6S1

(τ0

2
−1
)
−4S1 (τ0−2)−δτ0,2+Nη

(
4S1

(τ0

2
−1
)
−2S1 (τ0−2)

)
, (A.13)

where ζ2 = ζ(2) = π2

6 .

Furthermore, there is a finite support solution for the quadrilinears of twist

τ0 = 2, 4, 6 . . ., taking the form

〈γ(1),fin.
S,τ0,0

〉 =
N

N + η

1

τ0 − 1

(
γfin +

β

4N
(1− δτ0,2)

)
, (A.14)

where γfin is a constant not fixed by our analysis.

Gross-Neveu model

The above solution reduces to the Gross-Neveu model when β=0, yielding:

γ
(1)
S,0,l = 0 , (A.15)

α
(1)
S,0,l = 2γ

(1)
O S1(l − 1) . (A.16)

Furthermore the quadrilinear operators have corrections of the form

〈γ(1)
S,τ0,l
〉 = κτ0 , (A.17)

〈α̂(1)
S,τ0,l
〉 = 2γ

(1)
O S1

(
l +

τ0

2
− 1
)

+ ξ̂τ0 , (A.18)

where

κτ0 = 2γ
(1)
O
N + 2η

N + η
, (A.19)

ξ̂τ0 =
η

N + η
γ

(1)
O ξ̂(γO)

τ0 , (A.20)

with η and ξ̂
(γO)
τ0 as above.

– 45 –



J
H
E
P
0
1
(
2
0
1
8
)
1
0
4

From these results for the singlet operators in the Gross-Neveu model, we deduce

results for the non-singlet bilinear operators. Specifically, we find for the bilinear adjoint

operators of even spin l > 2:

γ
(1)
A,0,l = 0 , (A.21)

λ
(1)
AAl = γ

(1)

OAS1(l − 1) + kA , (A.22)

λ
(1)
SAl =

1

2

(
γ

(1)
O + γ

(1)

OA

)
S1(l − 1) + kSA . (A.23)

Here the λ
(1)
••• are the (multiplicative) corrections to the (non-squared) OPE coefficients

c•••, with cAAl = cOAOAJS,l and cSAl = cOOAJA,l . Furthermore, we have found that for

bilinear currents of odd spin l:

γ
(1)
A,0,l = 0 . (A.24)

Furthermore we find that the corrections to the bilinear anomalous dimensions, to

second order in ε, are of the form

γ
(2)
S,0,l = 0 , l > 2 even, (A.25)

γ
(2)
A,0,l = γ

(2)
A,0,2 , l > 2 even, (A.26)

γ
(2)
A,0,l = γ

(2)
A,0,3 (1− δ1,l) , l > 1 odd. (A.27)

The bilinear anomalous dimensions match known results for the Gross-Neveu model

in 2 + ε dimensions, found for example in [19].

The d = 4− ε expansion: the Gross-Neveu-Yukawa model

Our results are for the first order anomalous dimensions of the bilinear currents. For the

adjoint bilinear currents, these are:

γ
(1)
A,l = 2γ

(1)
ψ

(
1− 2

l(l + 1)

)
, (A.28)

for both odd and even spin l > 1.

The singlet bilinear currents Jψ,l ∼ ψγ∂l−1ψ mix with the currents Jσ,l ∼ σ∂lσ, and

the anomalous dimensions of the resulting primary operators are, for even spin l > 2,

γ
(1)
S,l = 2γ

(1)
ψ

(
N+1

2
− 1

l(l+1)
±
√

4+(−4+20N)l(l+1)+(N−1)2l2(l+1)2

2l(l+1)

)
, (A.29)

which were found as the eigenvalues of the following matrix

H = 2γ
(1)
ψ

1− 2
l(l+1) ±

2
√
N√

l(l+1)

± 2
√
N√

l(l+1)
N

 . (A.30)

This reproduces the results in [19].
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B Boundary term

In this appendix we try to make precise the statement from section 3.2 that∑
τ0,l

∂l

(
a

(0)
τ0,l
γ

(1)
τ0,l
Gτ,l(u, v)

)
(B.1)

is a ‘boundary term’ that does not contain any enhanced divergences in v.

To this end, consider a function f : R → R, arising from some function f̃ : N → R
that has been suitably analytically continued to have some desirable behaviour at infinity,

and decays suitably quickly at infinity. We show that under some reasonable assumptions,∑
l f
′(l) is a boundary term.

Fix an N ∈ N and consider

f(N)− f(0) =
N−1∑
l=0

[f(l + 1)− f(l)]. (B.2)

By the intermediate value theorem, for each l there exists a ξl ∈ (l, l + 1) such that

f(l + 1)− f(l) = f ′(ξl). Therefore

lim
N→∞

f(N)− f(0) =

∞∑
l=0

f ′(ξl) . (B.3)

The left-hand side is clearly a boundary term, so that we are done if we can relate the right-

hand side to
∑

l f
′(l). This can be done for example if f ′(l) is monotonic; in fact, since we

are interested in enhanced divergences, we do not care about finite sums and may in fact

only demand that f ′(l) is monotonic for some l > L, and from numerical explorations we in-

deed find that this holds for the sums
∑

l ∂l

(
a

(0)
τ0,l
γ

(1)
τ0,l
Gτ,l(u, v)

)
encountered in this paper.
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