
J
H
E
P
0
1
(
2
0
1
8
)
0
8
7

Published for SISSA by Springer

Received: December 14, 2017

Accepted: January 8, 2018

Published: January 18, 2018

AdS4 backgrounds with N > 16 supersymmetries in

10 and 11 dimensions

A. S. Haupt,a,b S. Lautzc and G. Papadopoulosc

aDepartment of Mathematics and Center for Mathematical Physics, University of Hamburg,

Bundesstr. 55, D-20146 Hamburg, Germany
bII. Institute for Theoretical Physics, University of Hamburg,

Luruper Chaussee 149, D-22761 Hamburg, Germany
cDepartment of Mathematics, King’s College London,

Strand, London WC2R 2LS, U.K.

E-mail: alexander.haupt@uni-hamburg.de, sebastian.lautz@kcl.ac.uk,

george.papadopoulos@kcl.ac.uk

Abstract: We explore all warped AdS4 ×w MD−4 backgrounds with the most general

allowed fluxes that preserve more than 16 supersymmetries in D = 10- and 11-dimensional

supergravities. After imposing the assumption that either the internal space MD−4 is

compact without boundary or the isometry algebra of the background decomposes into that

of AdS4 and that of MD−4, we find that there are no such backgrounds in IIB supergravity.

Similarly in IIA supergravity, there is a unique such background with 24 supersymmetries

locally isometric to AdS4 × CP3, and in D = 11 supergravity all such backgrounds are

locally isometric to the maximally supersymmetric AdS4 × S7 solution.

Keywords: AdS-CFT Correspondence, Flux compactifications, Supergravity Models,

Superstring Vacua

ArXiv ePrint: 1711.08280

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2018)087

mailto:alexander.haupt@uni-hamburg.de
mailto:sebastian.lautz@kcl.ac.uk
mailto:george.papadopoulos@kcl.ac.uk
https://arxiv.org/abs/1711.08280
https://doi.org/10.1007/JHEP01(2018)087


J
H
E
P
0
1
(
2
0
1
8
)
0
8
7

Contents

1 Introduction 1

2 N > 16 AdS4 ×w M
6 solutions in IIB 4

2.1 The Killing spinors 5

2.2 The non-existence of N > 16 AdS4 solutions in IIB 6

2.2.1 Conditions on spinor bilinears 6

2.2.2 The warp factor is constant and the 5-form flux vanishes 7

2.2.3 Proof of the main statement 8

3 N > 16 AdS4 ×w M
6 solutions in (massive) IIA 8

3.1 The Killing spinor equations 10

3.2 AdS4 solutions with N > 16 in IIA 10

3.2.1 Conditions on spinor bilinears 10

3.2.2 The warp factor is constant 11

3.3 N = 28 12

3.4 N = 24 12

3.5 N = 20 14

3.5.1 Sp(2)/U(2) 14

3.5.2 Sp(2)/(Sp(1)×U(1)) 15

4 N > 16 AdS4 ×w M
7 solutions in 11 dimensions 17

4.1 AdS4 solutions in D = 11 17

4.2 The Killing spinors 18

4.3 AdS4 solutions with N > 16 in 11 dimensions 19

4.3.1 Conditions on spinor bilinears 19

4.3.2 The warp factor is constant 19

4.4 N = 28, Spin(7)/G2 19

4.5 N = 24, SU(4)/SU(3) 22

4.6 N = 20 24

4.6.1 Sp(2)/Sp(1)max 24

4.6.2 Sp(2)/∆(Sp(1)) 25

4.6.3 Sp(2)/Sp(1) 31

5 Conclusions 37

A Notation and conventions 38

B Homogeneous and symmetric spaces 38

C su(k) 40

C.1 Mk = CPk−1 = SU(k)/S(U(k)×U(1)) 41

C.2 Mk = SU(k)/SU(k − 1) 42

– i –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
7

D The Berger space B7 = Sp(2)/Sp(1)max 43

E so(5) = sp(2) 44

E.1 M6 = Sp(2)/U(2) 44

E.2 M6 = Sp(2)/(Sp(1)×U(1)) 45

E.3 M7 = Sp(2)/∆(Sp(1)) 46

E.4 M7 = Sp(2)/Sp(1) 47

1 Introduction

AdS backgrounds in 10 and 11 dimensions that preserve N supersymmetries with

N > 16 have found widespread applications both in supergravity compactifications and

in AdS/CFT correspondence, for reviews see [1, 2] and references therein. One of the

features of such backgrounds in AdS/CFT [3] is that the CFT R-symmetry group acts

transitively on the internal space of the solution and this can be used to establish the dic-

tionary between some of the operators of the CFT and spacetime Kaluza-Klein fields [4].

Therefore the question arises whether it is possible to find all such AdS solutions. De-

spite the progress that has been made during the years, a complete description of all AdS

solutions that preserve N > 16 supersymmetries remains an open problem.

Recently however, there have been several developments which facilitate progress in

this direction for a large class of warped flux AdS solutions. In [5–7], the Killing spinor equa-

tions (KSEs) of supergravity theories have been solved in all generality and the fractions of

supersymmetry preserved by all warped flux AdS backgrounds have been identified. Fur-

thermore global analysis techniques have also been introduced in the investigation of AdS

backgrounds which can be used to a priori impose properties like the compactness of the

internal space and the smoothness of the fields. Another key development is the proof of the

homogeneity theorem [8] which for the special case of AdS backgrounds states that all such

backgrounds that preserve N > 16 supersymmetries are Lorentzian homogeneous spaces.

So far it is known that the warped flux AdSn, n ≥ 6, backgrounds preserve either 16 or

32 supersymmetries and those that preserve 32 supersymmetries have been classified in [9].

In addition, it has been shown that there are no N > 16 AdS5 backgrounds in D = 11

and (massive) IIA supergravities while in IIB supergravity all such backgrounds are locally

isometric to the maximally supersymmetric AdS5 × S5 solution [10]. In particular the

existence of a IIB AdS5 solution that preserves 24 supersymmetries has been excluded.

Moreover the AdSn × MD−n solutions with MD−n a symmetric coset space have been

classified in [11–14]. Furthermore heterotic supergravity does not admit AdS solutions

that preserve more than 8 supersymmetries [15].

The main task of this paper is to describe all warped AdS4 backgrounds that admit the

most general fluxes in 10 and 11 dimensions and preserve more than 16 supersymmetries. It

has been shown in [5–7] that such backgrounds preserve 4k supersymmetries. Therefore, we

shall investigate the backgrounds preserving 20, 24 and 28 as those with 32 supersymmetries

have already been classified in [9]. In particular, we find that
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• IIB and massive IIA supergravity do not admit AdS4 solutions with N > 16

supersymmetries.

• Standard IIA supergravity admits a unique solution up to an overall scale preserving

24 supersymmetries locally isometric to the AdS4 × CP3 background of [16].

• All AdS4 solutions of 11-dimensional supergravity that preserve N > 16 supersym-

metries are locally isometric to the maximally supersymmetric AdS4 × S7 solution

of [17, 18].

These results have been established under certain assumptions.1 We begin with a

spacetime which is a warped product AdS4 ×w MD−4, for D = 10 or 11, and allow for all

fluxes which are invariant under the isometries of AdS4. Then we shall assume that

1. either the solutions are smooth and MD−4 is compact without boundary

2. or that the even part of the Killing superalgebra of the background decomposes as a

direct sum so(3, 2) ⊕ t0, where so(3, 2) is the Lie algebra of isometries of AdS4 and

t0 is the Lie algebra of the isometries of MD−4.

It has been shown in [21] that for all AdS backgrounds, the first assumption implies the

second. In addition for N > 16 AdS4 backgrounds,2 the second assumption implies the

first. This is because t0 is the Lie algebra of a compact group and all internal spaces are

compact without boundaries. Smoothness also follows as a consequence of considering only

invariant solutions.

The proof of the main statement of our paper is based first on the results of [5–7]

that the number of supersymmetries preserved by AdS4 backgrounds are 4k and so the

solutions under consideration preserve 20, 24, 28 and 32 supersymmetries. Then the ho-

mogeneity theorem of [8] implies that all such backgrounds are Lorentzian homogeneous

spaces. Moreover, it has been shown in [21] under the assumptions mentioned above

that the Killing superalgebra of warped AdS4 backgrounds that preserve N = 4k su-

persymmetries is isomorphic to osp(N/4|4), see also [22], and that the even subalgebra

osp(N/4|4)0 = so(3, 2)⊕ so(N/4) acts effectively on the spacetime with t0 = so(N/4) act-

ing on the internal space. Thus together with the homogeneity theorem osp(N/4|4)0 acts

both transitively and effectively on the spacetime. Then we demonstrate in all cases that

the warp factor A is constant. As a result all N > 16 AdS4 backgrounds are product spaces

AdS4 ×MD−4. So the internal space MD−4 is a homogeneous space, MD−4 = G/H, and

LieG = so(N/4). Therefore, we have demonstrated the following,

• The internal spaces of AdS4 backgrounds that preserve N > 16 supersymmetries are

homogeneous spaces that admit a transitive and effective action of a group G with

LieG = so(N/4).

1Some assumptions are necessary to exclude the possibility that a warped AdS4 background is not locally

isometric to an AdSn background with n > 4. This has been observed in [19] and explored in the context

of KSEs in [20].
2In what follows, we use “N > 16 AdS backgrounds” instead of “AdS backgrounds that preserve N > 16

supersymmetries” for short.
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Having established this, one can use the classification of [23–26] to identify all the 6-

and 7-dimensional homogeneous spaces that can occur as internal spaces for N > 16

AdS4 backgrounds, see also tables3 1 and 3. Incidentally, this also means that if N > 16

backgrounds were to exist, the R-symmetry group of the dual CFT would have to act

transitively on the internal space of the solution.

A direct observation of the classification of 6-dimensional homogeneous spaces G/H

in table 1 reveals that those that can occur as internal spaces of AdS4 backgrounds with

N > 16 in 10 dimensions are

Spin(7)/Spin(6) (N = 28) , SU(4)/S(U(1)×U(3)) (N = 24) ,

Sp(2)/U(2) (N = 20) , Sp(2)/(Sp(1)×U(1)) (N = 20) , (1.1)

where N denotes the expected number of supersymmetries that can be preserved by the

background and we always take G to be simply connected. Observe that there are no

maximally supersymmetric AdS4 solutions in 10-dimensional supergravities in agreement

with the results of [9]. The proof of our result in IIB supergravity is based on a coho-

mological argument and does not use details of the 6-dimensional homogeneous spaces

involved. However in (massive) IIA supergravity, one has to consider details of the geome-

try of these coset spaces. Solutions with strictly N = 28 and N = 20 supersymmetries are

ruled out after a detailed analysis of the KSEs and dilaton field equation. In the standard

IIA supergravity there is a solution with 24 supersymmetry and internal space locally iso-

metric to the symmetric space SU(4)/S(U(1) × U(3)) = CP3. This solution has already

been found in [16]. The homogeneous space Sp(2)/Sp(1) × U(1), which is diffeomorphic

to CP3, gives also a solution at a special region of the moduli space of parameters. This

solution admits 24 supersymmetries and is locally isometric to that with internal space

SU(4)/S(U(1)×U(3)).

The classification of 7-dimensional homogeneous spaces G/H in table 3 reveals that

those that can occur as internal spaces of N > 16 AdS4 backgrounds in 11 dimensions are

Spin(8)/Spin(7) (N = 32) , Spin(7)/G2 (N = 28) , SU(4)/SU(3) (N = 24) ,

Sp(2)/Sp(1)max (N = 20) , Sp(2)/∆(Sp(1)) (N = 20) ,

Sp(2)/Sp(1) (N = 20) , (1.2)

where Sp(1)max and ∆(Sp(1)) denote the maximal and diagonal embeddings of Sp(1) in

Sp(2), respectively, and G is chosen to be simply connected. It is known that there is a maxi-

mally supersymmetric solution AdS4×S7 with internal space S7 = Spin(8)/Spin(7) [17, 18].

After a detailed investigation of the geometry of the above homogeneous spaces, the solu-

tions of the KSEs and the warp factor field equation, one can also show that the rest of the

coset spaces do not give solutions with strictly 20, 24 and 28 supersymmetries. However

as the homogeneous spaces Spin(7)/G2, SU(4)/SU(3) and Sp(2)/Sp(1) are diffeomorphic

3These tables list the simply connected homogeneous spaces. This suffices for our purpose because we

are investigating the geometry of the backgrounds up to local isometries. As so(N/4) is simple the universal

cover of G/H with Lie(G) = so(N/4) is compact and homogeneous, see eg [27]. So the internal space can

be identified with the universal cover G̃/H̃ of G/H for which G̃ can be chosen to be simply connected.
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to S7, there is a region in the moduli space of their parameters which yields the maximally

supersymmetric AdS4 × S7 solution.

The paper is organized as follows. In section 2, we show that there are no IIB N > 16

AdS4×wM6 solutions. In section 3, we show that there is an up to an over scale unique solu-

tion of IIA supersgravity that preserves 24 supersymmetries. In section 4, we demonstrate

that all N > 16 AdS4 backgrounds of 11-dimensional supergravity are locally isometric

to the maximally supersymmetric AdS4 × S7 solution. In section 5 we state our conclu-

sions. In appendix A, we explain our conventions, and in appendix B we summarize some

aspects of the geometry of homogeneous spaces that is used throughout the paper. In

appendices C, D and E, we present some formulae for the homogeneous spaces that admit

a transitive action of a group with Lie algebra su(k) or so(5) = sp(2).

2 N > 16 AdS4 ×w M
6 solutions in IIB

To investigate the IIB AdS4 backgrounds, we shall use the approach and notation of [6]

where Bianchi identities, field equations and KSEs are first solved along the AdS4 subspace

of AdS4 ×w M6 and then the remaining independent conditions along the internal space

M6 are identified. The bosonic fields of IIB supergravity are the metric, a complex 1-form

field strength P , a complex 3-form field strength G and a real self-dual 5-form F . Imposing

the symmetry of AdS4 on the fields, one finds that the metric and form field strengths are

given by

ds2 = 2du(dr + rh) +A2(dz2 + e2z/`dx2) + ds2(M6) ,

G = H, P = ξ, F = A2ez/`du ∧ (dr + rh) ∧ dz ∧ dx ∧ Y + ∗6Y , (2.1)

where the metric has been written as a near-horizon geometry [30] with

h = −2

`
dz − 2A−1dA . (2.2)

The warp factor A is a function on the internal manifold M6, H is the complex 3-form on

M6, ξ is a complex 1-form on M6 and Y is a real 1-form on M6. The AdS4 coordinates

are (u, r, z, x) and we introduce the null-ortho-normal frame

e+ = du , e− = dr + rh , ez = Adz , ex = Aez/` dx , ei = eiI dy
I , (2.3)

where ds2(M6) = δije
iej . All gamma matrices are taken with respect to this null ortho-

normal frame.

The Bianchi identities along M6 which are useful in the analysis that follows are

d(A4Y ) = 0, dH = iQ ∧H − ξ ∧H,

∇iYi = − i

288
εi1i2i3j1j2j3Hi1i2i3Hj1j2j3 ,

dQ = −iξ ∧ ξ̄ , (2.4)
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where Q is the pull-back of the canonical connection of the upper-half plane on the space-

time with respect to the dilaton and axion scalars of IIB supergravity. Similarly, the field

equations of the warp factor is

A−1∇2A = 4Y 2 +
1

48
Hi1i2i3H

i1i2i3 − 3

`2
A−2 − 3A−2(dA)2 , (2.5)

and those of the scalar and 3-form fluxes are

∇iξi = −3∂i logAξi + 2iQiξi −
1

24
H2 ,

∇iHijk = −3∂i logAHijk + iQiHijk + ξiH ijk . (2.6)

The full set of Bianchi identities and field equations can be found in [6]. Note in particular

that (2.5) implies that if A and the other fields are smooth, then A is nowhere vanishing

on M6.

2.1 The Killing spinors

After solving the KSEs along AdS4, the Killing spinors of the background can be written as

ε = σ+ − `−1xΓxzτ+ + e−
z
` τ+ + σ− + e

z
` (τ− − `−1xΓxzσ−)

− `−1uA−1Γ+zσ− − `−1rA−1e−
z
` Γ−z , τ+ , (2.7)

where we have used the light-cone projections

Γ±σ± = 0 , Γ±τ± = 0 , (2.8)

and σ± and τ± are Spin(9, 1) Weyl spinors depending only on the coordinates of M6. The

remaining independent KSEs are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , (2.9)

and (
1

24
/H + /ξC∗

)
σ± = 0 ,

(
1

24
/H + /ξC∗

)
τ± = 0 , (2.10)

as well as

Ξ(±)σ± = 0 ,

(
Ξ(±) ± 1

`

)
τ± = 0 , (2.11)

where

∇(±)
i = ∇i ±

1

2
∂i logA− i

2
Qi ∓

i

2
/ΓY iΓxz ±

i

2
YiΓxz +

(
− 1

96
/ΓH i +

3

32
/H i

)
C∗ , (2.12)

Ξ(±) = ∓ 1

2`
− 1

2
Γz /∂A±

i

2
AΓx /Y +

1

96
AΓz /HC∗ , (2.13)

and C∗ is the charge conjugation matrix followed by standard complex conjugation. For

some explanation of the notation see appendix A. (2.9) and (2.10) can be thought of as the
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naive restriction of gravitino and dilatino KSEs of IIB supergravity on M6, respectively.

(2.11) are algebraic and arise as integrability conditions of the integration of IIB KSEs

over the AdS4 subspace of the background. We do not assume that the Killing spinors

factorize as Killing spinors on AdS4 and Killing spinors on the internal manifold. It has

been observed in [6] that if σ+ is a Killing spinor, then

τ+ = Γzxσ+ , σ− = AΓ−zσ+ , τ− = AΓ−xσ+ , (2.14)

are also Killing spinors. As a result AdS4 solutions preserve 4k supersymmetries.

2.2 The non-existence of N > 16 AdS4 solutions in IIB

2.2.1 Conditions on spinor bilinears

As it has already been mentioned, the two assumptions we have made in the introduc-

tion are equivalent for all IIB, (massive) IIA and 11-dimensional AdS4 backgrounds that

preserve N > 16 supersymmetries. Hence in what follows, we shall focus only on the re-

strictions on the geometry of the spacetime imposed by the first assumption which requires

that the solutions are smooth and the internal space is compact without boundary.

To begin our analysis, a consequence of the homogeneity theorem [8] for solutions

which preserve N > 16 supersymmetries is that the IIB scalars are constant which in turn

implies that

ξ = 0 . (2.15)

As Q is the pull-back of the canonical connection of the upper half plane with respect to

the scalars and these are constant, Q = 0 as well.

Setting Λ = σ+ + τ+ and after using the gravitino KSE (2.9), we find

∇i ‖ Λ ‖2= − ‖ Λ ‖2 A−1∇iA− iYi〈Λ,ΓxzΛ〉+
1

48
Re〈Λ, /ΓH iC ∗ Λ〉 . (2.16)

Next, observe that the algebraic KSE (2.11) implies

1

48
/HC ∗ Λ =

(
A−1Γj∇jA+ iΓjΓxzYj

)
Λ + `−1A−1Γz(σ+ − τ+) , (2.17)

which, when substituted back into (2.16), yields

∇i ‖ Λ ‖2= 2`−1A−1Re〈τ+,Γizσ+〉 . (2.18)

However, the gravitino KSE (2.9) also implies that

∇i (ARe〈τ+,Γizσ+〉) = 0 . (2.19)

Thus, in conjunction with (2.18), we obtain

∇2 ‖ Λ ‖2 +2A−1∇iA∇i ‖ Λ ‖2= 0 . (2.20)

– 6 –
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The Hopf maximum principle then implies that ‖ Λ ‖2 is constant, so (2.16) and (2.18)

give the conditions

− ‖ Λ ‖2 A−1∇iA− iYi〈Λ,ΓxzΛ〉+
1

48
Re〈Λ, /ΓH iC ∗ Λ〉 = 0 , (2.21)

and

Re〈τ+,Γizσ+〉 = 0 , (2.22)

respectively. The above equation can be equivalently written as Re〈σ+,Γixσ+〉 = 0.

The spinors σ+ and τ+ are linearly independent as it can be easily seen from (2.11).

Moreover as a consequence of (2.22), they are orthogonal

Re〈τ+, σ+〉 = 0 . (2.23)

To see this take the real part of 〈τ+,Ξ
(+)σ+〉 − 〈σ+, (Ξ

(+) + `−1)τ+〉 = 0. The condi-

tions (2.19), (2.23) as well as the constancy of ‖ Λ ‖ can also be derived from the assump-

tion that the isometries of the background decompose into those of AdS4 and those of the

internal manifold [21].

2.2.2 The warp factor is constant and the 5-form flux vanishes

AdS4 backgrounds preserving 4k supersymmetries admit k linearly independent Killing

spinors σ+. For every pair of such spinors σ1
+ and σ2

+ define the bilinear

Wi = ARe〈σ1
+,Γizσ

2
+〉 . (2.24)

Then the gravitino KSE (2.9) implies that

∇(iWj) = 0 . (2.25)

Therefore W is a Killing vector on M6.

Next consider the algebraic KSE (2.11) and take the real part of 〈σ1
+,Ξ

(+)σ2
+〉 −

〈σ2
+,Ξ

(+)σ1
+〉 = 0 to find that

W i∇iA = 0 , (2.26)

where we have used (2.22).

Similarly, taking the real part of the difference 〈σ1
+,ΓzxΞ(+)σ2

+〉−〈σ2
+,ΓzxΞ(+)σ1

+〉 = 0

and after using the condition (2.23), we find

iWY = 0 . (2.27)

The conditions (2.26) and (2.27) are valid for all IIB AdS4 backgrounds. However if

the solution preserves more than 16 supersymmetries, an argument similar to that used for

the proof of the homogeneity theorem in [8] implies that the Killing vectors W span the

tangent spaces of M6 at each point. As a result, we conclude that

dA = Y = 0 . (2.28)

Therefore the warp factor A is constant and the 5-form flux F vanishes. So the background

is a product AdS4×M6, and as it has been explained in the introduction M6 is one of the

homogeneous spaces in (1.1).

– 7 –
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2.2.3 Proof of the main statement

To begin, it has been shown in [31] that all IIB AdS backgrounds that preserve N ≥ 28

supersymmetries are locally isometric to the maximally supersymmetric ones. As there is

not a maximally supersymmetric AdS4 background in IIB, we conclude that there does not

exist a AdS4 solution which preserves N ≥ 28 supersymmetries.

To investigate the N = 20 and N = 24 cases, substitute (2.28) into the Bianchi

identities and field equations to find that H is harmonic and

H2 = 0 . (2.29)

If H were real, this condition would have implied H = 0 and in turn would have led to

a contradiction. This is because the field equation for the warp factor (2.5) cannot be

satisfied. Thus we can already exclude the existence of such backgrounds.

Otherwise for solutions to exist, M6 must be a compact, homogeneous, 6-dimensional

Riemannian manifold whose de-Rham cohomology H3(M6) has at least two generators

and which admits a transitive and effective action of a group with Lie algebra isomorphic

to either so(6) or so(5) for N = 24 and N = 20, respectively [21]. The homogeneous

spaces that admit a transitive and effective action of so(6) or so(5) = sp(2) have already

been listed in (1.1) and none of them satisfies these cohomology criteria. All compact

homogeneous 6-manifolds have been classified in [25] and the complete list of the simply

connected ones relevant here is given in table 1. Therefore, we conclude that there do not

exist AdS4 backgrounds preserving N > 16 supersymmetries in IIB supergravity.4

3 N > 16 AdS4 ×w M
6 solutions in (massive) IIA

To begin, let us summarize the solution of Bianchi identities, field equations and KSEs for

(massive) IIA AdS4×wM6 backgrounds as presented in [7] whose notation we follow. The

bosonic fields of (massive) IIA supergravity are the metric, a 4-form field strength G, a

3-form field strength H, a 2-form field strength F , the dilaton Φ and the mass parameter

S of massive IIA dressed with the dilaton. Imposing the symmetries of AdS4 on the fields,

one finds that

ds2 = 2e+e− + (ez)2 + (ex)2 + ds2(M6) ,

G = Xe+ ∧ e− ∧ ez ∧ ex + Y , H = H, F = F, Φ = Φ, S = S, (3.1)

where ds2(M6) = δije
iej and the frame (e+, e−, ex, ez, ei) is defined as in (2.3). Note

that the fields H, F , Φ and S do not have a component along AdS4 and so we use the

same symbol to denote them and their component along M6. The warp factor A, S and

X are functions of M6, whereas Y , H and F are 4-form, 3-form and 2-form fluxes on

M6, respectively. The conditions imposed on the fields by the Bianchi identities and field

4Note that the possibility of IIB AdS4 × Z\G/H backgrounds preserving N > 16 supersymmetry is

also excluded, where Z is a discrete subgroup of G, as there are no IIB AdS4 ×G/H local geometries that

preserve N > 16 supersymmetries.
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M6 = G/H

(1) Spin(7)
Spin(6) = S6, symmetric space

(2) G2
SU(3) diffeomorphic to S6

(3) SU(4)
S(U(1)×U(3)) = CP3, symmetric space

(4) Sp(2)
U(2) , symmetric space

(5) Sp(2)
Sp(1)×U(1) diffeomorphic to CP3

(6) SU(3)
Tmax

Wallach space

(7) SU(2)×SU(2)
∆(SU(2)) × SU(2)×SU(2)

∆(SU(2)) = S3 × S3

(8) SU(2)× SU(2)×SU(2)
∆(SU(2)) diffeomorphic to S3 × S3

(9) SU(2)× SU(2) diffeomorphic to S3 × S3

(10) SU(2)
U(1) ×

SU(2)
U(1) ×

SU(2)
U(1) = S2 × S2 × S2

(11) SU(2)
U(1) ×

Spin(5)
Spin(4) = S2 × S4

(12) SU(2)
U(1) ×

SU(3)
S(U(1)×U(2)) = S2 × CP2

Table 1. 6-dimensional compact, simply connected, homogeneous spaces.

equations after solving along the AdS4 subspace can be found in [7]. Relevant to our

analysis that follows are the Bianchi identities

dH = 0, dS = SdΦ , dY = dΦ ∧ Y +H ∧ F ,
dF = dΦ ∧ F + SH , d(A4X) = A4dΦ , (3.2)

and the field equations for the fluxes

∇2Φ = −4A−1∂iA∂iΦ + 2(dΦ)2 +
5

4
S2 +

3

8
F 2 − 1

12
H2 +

1

96
Y 2 − 1

4
X2 ,

∇kHijk = −4A−1∂kAHijk + 2∂kΦHijk + SFij +
1

2
F k`Yijk` ,

∇jFij = −4A−1∂jAFij + ∂jΦFij −
1

6
HjklYijkl ,

∇`Yijk` = −4A−1∂`AYijk` + ∂`ΦYijk` , (3.3)

along M6. Moreover, we shall use the field equation for the warp factor A and the Einstein

field equation along M6

∇2 logA = − 3

`2A2
− 4(d logA)2 + 2 ∂i logA∂iΦ +

1

96
Y 2 +

1

4
X2 +

1

4
S2 +

1

8
F 2 ,

R
(6)
ij = 4∇i∂j logA+ 4∂i logA∂j logA+

1

12
Y 2
ij −

1

96
Y 2δij +

1

4
X2δij −

1

4
S2δij

+
1

4
H2
ij +

1

2
F 2
ij −

1

8
F 2δij − 2∇i∇jΦ , (3.4)

where ∇ and R
(6)
ij denote the Levi-Civita connection and the Ricci tensor of M6,

respectively.
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3.1 The Killing spinor equations

The solution of KSEs of (massive) IIA supergravity along the AdS4 subspace can again

be written as (2.7), where now σ± and τ± are spin(9, 1) Majorana spinors that satisfy the

lightcone projections Γ±σ± = Γ±τ± = 0 and depend only on the coordinates of M6. After

the lightcone projections are imposed, σ± and τ± have 16 independent components. These

satisfy the gravitino KSEs

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , (3.5)

the dilatino KSEs

A(±)σ± = 0 , A(±)τ± = 0 , (3.6)

and the algebraic KSEs

Ξ(±)σ± = 0 ,

(
Ξ(±) ± 1

`

)
τ± = 0 , (3.7)

where

∇(±)
i = ∇i ±

1

2
∂i logA+

1

8
/H iΓ11 +

1

8
SΓi +

1

16
/FΓiΓ11 +

1

192
/Y Γi ∓

1

8
XΓzxi ,

A(±) = /∂Φ +
1

12
/HΓ11 +

5

4
S +

3

8
/FΓ11 +

1

96
/Y ∓ 1

4
XΓzx ,

Ξ(±) = − 1

2`
+

1

2
/∂AΓz −

1

8
ASΓz −

1

16
A/FΓzΓ11 −

1

192
A/Y Γz ∓

1

8
AXΓx . (3.8)

The first two equations arise from the naive restriction of the gravitino and dilatino KSEs

of the theory on σ± and τ±, respectively, while the last algebraic equation is an integrability

condition that arises from the integration of the IIA KSEs on AdS4. As in the IIB case,

the solutions of the above KSEs are related as in (2.14) and so such backgrounds preserve

4k supersymmetries.

3.2 AdS4 solutions with N > 16 in IIA

3.2.1 Conditions on spinor bilinears

The methodology to establish conditions on the Killing spinor bilinears which follow from

our assumption that either the solutions are smooth and the internal space is compact

without boundary or that the even subalgebra of the Killing superalgebra decomposes as

stated in the introduction is the same as that presented for IIB. However, the formulae are

somewhat different. Setting Λ = σ+ +τ+ and upon using the gravitino KSE (3.5), one finds

∇i ‖ Λ ‖2= −∇i logA ‖ Λ ‖2 −1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 − 1

96
〈Λ, /ΓY iΛ〉 . (3.9)

After multiplying the algebraic KSE (3.7) with Γiz on the other hand, one gets

1

2`
〈Λ,Γiz(σ+ − τ+)〉 = −∇iA ‖ Λ ‖2 −A

4
S〈Λ,ΓiΛ〉 −

A

8
〈Λ, /ΓF iΓ11Λ〉

− A

96
〈Λ, /ΓY iΛ〉 . (3.10)
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Using this, one can rewrite (3.9) as

∇i ‖ Λ ‖2=
2

`A
〈τ+,Γizσ+〉 . (3.11)

On the other hand the gravitino KSE (3.5) gives

∇i (A〈τ+,Γizσ+〉) = 0 . (3.12)

Therefore taking the divergence of (3.11), one finds

∇2 ‖ Λ ‖2 +2∇i logA∇i ‖ Λ ‖2= 0 . (3.13)

An application of the Hopf maximum principle gives that ‖ Λ ‖2 is constant, which when

inserted back into (3.9) and (3.11) yields

−∇i logA ‖ Λ ‖2 −1

4
S〈Λ,ΓiΛ〉 −

1

8
〈Λ, /ΓF iΓ11Λ〉 − 1

96
〈Λ, /ΓY iΛ〉 = 0 , (3.14)

and

〈τ+,Γizσ+〉 = 0 , (3.15)

respectively. The above condition can also be expressed as 〈σ1
+,Γixσ

2
+〉 = 0 for any two

solutions σ1
+ and σ2

+ of the KSEs.

As in IIB, the algebraic KSE (3.7) implies that 〈τ+,Ξ
(+)σ+〉−〈σ+, (Ξ

(+) +`−1)τ+〉 = 0.

This together with (3.15) give that 〈σ+, τ+〉 = 0 and so the τ+ and σ+ Killing spinors are

orthogonal.

3.2.2 The warp factor is constant

To begin, for every pair of solutions σ1
+ and σ2

+ of the KSEs we define the 1-form bilinear

Wi = A Im 〈σ1
+,Γizσ

2
+〉 . (3.16)

Then the gravitino KSE (3.5) implies that

∇(iWj) = 0 , (3.17)

therefore W is an Killing vector on M6.

Next the difference 〈σ1
+,Ξ

(+)σ2
+〉 − 〈σ2

+,Ξ
(+)σ1

+〉 = 0 implies that

W i∇iA = 0 , (3.18)

where we have used (3.15).

So far we have not used that the solutions preserve N > 16 supersymmetries. However

if this is assumed, then (3.18) implies that the warp factor A is constant. This is a con-

sequence of an adaptation of the homogeneity theorem on M6. The homogeneity theorem

also implies that Φ and S are constant. X is also constant as a consequence of the Bianchi
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identity (3.2). Therefore we have established that if the backgrounds preserve N > 16

supersymmetries, then

A = const , Φ = const , S = const , X = const . (3.19)

As the warp factor is constant, all backgrounds that preserve N > 16 supersymmetries

are products, AdS4 ×M6. In addition as it has been explained in the introduction, M6

is a homogeneous space admitting a transitive and effective action of a group G with Lie

algebra so(N/4). These homogeneous spaces have been listed in (1.1). In what follows, we

shall explore all these 6-dimensional homogeneous spaces to search for IIA solutions that

preserve N > 16 supersymmetries.

3.3 N = 28

There are no maximally supersymmetric AdS4 backgrounds in (massive) IIA supergrav-

ity [9]. So the next case to be investigated is that with 28 supersymmetries. In such

a case M6 admits a transitive and effective action of a group with Lie algebra so(7).

Amongst the homogeneous spaces presented in (1.1), the only one with this property is

Spin(7)/Spin(6) = S6.

As Spin(7)/Spin(6) = S6 is a symmetric space, all left-invariant forms are parallel with

respect to the Levi-Civita connection and so represent classes in the de-Rham cohomology.

As H2(S6) = H3(S6) = H4(S6) = 0, one concludes that F = H = Y = 0. Using this

and (3.19), the dilatino KSE (3.6) implies that(
5

4
S − 1

4
XΓzx

)
σ+ = 0 . (3.20)

As it is the sum of two commuting terms one Hermitian and the other anti-Hermitian, the

existence of solutions requires that both must vanish separately. As a result S = X = 0.

Therefore all fluxes must vanish. This in turn leads to a contradiction as the field equation

of the warp factor (3.4) cannot admit any solutions. Thus there are no (massive) IIA AdS4

backgrounds preserving 28 supersymmetries.

3.4 N = 24

The internal space of AdS4 backgrounds that preserve 24 supersymmetries admits a transi-

tive and effective action of a group with Lie algebra so(6) = su(4). The only space in (1.1)

compatible with such an action is SU(4)/S(U(1)×U(3)) = CP3. Again this is a symmetric

space and so all invariant forms are parallel with respect to the Levi-Civita connection. In

turn they represent classes in the de-Rham cohomology. As Hodd(CP3) = 0, this implies

that H = 0.

It is well-known that this homogeneous space is a Kähler manifold and the left-invariant

metric is given by the standard Fubini-Study metric on CP3. The even cohomology ring

of CP3 is generated by the Kähler form ω. As a result the 2- and 4-form fluxes can be

written as

F = αω , Y =
1

2
β ω ∧ ω , (3.21)

for some real constants α and β to be determined.
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To determine α and β, let us first consider the dilatino KSE (3.6) which after impos-

ing (3.19) reads (
5

4
S +

3

8
/FΓ11 +

1

96
/Y − 1

4
XΓzx

)
σ+ = 0 . (3.22)

The Hermitian and anti-Hermitian terms in this equation commute and so they can be

separately imposed. Notice that the only non-trivial commutator to check is [ /F , /Y ] which

vanishes because F is proportional to the Kähler form while Y is a (2,2)-form with respect

to the associated complex structure. Thus we have(
3

8
/FΓ11 −

1

4
XΓzx

)
σ+ = 0 , (3.23)

and (
5

4
S +

1

96
/Y

)
σ+ = 0 . (3.24)

Inserting these into the algebraic KSE (3.7) simplifies to

(3SΓz −XΓx) σ+ =
3

`A
σ+ . (3.25)

The integrability condition of this yields

X2 + 9S2 =
9

`2A2
. (3.26)

Next let us focus on (3.23) and (3.24). Choosing without loss of generality

Γ11 = Γ+−ΓzxΓ123456, (3.23) can be rewritten as

α(Γ3456 + Γ1256 + Γ1234)σ+ = −X
3
σ+ , (3.27)

and similarly (3.24) as

β(Γ1234 + Γ1256 + Γ3456)σ+ = −5Sσ+ , (3.28)

where we have chosen an ortho-normal frame for which ω = e12 + e34 + e56.

To solve (3.27) and (3.28), we decompose σ+ into eigenspaces of J1 = Γ3456 and

J2 = Γ1256 and find that this leads to the relations

α = −1

3
X, β = −5S , (3.29)

for the eigenspaces |+,+〉, |+,−〉, |−,+〉, and

α =
1

9
X, β =

5

3
S , (3.30)

for the eigenspace |−,−〉.
Before we proceed to investigate the KSEs further, let us focus on the field equations for

the fluxes and the warp factor. Observe that α 6= 0. Indeed if α = 0, then the KSEs would
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have implied that X = 0. As H = X = 0, the dilaton field equation in (3.3) implies that

all fluxes vanish. In such a case, the warp factor field equation in (3.4) cannot be satisfied.

Thus α 6= 0. Then the field equation for the 3-form flux in (3.3) becomes α(S+4β) = 0

and so this implies that β = −1/4S. This contradicts the results from KSEs in (3.29)

and (3.30) above unless β = S = 0. Setting S = Y = 0 in the dilaton field equation

in (3.3), it is easy to see that it is satisfied if and only if α = −1/3X and so σ+ lies in

the eigenspaces |+,+〉, |+,−〉 and |−,+〉. As S = 0, (3.26) implies that X = ±3`−1A−1

and so α = ∓`−1A−1. The algebraic KSE (3.25) now reads Γxσ+ = ∓σ+. As α = −1/3X,

the common eigenspace of Γx, Γ3456 and Γ1256 on σ+ spinors has dimension 6. Thus the

number of supersymmetries that the background

ds2 = 2du(dr − 2`−1rdz) +A2(dz2 + e2z/`dx2) + ds2(CP3) ,

G = ±3`−1Aez/`du ∧ dr ∧ dz ∧ dx , H = S = 0 ,

F = ∓`−1A−1ω, Φ = const , (3.31)

with R
(6)
ij δ

ij = 24`−2A−2, can preserve is 24.

To establish that (3.31) preserves 24 supersymmetries, it remains to investigate the

gravitino KSE (3.5). As CP3 is simply connected it is sufficient to investigate the integra-

bility condition(
1

4
RijmnΓmn − 1

8
Fim FjnΓmn − 1

12
X FijΓzxΓ11 −

1

72
X2Γij

)
σ+ = 0 , (3.32)

of the gravitino KSE. The Riemann tensor of SU(4)/S(U(1)×U(3)) is

Rij,kl =
1

4`2A2
(δikδjl − δilδjk) +

3

4`2A2
(ωijωkl − ωi[jωkl]) . (3.33)

Then a substitution of this and the rest of the fluxes into the integrability condition reveals

that it is satisfied without further conditions. In a similar manner, one can check that the

Einstein equation along M6 is also satisfied. This is the IIA N = 24 solution of [16, 28].

3.5 N = 20

The internal space of AdS4 backgrounds that preserve 20 supersymmetries admits an ef-

fective and transitive action of a group which has Lie algebra so(5) = sp(2). An inspection

of the homogeneous spaces in table 1 reveals that there are two candidate internal spaces

namely the symmetric space Sp(2)/U(2) and the homogeneous space Sp(2)/Sp(1)×U(1).

The symmetric space is the space of complex structures on H2 which are compatible with

the quaternionic inner product while the homogeneous space is identified with the coset

space of the sphere x̄x + ȳy = 1, x, y ∈ H, with respect to the action (x, y) → (ax, ay),

a ∈ U(1). The latter is diffeomorphic to CP3.

3.5.1 Sp(2)/U(2)

The geometry and algebraic properties of this symmetric space are described in appendix E.

The most general left-invariant metric is

ds2 = a δrsδab`
ra`sb = δrsδabe

raesb , (3.34)
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where a > 0 is a constant and `ra, and era =
√
a `ra are the left-invariant and ortho-

normal frames, respectively, and where r, s = 1, 2, 3 and a, b = 4, 5. The invariant forms

are generated by the 2-form

ω =
1

2
δrsεab era ∧ esb . (3.35)

Sp(2)/U(2) is a Kähler manifold with respect to the pair (ds2, ω).

To continue we choose the metric on the internal manifold as (3.34) and the fluxes as

in the SU(4)/S(U(1)×U(3)) case, i.e.

F = αω , Y =
1

2
β ω ∧ ω , (3.36)

but now ω is given in (3.35), where α and β are constants. Since there are no invariant

3-forms on Sp(2)/U(2), this implies H = 0. Performing a similar analysis to that in

section 3.4, we find that β = S = 0, α = ∓`−1A−1 and X = ±3`−1A−1, and σ+ to

satisfy the same Clifford algebra projections as in e.g. (3.27). This requires an appropriate

re-labeling of the indices of the ortho-normal frame era so that the left-invariant tensors

take the same canonical form as those of SU(4)/S(U(1)× U(3)) expressed in terms of the

ortho-normal frame ei. As a result, there are 24 spinors that solve the KSEs so far.

It remains to investigate the solutions of the gravitino KSE (3.5). As in the

SU(4)/S(U(1) × U(3)) case in section 3.4, we shall investigate the integrability condition

instead. This is again given as in (3.32). The curvature of the metric of this symmetric

space is presented in (E.7). Using this the integrability condition (3.32) is written as[
1

16a
(δcdΓrcsd − δcdΓscrd)δab +

1

16a
δtu(Γtaub − Γtbua)δrs−

1

8
`−2A−2(δcdΓrcsdδab − Γsbra) +

1

4
`−2A−2δrsεabΓzxΓ11

− 1

8
`−2A−2Γrasb

]
σ+ = 0 . (3.37)

Contracting with δab, one finds that there are solutions which preserve more than 8 super-

symmetries provided a = `2A2. Then taking the trace of (3.37) with εabδrs, we find that

1

2
/ωσ+ = −12ΓzxΓ11σ+ , (3.38)

which is in contradiction to the condition (3.23) arising from the dilatino KSE. The sym-

metric space Sp(2)/U(2) does not yield5 AdS4 solutions that preserve 20 supersymmetries.

3.5.2 Sp(2)/(Sp(1)×U(1))

The Sp(2)/(Sp(1)×U(1)) homogeneous space is described in appendix E. Introducing the

left-invariant frame `AmA = `aWa + `rT
(+)
r , the most general left-invariant metric is

ds2 = a δab`
a`b + b δrs`

r`s = δabe
aeb + δrse

res, (3.39)

5Sp(2)/U(2) can also be excluded as a solution because it is not a spin manifold [24].
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where we have introduced the ortho-normal frame ea =
√
a `a, er =

√
b `r, and where

r = 1, 2 and a, b = 1, . . . , 4. The invariant forms are generated by

I
(+)
3 =

1

2
(I

(+)
3 )abe

a ∧ eb , ω̃ =
1

2
εrse

r ∧ es , er ∧ I(+)
r , (3.40)

and their duals, where

I(+)
r =

1

2
(I(+)
r )abe

a ∧ eb . (3.41)

The matrices
(
(I

(±)
r )ab

)
are a basis in the space of self-dual and anti-self dual 2-forms in

R4 and are defined in (E.10). Imposing the Bianchi identities (3.2), one finds the relation

α√
b
− β
√
b

2a
= S h , (3.42)

and that the fluxes can be written as

F = αI
(+)
3 + β ω̃ , H = h εrs er ∧ I(+)

s ,

Y = γ ω̃ ∧ I(+)
3 +

1

2
δ I

(+)
3 ∧ I(+)

3 , (3.43)

where α, β, h, γ and δ are constants.

The dilatino KSE (3.6) is the sum of hermitian and anti-hermitian Clifford algebra

elements which commute and thus lead to the two independent conditions(
3

8
/FΓ11 −

1

4
XΓzx

)
σ+ = 0 ,(

5

4
S +

1

12
/HΓ11 +

1

96
/Y

)
σ+ = 0 . (3.44)

Using this to simplify the algebraic KSE (3.7), one finds(
1

12
/H Γ11Γz + SΓz −

X

3
Γx

)
σ+ =

1

`A
σ+ . (3.45)

If we then insert the fluxes (3.43) into the above KSEs and set J1 = Γ241Γ11, J2 = Γ131Γ11

and J3 = Γ232Γ11, we obtain

(α(J2J3 − J1J3) + βJ1J2) σ+ +
X

3
σ+ = 0 ,

(5S + 2h(J1 − J2 − J3 + J1J2J3) + γ (J2J3 − J1J3) + δ J1J2)σ+ = 0 ,(
1

2
h(J1 − J2 − J3 + J1J2J3)Γz + SΓz −

X

3
Γx

)
σ+ −

1

`A
σ+ = 0 . (3.46)

As J1, J2, J3 are commuting Hermitian Clifford algebra operators with eigenvalues ±1, the

KSE (3.45) can be decomposed along the common eigenspaces as described in table 2.

From the results of table 2, there are two possibilities to choose five σ+ Killing spinors,

namely those in eigenspaces (1) and (3) and those in eigenspaces (1) and (4). For both of

these choices, the Bianchi identity (3.42) and the dilaton field equation give

α = β = −X
3
, X = ± 3

`A
, b = 2a, S = h = γ = δ = 0 . (3.47)
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|J1, J2, J3〉 relations for the fluxes

(1) |+,+,+〉, |−,−,−〉 β = −X
3 , 5S + δ = 0

|+,+,−〉, |−,−,+〉 (S Γz − X
3 Γx)|·〉 = 1

`A |·〉

(2) |+,−,+〉, |−,+,−〉 2α+ β = X
3 , 5S − 2γ − δ = 0

(S Γz − X
3 Γx)|·〉 = 1

`A |·〉

(3) |+,−,−〉 2α− β = −X
3 , 5S + 8h+ 2γ − δ = 0

((S + 2h) Γz − X
3 Γx)|·〉 = 1

`A |·〉

(4) |−,+,+〉 2α− β = −X
3 , 5S − 8h+ 2γ − δ = 0

((S − 2h) Γz − X
3 Γx)|·〉 = 1

`A |·〉

Table 2. Decomposition of (3.46) KSE into eigenspaces.

In either case notice that these conditions imply the existence of six σ+ Killing spinors as

the conditions required for both |+,−,−〉 and |−,+,+〉 to be solutions are satisfied. So

potentially this background can preserve N = 24 supersymmetries. To summarize, the

independent conditions on the Killing spinors arising from those in (3.44) and those in

table 2 are
1

2

(
/I
(+)
3 + /̃ω

)
σ+ = σ+ , Γxσ+ = − 3

`AX
σx . (3.48)

These are the same conditions as those found in section 3.4 for M6 = CP3.

It remains to investigate the gravitino KSE (3.5) or equivalently, as Sp(2)/(Sp(1) ×
U(1)) is simply connected, the corresponding integrability condition given again in (3.32).

The curvature of the metric is given in (E.15). Moreover the Einstein equation (3.4) gives

a = `2A2/2. Using these and substituting the conditions (3.47) into the integrability

condition, one can show that this is automatically satisfied provided that (3.48) holds. As

a result, there are no AdS4 backgrounds with internal space Sp(2)/(Sp(1)×U(1) which

preserve strictly 20 supersymmetries. However as shown above, there is a solution which

preserves 24 supersymmetries for b = 2a. This is locally isometric to the AdS4 × CP3

solution found in section 3.4. Note that there are no N > 24 solutions as it can be seen by

a direct computation or by observing that CP3 does not admit an effective and transitive

action by the so(N/4) subalgebra of the Killing superalgebra of such backgrounds. However

there are AdS4 × Sp(2)/(Sp(1)×U(1)) solutions which preserve 4 supersymmetries [32].

4 N > 16 AdS4 ×w M
7 solutions in 11 dimensions

4.1 AdS4 solutions in D = 11

Let us first summarize some of the properties of AdS4×wM7 backgrounds in 11-dimensional

supergravity as described in [5] that we shall use later. The bosonic fields are given as

ds2 = 2e+e− + (ez)2 + (ex)2 + ds2(M7) ,

F = X e+ ∧ e− ∧ ez ∧ ex + Y , (4.1)
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where the null ortho-normal frame (e+, e−, ez, ex, ei) is as in (2.3), but now i, j = 1, . . . , 7,

and the metric on the internal space M7 is ds2(M7) = δije
iej . X and Y are a function

and 4-form on M7, respectively.

The Bianchi identities of the 11-dimensional supergravity evaluated on the AdS4×wM7

background yield

dY = 0, d(A4X) = 0 . (4.2)

Similarly, the field equations give

∇kYki1i2i3 + 4∇kAYki1i2i3 = − 1

24
Xεi1i2i3

k1k2k3k4Yk1k2k3k4 , (4.3)

∇k∂k logA = − 3

`2A2
− 4∂k logA∂k logA+

1

3
X2 +

1

144
Y 2 , (4.4)

and

R
(7)
ij − 4∇i∂j logA− 4∂i logA∂j logA =

1

12
Y 2
ij + δij

(
1

6
X2 − 1

144
Y 2

)
, (4.5)

where ∇ is the Levi-Civita connection on M7.

4.2 The Killing spinors

The solution of the KSEs of D = 11 supergravity along the AdS4 subspace of AdS4×wM7

given in [5] can be expressed as in (2.7) but now σ± and τ± are spin(10, 1) Majorana

spinors that depend on the coordinates of M7. Again they satisfy the lightcone projections

Γ±σ± = Γ±τ± = 0. The remaining independent KSEs are

∇(±)
i σ± = 0 , ∇(±)

i τ± = 0 , (4.6)

and

Ξ(±)σ± = 0 ,

(
Ξ(±) ± 1

`

)
τ± = 0 , (4.7)

where

∇(±)
i = ∇i ±

1

2
∂i logA− 1

288
/ΓY i +

1

36
/Y i ±

1

12
XΓizx , (4.8)

Ξ(±) = ∓ 1

2`
− 1

2
Γz /∂A+

1

288
AΓz /Y ±

1

6
AXΓx . (4.9)

The former KSE is the restriction of the gravitino KSE on σ± and τ± while the latter arises

as an integrability condition as a result of integrating the gravitino KSE of 11-dimensional

supergravity over the AdS4 subspace of AdS4 ×wM7.
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4.3 AdS4 solutions with N > 16 in 11 dimensions

4.3.1 Conditions on spinor bilinears

The conditions that arise from the assumption that M7 be compact without boundary

and the solutions be smooth are similar to those presented in the (massive) IIA case. In

particular, one finds

‖ σ+ ‖= const , 〈τ+,Γizσ+〉 = 0 , 〈σ+, τ+〉 = 0 . (4.10)

The proof follows the same steps as in the (massive) IIA case and so we shall not repeat

it here.

4.3.2 The warp factor is constant

Using arguments similar to those presented in the (massive) IIA case, one finds that

Wi = A Im 〈σ1
+,Γizσ

2
+〉 are Killing vectors on M7 for any pair of Killing spinors σ1

+ and σ2
+

and that iWdA = 0.

Next, let us suppose that the backgrounds preserve N > 16 supersymmetries. In such

a case a similar argument to that presented for the proof of the homogeneity conjecture

implies that the W vector fields span the tangent space of M7 at every point and so A is

constant. From the Bianchi identity (4.2) it then follows that X is constant as well. Thus

we have established that

A = const , X = const . (4.11)

As a result, the space time is a product AdS4 ×M7, where M7 is a homogeneous space.

Further progress requires the investigation of individual homogeneous spaces of dimension

7 which have been classified in [26, 27] and they are presented in table 3. Requiring in

addition that the homogeneous spaces which can occur as internal spaces of N > 16 AdS4

backgrounds must admit an effective and transitive action of a group that has Lie algebra

so(N/4), one arrives at the homogeneous spaces presented in (1.2). In what follows, we

shall investigate in detail the geometry of these homogeneous spaces to search for N > 16

AdS4 backgrounds in 11-dimensional supergravity.

4.4 N = 28, Spin(7)/G2

The maximally supersymmetric solutions have been classified before [9] where it has been

shown that all are locally isometric to AdS4×S7 with S7 = Spin(8)/Spin(7). The only solu-

tion that may preserve N = 28 supersymmetries is associated with the homogeneous space

Spin(7)/G2, see (1.2). The Lie algebra spin(7) = so(7) is again spanned by matrices Mij as

in (E.1) satisfying the commutation relations (E.2) where now i, j = 1, 2, . . . , 7. Let us de-

note the generators of g2 subalgebra of spin(7) and those of the module m, spin(7) = g2 ⊕m,

with G and A, respectively. These are defined as

Gij = Mij +
1

4
∗7ϕijklMkl , Ai = ϕi

jkMjk , (4.12)
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M7 = G/H

(1) Spin(8)
Spin(7) = S7, symmetric space

(2) Spin(7)
G2

= S7

(3) SU(4)
SU(3) diffeomorphic to S7

(4) Sp(2)
Sp(1) diffeomorphic to S7

(5) Sp(2)
Sp(1)max

, Berger space

(6) Sp(2)
∆(Sp(1)) = V2(R5)

(7) SU(3)
∆k,l(U(1)) = W k,l k, l coprime, Aloff-Wallach space

(8) SU(2)×SU(3)
∆k,l(U(1))·(1×SU(2)) = Nk,l k, l coprime

(9) SU(2)3

∆p,q,r(U(1)2)
= Qp,q,r p, q, r coprime

(10) M4 ×M3, M4 = Spin(5)
Spin(4) ,

SU(3)
S(U(1)×U(2)) ,

SU(2)
U(1) ×

SU(2)
U(1)

M3 = SU(2) , SU(2)×SU(2)
∆(SU(2))

(11) M5 × SU(2)
U(1) , M5 = Spin(6)

Spin(5) ,
SU(3)
SU(2) ,

SU(2)×SU(2)
∆k,l(U(1)) , SU(3)

SO(3)

Table 3. 7-dimensional compact, simply connected, homogeneous spaces.

where ϕ is the fundamental G2 3-form, ∗7ϕ is its dual and ∗7 is the duality operation

along the 7-dimensional internal space. The non-vanishing components of ϕ and ∗7ϕ can

be chosen as

ϕ123 = ϕ147 = ϕ165 = ϕ246 = ϕ257 = ϕ354 = ϕ367 = 1 ,

∗7ϕ1276 = ∗7ϕ1245 = ∗7ϕ1346 = ∗7ϕ1357 = ∗7ϕ2374 = ∗7ϕ2356 = ∗7ϕ4567 = 1 , (4.13)

and we have raised the indices above using the flat metric. We have used the conventions for

ϕ and ∗7ϕ of [29], where also several useful identities satisfied by ϕ and ∗7ϕ are presented.

In particular observe that ϕi
jkGjk = 0. The spin(7) generators can be written as

Mij =
2

3
Gij +

1

6
ϕij

k Ak , (4.14)

and using this we obtain

[Gij , Gkl] =
1

2
(δilGjk + δjkGil − δikGjl − δjlGik) +

1

4
(∗7ϕij[kmG`]m − ∗7ϕk`[imGj]m) ,

[Ai, Gjk] =
1

2
(δij Ak − δik Aj) +

1

4
∗7 ϕijklAl ,

[Ai, Aj ] = ϕij
k Ak − 4Gij . (4.15)

Clearly, Spin(7)/G2 is a homogeneous space. As G2 acts with the irreducible 7-dimensional

representation on m, the left-invariant metric on Spin(7)/G2 is unique up to scale, therefore
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|P1, P2, P3〉 relations for the fluxes

|+,+,+〉, |+,+,−〉, |−,+,+〉, |+,−,−〉 (−1
6αΓz + 1

3XΓx)|·〉 = 1
`A |·〉

|−,+,−〉, |−,−,+〉, |−,−,−〉
|+,−,+〉 (7

6αΓz + 1
3XΓx)|·〉 = 1

`A |·〉

Table 4. Decomposition of (4.19) KSE into eigenspaces.

we may choose an ortho-normal frame ei such that

ds2 = a δij`
i`j = δije

iej , (4.16)

where a > 0 is a constant. The left-invariant forms are

ϕ =
1

3!
ϕijk ei ∧ ej ∧ ek , (4.17)

and its dual ∗7ϕ. So the Y flux can be chosen as

Y = α ∗7ϕ , α = const . (4.18)

Using this the algebraic KSE (4.7) can be expressed as(
1

6
α (P1 − P2 + P3 − P1 P2 P3 − P2 P3 + P1 P3 − P1 P2) Γz +

1

3
X Γx

)
σ+ =

1

`A
σ+ ,

(4.19)

where {P1, P2, P3} = {Γ1245,Γ1267,Γ1346} are mutually commuting, hermitian Clifford alge-

bra operators with eigenvalues ±1. The solutions of the algebraic KSE on the eigenspaces

of {P1, P2, P3} have been tabulated in table 4.

For backgrounds preserving N > 16 supersymmetries, one has to choose the first set

of solutions in table 4 and so impose the condition

1

36
α2 +

1

9
X2 =

1

`2A2
. (4.20)

However, the field equation for the warp factor A (4.4) gives

3

`2A2
=

1

3
X2 +

7

6
α2 . (4.21)

These two equations imply that α = 0 and so Y = 0.

As Y = 0, the algebraic KSE is simplified to

Γxσ+ =
3

`AX
σ+ , (4.22)

and so σ+ lies in one of the 8-dimensional eigenspaces of Γx provided that X = ± 3
`A . Thus

instead of preserving 28 supersymmetries, the solution can be maximally supersymmetric.
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Indeed this is the case as we shall now demonstrate. The integrability condition of the

gravitino KSE (4.6) becomes(
Rijk` Γk` − 1

18
X2Γij

)
σ+ = 0 . (4.23)

To investigate whether this can yield a new condition on σ+, we find after a direct compu-

tation using the results of appendix B that the Riemann tensor in the ortho-normal frame

is given by

Rijk` =
9

4
a−1(δikδj` − δi`δjk) . (4.24)

So S7 = Spin(7)/G2 is equipped with the round metric. For supersymmetric solutions, one

must set a−1 = 1
81X

2 = 1
9`2A2 . In such a case, the integrability condition of the gravitino

KSE is automatically satisfied and so the solution preserves 32 supersymmetries. This

solution is locally isometric to the maximally supersymmetric AdS4 × S7 solution.

4.5 N = 24, SU(4)/SU(3)

As so(6) = su(4), it follows from (1.2) that the internal space of an AdS4 solution with 24

supersymmetries is the 7-dimensional homogeneous manifold SU(4)/SU(3). The geometry

of this homogeneous space is described in appendix C. The left-invariant metric can be

rewritten as

ds2 = a δmn`
m`n + b (`7)2 = δmne

men + (e7)2 , (4.25)

where we have introduced an ortho-normal frame em=
√
a`m, e7 =

√
b`7, andm,n=1, . . . , 6.

The most general left-invariant 4-form flux Y can be chosen as

Y =
1

2
αω ∧ ω + β ∗7 (Reχ) + γ ∗7 (Imχ) , (4.26)

where α, β, γ are constants and the left-invariant 4-forms are

∗7(Reχ) = e1367 + e1457 + e2357 − e2467 , ω = e12 + e34 + e56 ,

∗7(Imχ) = −e1357 + e1467 + e2367 + e2457 , (4.27)

expressed in terms of the ortho-normal frame. Having specified the fields, it remains to

solve the KSEs. For this define the mutually commuting Clifford algebra operators

J1 = cos θ Γ1367 + sin θ Γ2457 , J2 = cos θ Γ1457 + sin θ Γ2367 ,

J3 = cos θ Γ2357 + sin θ Γ1467 , (4.28)

with eigenvalues ±1, where tan θ = γ/β. Then upon inserting Y into the algebraic

KSE (4.7) and using the above Clifford algebra operators, we obtain[
− α

6
(J1J2 + J1J3 + J2J3) Γz +

√
β2 + γ2

6
(J1 + J2 + J3 + J1J2J3) Γz

+
1

3
XΓx

]
σ+ =

1

`A
σ+ . (4.29)

– 22 –



J
H
E
P
0
1
(
2
0
1
8
)
0
8
7

|J1, J2, J3〉 relations for the fluxes

|+,+,−〉, |+,−,+〉, |−,+,+〉 (1
6αΓz + 1

3XΓx)|·〉 = 1
`A |·〉

|+,−,−〉, |−,+,−〉, |−,−,+〉

|+,+,+〉 [(−α
2 + 2

3

√
β2 + γ2) Γz + 1

3XΓx]|·〉 = 1
`A |·〉

|−,−,−〉 [(−α
2 −

2
3

√
β2 + γ2) Γz + 1

3XΓx]|·〉 = 1
`A |·〉

Table 5. Decomposition of (4.29) KSE into eigenspaces.

The algebraic KSE (4.7) can then be decomposed into the eigenspaces of J1, J2 and J3.

The different relations on the fluxes for all possible sets of eigenvalues of these operators

are listed in table 5.

The only possibility to obtain solutions with N > 16 supersymmetries is to choose the

first set of eigenspinors in table 5. This leads to the integrability condition

α2

36
+

1

9
X2 =

1

`2A2
, (4.30)

from the remaining KSE. This together with the warp factor field equation (4.4)

1

3
X2 +

1

2
α2 +

2

3
(β2 + γ2) =

3

`2A2
, (4.31)

implies

5

4
α2 + 2(β2 + γ2) = 0 , (4.32)

and so α = β = γ = 0. Therefore Y = 0 and the solution is electric. As a result, the

algebraic KSE (4.4) becomes

Γxσ+ =
3

`AX
σ+ , (4.33)

and so for X = ±3`−1A−1 it admits 8 linearly independent σ+ solutions. So potentially,

the background is maximally supersymmetric.

It remains to investigate the gravitino KSE. First of all, we observe that for Y = 0 the

Einstein equation (4.5) along the internal space becomes

Rij =
1

6
X2δij . (4.34)

Therefore, the internal space is Einstein. After some computation using the results in

appendix C, one finds that the homogeneous space SU(4)/SU(3) is Einstein provided that

b = 9
4a. In that case, the curvature of the metric in the ortho-normal frame becomes

Rij,mn =
1

4a
(δimδjn − δinδjm) , (4.35)
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and so the internal space is locally isometric to the round 7-sphere. As expected from this,

the integrability condition of the gravitino KSE (4.6)(
Rij,mnΓmn − 1

18
X2Γij

)
σ+ = 0 , (4.36)

has non-trivial solutions for X2 = 9a−1, i.e. a = `2A2 and b = 9
4`

2A2. With this identifica-

tion of parameters, AdS4 × SU(4)/SU(3) is locally isometric to the maximally supersym-

metric AdS4 × S7 background.

To summarize there are no AdS4 solutions with internal space SU(4)/SU(3) which

preserve 16 < N < 32 supersymmetries. However, for the choice of parameters for which

SU(4)/SU(3) is the round 7-sphere, the solution preserves 32 supersymmetries as expected.

4.6 N = 20

As mentioned in the introduction, the internal space of AdS4 backgrounds that preserve 20

supersymmetries admits an effective and transitive action of a group which has Lie algebra

so(5) = sp(2). The field equation for Y (4.3) is

d ∗7 Y = X Y . (4.37)

As X is constant, note that for generic 4-forms Y this defines a nearly-parallel G2-structure

on M7, see e.g. [33] for homogeneous G2 structures. However, in what follows we shall not

assume that Y is generic. In fact in many cases, it vanishes.

Amongst the 7-dimensional compact homogeneous spaces of (1.2), there are three

candidate internal spaces. These are the Berger space B7 = Sp(2)/Sp(1)max, V2(R5) =

Sp(2)/∆(Sp(1)), and J7 = Sp(2)/Sp(1), corresponding to the three inequivalent embed-

dings of Sp(1) into Sp(2). We will in the following examine each case separately, starting

with the Berger space Sp(2)/Sp(1)max.

4.6.1 Sp(2)/Sp(1)max

The description of the Berger space B7 = Sp(2)/Sp(1)max as a homogeneous manifold is

summarized in appendix D. B7 is diffeomeorphic to the total space of an S3 bundle over

S4 with Euler class ∓10 and first Pontryagin class ∓16 [34]. As a result H4(B7,Z) = Z10

and B7 is a rational homology 7-sphere. As sp(2) = so(5) and sp(1) = so(3), one writes

so(5) = so(3)⊕m and the subalgebra so(3) acts irreducibly on m with the 7 representation.

So B7 admits a unique invariant metric up to a scale and it is Einstein. As the embedding

of so(3) into so(7) factors through g2, it also admits an invariant 3-form ϕ given in (4.13)

which is unique up to a scale. Because there is a unique invariant 3-form ϕ, dϕ ∝ ∗7ϕ and

B7 is a nearly parallel G2 manifold. Using these, we find that the invariant fields of the

theory are

ds2 = aδij`
i`j = δije

iej , Y =
1

4!
α ∗7 ϕijkm ei ∧ ej ∧ ek ∧ em , (4.38)

where we have introduced the ortho-normal frame ei =
√
a `i, ∗7ϕ is given in (4.13) and

a, α are constants with a > 0.
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As the pair (ds2, Y ) exhibits the same algebraic relations as that of the Spin(7)/G2

case, the algebraic KSE (4.19) can be solved in the same way yielding the results of table 4.

To find N > 16 AdS4 solutions, one should consider the first set of eigenspinors of the table

which in turn imply the relation (4.20) amongst the fluxes. This together with the field

equation of the warp factor (4.21) leads again to the conclusion that α = 0 and so Y = 0.

As a result of the analysis of the algebraic KSE, so far the background can admit up

to 32 supersymmetries. It remains to investigate the solutions of the gravitino KSE. The

curvature of B7 is given by

Rij,km =
1

10 a
δk[i δj]m −

1

5a
∗7 ϕijkm +

1

a
δαβk

α
ijk

β
km , (4.39)

where kα is given in appendix D. The integrability condition of the gravitino KSE for Y = 0

is given in (4.23). To solve this condition, we decompose the expression into the 7 and 14

representations of g2 using the projectors

(P 7)ijkm =
1

3

(
δi[kδ

j
m] −

1

2
∗7 ϕijkm

)
, (P 14)ijkm =

2

3

(
δi[kδ

j
m] +

1

4
∗7 ϕijkm

)
, (4.40)

and noting that kα as 2-forms are in the 14 representation. The integrability condition

along the 7 representation gives X2 = 81
5 a
−1 while along the 14 representation gives that

the Killing spinors must be invariant under g2. It turns out that there are two such σ+

spinors however taking into account the remaining projection arising from the algebraic

KSE, see (4.22), we deduce that the solution preserves 4 supersymmetries in total. This

solution has already been derived in [23].

4.6.2 Sp(2)/∆(Sp(1))

The decomposition of the Lie algebra sp(2) = so(5) suitable to describe this homogeneous

space can be found in appendix E. Writing `AmA = `raMra + `7T7 for the left-invariant

frame, r = 1, 2, 3 and a = 4, 5, the most general left-invariant metric is

ds2 = δrsgab`
ra`sb + a4(`7)2 , (4.41)

where gab is a positive definite symmetric 2 × 2-matrix, a > 0 a constant, and the left-

invariant forms are generated by

`7 = `7 ,
1

2
δrsεab`

ra ∧ `sb , 1

3!
εrst`

ra ∧ `sb ∧ `tc . (4.42)

To simplify the analysis of the geometry that follows, we note that without loss of gen-

erality the matrix (gab) can chosen to be diagonal. To see this, perform an orthogonal

transformation O ∈ SO(2) to bring (gab) into a diagonal form. Such a transformation can

be compensated with a frame rotation

`ra → Oab`
rb . (4.43)

Demanding that `AmA is invariant implies that Mra has to transform as Mra → ObaMrb.

However, it is straight forward to observe that such a transformation is an automorphism of
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so(5) that preserves the decomposition (E.5), i.e. the structure constants of the Lie algebra

remain the same. As a result, we can diagonalize the metric and at the same time use the

same structure constants to calculate the geometric quantities of the homogeneous space.

Under these orthogonal transformations the first two left-invariant forms are invariant while

there is a change of basis in the space of left-invariant 3-forms.

To continue take6 (gab) = diag(a1, a2). Then introduce the ortho-normal frame

e7 =
√
a4 `

7, er4 =
√
a1 `

r4 and er5 =
√
a2 `

r5. In this frame the most general left-invariant

metric and Y flux can be written as

ds2 = δabδrse
raesb + (e7)2 ,

Y = β1 e7 ∧ χ444 + β2 e7 ∧ χ445 + β3 e7 ∧ χ455 + β4 e7 ∧ χ555 + β5 ψ , (4.44)

where β1, β2, · · · , β5 are constants,

χabc =
1

3!
εrste

ra ∧ esb ∧ etc , ψ =
1

2
ω ∧ ω , (4.45)

and

ω =
1

2
δrsεabe

ra ∧ esb . (4.46)

The Bianchi identity for Y is automatically satisfied. On the other hand the field equation

for Y in (4.3) yields the conditions

β3

2

√
a2

a4a1
− β1X = 0 , − β2

√
a2

a4a1
+

3β4

2

√
a1

a4a2
− β2X = 0 ,

3β1

2

√
a2

a4a1
− β3

√
a1

a2a4
− β3X = 0 ,

β2

2

√
a1

a4a2
− β4X = 0 ,

β5

(
X +

√
a4

a1a2

)
= 0 , (4.47)

where we have chosen the top form on M7 as dvol = e7 ∧ χ444 ∧ χ555.

Before we proceed to investigate the various cases which arise from solving the linear

system (4.47), let us consider first the case in which F is electric, i.e. it is proportional to

the volume form of AdS4. In such a case β1 = · · · = β5 = 0. The algebraic KSE then gives

1

3
XΓxσ+ =

1

`A
σ+ , (4.48)

and the field equations along M7 imply that

Rij =
1

6
X2δij , (4.49)

and so M7 is Einstein. The Einstein condition on the metric of M7 requires that

a1 = a2 , a4 =
3

2
a1 . (4.50)

6We have performed the analysis that follows also without taking (gab) to be diagonal producing the

same conclusions.
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To investigate whether there are solutions preserving 20 supersymmetries, it remains to

consider the integrability condition of the gravitino KSE (4.36). Indeed using the ex-

pressions (E.18) and (E.19) for the curvature of this homogeneous space, the integrability

condition along the directions 7 and ra gives X2 = (27/8)a−1
1 while along the ra and sb

directions requires additional projections. For example after taking the trace with δab and

setting r = 1 and s = 2, the condition is Γ1245σ+ = σ+ which leads to solutions that

preserve 16 supersymmetries or less, where the gamma matrices are in the ortho-normal

frame and Γr4 = Γr,Γr5 = Γ3+r. Hence there are no N > 16 AdS4 solutions.

Next let us turn to investigate the solutions of the linear system (4.47). The last

condition implies that

either β5 = 0 or X = −
√

a4

a1a2
. (4.51)

To continue consider first the case that β5 6= 0.

β5 6= 0. Substituting the second equation in (4.51) into the linear system (4.47), one

finds that

β3
a2

2
+ β1a4 = 0 , (a4 − a1)β3 +

3

2
a2β1 = 0 ,

β2
a1

2
+ a4β4 = 0 , (a4 − a2)β2 +

3

2
a1β4 = 0 . (4.52)

Now there are several cases to consider. First suppose that the parameters of the metric

a1, a2, a4 are such that the only solutions of the linear system above are β1 = β2 = β3 =

β4 = 0. In such case Y = β5ψ and Y has the same algebraic properties as that of the

SU(4)/SU(3) case with β = γ = 0 and α = β5. As a result, the algebraic KSE together

with the Einstein equation for the warp factor imply that β5 = 0 as well and so Y = 0. This

violates our assumption that β5 6= 0. In any case, the 4-form flux F is electric which we

have already investigated above and have found that such a configuration does not admit

solutions with N > 16 supersymmetries.

Next suppose that the parameters of the metric are chosen such that

either β1 = β3 = 0 , or β2 = β4 = 0 . (4.53)

These two cases are symmetric so it suffices to consider one of the two. Suppose that

β2 = β4 = 0 and β1, β3 6= 0. In such a case

3

4
a2

2 − a4(a4 − a1) = 0 , (4.54)

with 3
4a

2
1 − a4(a4 − a2) 6= 0. Setting P1 = Γ7156, P2 = Γ7345 and P3 = Γ7264, the algebraic

KSE can be written as[
1

18

(
− 3β1P1P2P3 + β3(P1 + P2 + P3)− 3β5(P1P2 + P1P3 + P2P3)

)
Γz

+
1

3
XΓx

]
σ+ =

1

`A
σ+ . (4.55)
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|P1, P2, P3〉 relations for the fluxes

|+,+,+〉 [1
6(−β1 + β3 − 3β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

|+,+,−〉, |+,−,+〉, |−,+,+〉 [ 1
18(3β1 + β3 + 3β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

|−,−,+〉, |−,+,−〉, |+,−,−〉 [ 1
18(−3β1 − β3 + 3β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

|−,−,−〉 [1
6(β1 − β3 − 3β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

Table 6. Decomposition of (4.55) KSE into eigenspaces.

As P1, P2, P3 are commuting and have eigenvalues ±1, the above algebraic equation de-

composes into eigenspaces as tabulated in table 6.

To find solutions with 20 supersymmetries or more, we can either choose one of the two

eigenspaces with 3 linearly independent eigenspinors and both eigenspaces with a single

eigenspinor or both eigenspaces with 3 linearly independent eigenspinors. In the former

case the algebraic KSE will admit 20 Killing spinors and in the latter 24 Killing spinors.

Let us first consider the case with 20 Killing spinors. In such a case, we find that

β1 = β3 , β1 = 3β5 , (4.56)

and

1

36
β2

1 +
1

9
X2 =

1

`2A2
, (4.57)

where we have considered the second eigenspace with 3 eigenspinors in table 6. The case

where the first such eigenspace with 3 eigenspinors is chosen can be treated in a similar

way. The condition (4.57) follows as an integrability condition to the remaining algebraic

KSE involving Γz and Γx. On the other hand, the field equation of the warp factor (4.4)

implies that

7

54
β2

1 +
1

9
X2 =

1

`2A2
, (4.58)

which together with (4.57) gives β1 = 0 and so Y = 0. The solution cannot preserve

N > 16 supersymmetries.

Next consider the case with 24 Killing spinors. In this case, we find that

3β1 = −β3 , (4.59)

and the integrability of the remaining algebraic KSE gives

1

36
β2

5 +
1

9
X2 =

1

`2A2
. (4.60)

On the other hand the field equation of the warp factor (4.4) gives

1

9
X2 +

2

9
β2

1 +
1

6
β2

5 =
1

`2A2
. (4.61)
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|P1, P2, P3〉 relations for the fluxes

|+,+,+〉 [ 1
18(4α− 9β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

|+,+,−〉, |+,−,+〉, |−,+,+〉
|−,−,+〉, |−,+,−〉, |+,−,−〉 [1

6β5Γz + 1
3XΓx]|·〉 = 1

`A |·〉

|−,−,−〉 [ 1
18(−4α− 9β5)Γz + 1

3XΓx]|·〉 = 1
`A |·〉

Table 7. Decomposition of (4.66) KSE into eigenspaces.

Comparing this with (4.60), one finds that the β’s vanish and so Y = 0. Thus there are no

solutions with N > 16 for either β1, β3 or β2, β4 non-vanishing.

It remains to investigate the case that all β1, . . . , β5 6= 0. This requires that the

determinant of the coefficients of the linear system (4.52) must vanish, i.e.

3

4
a2

2 − a4(a4 − a1) = 0 ,
3

4
a2

1 − a4(a4 − a2) = 0 . (4.62)

Taking the difference of the two equations, we find that

either a1 = a2 , or a4 =
3

4
(a1 + a2) . (4.63)

Substituting a4 above into (4.62), we find that a1 = a2. So without loss of generality, we

set a1 = a2 = a. Then the linear system (4.52) can be solved to yield

β3 = −3β1 , β2 = −3β4 . (4.64)

Setting

P1 = cos θΓ7156 + sin θΓ7234 , P2 = cos θΓ7345 + sin θΓ7126 ,

P3 = cos θΓ7264 + sin θΓ7315 , (4.65)

the algebraic KSE (4.7) can be rewritten as[
1

18

(
αP1P2P3 + α(P1 + P2 + P3)− 3β5(P1P2 + P1P3 + P2P3)

)
Γz

+
1

3
XΓx

]
σ+ =

1

`A
σ+ , (4.66)

where tan θ = β3/β2 and α =
√
β2

2 + β2
3 . As these Clifford algebra operations commute

and have eigenvalues ±1, the restrictions of this equation to the eigenspaces of P1, P2 and

P3 are given in table 7.

To find solutions with 20 supersymmetries, one needs to consider the eigenspace in

table 7 with 6 eigenspinors. In such a case the integrability of the remaining KSE re-

quires that

1

36
β2

5 +
1

9
X2 =

1

`2A2
. (4.67)
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Comparing this with the field equation of the warp factor

1

9
X2 +

1

6
β2

5 +
1

18
(β2

1 + β2
4) +

1

54
(β2

2 + β2
3) =

1

`2A2
, (4.68)

we find that all β’s must vanish and so Y = 0. Thus the flux F is electric and as we have

demonstrated such background does not admit N > 16 AdS4 supersymmetries.

β5 = 0. Since the backgrounds with electric flux F cannot preserve N > 16 supersymme-

tries, we have to assume that at least one of the pairs (β1, β3) and (β2, β4) do not vanish. If

either the pair (β1, β3) or (β2, β4) is non-vanishing, the investigation of the algebraic KSE

proceeds as in the previous case with β5 6= 0. In particular, we find that the algebraic

KSE (4.7) together with the field equation for the warp factor imply that all β’s vanish

and the flux F is electric. So there are no solutions preserving N > 16 supersymmetries.

It remains to investigate the case that β1, β2, β3, β4 6= 0. If this is the case, the

determinant of the linear system (4.47) must vanish which in turn implies that

−3

4

a2

a1a4
+X

(
X +

√
a1

a2a4

)
= 0 , − 3

4

a1

a2a4
+X

(
X +

√
a2

a1a4

)
= 0 . (4.69)

The solution of these equations is

either a1 = a2 , or X = −3

4

a1 + a2√
a1a2a4

. (4.70)

Substituting the latter equation into (4.69), one again finds that a1 = a2. So without loss

of generality we take a1 = a2 in which case

either X =
1

2
√
a4
, or X = − 3

2
√
a4
. (4.71)

For the latter case, the linear system (4.47) gives

β3 = −3β1 , β2 = −3β4 . (4.72)

After setting β5 = 0, the investigation of the algebraic KSE can be carried out as that

described in table 7. As a result after comparing with the field equation for the warp

factor, the β’s vanish and F is electric. Thus there are no solutions preserving N > 16

supersymmetries.

It remains to investigate the case that X = 1/(2
√
a4) in (4.71). In this case, the linear

system (4.47) gives

β1 = β3 , β2 = β4 . (4.73)

Using the P1, P2 and P3 as in (4.65), the algebraic KSE (4.7) becomes[
1

18

(
− 3αP1P2P3 + α(P1 + P2 + P3)

)
Γz +

1

3
XΓx

]
σ+ =

1

`A
σ+ , (4.74)

and the solutions in the eigenspaces of P1, P2 and P3 are described in table 8. To pre-

serve N > 16 supersymmetries, one has to consider either one of the eigenspaces with 3

eigenspinors and the eigenspace with 2 eigenspinors or both of the eigenspaces with 3 eigen-

spinors. In either case, one finds that all β’s vanish and so Y = 0. Then F is electric and

such solutions do not preserve N > 16 supersymmetries. Therefore we conclude that the

homogenous space Sp(2)/∆(Sp(1)) does not give rise to AdS4 backgrounds with N > 16.
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|P1, P2, P3〉 relations for the fluxes

|+,+,+〉, |−,−,−〉 1
3XΓx|·〉 = 1

`A |·〉

|+,+,−〉, |+,−,+〉, |−,+,+〉 [2
9αΓz + 1

3XΓx]|·〉 = 1
`A |·〉

|−,−,+〉, |−,+,−〉, |+,−,−〉 [−2
9αΓz + 1

3XΓx]|·〉 = 1
`A |·〉

Table 8. Decomposition of (4.74) KSE into eigenspaces.

4.6.3 Sp(2)/Sp(1)

The geometry of this homogeneous space is described in appendix E where the definition of

the generators of the algebra and expressions for the curvature and invariant forms can be

found. A left-invariant frame is `AmA = `aWa + `rT
(+)
r , where a = 1, . . . , 4 and r = 1, 2, 3.

Then the most general left-invariant metric is

ds2 = aδab`
a`b + grs`

r`s , (4.75)

where a > 0 is a constant and (grs) is any constant 3×3 positive definite symmetric matrix.

To simplify the computations that follow, it is convenient to use the covariant properties

of the decomposition of sp(2) = so(5) as described in (E.9) to restrict the number of

parameter in the metric. In particular, observe that the decomposition (E.9) remains

invariant under the transformation of the generators

T (+)
r → Or

sT (+)
s , Wa → Ua

bWb , T (−)
r → T (−)

r , (4.76)

where O ∈ SO(3) and U ∈ Spin(3) ⊂ SO(4) defined as

Or
sI(+)
s = UI(+)

r U−1 , (4.77)

as I
(+)
r are the gamma matrices of the Majorana spinor representation of so(3) on

R4 = C2 ⊕ C̄2
. Furthermore notice that UI

(−)
r U−1 = I

(−)
r as U is generated by I

(+)
r which

commute with all I
(−)
s . The orthogonal rotations O act on the matrix (grs) as g → OgO−1.

As (O,U) is an automorphism of so(5) which leaves the decomposition (E.9) invariant, we

can use O to put the matrix (grs) into diagonal form. So from now on without loss of

generality, we set (grs) = diag(b1, b2, b3) with b1, b2, b3 > 0, see also [35].

The left-invariant 4-forms are generated by

ψ =
1

4!
εabcd`

a ∧ `b ∧ `c ∧ `d , ρrs =
1

2
εrpq`

p ∧ `q ∧ I(+)
s , (4.78)

where

I(+)
s =

1

2
(I(+)
s )ab `

a ∧ `b . (4.79)

Therefore the 4-form flux Y can be chosen as

Y = αψ + βrsρrs , (4.80)
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where α and βrs are constants. Then it is straightforward to find that the Bianchi identity

dY = 0 implies that

βrs = βsr . (4.81)

Furthermore define σ = 1
3!εrst`

r ∧ `s ∧ `t and choose as top form dvol = a2
√
b1b2b3 σ ∧ ψ.

Then the field equation for Y , d ∗7 Y = XY , gives the linear system

3∑
r=1

brβ
rr =

√
b1b2b3Xα ,

α

2

√
b1b2b3
a2

− 1

3

∑3
r=1 brβ

rr

√
b1b2b3

=
X

3
β(

brβ
rs + βrsbs −

2

3
δrs

3∑
t=1

btβ
tt

)
=
√
b1b2b3X

(
βrs − 1

3
δrsβ

)
, (4.82)

where there is no summation over the indices r and s on the left-hand side of the last

equation and β = δrsβ
rs.

Before we proceed to investigate the solutions of the linear system, notice that if

βrs = 0, then α = 0 and so F is electric. The supersymmetry preserved by these solutions

will be investigated later. As we shall demonstrate such solutions cannot preserve more

than 16 supersymmetries.

Furthermore writing Y = αψ + Yβ , where Yβ = βrsρrs, the field equation of the warp

factor in (4.4) can be written as

1

9
X2 +

1

18
α2a−4 +

1

432
(Yβ)2 =

1

`2A2
. (4.83)

As we shall demonstrate, the compatibility of this field equation with the algebraic KSE

rules out the existence of N > 16 backgrounds.

Returning to the solutions of (4.82), let us focus on βrs with r 6= s. There are several

cases to consider.

Either βrs 6= 0 for all r 6= s or βrs = 0 for all r 6= s. If βrs, r 6= s, are all

non-vanishing, the last equation in (4.82) implies that

b1 = b2 = b3 , X = 2
b1√
b1b2b3

. (4.84)

As a result, the metric is invariant under SO(3) and this can be used to bring βrs into

diagonal form. Of course (βrs) is also diagonal if βrs = 0 for all r 6= s.

So without loss of generality, we can assume that (βrs) is diagonal. Setting

J1 = Γ6714 , J2 = Γ6723 , J3 = Γ7524 , (4.85)

where all gamma matrices are in the ortho-normal basis and {Γi} = {Γa,Γ4+r}, the alge-

braic KSE can be written as(
1

6

[
− αa−2J1J2 +

a−1

√
b1b2b3

(√
b1β

11(J1 + J2) +
√
b2β

22J3(1 + J1J2)

+
√
b3β

33J3(J1 + J2)
)]

Γz +
1

3
XΓx

)
σ+ =

1

`A
σ+ . (4.86)
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|J1, J2, J3〉 relations for the fluxes

|+,+,±〉
(

1
6 [−αa−2+2 a−1

√
b1b2b3

(
√
b1β

11 ±
√
b2β

22

±
√
b3β

33)]Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

|+,−,±〉 |−,+,±〉
(

1
6αa

−2Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

|−,−,±〉
(

1
6 [−αa−2+2 a−1

√
b1b2b3

(−
√
b1β

11 ±
√
b2β

22

∓
√
b3β

33)]Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

Table 9. Decomposition of (4.86) KSE into eigenspaces.

The decomposition of the algebraic KSE into the eigenspaces of the commuting Clifford

algebra operators J1, J2, J3 is illustrated in table 9.

To construct N > 16 solutions, we have to include the eigenspace with four eigen-

spinors. The integrability condition of the remaining KSE described in table 9 gives

1

36
α2a−4 +

1

9
X2 =

1

`2A2
. (4.87)

Comparing (4.87) with the field equation for the warp factor (4.83), we find that α=βrs=0.

Therefore Y = 0 and so F is electric.

β12, β13 6= 0 and β23 = 0. As the other two cases for which either β13 = 0 or β12 = 0

with the rest of the components non-vanishing can be treated in a similar way, we take

without loss of generality that β23 = 0 and β12, β13 6= 0. In such a case, the last condition

in (4.82) gives

X =
b1 + b2√
b1b2b3

, b2 = b3 . (4.88)

The metric is invariant under an SO(2) ⊂ SO(3) symmetry which acts with the vector

representation on the vector (β12, β13) and leaves the form of (βrs) invariant. As a result

up to an SO(2) transformation, we can set β13 = 0 as well. Furthermore, if b1 6= b2, the

diagonal terms in the last condition in (4.82) give

β11 = −β22 = −β33 . (4.89)

On the other hand if b1 = b2 the analysis reduces to that of the previous case. Therefore

for b1 6= b2, Y can be written as

Y = αψ + β11(ρ11 − ρ22 − ρ33) + β12(ρ12 + ρ21) . (4.90)

Introducing the Clifford algebra operators

J1 = cos θΓ6714 + sin θΓ6724 , J2 = cos θΓ5724 − sin θΓ5714 , J3 = Γ1234 , (4.91)
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|J1, J2, J3〉 relations for the fluxes

|±,+,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2

(±
√
b2β

11

+
√

(β11)2 + (β12)2(±
√
b1 +

√
b2))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

|+,±,+〉 |−,±,+〉
(

1
6αa

−2Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

|±,−,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2

(∓
√
b2β

11

+
√

(β11)2 + (β12)2(±
√
b1 −

√
b2))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

Table 10. Decomposition of (4.92) KSE into eigenspaces.

where tan θ = β12/β11, the algebraic KSE can be written as

(
1

6

[
αa−2J3 +

a−1

√
b1b2

(
√
b2β

11J1J2(1− J3)

+
√

(β11)2 + (β12)2(
√
b1J1 +

√
b2J2)(1− J3))

]
Γz +

1

3
XΓx

)
σ+ =

1

`A
σ+ . (4.92)

The decomposition of the algebraic KSE into the eigenspaces of the commuting Clifford

algebra operators J1, J2, J3 is illustrated in table 10.

To construct solutions preserving more than 16 supersymmetries, we have to include

the eigenspace with four eigenspinors leading again to the integrability condition (4.87).

Comparing again with the field equations of the warp factor (4.83), we deduce that F

is electric.

β13 = β23 = 0 but β12 6= 0. All three cases for which only one of the three off-diagonal

components of (βrs) is non-zero can be treated symmetrically. So without loss of generality,

one can take β13 = β23 = 0 but β12 6= 0. In this case, the last equation in (4.82) has four

branches of solutions depending on the choice of the b1, b2 and b3 components of the metric.

1. b1 = b2 = b3 = b

The last equation in (4.82) then implies X = 2/
√
b and the aforementioned residual

SO(3) symmetry can be used to put βrs to be diagonal.

2. b1 = b2, b2 6= b3
The last equation in (4.82) then implies X = 2/

√
b3 and β33 = 0. The aforementioned

residual SO(2) symmetry can be used to put βrs to be diagonal.

3. b2 6= b3, b1 + b2 = 2b3
The last equation in (4.82) then implies X = (b1 + b2)/

√
b1b2b3 and β11 = β22 = 0.

In such a case, Y reads

Y = αψ + β33ρ33 + β12(ρ12 + ρ21) . (4.93)
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|J1, J2, J3〉 relations for the fluxes

|±,+,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2b3

(±
√
b3β

33

−β12(±
√
b2 −

√
b1))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

|+,±,+〉 |−,±,+〉
(

1
6αa

−2Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

|±,−,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2b3

(∓
√
b3β

33

−β12(±
√
b2 +

√
b1))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

Table 11. Decomposition of (4.95) KSE into eigenspaces.

Choosing

J1 = Γ1457 , J2 = Γ2467 , J3 = Γ1234 , (4.94)

the algebraic KSE can be written as(
1

6

[
αa−2J3 +

a−1

√
b1b2b3

(√
b3β

33J1J2(1− J3)

−β12(
√
b2J1 −

√
b1J2)(1− J3)

)]
Γz +

1

3
XΓx

)
σ+ =

1

`A
σ+ . (4.95)

The decomposition of the algebraic KSE into the eigenspaces of J1, J2, J3 is illustrated

in table 11. Again the eigenspace with four eigenspinors has to be included in the

construction of N > 16 backgrounds. As a result, this leads to the integrability

condition (4.87) which together with the warp factor field equation (4.83) imply that

F is electric.

4. b1 6= b2, b1 + b2 6= 2b3
The last equation in (4.82) then implies

X = (b1 + b2)/
√
b1b2b3 , β11 = −β22 = β33(2b3 − b1 − b2)/(b1 − b2) . (4.96)

In such a case, Y reads

Y = αψ + β11

(
ρ11 − ρ22 +

b1 − b2
2b3 − b1 − b2

ρ33

)
+ β12(ρ12 + ρ21) . (4.97)

With the choice of commuting Clifford algebra operators as in (4.91), the algebraic

KSE can be written as(
1

6

[
αa−2J3+

a−1

√
b1b2b3

(
(b1−b2)

√
b3

b1+b2−2b3
β11J1J2(1−J3)

+
√

(β11)2+(β12)2(
√
b1J1+

√
b2J2)(1−J3)

)]
Γz+

1

3
XΓx

)
σ+ =

1

`A
σ+ . (4.98)
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|J1, J2, J3〉 relations for the fluxes

|±,+,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2b3

(± (b1−b2)
√
b3

b1+b2−2b3
β11

+
√

(β11)2 + (β12)2(±
√
b1 +

√
b2))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

|+,±,+〉 |−,±,+〉
(

1
6αa

−2Γz + 1
3XΓx

)
|·〉 = 1

`A |·〉

|±,−,−〉

(
1
6 [−αa−2+ 2a−1

√
b1b2

(∓ (b1−b2)
√
b3

b1+b2−2b3
β11

+
√

(β11)2 + (β12)2(±
√
b1 −

√
b2))]Γz + 1

3XΓx

)
|·〉 = 1

`A |·〉

Table 12. Decomposition of (4.98) KSE into eigenspaces.

The decomposition of the algebraic KSE into the eigenspaces of J1, J2, J3 is illustrated

in table 12.

To construct N > 16 solutions, we again have to include the eigenspace with four

eigenspinors which leads to the integrability condition (4.87). Comparing with the

warp factor field equation (4.83), we again deduce that F is electric.

It remains to investigate the number of supersymmetries preserved by the solutions

for which F is electric. For this, one has to investigate the integrability condition of the

gravitino KSE (4.36). Using the expression for the curvature of metric in (E.25)–(E.28)

and requiring that the solution preserves N > 16, we find that

δcaδdb(I(−)
r )ab

(
Rcd,mnΓmn − 1

18
X2Γcd

)
σ+ = 0 , (4.99)

implies that

a− 1

8
δrsgrs −

1

18
a2X2 = 0 . (4.100)

Next requiring again that N > 16, one finds that the condition

δcaδdb(I(+)
r )ab

(
Rcd,mnΓmn − 1

18
X2Γcd

)
σ+ = 0 . (4.101)

gives that

δpqgpqεrst −
1

2
a−1εt

pqgprgqs − 2gtpε
p
rs = 0 ,

−3

4
grs +

1

8
δpqgpqδrs + aδrs −

1

18
a2X2δrs = 0 . (4.102)

Substituting (4.100) into the second equation in (4.102), one finds after a bit of analysis that

b1 = b2 = b3 . (4.103)

Setting b=b1 =b2 =b3 and substituting this back into (4.100) and (4.102), one deduces that

2a = b , X2 = 9b−1 . (4.104)
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As X2 = 9`−2A−2, we have b = `2A2 and a = (1/2)`2A2. The rest of the integrability

condition is satisfied without further conditions. So every solutions that preserves N > 16

supersymmetries is maximally supersymmetric and so locally isometric to AdS4 × S7.

One can confirm this result by investigating the Einstein equation (4.5). As all solutions

with electric F are Einstein R
(7)
ij = (1/6)X2δij , it suffices to identify the left-invariant

metrics on Sp(2)/Sp(1) that are Einstein. There are two Einstein metrics [35, 36] on

Sp(2)/Sp(1) given by

X2 = 9b−1 , 2a = b , b1 = b2 = b3 = b , (4.105)

and

X2 =
81

25
b−1 , 2a = 5b , b1 = b2 = b3 = b , (4.106)

where the first one is the round metric on S7, see also [37]. The second one does not give

N > 16 supersymmetric solutions.

5 Conclusions

We have classified up to local isometries all warped AdS4 backgrounds with the most general

allowed fluxes in 10- and 11-dimensional supergravities that preserve N > 16 supersymme-

tries. We have demonstrated that up to an overall scale, the only solutions that arise are

the maximally supersymmetric solution AdS4 × S7 of 11-dimensional supergravity [17, 18]

and the N = 24 solution AdS4 × CP3 of IIA supergravity [16]. These two solutions are

related via dimensional reduction along the fibre of the Hopf fibration S1 → S7 → CP3.

The assumption we have made to prove these results is that either the solutions are

smooth and the internal space is compact without boundary or that the even part g0 of

the Killing superalgebra of the backgrounds decomposes as g0 = so(3, 2) ⊕ t0. In fact

these two assumptions are equivalent for N > 16 AdS4 backgrounds. It may be possible

to weaken these assumptions but they cannot be removed altogether. This is because

in such a case additional solutions will exist. For example the maximally supersymmetric

AdS7×S4 solution of 11-dimensional supergravity [38] can be re-interpreted as a maximally

supersymmetric warped AdS4 solution. However in such case the “internal” 7-dimensional

manifold M7 is not compact and the even subalgebra of the Killing superalgebra g0 does

not decompose as so(3, 2)⊕ t0.

We have identified all AdS4 backgrounds up to a local isometry. Therefore, we have

specified all the local geometries of the internal spaces G/H of these solutions. However

the possibility remains that there are more solutions which arise via additional discrete

identifications Z\G/H, where Z is a discrete subgroup of Z ⊂ G. The AdS4 × Z\G/H
solutions will preserve at most as many supersymmetries as the AdS4×G/H solutions. As

in IIB and massive IIA supergravities there are no N > 16 AdS4 × G/H solutions, there

are no N > 16 AdS4×Z\G/H solutions either. In IIA theory, the possibility remains that

there can be AdS4 × Z\CP3 solutions with 24 and 20 supersymmetries. In D = 11 super-

gravity as AdS4 × S7 preserves 32 supersymmetries, there may be AdS4 × Z\S7 solutions
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preserving 28, 24 and 20 supersymmetries. Such solutions have been used in the context

of AdS/CFT in [39]. A systematic investigation of all possible N > 16 AdS4 × Z\G/H
backgrounds will involve the identification of all discrete subgroups of G. The relevant

groups here are SU(4) and Spin(8), see e.g. [46] for an exposition of discrete subgroups of

SU(4) and references therein.

It is clear from our results on AdS4 backgrounds that supersymmetric AdS solutions

which preserve N > 16 supersymmetries in 10- and 11-dimensions are severely restricted.

Consequently there are few gravitational duals for superconformal theories with a large

number of supersymmetries which have distinct local geometries. For example, the super-

conformal theories of [40–42] have gravitational duals which are locally isometric to the

AdS5 × S5 maximally supersymmetric background as there are no distinct local AdS5 ge-

ometries that preserve strictly 24 supersymmetries [10]. In general our results also suggest

that there may not be a large number of backgrounds that preserve N > 16 supersymme-

tries in 10- and 11-dimensional supergravities. So it is likely that all these solutions can be

found in the future.
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A Notation and conventions

Our conventions for forms are as follows. Let ω be a k-form, then

ω =
1

k!
ωi1...ikdx

i1 ∧ · · · ∧ dxik , ω2
ij = ωi`1...`k−1

ωj
`1...`k−1 , ω2 = ωi1...ikω

i1...ik . (A.1)

We also define

/ω = ωi1...ikΓi1...ik , /ωi1 = ωi1i2...ikΓi2...ik , /Γωi1 = Γi1
i2...ik+1ωi2...ik+1

, (A.2)

where the Γi are the Dirac gamma matrices.

The inner product 〈·, ·〉 we use on the space of spinors is that for which space-like

gamma matrices are Hermitian while time-like gamma matrices are anti-hermitian, i.e. the

Dirac spin-invariant inner product is 〈Γ0·, ·〉. The norm ‖ · ‖=
√
〈·, ·〉 is taken with respect

to 〈·, ·〉, which is positive definite. For more details on our conventions see [5–7].

B Homogeneous and symmetric spaces

In the following section we shall collect some useful properties of homogeneous spaces which

have facilitated our analysis of AdS4 backgrounds. A more detailed review can be found

in e.g. [43, 44].
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Consider the left coset space M = G/H, where G is a compact connected semisimple

Lie group G which acts effectively from the left on M = G/H and H is a closed Lie

subgroup of G. Let us denote the Lie algebras of G and H with g and h, respectively.

As there is always an invariant inner product on g, it can be used to take the orthogonal

complement of h in g and so

g = h⊕m . (B.1)

Denote the generators of h with hα, α = 1, 2, . . . , dim h and a basis in m as mA, A =

1, . . . , dim g−dim h. In this basis, the brackets of the Lie algebra g take the following form

[hα, hβ ] = fαβ
γ hγ , [hα,mA] = fαA

BmB ,

[mA,mB] = fAB
C mC + fAB

α hα . (B.2)

If fAB
C = 0, that is [m,m] ⊂ h, the space is symmetric.

Let g : U ⊂ G/H → G be a local section of the coset. The decomposition of the

Maurer-Cartan form in components along h and m is

g−1dg = `AmA + Ωα hα , (B.3)

which defines a local left-invariant frame `A and a canonical left-invariant connection Ωα

on G/H. The curvature and torsion of the canonical connection are

Rα ≡ dΩα +
1

2
fβγ

αΩβ ∧ Ωγ = −1

2
fBC

α`B ∧ `C ,

TA ≡ d`A + fβC
AΩβ ∧ `C = −1

2
fBC

A`B ∧ `C , (B.4)

respectively, where the equalities follow after taking the exterior derivative of (B.3) and

using (B.2). If G/H is symmetric, then the torsion vanishes.

A left-invariant p-form ω on G/H can be written as

ω =
1

p!
ωA1...Ap `

A1 ∧ . . . ∧ `Ap , (B.5)

where the components ωA1...Ap are constant and satisfy

fα[A1

B ωA2...Ap]B = 0 . (B.6)

The latter condition is required for invariance under the right action of H on G. All

left-invariant forms are parallel with respect to the canonical connection.

It remains to describe the metrics of G/H which are left-invariant. These are written as

ds2 = gAB `
A`B , (B.7)

where the components gAB are constant and satisfy

fαA
C gBC + fαB

C gAC = 0 . (B.8)
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For symmetric spaces, the canonical connection coincides with the Levi-Civita connection

of invariant metrics. So all non-vanishing left-invariant forms are harmonic and represent

non-trivial elements in the de Rham cohomology of G/H. However if G/H is strictly

homogeneous this is not the case since the canonical connection has non-vanishing torsion.

SupposeG/H is homogeneous and equipped with an invariant metric g. To describe the

results of the paper, it is required to find the Levi-Civita connection of g and its curvature.

Let Φ be the Levi-Civita connection in the left-invariant frame. As the difference of two

connections is a tensor, we set

ΦA
B = ΩαfαB

A + `CQC,
A
B . (B.9)

As Φ is metric and torsion free, we have

ΦAB + ΦBA = 0 ,

d`A + ΦA
B ∧ `B = 0 . (B.10)

These equations can be solved for Q to find that

ΦA
B = Ωα fαB

A +
1

2

(
gAD fDB

E gCE + gAD fDC
E gBE + fCB

A
)
`C . (B.11)

In turn the Riemann curvature 2-form RAB is

RAB =
1

2

(
QC,

A
EQD,

E
B−QD,AEQC,EB−QE,AB fCDE−fCDα fαBA

)
`C∧`D . (B.12)

This is required for the investigation of the gravitino KSE. Note that the expression for

ΦA
B is considerably simplified whenever the coset space is naturally reductive because the

structure constants fABC = fAB
E gCE are then skew symmetric.

C su(k)

Here we shall collect some formulae that are useful in understanding the homogeneous

spaces that admit a transitive action of a group with Lie algebra su(k). A basis over the

reals of anti-hermitian k × k traceless complex matrices is

(Mab)
c
d =

1

2
(δa

cδbd − δbcδad) , (Nab)
c
d =

ν(ab)

2
i

(
δa
cδbd + δb

cδad −
2

k
δabδc

d

)
, (C.1)

where ν(ab) is a normalization factor and a, b, c, d = 1, . . . , k. The trace of these matrices

yields an invariant inner product on su(k). In particular the non-vanishing traces are

tr(MabMa′b′) = −1

2
(δaa′δbb′ − δab′δba′) ,

tr(NabNa′b′) = −ν(ab)ν(a′b′)

2

(
δaa′δbb′ + δab′δba′ −

2

k
δabδa′b′

)
. (C.2)
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It is customary to choose the normalization factors ν such that all generators have the

same length. In such a case, they will depend on k. However in what follows, it is more

convenient to choose ν = 1. The Lie brackets of su(k) are

[Mab,Ma′b′ ] =
1

2
(δba′Mab′ + δab′Mba′ − δaa′Mbb′ − δbb′Maa′) ,

[Mab, Na′b′ ] =
1

2
(δba′Nab′ − δab′Nba′ − δaa′Nbb′ + δbb′Naa′) ,

[Nab, Na′b′ ] = −1

2
(δba′Mab′ + δab′Mba′ + δaa′Mbb′ + δbb′Maa′) . (C.3)

We shall proceed to describe the homogeneous spaces in (1.1) and (1.2) that admit a

transitive SU(k) action.

C.1 Mk = CPk−1 = SU(k)/S(U(k)×U(1))

To describe the CPk−1 homogeneous space, we set

h = s(u(k − 1)⊕ u(1)) = R〈Mrs, Nrs, Nkk)〉 , m = R〈Mrk, Nsk〉 , (C.4)

where r, s = 1, . . . , k− 1. The brackets of the Lie subalgebra s(u(k− 1)⊕ u(1)) can be read

off from those in (C.3) while those involving elements of m are

[Mrk,Msk] = −1

2
Mrs , [Mrk, Nsk] =

1

2
Nrs −

1

2
δrsNkk , [Nrk, Nsk] = −1

2
Mrs , (C.5)

and

[Mrs,Mtk] =
1

2
(δtsMrk − δtrMsk) , [Mrs, Ntk] =

1

2
(δtsNrk − δtrNsk) ,

[Nrs,Mtk] =
1

2
(δtsNrk + δtrNsk) , [Nrs, Ntk] = −1

2
(δtsMrk + δtrMsk) ,

[Nkk,Msk] = −Nrk , [Nkk, Nrk] = Mrk . (C.6)

The left-invariant frame is `AmA = `rMrk + `r̃Nrk. The most general left-invariant metric

can be expressed as

ds2 = a (δrs`
r`s + δr̃s̃`

r̃`s̃) , (C.7)

where a > 0 is a constant. The left-invariant forms of CPk−1 are generated by the (Kähler)

2-form

ω = a δrs̃`
r ∧ `s̃ . (C.8)

The non-vanishing components of the curvature of the metric in the ortho-normal frame are

Rrs,pq = − 1

4a

(
δrqδsp −

1

a
δrpδsq

)
, Rrs,p̃q̃ = − 1

4a

(
δrq̃δsp̃ −

1

a
δrp̃δsq̃

)
,

Rrs̃,pq̃ =
1

4a
(δrq̃δs̃p + δrpδs̃q̃) +

1

2a
δrs̃δpq̃ , Rr̃s̃,p̃q̃ = − 1

4a
(δr̃q̃δs̃p̃ − δr̃p̃δs̃q̃) . (C.9)

This expression of the curvature matches that in (3.33) for CP3 up to an overall scale.
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C.2 Mk = SU(k)/SU(k − 1)

Next let us turn to the SU(k)/SU(k−1) homogeneous space. The embedding of su(k−1) =

R〈M (k−1)
rs , N

(k−1)
rs 〉, where r, s = 1, . . . , k − 1, into su(k) = R〈M (k)

ab , N
(k)
ab 〉 is given by

M (k−1)
rs = M (k)

rs , N (k−1)
rs = N (k)

rs +
1

k − 1
δrsN

(k)
kk . (C.10)

As m = R〈M (k)
rk , N

(k)
sk , N

(k)
kk 〉, the (non-vanishing) commutators involving elements of m are

[M
(k)
rk ,M

(k−1)
sk ] = −1

2
M (k)
rs , [M

(k)
rk , N

(k)
sk ] =

1

2
N (k−1)
rs − k

2(k − 1)
δrsN

(k)
kk ,

[N
(k)
rk , N

(k)
sk ] = −1

2
M (k−1)
rs , (C.11)

and

[M (k−1)
rs ,M

(k)
tk ] =

1

2
(δtsM

(k)
rk − δtrM

(k)
sk ) , [M (k−1)

rs , N
(k)
tk ] =

1

2
(δtsN

(k)
rk − δtrN

(k)
sk ) ,

[N (k−1)
rs ,M

(k)
tk ] = − 1

k − 1
δrsN

(k)
tk +

1

2
(δtsN

(k)
rk + δtrN

(k)
sk ) ,

[N (k−1)
rs , N

(k)
tk ] =

1

k − 1
δrsM

(k)
tk −

1

2
(δtsM

(k)
rk + δtrM

(k)
sk ) ,

[N
(k)
kk ,M

(k)
rk ] = −N (k)

rk , [N
(k)
kk , N

(k)
rk ] = M

(k)
rk . (C.12)

Setting `AmA = ˆ̀rM
(k)
rk + ˆ̀̃rN

(k)
rk + ˆ̀0N

(k)
kk for the left-invariant frame, a direct computation

reveals that the most general invariant metric is

ds2 = a (δrs ˆ̀r ˆ̀s + δr̃s̃ ˆ̀̃r ˆ̀̃s) + b(ˆ̀0)2 , (C.13)

where a, b > 0 are constants. Moreover the left-invariant 2- and 3-forms for k = 4 are

generated by

ω̂ = δrs̃ ˆ̀r ∧ ˆ̀̃s , ˆ̀0 ∧ ω̂ , Re χ̂ , Im χ̂ , (C.14)

and their duals, where

χ̂ =
1

3!
εrst(ˆ̀r + i ˆ̀̃r) ∧ (ˆ̀s + i ˆ̀̃s) ∧ (ˆ̀t + i ˆ̀̃t) , (C.15)

is the holomorphic (3,0)-form.

However for convenience, we re-label the indices of the left-invariant frame as `2r−1 = ˆ̀r,

`2r = ˆ̀̃r, `7 = ˆ̀0, r = 1, 2, 3 in which case the left-invariant metric can be rewritten as

ds2 = a δmn`
m`n + b (`7)2 = δmne

men + (e7)2 , (C.16)

where we have introduced an ortho-normal frame em =
√
a `m, e7 =

√
b `7, and

m,n = 1, . . . , 6. Note also that up to an overall scale, the left-invariant 2- and 3-forms

can be re-written in terms of the ortho-normal frame. In particular, we have

ω = e12 + e34 + e56 , e7 ∧ ω , Reχ , Imχ , (C.17)

where

χ = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) . (C.18)

We shall use this ortho-normal basis to solve the KSEs for this internal space.
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D The Berger space B7 = Sp(2)/Sp(1)max

To describe the geometry of the Berger space B7, one identifies the vector representation

5 of so(5) = sp(2) with the symmetric trace-less representation of so(3) = sp(1) and then

decomposes the adjoint representation of so(5) in so(3) representations as 10 = 3 ⊕ 7,

where 7 is the symmetric traceless representation of so(3) constructed with three copies of

the vector representation. As a result so(5) = so(3)⊕m, where so(3) and m are identified

with the 3-dimensional and 7-dimensional representations, respectively.

This decomposition can be implemented as follows. Consider the basis Wab,

a, b, c, d = 1, . . . , 5,

(Wab)
c
d = δcaδbd − δcbδad , (D.1)

in so(5) leading to the commutators

[Wab,Wa′b′ ] = (δba′Wab′ + δab′Wba′ − δaa′Wbb′ − δbb′Waa′) . (D.2)

Then re-write each basis element using the 5 representation so(3) as Wrs,tu, where

r, s, t, u = 1, 2, 3. Decomposing this into so(3) representations, one finds that

Wrs,tu = Oruδst +Osuδrt +Ortδsu +Ostδru

+ εpstSpru + εprtSpsu + εpsuSprt + εpruSpst , (D.3)

where O ∈ so(3) and S ∈ m. Using this one can proceed to describe the homogeneous space

B7. However, this decomposition does not automatically reveal the G2 structure which is

necessary in the analysis of the supersymmetric solutions. Instead, we shall follow an adap-

tation [34] of the description in [23] and [45, appendix A.1]. For this use the inner product

〈Wab,Wa′b′〉 = −1

2
tr(WabWa′b′) , (D.4)

which is so(5) invariant and the basis Wab, a < b, is ortho-normal. In this basis, the struc-

ture constants of so(5) are skew-symmetric. Then identify the so(3) subalgebra of so(5)

with the span of the ortho-normal vectors

h1 =
1√
5

(−W12 −W34 +
√

3W35) , h2 =
1√
5

(−W13 +W24 +
√

3W25) ,

h3 =
1√
5

(−2W14 +W23) . (D.5)

We choose the subspace m to be orthogonal to so(3) and an ortho-normal basis in m

introduced as

m1 =
1

2
√

5
(4W12−W34+

√
3W35) , m2 =

1

2
√

5
(4W13+W24+

√
3W25) ,

m3 =
1√
5

(−W14−2W23) , m4 =
1

2
(
√

3W34+W35) , m5 =
1

2
(
√

3W24−W25) ,

m6 =W15 , m7 =W45 . (D.6)
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Then it is straightforward to show that

[hα, hβ ] =
1√
5
εαβ

γhγ , [hα,mi] = kαi
jmj , [mi,mj ] =

1√
5
ϕij

kmk + kij
αhα , (D.7)

where ϕ is given in (4.13), the indices are raised and lowered with the flat metric and

k1 = − 3

2
√

5
m2 ∧m3 −

√
3

2
m2 ∧m6 −

√
3

2
m3 ∧m5 +

2√
5
m4 ∧m7 +

1

2
√

5
m5 ∧m6 ,

k2 =
3

2
√

5
m1 ∧m3 −

√
3

2
m1 ∧m6 −

√
3

2
m3 ∧m4 −

1

2
√

5
m4 ∧m6 +

2√
5
m5 ∧m7 ,

k3 = − 3

2
√

5
m1 ∧m2 −

√
3

2
m1 ∧m5 −

√
3

2
m2 ∧m4 +

1

2
√

5
m4 ∧m5 +

2√
5
m6 ∧m7 .

So fij
k = 1√

5
ϕij

k and the Jacobi identities imply that ϕ is invariant under the representa-

tion of so(3) on m. Therefore the embedding of so(3) in so(7) defined by (k1, k2, k3) factors

through g2. This is useful in the analysis of the gravitino KSE.

E so(5) = sp(2)

To describe the various homogeneous spaces that we are using which admit a transitive

action of a group with Lie algebra so(5) = sp(2), choose a basis in so(5) as

(Mãb̃)c̃d̃ =
1

2
(δãc̃ δb̃d̃ − δãd̃ δb̃c̃), (E.1)

in sp(2) = so(5), where Mãb̃, ã, b̃ = 1, . . . , 5. The commutators are

[Mãb̃,Mã′b̃′ ] =
1

2
(δãb̃′Mb̃ã′ + δb̃ã′Mãb̃′ − δb̃b̃′Mãã′ − δãã′Mb̃b̃′) . (E.2)

In what follows, we shall describe various decompositions so(5) = h⊕m for different choices

of a subalgebra h and summarize some of their algebraic and geometric properties that we

are using in this work.

E.1 M6 = Sp(2)/U(2)

The subalgebra h and m are spanned as

u(2) = u(2) ≡ R 〈Tr, T7〉 = R 〈1
2
εr
stMst,M45〉 , (E.3)

and

m = R 〈Mra〉 = R 〈Mr4,Mr5, 〉 , (E.4)

respectively, where r, s, t = 1, 2, 3 and a, b, c, . . . = 4, 5. In this basis the non-vanishing

commutators are

[Tr, Ts] = −1

2
εrs

tTt , [Tr,Msa] = −1

2
εrs

tMta , [T7,Mra] = −1

2
εabMrb ,

[Mra,Msb] = −1

2
δabεrs

tTt −
1

2
δrsεabT7 . (E.5)
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Clearly this is a symmetric coset space admitting an invariant metric

ds2 = a δrsδab`
ra`sb = δrsδabe

raesb , (E.6)

where a > 0 is a constant, and `ra and era =
√
a `ra are the left-invariant and ortho-normal

frames, respectively. The curvature of the symmetric space in the ortho-normal frame is

Rra sb,tc ud =
1

4a
(δrtδsu − δruδst)δabδcd +

1

4a
δrsδtuεabεcd , (E.7)

which is instrumental in the investigation of the gravitino KSE in section 3.5.1.

E.2 M6 = Sp(2)/(Sp(1)×U(1))

Viewing the elements of Sp(2) as quaternionic 2×2 matrices, Sp(1)×U(1) ⊂ Sp(1)×Sp(1)

is embedded in Sp(2) along the diagonal. To describe this embedding choose a basis in

sp(2) = so(5) as in (E.1) and set

T (±)
r =

1

2
εrstM st ±M r4 , ,Wa =

√
2Ma5 , (E.8)

where r = 1, 2, 3 and now a = 1, . . . 4. In terms of this basis, the non-vanishing commutators

of sp(2) are

[T (±)
r , T (±)

s ] = −εrstT (±)
t , [T (±)

r ,Wa] =
1

2
(I(±)
r )baWb ,

[Wa,Wb] = −1

2

(
(I(+)
r )abT

(+)
r + (I(−)

r )abT
(−)
r

)
, (E.9)

where

(I(±)
r )4

s = ∓δrs , (I(±)
r )s4 = ±δsr , (I(±)

r )st = εrst . (E.10)

Observe that (I
(±)
r ) are bases in the spaces of (anti-)self-dual forms in R4 and that

I(±)
r I(±)

s = −δrs1− εrstI(±)
t . (E.11)

The subalgebra h and m are spanned as

h = sp(1)⊕ u(1) = R〈T (−)
r , T

(+)
3 〉 , (E.12)

and

m = R〈Wa, T
(+)
1 , T

(+)
2 〉 , (E.13)

respectively. Introducing the left-invariant frame, `AmA = `aWa + `rT
(+)
r , where r = 1, 2,

the left-invariant metric can be written as

ds2 = a δab`
a`b + b δrs`

r`s = δabe
aeb + δrse

res , (E.14)

where a, b > 0 and we have introduced the ortho-normal frame ea =
√
a `a, er =

√
b `r.
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The curvature of this metric in the ortho-normal frame is

Rab,cd =

(
1

2a
− 3b

16a2

)
(δac δbd − δad δbc) +

3b

16a2

(
(I

(+)
3 )ab(I

(+)
3 )cd − (I

(+)
3 )a[b(I

(+)
3 )cd]

)
,

Rar,bs =
b

16a2
δabδrs +

(
1

4a
− b

16a2

)
εrs(I

(+)
3 )ab ,

Rab,rs =

(
1

2a
− b

8a2

)
εrs(I

(+)
3 )ab, Rrs,tu =

1

b
εrsεtu . (E.15)

We shall use these expressions in the investigation of the gravitino KSE in section 3.5.2.

E.3 M7 = Sp(2)/∆(Sp(1))

The decomposition of the Lie algebra sp(2) = so(5) suitable for the description of this

homogeneous space is as in (E.3) but now h and m are spanned as

h = R〈Tr〉 , m = R〈Mra, T7〉 , (E.16)

respectively, where r = 1, 2, 3 and a = 4, 5. Introducing the left-invariant frame as `AtA =

`raMra + `7T7, the left-invariant metric is

ds2 = δrsgab`
ra`sb + a4(`7)2 , (E.17)

where (gab) is a symmetric constant positive definite 2×2 matrix and a4 > 0 is a constant.

The curvature of this metric in the left-invariant frame is

Rpc qd,
ra
sb = − 1

16
a−1

4 δrpδqsg
ae((∆g)ec − a4εec)((∆g)db + a4εdb)

+
1

16
a−1

4 δrqδpsg
ae((∆g)ed − a4εed)((∆g)cb + a4εcb)

+
1

8
εcdδpqδ

r
sg
aeεeb(δ

t1t2gt1t2 − a4)− 1

4
δcdδ

a
b (δpsδ

r
q − δqsδrp) , (E.18)

and

R7 ar,
7
bs =

1

16
a−1

4 ((∆g)ad + a4εad)g
deεeb(δ

t1t2gt1t2 − a4)δrs

− 1

8
a−1

4 εa
d((∆g)db + a4εdb)δrs , (E.19)

where

(∆g)ab = εa
dgdb + εb

dgda , (E.20)

(gab) is the inverse matrix of (gab) and the indices of ε are raised and lowered with δab. The

Ricci tensor again in the left-invariant frame is

Rra sb =

[
a−1

4

16
gdc(∆g)da(∆g)cb −

1

16
gdc(∆g)cbεda +

1

16
gcdεcaεdb(δ

t1t2gt1t2 − 2a4)

+
a−1

4

16
(∆g)adg

dcεcb δ
t1t2gt1t2 −

a−1
4

8
εa
d(∆g)db +

5

8
δab

]
δrs , (E.21)
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and

R77 = −3

8

a4

det g
(δt1t2gt1t2 − a4) +

3

8
a4δabg

ab − 3

8
εa
d(∆g)dbg

ab . (E.22)

It is straightforward to compute the Ricci tensor for (gab) diagonal. This concludes the

summary of the geometry for this homogeneous space.

E.4 M7 = Sp(2)/Sp(1)

The decomposition of the Lie algebra sp(2) = so(5) suitable for the description of this

homogeneous space is as in (E.9), where in this case

so(3) = R〈T (−)
r 〉 , m = R〈Wa, T

(+)
r 〉 , (E.23)

and where r = 1, 2, 3 and a = 1, . . . , 4. Introducing the left-invariant frame as `AmA =

`aWa + `rT
(+)
r , the most general left-invariant metric is

ds2 = aδab`
a`b + grs`

r`s , (E.24)

where a > 0 is a constant and (grs) is any constant 3×3 positive definite symmetric matrix.

The non-vanishing components of the curvature tensor of this metric in the left-invariant

frame is

Rcd,
a
b =

a−1

16

[
δaeδprδqs(I(+)

p )ecgrs(I
(+)
q )db − (d, c)

]
− a−1

8
δaeδprδqs(I(+)

p )ebgrs(I
(+)
q )cd

+
1

2
(δac δdb − δadδcb) , (E.25)

Rrs
a
b =

a−1

4
δpqgpqεrs

t(I
(+)
t )ab −

a−2

8
εpqt(I

(+)
t )abgprgqs −

a−1

2
εrs

tδpq(I(+)
p )abgqt , (E.26)

Rra
s
b =

1

8

[
gsmεmr

ngnpδ
pt + gsmεm

tngnr
]
(I

(+)
t )ab +

1

8
εr
sp(I(+)

p )ab +
a−1

16
δabδ

smgmr

+
a−1

16
εsmngmr(I

(+)
n )ab , (E.27)

and

Rrs,pq = gplRrs
l
q = εrs

mεpq
nXmn , (E.28)

where

Xmn =
1

2
δmkδnlg

kl(δq1q2δp1p2gq1p1gq2p2)

− 2gmn + δmnδ
pqgpq −

1

4
δmkδnlg

kl(δq1q2gq1q2)2 , (E.29)

and the matrix (grs) is the inverse of (grs). The Ricci tensor in the left-invariant frame is

Rab = −a
−1

8
δpqgpqδab +

3

2
δab ,

Rrs =
1

4
a−2δmngmrgns + (δrsδpqg

pq − δrpδsqgpq)δmnXmn + δrpg
pmXms + δspg

pmXmr

− δpqgpqXrs − δrsgpqXpq . (E.30)

It is straightforward to find the Ricci tensor for (grs) diagonal. This homogeneous space

admits two Einstein metrics one of which is the round sphere metric on S7. This will be

explored further in the investigation of the gravitino KSE in section 4.6.3.
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