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1 Introduction

AdS backgrounds in 10 and 11 dimensions that preserve N supersymmetries with
N > 16 have found widespread applications both in supergravity compactifications and
in AdS/CFT correspondence, for reviews see [1, 2| and references therein. One of the
features of such backgrounds in AdS/CFT [3] is that the CFT R-symmetry group acts
transitively on the internal space of the solution and this can be used to establish the dic-
tionary between some of the operators of the CFT and spacetime Kaluza-Klein fields [4].
Therefore the question arises whether it is possible to find all such AdS solutions. De-
spite the progress that has been made during the years, a complete description of all AdS
solutions that preserve N > 16 supersymmetries remains an open problem.

Recently however, there have been several developments which facilitate progress in
this direction for a large class of warped flux AdS solutions. In [5-7], the Killing spinor equa-
tions (KSEs) of supergravity theories have been solved in all generality and the fractions of
supersymmetry preserved by all warped flux AdS backgrounds have been identified. Fur-
thermore global analysis techniques have also been introduced in the investigation of AdS
backgrounds which can be used to a priori impose properties like the compactness of the
internal space and the smoothness of the fields. Another key development is the proof of the
homogeneity theorem [8] which for the special case of AdS backgrounds states that all such
backgrounds that preserve N > 16 supersymmetries are Lorentzian homogeneous spaces.

So far it is known that the warped flux AdS,,, n > 6, backgrounds preserve either 16 or
32 supersymmetries and those that preserve 32 supersymmetries have been classified in [9].
In addition, it has been shown that there are no N > 16 AdSs backgrounds in D = 11
and (massive) ITA supergravities while in IIB supergravity all such backgrounds are locally
isometric to the maximally supersymmetric AdSs x S® solution [10]. In particular the
existence of a IIB AdSs solution that preserves 24 supersymmetries has been excluded.
Moreover the AdS, x MP~" solutions with MP~" a symmetric coset space have been
classified in [11-14]. Furthermore heterotic supergravity does not admit AdS solutions
that preserve more than 8 supersymmetries [15].

The main task of this paper is to describe all warped AdS, backgrounds that admit the
most general fluxes in 10 and 11 dimensions and preserve more than 16 supersymmetries. It
has been shown in [5-7] that such backgrounds preserve 4k supersymmetries. Therefore, we
shall investigate the backgrounds preserving 20, 24 and 28 as those with 32 supersymmetries
have already been classified in [9]. In particular, we find that



e [IB and massive ITA supergravity do not admit AdS, solutions with N > 16
supersymmetries.

e Standard ITA supergravity admits a unique solution up to an overall scale preserving
24 supersymmetries locally isometric to the AdS, x CP? background of [16].

e All AdSy4 solutions of 11-dimensional supergravity that preserve N > 16 supersym-
metries are locally isometric to the maximally supersymmetric AdSs x S7 solution

of [17, 18].

1" We begin with a

These results have been established under certain assumptions.
spacetime which is a warped product AdSs x,, MP~4, for D = 10 or 11, and allow for all

fluxes which are invariant under the isometries of AdS4. Then we shall assume that
1. either the solutions are smooth and MP~4 is compact without boundary

2. or that the even part of the Killing superalgebra of the background decomposes as a
direct sum s0(3,2) @ tg, where s0(3,2) is the Lie algebra of isometries of AdS, and
to is the Lie algebra of the isometries of MP~%,

It has been shown in [21] that for all AdS backgrounds, the first assumption implies the
second. In addition for N > 16 AdS; backgrounds,? the second assumption implies the
first. This is because ty is the Lie algebra of a compact group and all internal spaces are
compact without boundaries. Smoothness also follows as a consequence of considering only
invariant solutions.

The proof of the main statement of our paper is based first on the results of [5-7]
that the number of supersymmetries preserved by AdS, backgrounds are 4k and so the
solutions under consideration preserve 20, 24, 28 and 32 supersymmetries. Then the ho-
mogeneity theorem of [8] implies that all such backgrounds are Lorentzian homogeneous
spaces. Moreover, it has been shown in [21] under the assumptions mentioned above
that the Killing superalgebra of warped AdS,; backgrounds that preserve N = 4k su-
persymmetries is isomorphic to osp(IN/4[4), see also [22], and that the even subalgebra
osp(N/4]4)p = s0(3,2) & s0(N/4) acts effectively on the spacetime with tg = so(N/4) act-
ing on the internal space. Thus together with the homogeneity theorem osp(IN/4|4)y acts
both transitively and effectively on the spacetime. Then we demonstrate in all cases that
the warp factor A is constant. As a result all N > 16 AdSy backgrounds are product spaces
AdS, x MP~4. So the internal space MP~* is a homogeneous space, MP~4 = G/H, and
Lie G = s0(N/4). Therefore, we have demonstrated the following,

e The internal spaces of AdS4 backgrounds that preserve N > 16 supersymmetries are
homogeneous spaces that admit a transitive and effective action of a group G with
LieG =s0(N/4).

'Some assumptions are necessary to exclude the possibility that a warped AdS4 background is not locally
isometric to an AdS,, background with n > 4. This has been observed in [19] and explored in the context
of KSEs in [20].

2In what follows, we use “N > 16 AdS backgrounds” instead of “AdS backgrounds that preserve N > 16
supersymmetries” for short.



Having established this, one can use the classification of [23-26] to identify all the 6-
and 7-dimensional homogeneous spaces that can occur as internal spaces for N > 16
AdS, backgrounds, see also tables® 1 and 3. Incidentally, this also means that if N > 16
backgrounds were to exist, the R-symmetry group of the dual CFT would have to act
transitively on the internal space of the solution.

A direct observation of the classification of 6-dimensional homogeneous spaces G/H
in table 1 reveals that those that can occur as internal spaces of AdS, backgrounds with
N > 16 in 10 dimensions are

Spin(7)/Spin(6) (N =28),  SU(4)/S(U(1) x U(3)) (N = 24),
Sp(2)/U(2) (N=20), Sp(2)/(Sp(1) x U(1)) (N =20), (1.1)

where N denotes the expected number of supersymmetries that can be preserved by the
background and we always take G to be simply connected. Observe that there are no
maximally supersymmetric AdSy solutions in 10-dimensional supergravities in agreement
with the results of [9]. The proof of our result in IIB supergravity is based on a coho-
mological argument and does not use details of the 6-dimensional homogeneous spaces
involved. However in (massive) ITA supergravity, one has to consider details of the geome-
try of these coset spaces. Solutions with strictly N = 28 and N = 20 supersymmetries are
ruled out after a detailed analysis of the KSEs and dilaton field equation. In the standard
ITA supergravity there is a solution with 24 supersymmetry and internal space locally iso-
metric to the symmetric space SU(4)/S(U(1) x U(3)) = CP3. This solution has already
been found in [16]. The homogeneous space Sp(2)/Sp(1) x U(1), which is diffeomorphic
to CP3, gives also a solution at a special region of the moduli space of parameters. This
solution admits 24 supersymmetries and is locally isometric to that with internal space
SU4)/S(U(1) x U(3)).

The classification of 7-dimensional homogeneous spaces G/H in table 3 reveals that
those that can occur as internal spaces of N > 16 AdS4 backgrounds in 11 dimensions are

Spin(8)/Spin(7) (N = 32), Spin(7)/G2 (N =28), SU(4)/SU(3) (N =24),
Sp(2)/Sp(Dmax (N =20), Sp(2)/A(Sp(1)) (N = 20),
Sp(2)/Sp(1) (N =20), (12)

where Sp(1)max and A(Sp(1)) denote the maximal and diagonal embeddings of Sp(1) in
Sp(2), respectively, and G is chosen to be simply connected. It is known that there is a maxi-
mally supersymmetric solution AdS, x S7 with internal space S” = Spin(8)/Spin(7) [17, 18].
After a detailed investigation of the geometry of the above homogeneous spaces, the solu-
tions of the KSEs and the warp factor field equation, one can also show that the rest of the
coset spaces do not give solutions with strictly 20, 24 and 28 supersymmetries. However
as the homogeneous spaces Spin(7)/G2, SU(4)/SU(3) and Sp(2)/Sp(1) are diffeomorphic

3These tables list the simply connected homogeneous spaces. This suffices for our purpose because we
are investigating the geometry of the backgrounds up to local isometries. As s0(IN/4) is simple the universal
cover of G/H with £ie(G) = so(N/4) is compact and homogeneous, see eg [27]. So the internal space can
be identified with the universal cover G/H of G/H for which G can be chosen to be simply connected.



to S7, there is a region in the moduli space of their parameters which yields the maximally
supersymmetric AdSs x S” solution.

The paper is organized as follows. In section 2, we show that there are no IIB N > 16
AdSy x,, M6 solutions. In section 3, we show that there is an up to an over scale unique solu-
tion of IIA supersgravity that preserves 24 supersymmetries. In section 4, we demonstrate
that all N > 16 AdSs backgrounds of 11-dimensional supergravity are locally isometric
to the maximally supersymmetric AdSs x S7 solution. In section 5 we state our conclu-
sions. In appendix A, we explain our conventions, and in appendix B we summarize some
aspects of the geometry of homogeneous spaces that is used throughout the paper. In
appendices C, D and E, we present some formulae for the homogeneous spaces that admit
a transitive action of a group with Lie algebra su(k) or so(5) = sp(2).

2 N > 16 AdS,; X, M% solutions in IIB

To investigate the IIB AdS, backgrounds, we shall use the approach and notation of [6]
where Bianchi identities, field equations and KSEs are first solved along the AdS, subspace
of AdSs x,, M® and then the remaining independent conditions along the internal space
M5 are identified. The bosonic fields of IIB supergravity are the metric, a complex 1-form
field strength P, a complex 3-form field strength G and a real self-dual 5-form F. Imposing
the symmetry of AdSy on the fields, one finds that the metric and form field strengths are
given by

ds? = 2du(dr + rh) + A*(dz? + e**/*da?) + ds?*(MO)
G=H, P=¢ F=A%""un (dr+rh)AdzNdzAY + %Y, (2.1)

where the metric has been written as a near-horizon geometry [30] with
2 ~1
h = —Zdz —2A7dA. (2.2)

The warp factor A is a function on the internal manifold M8, H is the complex 3-form on
MS, ¢ is a complex 1-form on M® and Y is a real 1-form on M%. The AdS, coordinates
are (u,r,z,x) and we introduce the null-ortho-normal frame

et =du, e =dr+rh, e =Adz, €= Ae*'dx, e":e?dyl, (2.3)

where ds*(M®) = §;;e’e’. All gamma matrices are taken with respect to this null ortho-
normal frame.

The Bianchi identities along M% which are useful in the analysis that follows are

d(AYY) =0, dH =iQANH —¢NH,
VY, = _@6112213]1]2]3[{1'11'21'3Hjljzjs )



where @ is the pull-back of the canonical connection of the upper-half plane on the space-
time with respect to the dilaton and axion scalars of IIB supergravity. Similarly, the field
equations of the warp factor is

1

48Hi1i2i3ﬁili2i3 - §A72 - 3A72(dA)2 ) (25)

—1Iy2 4 _ 2
ATIVPA =4y ¢ 5

and those of the scalar and 3-form fluxes are
. . . 1
Vg = —30"log A g + 21Q°¢; — ﬁHz 7
ViHijk = —38i log A Hz'jk + ZQZHU]C + fzﬁwk . (26)

The full set of Bianchi identities and field equations can be found in [6]. Note in particular
that (2.5) implies that if A and the other fields are smooth, then A is nowhere vanishing
on MS.

2.1 The Killing spinors
After solving the KSEs along AdSy, the Killing spinors of the background can be written as

e=op — 0 el + 6_%7—+ +o_ + e%(T, — K_lxl’xza,)
— AT T o — AT eI, T (2.7)

where we have used the light-cone projections
Il'yor =0, T'ire =0, (2.8)

and o4 and 74 are Spin(9, 1) Weyl spinors depending only on the coordinates of M%. The
remaining independent KSEs are

Vgi)ai =0, Vgi)Ti =0, (2.9)
and
Y o+ =0V, o T+ =U, .
as well as
=0s =0, (2947 )m =0, (211)
where

&) _ v, + 19108 A — L0, 7 LW, + Lyip Ly 2, 2.12
vz Vi 261 0og 2Qz:F2W7, ez = 5t zz T 96 Hz+32H2 Cx, ( . )
1 1 )
B =5 —_IgA+-

Tor g 04t

[1]

ALY + %AFZHC*, (2.13)

and Cx is the charge conjugation matrix followed by standard complex conjugation. For
some explanation of the notation see appendix A. (2.9) and (2.10) can be thought of as the



naive restriction of gravitino and dilatino KSEs of IIB supergravity on M9, respectively.
(2.11) are algebraic and arise as integrability conditions of the integration of IIB KSEs
over the AdSy subspace of the background. We do not assume that the Killing spinors
factorize as Killing spinors on AdS, and Killing spinors on the internal manifold. It has
been observed in [6] that if o is a Killing spinor, then

Ty =00y, o-=AT_,op, 7 =Al_,0, (2.14)
are also Killing spinors. As a result AdSy solutions preserve 4k supersymmetries.

2.2 The non-existence of N > 16 AdS4 solutions in IIB
2.2.1 Conditions on spinor bilinears

As it has already been mentioned, the two assumptions we have made in the introduc-
tion are equivalent for all IIB, (massive) ITA and 11-dimensional AdS, backgrounds that
preserve N > 16 supersymmetries. Hence in what follows, we shall focus only on the re-
strictions on the geometry of the spacetime imposed by the first assumption which requires
that the solutions are smooth and the internal space is compact without boundary.

To begin our analysis, a consequence of the homogeneity theorem [8] for solutions
which preserve N > 16 supersymmetries is that the IIB scalars are constant which in turn
implies that

£=0. (2.15)

As (@ is the pull-back of the canonical connection of the upper half plane with respect to
the scalars and these are constant, () = 0 as well.
Setting A = 04 + 74 and after using the gravitino KSE (2.9), we find

Vil A 2= — A2 A 1ViA — iV5(A, TuoA) + %Re(A,FHiC L A). (2.16)
Next, observe that the algebraic KSE (2.11) implies
%HC s A= (AT'IV;A+DIT.Y)) A+ 0P AT T (0 — 7)), (2.17)
which, when substituted back into (2.16), yields
Vil A =207 A7 Re(ry, Tioy) . (2.18)
However, the gravitino KSE (2.9) also implies that
V! (ARe(ry,Ti,0.)) =0. (2.19)
Thus, in conjunction with (2.18), we obtain

V2| A2 +247VIAVY, || A 2= 0. (2.20)



The Hopf maximum principle then implies that || A || is constant, so (2.16) and (2.18)
give the conditions
A2 ATV A — V(A TuoA) + %Re(A,I‘HZC £ A) =0, (2.21)
and
Re(ry,Tisos) =0, (2.22)

respectively. The above equation can be equivalently written as Re(oy,T'jz04) = 0.
The spinors o4 and 74 are linearly independent as it can be easily seen from (2.11).
Moreover as a consequence of (2.22), they are orthogonal

Re(ry,04) =0. (2.23)

To see this take the real part of (r,,2Ho,) — (o4, (EF) +¢71)7,) = 0. The condi-
tions (2.19), (2.23) as well as the constancy of || A || can also be derived from the assump-
tion that the isometries of the background decompose into those of AdS,4 and those of the
internal manifold [21].

2.2.2 The warp factor is constant and the 5-form flux vanishes

AdS,4 backgrounds preserving 4k supersymmetries admit k linearly independent Killing

spinors oy. For every pair of such spinors 0'_1‘_ and 0'3_ define the bilinear
W; = ARe(c} ,T;.0%). (2.24)
Then the gravitino KSE (2.9) implies that
ViW;p)=0. (2.25)
Therefore W is a Killing vector on M.

(02,=W)gl) =0 to find that
WiV,A=0, (2.26)

where we have used (2.22).
Similarly, taking the real part of the difference (o}, szE(+)a+> — <o*3_, szE(+)J+> =0
and after using the condition (2.23), we find

iwY =0. (2.27)
The conditions (2.26) and (2.27) are valid for all IIB AdSs backgrounds. However if

the solution preserves more than 16 supersymmetries, an argument similar to that used for
the proof of the homogeneity theorem in [8] implies that the Killing vectors W span the
tangent spaces of M6 at each point. As a result, we conclude that

dA=Y =0. (2.28)

Therefore the warp factor A is constant and the 5-form flux F' vanishes. So the background
is a product AdSs x M6, and as it has been explained in the introduction M9 is one of the
homogeneous spaces in (1.1).



2.2.3 Proof of the main statement

To begin, it has been shown in [31] that all IIB AdS backgrounds that preserve N > 28
supersymmetries are locally isometric to the maximally supersymmetric ones. As there is
not a maximally supersymmetric AdSy background in IIB, we conclude that there does not
exist a AdSy solution which preserves N > 28 supersymmetries.

To investigate the N = 20 and N = 24 cases, substitute (2.28) into the Bianchi
identities and field equations to find that H is harmonic and

H*>=0. (2.29)

If H were real, this condition would have implied H = 0 and in turn would have led to
a contradiction. This is because the field equation for the warp factor (2.5) cannot be
satisfied. Thus we can already exclude the existence of such backgrounds.

Otherwise for solutions to exist, M% must be a compact, homogeneous, 6-dimensional
Riemannian manifold whose de-Rham cohomology H?(M®) has at least two generators
and which admits a transitive and effective action of a group with Lie algebra isomorphic
to either s0(6) or so(5) for N = 24 and N = 20, respectively [21]. The homogeneous
spaces that admit a transitive and effective action of s0(6) or so(5) = sp(2) have already
been listed in (1.1) and none of them satisfies these cohomology criteria. All compact
homogeneous 6-manifolds have been classified in [25] and the complete list of the simply
connected ones relevant here is given in table 1. Therefore, we conclude that there do not
exist AdS, backgrounds preserving N > 16 supersymmetries in IIB supergravity.*

3 N > 16 AdS,; X, M?® solutions in (massive) ITA

To begin, let us summarize the solution of Bianchi identities, field equations and KSEs for
(massive) ITA AdSy x,, M backgrounds as presented in [7] whose notation we follow. The
bosonic fields of (massive) IIA supergravity are the metric, a 4-form field strength G, a
3-form field strength H, a 2-form field strength F', the dilaton ® and the mass parameter
S of massive ITA dressed with the dilaton. Imposing the symmetries of AdSy on the fields,
one finds that

ds? = 2ete™ + (%) + (e*)? + ds*(M"),
G=XetNe Ne*Ne*+Y, H=H, F=F &=& S=25, (3.1)

where ds?(M®) = §;;e'e’ and the frame (e™,e,e% €7 €') is defined as in (2.3). Note
that the fields H, F', ® and S do not have a component along AdS; and so we use the
same symbol to denote them and their component along MS. The warp factor A, S and
X are functions of M%, whereas Y, H and F are 4-form, 3-form and 2-form fluxes on
M6, respectively. The conditions imposed on the fields by the Bianchi identities and field

“Note that the possibility of IIB AdSs x Z\G/H backgrounds preserving N > 16 supersymmetry is
also excluded, where Z is a discrete subgroup of G, as there are no IIB AdS4 x G/H local geometries that
preserve N > 16 supersymmetries.



M®=G/H

1 gﬁiﬂg? = 56, symmetric space
2 SU(3) diffeomorphic to S°
SU(4 .
3 Wi[)}(?’)) = (CP Symmetrlc space
Sp(2)

N

NOR , Symmetric space

ﬁil}(l) diffeomorphic to CP?

SUG) Wallach space

S{JHaQX SU(2 SU(2)xSU(2
Amoe) . X Zagu . =50 x S°

SU(2) x % diffeomorphic to S x S3

SU(2) x SU( ) diffeomorphic to S x S3
(10) SU2) 5 SUE) SUR) _ g2 5 62« g2

~N

0¢)

AAAAA,_\/_\/_\/_\
— — ' — ~— ~— ~— N ~—

i
(1) Ty < spimeny = 92 x S°

SU(2) SU(3) _ 2
(12) %@ X stomx<oe) = §? x CP

Table 1. 6-dimensional compact, simply connected, homogeneous spaces.
equations after solving along the AdS, subspace can be found in [7]. Relevant to our
analysis that follows are the Bianchi identities

dH =0, dS=8d®, dY =ddPAY +HAF,
dF =d® ANF + SH, d(A'X)= A%d, (3.2)

and the field equations for the fluxes

: 5 3 1 1 1
2 —1a¢ 2 2 2 2 2
® = —dATIOAOD + 2(dP)* + 8%+ SF? - SHP+ Y- X
\Y, ;D + 2(d®) + +3 TIaRaT: 1
VFH e = —4A7YO" A Hyjp, + 205 @ Hyjp, + SFij + 5F Yiine,
) . ) 1 .
VIF; = —4A "0 AF,; + ¥®F;; — EHWY;JM ,
Vijpe = —4A710 AYijpe + 0°®Yijpe (3.3)

along M. Moreover, we shall use the field equation for the warp factor A and the Einstein
field equation along M9

3 . 1 1 1 1
2 2 7 2 2 2 2
logA = — —4(dlog A 20;log AO'® + —Y -X =S —F~,
V~log AL (dlog A)” + og +96 +4 +4 +8
6 1 1 1 1
RE]) = 4%8]- log A + 40; logAﬁj log A + EY;? - %Y25ij + ZXQ(SU — 1525”‘
1 1 1
+ S HE + ZF2 — F%;; —2V,V;®, (3.4)

4% 2% 8

where V and RZ(?) denote the Levi-Civita connection and the Ricci tensor of MO,
respectively.



3.1 The Killing spinor equations

The solution of KSEs of (massive) ITA supergravity along the AdS, subspace can again
be written as (2.7), where now oy and 74 are spin(9,1) Majorana spinors that satisfy the
lightcone projections I'tot = 't 7+ = 0 and depend only on the coordinates of M. After
the lightcone projections are imposed, o1 and 71 have 16 independent components. These
satisfy the gravitino KSEs

Ve =0, V=0, (3.5)
the dilatino KSEs
AF o =0, AFH =0, (3.6)
and the algebraic KSEs
=EHeL =0, <E<i> - 2) 7+ =0, (3.7)
where
Vgi) =V, =+ %@‘ log A + éHiFn + %SFz’ + %Fﬂfn + ﬁyfi F %szzia
A = §o + %HFH + %S + ZFFH + 9—16}” ¥ %szx ,
=) = —2% + %aAFZ — éASFz — %AFFZFH - éAYFZ T éAXFm. (3.8)

The first two equations arise from the naive restriction of the gravitino and dilatino KSEs
of the theory on o1 and 7, respectively, while the last algebraic equation is an integrability
condition that arises from the integration of the ITA KSEs on AdS4. As in the IIB case,
the solutions of the above KSEs are related as in (2.14) and so such backgrounds preserve
4k supersymmetries.

3.2 AdS4 solutions with IN > 16 in ITA
3.2.1 Conditions on spinor bilinears

The methodology to establish conditions on the Killing spinor bilinears which follow from
our assumption that either the solutions are smooth and the internal space is compact
without boundary or that the even subalgebra of the Killing superalgebra decomposes as
stated in the introduction is the same as that presented for IIB. However, the formulae are
somewhat different. Setting A = o +74 and upon using the gravitino KSE (3.5), one finds

1

1 1
Vil A*=-V;logA | A|? —ZS<A,FZ-A> — g<A, LF. T A) — %<A,UY¢A>- (3.9)

After multiplying the algebraic KSE (3.7) with I';, on the other hand, one gets
1 , A A
A Tilo — 7)) = ~Vid | A2 =SS0 — Z{A T )

- 9’2<A, IV ,A). (3.10)
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Using this, one can rewrite (3.9) as

2
Vil Al*= m<7+7riz0+>- (3.11)

On the other hand the gravitino KSE (3.5) gives
Vi (A(r4,Ti04)) =0. (3.12)
Therefore taking the divergence of (3.11), one finds
V2| A2 +2Vilog AV, | A]?=0. (3.13)

An application of the Hopf maximum principle gives that || A ||? is constant, which when
inserted back into (3.9) and (3.11) yields

1 1 1
~Vilog A || A|? — 7S TiA) — g(zx,r,mr11/\> - %m, I¥V;A) =0, (3.14)
and

(4, Tizo4) =0, (3.15)

respectively. The above condition can also be expressed as <J_1~_,Fim03_> = 0 for any two
solutions ¢! and % of the KSEs.

As in IIB, the algebraic KSE (3.7) implies that (7,2 o) — (o4, (EF) +£71)7,) = 0.
This together with (3.15) give that (o4, 7+) = 0 and so the 7 and o4 Killing spinors are
orthogonal.

3.2.2 The warp factor is constant

To begin, for every pair of solutions a}r and ai of the KSEs we define the 1-form bilinear
W; = Alm (¢}, Tiz0%) . (3.16)

Then the gravitino KSE (3.5) implies that
ViWy =0, (3.17)

therefore W is an Killing vector on MS9.
Next the difference (ol ,2(F)o2) — (02, 2(F) gl ) = 0 implies that

WiV,A=0, (3.18)

where we have used (3.15).

So far we have not used that the solutions preserve N > 16 supersymmetries. However
if this is assumed, then (3.18) implies that the warp factor A is constant. This is a con-
sequence of an adaptation of the homogeneity theorem on M. The homogeneity theorem
also implies that ® and .S are constant. X is also constant as a consequence of the Bianchi
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identity (3.2). Therefore we have established that if the backgrounds preserve N > 16
supersymmetries, then

A=const, ® =const, S =-const, X =const. (3.19)

As the warp factor is constant, all backgrounds that preserve N > 16 supersymmetries
are products, AdS; x MS. In addition as it has been explained in the introduction, M?®
is a homogeneous space admitting a transitive and effective action of a group G with Lie
algebra so(/N/4). These homogeneous spaces have been listed in (1.1). In what follows, we
shall explore all these 6-dimensional homogeneous spaces to search for ITA solutions that
preserve N > 16 supersymmetries.

3.3 N =28

There are no maximally supersymmetric AdS, backgrounds in (massive) ITA supergrav-
ity [9]. So the next case to be investigated is that with 28 supersymmetries. In such
a case M® admits a transitive and effective action of a group with Lie algebra so(7).
Amongst the homogeneous spaces presented in (1.1), the only one with this property is
Spin(7)/Spin(6) = S°.

As Spin(7)/Spin(6) = S° is a symmetric space, all left-invariant forms are parallel with
respect to the Levi-Civita connection and so represent classes in the de-Rham cohomology.
As H?(S%) = H3(S%) = H*(S®) = 0, one concludes that F = H = Y = 0. Using this
and (3.19), the dilatino KSE (3.6) implies that

5 1

As it is the sum of two commuting terms one Hermitian and the other anti-Hermitian, the
existence of solutions requires that both must vanish separately. As a result S = X = 0.
Therefore all fluxes must vanish. This in turn leads to a contradiction as the field equation
of the warp factor (3.4) cannot admit any solutions. Thus there are no (massive) IIA AdSy
backgrounds preserving 28 supersymimetries.

34 N =24

The internal space of AdS, backgrounds that preserve 24 supersymmetries admits a transi-
tive and effective action of a group with Lie algebra so(6) = su(4). The only space in (1.1)
compatible with such an action is SU(4)/S(U(1) x U(3)) = CP3. Again this is a symmetric
space and so all invariant forms are parallel with respect to the Levi-Civita connection. In
turn they represent classes in the de-Rham cohomology. As H°4(CP?) = 0, this implies
that H = 0.

It is well-known that this homogeneous space is a Kéhler manifold and the left-invariant
metric is given by the standard Fubini-Study metric on CP3. The even cohomology ring
of CP? is generated by the Kéhler form w. As a result the 2- and 4-form fluxes can be
written as

1
F=aw, Yziﬁw/\w, (3.21)

for some real constants « and S to be determined.
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To determine v and f3, let us first consider the dilatino KSE (3.6) which after impos-
ing (3.19) reads

<S+ —JT n+g Y er)@:o. (3.22)

The Hermitian and anti-Hermitian terms in this equation commute and so they can be
separately imposed. Notice that the only non-trivial commutator to check is [F', Y] which
vanishes because F' is proportional to the Kéhler form while Y is a (2,2)-form with respect
to the associated complex structure. Thus we have

3 1
(8”“ - 4XFZI> op =0, (3.23)
and
) 1
- — =0. .24
Inserting these into the algebraic KSE (3.7) simplifies to
3
(3SFZ - er) 04 = aO’.;. (325)
The integrability condition of this yields
9
2 2 _
X2 4957 = (3.26)

Next let us focus on (3.23) and (3.24). Choosing without loss of generality
' =TT 1923456, (3.23) can be rewritten as

X
(T390 4 1236 | 123y, —50s (3.27)
and similarly (3.24) as
B(U1234 | 1256 | P3156), 56, (3.28)

where we have chosen an ortho-normal frame for which w = e!2 + e3* + 6.
To solve (3.27) and (3.28), we decompose o4 into eigenspaces of J; = I'sys6 and
Jo = I'1956 and find that this leads to the relations

1
a=-3X, f#=-55, (3.29)
for the eigenspaces |+, +), |+, —), |-, +), and
iy os- (3.30)
9 B 3 '

for the eigenspace |—, —).
Before we proceed to investigate the KSEs further, let us focus on the field equations for
the fluxes and the warp factor. Observe that « £ 0. Indeed if @ = 0, then the KSEs would
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have implied that X = 0. As H = X = 0, the dilaton field equation in (3.3) implies that
all fluxes vanish. In such a case, the warp factor field equation in (3.4) cannot be satisfied.

Thus a # 0. Then the field equation for the 3-form flux in (3.3) becomes a(S+43) =0
and so this implies that § = —1/4S. This contradicts the results from KSEs in (3.29)
and (3.30) above unless § = S = 0. Setting S = Y = 0 in the dilaton field equation
in (3.3), it is easy to see that it is satisfied if and only if &« = —1/3X and so o4 lies in
the eigenspaces |+, +), |+, —) and |—,+). As S = 0, (3.26) implies that X = £3/~1A4~!
and so a = F/~1 A7, The algebraic KSE (3.25) now reads I';oy = Foy. As a = —1/3X,
the common eigenspace of I';, I'sy56 and I'195¢ on oy spinors has dimension 6. Thus the
number of supersymmetries that the background

ds?® = 2du(dr — 207 rdz) + A%(d2® + €**/*dz?) + ds*(CP?)
G = +30 " Ae* du N dr A dz A dz, H=5=0,
F=x0"14"10, P = const , (3.31)
with RE?)(SU = 24072 A2, can preserve is 24.
To establish that (3.31) preserves 24 supersymmetries, it remains to investigate the

gravitino KSE (3.5). As CP? is simply connected it is sufficient to investigate the integra-
bility condition

1 1 1 1
T Rijmn L™ = = Fin FjnI™ — = X FyToali — 5 X2l | 04 =0, 32
<4RJ g mi 127 A T J) o+ =0 (3:32)
of the gravitino KSE. The Riemann tensor of SU(4)/S(U(1) x U(3)) is
1 3
Rij,kl = W(éiﬂgjl — 5z‘l5jk) + m(wijwkl — wi[jwkl]) . (3.33)

Then a substitution of this and the rest of the fluxes into the integrability condition reveals
that it is satisfied without further conditions. In a similar manner, one can check that the
Einstein equation along M?Y is also satisfied. This is the IIA N = 24 solution of [16, 28].

3.5 N =20

The internal space of AdS, backgrounds that preserve 20 supersymmetries admits an ef-
fective and transitive action of a group which has Lie algebra so(5) = sp(2). An inspection
of the homogeneous spaces in table 1 reveals that there are two candidate internal spaces
namely the symmetric space Sp(2)/U(2) and the homogeneous space Sp(2)/Sp(1) x U(1).
The symmetric space is the space of complex structures on H? which are compatible with
the quaternionic inner product while the homogeneous space is identified with the coset
space of the sphere zz + gy = 1, z,y € H, with respect to the action (z,y) — (ax,ay),
a € U(1). The latter is diffeomorphic to CP3.

3.5.1 Sp(2)/U(2)

The geometry and algebraic properties of this symmetric space are described in appendix E.
The most general left-invariant metric is

ds® = a 0,50 l" %" = 6,50, %€, (3.34)
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where a > 0 is a constant and (", and €"* = /a{"® are the left-invariant and ortho-
normal frames, respectively, and where r,s = 1,2,3 and a,b = 4,5. The invariant forms
are generated by the 2-form

1
w= §5rseab e Net. (3.35)

Sp(2)/U(2) is a Kihler manifold with respect to the pair (ds?,w).
To continue we choose the metric on the internal manifold as (3.34) and the fluxes as
in the SU(4)/S(U(1) x U(3)) case, i.e.

1
F=aw, Yziﬁw/\w, (3.36)

but now w is given in (3.35), where o and (8 are constants. Since there are no invariant
3-forms on Sp(2)/U(2), this implies H = 0. Performing a similar analysis to that in
section 3.4, we find that 3 = S =0, a = F/'A"! and X = +3¢" 1A', and o to
satisfy the same Clifford algebra projections as in e.g. (3.27). This requires an appropriate
re-labeling of the indices of the ortho-normal frame e€"® so that the left-invariant tensors
take the same canonical form as those of SU(4)/S(U(1) x U(3)) expressed in terms of the
ortho-normal frame e’. As a result, there are 24 spinors that solve the KSEs so far.

It remains to investigate the solutions of the gravitino KSE (3.5). As in the
SU(4)/S(U(1) x U(3)) case in section 3.4, we shall investigate the integrability condition
instead. This is again given as in (3.32). The curvature of the metric of this symmetric
space is presented in (E.7). Using this the integrability condition (3.32) is written as

1

1
16a (6Cdrrcsd - 5Cdrsc7"d)6ab + Rétu(rtaub - Ftbua)(sr‘s_

1 5. 1 5
gg 2A 2(5Cdrrcsd5ab_rsbra)+1€ 2A 25rs€abrzocr\11

1
- §£*2A*2Pmsb o, =0. (3.37)

Contracting with d,p, one finds that there are solutions which preserve more than 8 super-
symmetries provided a = £2A2. Then taking the trace of (3.37) with eu0,5, we find that

1
§C/JO'+ = —121—‘sz110'+, (338)

which is in contradiction to the condition (3.23) arising from the dilatino KSE. The sym-
metric space Sp(2)/U(2) does not yield®> AdS, solutions that preserve 20 supersymmetries.

3.5.2 Sp(2)/(Sp(1) x U(1))

The Sp(2)/(Sp(1) x U(1)) homogeneous space is described in appendix E. Introducing the
left-invariant frame ¢4my = (W, + EﬁTﬁH), the most general left-invariant metric is

ds?® = a Ol 4° 4 b 6,075 = Sope’e” + §,se"e’, (3.39)

®Sp(2)/U(2) can also be excluded as a solution because it is not a spin manifold [24].
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where we have introduced the ortho-normal frame e® = \/a /%, e~ = /b/~, and where

r=1,2and a,b=1,...,4. The invariant forms are generated by
1 1
I§+) = §(I§+))abea nel, o= ieﬁeE NneF, et A I£(+) , (3.40)

and their duals, where

T

I = %ay))abea neb. (3.41)

The matrices ((Lgi))ab) are a basis in the space of self-dual and anti-self dual 2-forms in
R* and are defined in (E.10). Imposing the Bianchi identities (3.2), one finds the relation

i—M:Sh, (3.42)

Vb 2a

and that the fluxes can be written as
F=all” + 80, H=heze" NI,
1
Y =qonly?+os 00 A, (3.43)

where «, 3, h,y and § are constants.
The dilatino KSE (3.6) is the sum of hermitian and anti-hermitian Clifford algebra
elements which commute and thus lead to the two independent conditions

3 1
(8FP11 - 4sz:v) oy =0,

) 1 1
<4S+12HF11+96Y> o =0. (3.44)
Using this to simplify the algebraic KSE (3.7), one finds
1 X 1
—H T I I',——T = — . 4
(12H ul: + ST, 3 x)0+ 7A %+ (3.45)

If we then insert the fluxes (3.43) into the above KSEs and set J; = I'?4T'yy, Jy = '3y
and J3 = I'?32T"11, we obtain
X
(Oé(JQJg — J1J3) + /8J1J2) o4+ + ?UJF =0,
(5S + 2h(J1 —Jy — J3+ J1J2J3) + (J2J3 - J1J3) + 5J1J2) or =0,

1 X 1
<2h(J1 —Jo— J3+ J1J2J3)Fz + ST, — 3P$) o4 — 74 oy =0. (3.46)

As Jy, Jo, J3 are commuting Hermitian Clifford algebra operators with eigenvalues +1, the

KSE (3.45) can be decomposed along the common eigenspaces as described in table 2.
From the results of table 2, there are two possibilities to choose five o Killing spinors,

namely those in eigenspaces (1) and (3) and those in eigenspaces (1) and (4). For both of

these choices, the Bianchi identity (3.42) and the dilaton field equation give
X 3

a=f=-%, X=*7 b=2, S=h=y=5=0. (3.47)
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|J1, Ja, J3) relations for the fluxes
(1) |+7+7+>7 ‘_7_7_> B:_%, 5S+5:0
|+7+’_>’ ‘_a_7+> (Srz_grx)H:gLAH
(2) |+7_7+>7‘_7+7_> 20["‘,8:%,55—2’)/—(5:0
(ST: = 5Tu)) = 71
(3) +,—-) 20— =%, 55+8h+2y-3=0
((S+2h) T2 = FTo)|) = 751
(4) =+, +) 20— =%, 55-8h+2y-3=0
(S =2h) T2 — FT)|) = 751

Table 2. Decomposition of (3.46) KSE into eigenspaces.

In either case notice that these conditions imply the existence of six o Killing spinors as
the conditions required for both |+, —,—) and |—,+,+) to be solutions are satisfied. So
potentially this background can preserve N = 24 supersymmetries. To summarize, the
independent conditions on the Killing spinors arising from those in (3.44) and those in
table 2 are

3

% (Ia(ﬁ) + 9?;) or =0y, Tgop= ~7Ax e (3.48)
These are the same conditions as those found in section 3.4 for M5 = CP3.

It remains to investigate the gravitino KSE (3.5) or equivalently, as Sp(2)/(Sp(1) x
U(1)) is simply connected, the corresponding integrability condition given again in (3.32).
The curvature of the metric is given in (E.15). Moreover the Einstein equation (3.4) gives
a = (?A?/2. Using these and substituting the conditions (3.47) into the integrability
condition, one can show that this is automatically satisfied provided that (3.48) holds. As
a result, there are no AdSs backgrounds with internal space Sp(2)/(Sp(1) x U(1) which
preserve strictly 20 supersymmetries. However as shown above, there is a solution which
preserves 24 supersymmetries for b = 2a. This is locally isometric to the AdS; x CP3
solution found in section 3.4. Note that there are no N > 24 solutions as it can be seen by
a direct computation or by observing that CP? does not admit an effective and transitive
action by the so(NN/4) subalgebra of the Killing superalgebra of such backgrounds. However
there are AdSy x Sp(2)/(Sp(1) x U(1)) solutions which preserve 4 supersymmetries [32].

4 N > 16 AdS4 X, M7 solutions in 11 dimensions

4.1 AdS4 solutions in D =11

Let us first summarize some of the properties of AdSy x,, M7 backgrounds in 11-dimensional
supergravity as described in [5] that we shall use later. The bosonic fields are given as

ds? = 2eTe” + (%)% + (e”)* + ds* (M),
F=Xe"Ne Ae*Ne* +Y, (4.1)
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where the null ortho-normal frame (e*,e™, e, e, e%) is as in (2.3), but now i,j = 1,...,7,
and the metric on the internal space M7 is ds*(M7) = §;;e'e’. X and Y are a function
and 4-form on M7, respectively.

The Bianchi identities of the 11-dimensional supergravity evaluated on the AdS X, M7
background yield

dY =0, d(A*X)=0. (4.2)

Similarly, the field equations give

1

VkYkiliQig + 4va Ykilizig - _7X62'1i27:3k1k2k3k4Yk1k2k3k4 9 (43)
k _ k 2, 1 32
V%0 log A = EQAQ — 40k log A0 log A + X + 144Y (4.4)
and
R 4V,9;1log A — 40, log Ad: log A — —v2 + 6, (1x2— Ly 4.5
i —4Viojlog A —40;log Adjlog 121]"" 6 T 1a4 ) (4.5)

where V is the Levi-Civita connection on M".

4.2 The Killing spinors

The solution of the KSEs of D = 11 supergravity along the AdS, subspace of AdSs X, M”
given in [5] can be expressed as in (2.7) but now o4 and 74 are spin(10,1) Majorana
spinors that depend on the coordinates of M7. Again they satisfy the lightcone projections
ltoyr =ITi7y = 0. The remaining independent KSEs are

Ve =0, V=0, (4.6)
and
=), =) 1) _
=Hgr =0, = i? =0, (4.7)
where
@) 1 1 1 1
= Vit Joilog A o TH + Vi E X T, 4.
Vi = Vit goilog 288W +36Y 12 (48)
1
=) — Fop 5 r.dA +3 AF Y+ AXI‘ (4.9)

The former KSE is the restriction of the gravitino KSE on o4 and 7+ while the latter arises
as an integrability condition as a result of integrating the gravitino KSE of 11-dimensional
supergravity over the AdS, subspace of AdSy x,, M.
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4.3 AdS4 solutions with IN > 16 in 11 dimensions
4.3.1 Conditions on spinor bilinears

The conditions that arise from the assumption that M7 be compact without boundary
and the solutions be smooth are similar to those presented in the (massive) ITA case. In
particular, one finds

| o4 [[=const, (r4,Ti;04) =0, (04,74)=0. (4.10)

The proof follows the same steps as in the (massive) ITA case and so we shall not repeat
it here.

4.3.2 The warp factor is constant

Using arguments similar to those presented in the (massive) IIA case, one finds that
W; = Alm <a}r, Fizai> are Killing vectors on M7 for any pair of Killing spinors ai and U?r
and that iyydA = 0.

Next, let us suppose that the backgrounds preserve N > 16 supersymmetries. In such
a case a similar argument to that presented for the proof of the homogeneity conjecture
implies that the W vector fields span the tangent space of M7 at every point and so A is
constant. From the Bianchi identity (4.2) it then follows that X is constant as well. Thus
we have established that

A =const, X = const. (4.11)

As a result, the space time is a product AdSy x M7, where M7 is a homogeneous space.
Further progress requires the investigation of individual homogeneous spaces of dimension
7 which have been classified in [26, 27] and they are presented in table 3. Requiring in
addition that the homogeneous spaces which can occur as internal spaces of N > 16 AdSy
backgrounds must admit an effective and transitive action of a group that has Lie algebra
50(N/4), one arrives at the homogeneous spaces presented in (1.2). In what follows, we
shall investigate in detail the geometry of these homogeneous spaces to search for NV > 16
AdS,4 backgrounds in 11-dimensional supergravity.

4.4 N = 28, Spin(7)/G2

The maximally supersymmetric solutions have been classified before [9] where it has been
shown that all are locally isometric to AdS4x S7 with S” = Spin(8)/Spin(7). The only solu-
tion that may preserve N = 28 supersymmetries is associated with the homogeneous space
Spin(7)/Gs, see (1.2). The Lie algebra spin(7) = s0(7) is again spanned by matrices M;; as
in (E.1) satisfying the commutation relations (E.2) where now i,7 = 1,2,...,7. Let us de-
note the generators of g subalgebra of spin(7) and those of the module m, spin(7) = go & m,
with G and A, respectively. These are defined as

1 .
Gij = Mij + s, 00" My, A = 0" My, (4.12)
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—G/H

(1) SEEE% = §7, symmetric space

(2) R =5

(3) gg—gg diffeomorphic to S7

(4) SE% diffeomorphic to S”

(5) Sps(p§2) Berger space

6) sty = V2(R?)

(7) % =W" k1 coprime, Aloff-Wallach space
(8) Ak,l?U(( ))) (Slli(s%( 5y = Nk k.1 coprime

(9) % = QP?" p,q,r coprime

4 3 4 __ Spin(5) SU(3) SU(2) , SU(2)

(10) M%< M?°, M" = g5, swmxo@)y om X o)
o=, S

SU(2 Spin(6 SU(3 SU(2)xSU(2 SU(3

(11) M°x U((l))’ M = sﬁmﬁ ; su%zg’ Ai,?(XU(l)())’ SOE?&

Table 3. 7-dimensional compact, simply connected, homogeneous spaces.

where ¢ is the fundamental G2 3-form, *,¢ is its dual and *, is the duality operation
along the 7-dimensional internal space. The non-vanishing components of ¢ and *,¢ can
be chosen as

P123 = Q147 = P165 = P246 = P257 = P354 = P37 = 1,
*,01276 = *,{01245 = *,01346 = *; 01357 = *,02374 = *;02356 = *,P4567 = 1, (4.13)

and we have raised the indices above using the flat metric. We have used the conventions for
¢ and *. ¢ of [29], where also several useful identities satisfied by ¢ and *.¢ are presented.
In particular observe that (Pijijk = 0. The spin(7) generators can be written as

1

2
Mij = 3 Gij + g%'jk Ak, (4.14)

and using this we obtain
1 1
(Gij, G = 5(51‘sz1€ +0iuGa — 0ikGj1 — 6 Gir) + Z(*#zj[kae}m — %00l Gilm) 5
1 1
[Ai, Gl = 5035 Ap — G Ag) + 7 %1 Pijk' Al
[Ai, A]] == gDijk Ak - 4G’LJ . (415)

Clearly, Spin(7)/G2 is a homogeneous space. As G acts with the irreducible 7-dimensional
representation on m, the left-invariant metric on Spin(7)/G> is unique up to scale, therefore
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| Py, Py, Ps3) relations for the fluxes
’+7+7+>7 ‘+7+7_>7 |_v+a+>7 ‘+a_>_> (_%arz + %XI‘I)H = i”
|_7+7_>> |_7_a+>a _a_,_>

Table 4. Decomposition of (4.19) KSE into eigenspaces.

we may choose an ortho-normal frame e’ such that
d52 = a(;ijfifj = 5Z-jeiej s (416)
where a > 0 is a constant. The left-invariant forms are

1 S
¥ = 3 Pijk el nel neP, (4.17)

and its dual *,¢. So the Y flux can be chosen as
Y =ax* ¢, a=const. (4.18)

Using this the algebraic KSE (4.7) can be expressed as

_ L
- €A0-+7
(4.19)

1 1
(604(P1—P2+P3—P1P2P3—P2P3+P1P3—P1P2)Fz—|-3XF$) (o

where { Py, Py, P3} = {1245 11267 71346} are mutually commuting, hermitian Clifford alge-
bra operators with eigenvalues £1. The solutions of the algebraic KSE on the eigenspaces
of {Py, P,, P3} have been tabulated in table 4.
For backgrounds preserving N > 16 supersymmetries, one has to choose the first set
of solutions in table 4 and so impose the condition
1

36& +

1 1
§X2 (4.20)

T A
However, the field equation for the warp factor A (4.4) gives

So—Ixzi T

— 4.21
?A%2 3 6 (421)

These two equations imply that « = 0 and so Y = 0.
As Y =0, the algebraic KSE is simplified to

(4.22)

3
Lyoy = TAX Ot

and so o lies in one of the 8-dimensional eigenspaces of I';, provided that X = ié%. Thus
instead of preserving 28 supersymmetries, the solution can be maximally supersymmetric.
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Indeed this is the case as we shall now demonstrate. The integrability condition of the
gravitino KSE (4.6) becomes
1
<Rij,d ke — T X‘Zrij) oy =0. (4.23)
To investigate whether this can yield a new condition on o, we find after a direct compu-

tation using the results of appendix B that the Riemann tensor in the ortho-normal frame
is given by

9 _
Rijre = ;a Y(Girdj0 — Siedjk) - (4.24)

So S7 = Spin(7)/G> is equipped with the round metric. For supersymmetric solutions, one
1
92 A2
KSE is automatically satisfied and so the solution preserves 32 supersymmetries. This

must set ¢! = éX 2 = In such a case, the integrability condition of the gravitino

solution is locally isometric to the maximally supersymmetric AdS, x S7 solution.

4.5 N =24, SU(4)/SU(3)

As s50(6) = su(4), it follows from (1.2) that the internal space of an AdS, solution with 24
supersymmetries is the 7-dimensional homogeneous manifold SU(4)/SU(3). The geometry
of this homogeneous space is described in appendix C. The left-invariant metric can be
rewritten as

ds® = a6 l™0" + b ({7)% = §;pne™e™ + (e)?, (4.25)

where we have introduced an ortho-normal frame € = /af™, e = Vo7, andm,n=1,...,6.
The most general left-invariant 4-form flux Y can be chosen as

1
Y:§awAw+6*7(Rex)+fy*7(Imx), (4.26)

where «, 3,7 are constants and the left-invariant 4-forms are

*7(Re X) _ e1367 + e1457 + e2357 o e24677 w = e12 + e34 + e56 7

*7(Im X) — _e1357 + e1467 + e2367 + e24577 (427)

expressed in terms of the ortho-normal frame. Having specified the fields, it remains to
solve the KSEs. For this define the mutually commuting Clifford algebra operators

Jp = cos T 4 gin@T2%7 | Jp = cos O T 4 sin 9 12367

J3 = cos 72357 4 gin 9 T1467 (4.28)

with eigenvalues +1, where tanf = /5. Then upon inserting Y into the algebraic
KSE (4.7) and using the above Clifford algebra operators, we obtain

VT

5 (Jl +J2+J3+J1J2J3) T,

[— %(Jng + iy + Jod3) T, +

1 1
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|J1, Ja, J3) relations for the fluxes

[+, 4 =)y [ = ) =54 ) (faT. +iXT.)|) = A4)

I+ = =) =+ =) = =)
) (-5 + 3V DL + EXTLI) = 1)
=) (-3 - 32V/B+)T. é 1) = 7zl

Table 5. Decomposition of (4.29) KSE into eigenspaces.

The algebraic KSE (4.7) can then be decomposed into the eigenspaces of Ji, Jo and Js.
The different relations on the fluxes for all possible sets of eigenvalues of these operators
are listed in table 5
The only possibility to obtain solutions with N > 16 supersymmetries is to choose the
first set of eigenspinors in table 5. This leads to the integrability condition
| 1

2 _
%o —Em (4.30)

from the remaining KSE. This together with the warp factor field equation (4.4)

1 1
SX24 224
3 +2

(52 +79%) = (4.31)

(2A%°

implies

20?12 40 =0, (4.32)
and so « = f = v = 0. Therefore Y = 0 and the solution is electric. As a result, the
algebraic KSE (4.4) becomes

To, = (4.33)

3
Ax 7"
and so for X = +£3¢~'A~! it admits 8 linearly independent o solutions. So potentially,
the background is maximally supersymmetric.

It remains to investigate the gravitino KSE. First of all, we observe that for Y = 0 the
Einstein equation (4.5) along the internal space becomes

1
R = gxgdij. (4.34)

Therefore, the internal space is Einstein. After some computation using the results in
appendix C, one finds that the homogeneous space SU(4)/SU(3) is Einstein provided that
b= %a. In that case, the curvature of the metric in the ortho-normal frame becomes

1
Rijimn = 5~ (8imbjn = bindjm) , (4.35)
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and so the internal space is locally isometric to the round 7-sphere. As expected from this,
the integrability condition of the gravitino KSE (4.6)
1
(R,»j,mnrm" - 18X2rij> op =0, (4.36)
has non-trivial solutions for X2 = 9a~!, i.e. a = (24 and b = %KZAQ. With this identifica-
tion of parameters, AdS, x SU(4)/SU(3) is locally isometric to the maximally supersym-
metric AdSy x S7 background.
To summarize there are no AdS, solutions with internal space SU(4)/SU(3) which
preserve 16 < N < 32 supersymmetries. However, for the choice of parameters for which
SU(4)/SU(3) is the round 7-sphere, the solution preserves 32 supersymmetries as expected.

4.6 N =20

As mentioned in the introduction, the internal space of AdS4 backgrounds that preserve 20
supersymmetries admits an effective and transitive action of a group which has Lie algebra
50(5) = sp(2). The field equation for Y (4.3) is

d+ Y =XY. (4.37)

As X is constant, note that for generic 4-forms Y this defines a nearly-parallel Go-structure
on M7, see e.g. [33] for homogeneous Gy structures. However, in what follows we shall not
assume that Y is generic. In fact in many cases, it vanishes.

Amongst the 7-dimensional compact homogeneous spaces of (1.2), there are three
candidate internal spaces. These are the Berger space B” = Sp(2)/Sp(1)max, Va2(R?) =
Sp(2)/A(Sp(1)), and J7 = Sp(2)/Sp(1), corresponding to the three inequivalent embed-
dings of Sp(1) into Sp(2). We will in the following examine each case separately, starting
with the Berger space Sp(2)/Sp(1)max-

4.6.1 Sp(2)/Sp(1)max

The description of the Berger space B” = Sp(2)/Sp(1)max as a homogeneous manifold is
summarized in appendix D. B7 is diffeomeorphic to the total space of an S2 bundle over
S* with Euler class F10 and first Pontryagin class F16 [34]. As a result H*(B7,Z) = Z1
and BT is a rational homology 7-sphere. As sp(2) = s0(5) and sp(1) = s0(3), one writes
s0(5) = s0(3) &m and the subalgebra so0(3) acts irreducibly on m with the 7 representation.
So B admits a unique invariant metric up to a scale and it is Einstein. As the embedding
of s0(3) into so(7) factors through go, it also admits an invariant 3-form ¢ given in (4.13)
which is unique up to a scale. Because there is a unique invariant 3-form ¢, dy o *. ¢ and
B" is a nearly parallel Go manifold. Using these, we find that the invariant fields of the

theory are
o o 1 . .
ds® = adi 't = d;;e'e’, Y = s *, Pijkme A el A e Ae™, (4.38)

where we have introduced the ortho-normal frame e’ = y/a (%, *.¢ is given in (4.13) and
a,a are constants with a > 0.
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As the pair (ds?,Y) exhibits the same algebraic relations as that of the Spin(7)/Gs
case, the algebraic KSE (4.19) can be solved in the same way yielding the results of table 4.
To find N > 16 AdSy solutions, one should consider the first set of eigenspinors of the table
which in turn imply the relation (4.20) amongst the fluxes. This together with the field
equation of the warp factor (4.21) leads again to the conclusion that & =0 and so Y = 0.

As a result of the analysis of the algebraic KSE, so far the background can admit up
to 32 supersymmetries. It remains to investigate the solutions of the gravitino KSE. The
curvature of B” is given by

1 a kﬂ

1 1
Rijkm = w=—0ki Ojlm — == *7 Pijkm + 55046]%‘ ke

4.39
10a 5a ( )

where k% is given in appendix D. The integrability condition of the gravitino KSE for Y =0
is given in (4.23). To solve this condition, we decompose the expression into the 7 and 14
representations of gs using the projectors

g 1 o 1 . | 2/ . 1 .
<P7>”km:3(fk6£4—2*7 ¢m> <P14>%m:3(fk621]+4*7 som) (4.40)

and noting that k¢ as 2-forms are in the 14 representation. The integrability condition

along the 7 representation gives X? = %a_l

while along the 14 representation gives that
the Killing spinors must be invariant under go. It turns out that there are two such o
spinors however taking into account the remaining projection arising from the algebraic
KSE, see (4.22), we deduce that the solution preserves 4 supersymmetries in total. This

solution has already been derived in [23].

4.6.2 Sp(2)/A(Sp(1))

The decomposition of the Lie algebra sp(2) = so(5) suitable to describe this homogeneous
space can be found in appendix E. Writing ¢4Amy = (7*M,, + {"Ty for the left-invariant
frame, r = 1,2,3 and a = 4,5, the most general left-invariant metric is

ds® = Gpsgapl™ " + ay(£7)?, (4.41)

where g4 is a positive definite symmetric 2 X 2-matrix, a > 0 a constant, and the left-
invariant forms are generated by

1 1
=1, 5 Ors€apl” A 0, gperstl" A VLS (4.42)

To simplify the analysis of the geometry that follows, we note that without loss of gen-
erality the matrix (g.5) can chosen to be diagonal. To see this, perform an orthogonal
transformation O € SO(2) to bring (g,p) into a diagonal form. Such a transformation can
be compensated with a frame rotation

e — 0% (4.43)

Demanding that Am 4 is invariant implies that M,, has to transform as M,q — O% M.
However, it is straight forward to observe that such a transformation is an automorphism of
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50(5) that preserves the decomposition (E.5), i.e. the structure constants of the Lie algebra
remain the same. As a result, we can diagonalize the metric and at the same time use the
same structure constants to calculate the geometric quantities of the homogeneous space.
Under these orthogonal transformations the first two left-invariant forms are invariant while
there is a change of basis in the space of left-invariant 3-forms.

To continue take® (g,,) = diag(ai,az). Then introduce the ortho-normal frame
e’ = Vg 07 et = Var ™ and e = Va2 (2. In this frame the most general left-invariant
metric and Y flux can be written as

d82 — 6ab5rseraesb 4+ (67)2,

Y =Brel Axaas + B2€” Axaas + B3’ Axass + Bae’ Axsss + Bsb, (4.44)
where 1, B2, -+, 85 are constants,
_ l ra sb tc _ 1 4.4
Xabc—?)'erste ANeNer, Q;Z)_QW/\‘U? (5)
and
1 ra sb
w= §5Tseabe Ne*. (4.46)

The Bianchi identity for Y is automatically satisfied. On the other hand the field equation
for Y in (4.3) yields the conditions

3
% =2 751X:Oa 7/32 = ﬂ A *ﬁQX:()v
a4aq a4a1 2\ asaz
3 a a
g [ _gx =, [ six =0,
2 ajsaq asay 2 aqan
Bs (X + /=) =0, (4.47)
aiaz

where we have chosen the top form on M7 as dvol = e A Y444 A X555.
Before we proceed to investigate the various cases which arise from solving the linear
system (4.47), let us consider first the case in which F' is electric, i.e. it is proportional to

the volume form of AdS4. In such a case 1 = --- = 85 = 0. The algebraic KSE then gives
1 1

and the field equations along M7 imply that
1
Rij = EXQ(SZ-]-, (4.49)

and so M is Einstein. The Einstein condition on the metric of M7 requires that

3
a1 =az, a4=ar. (4.50)

SWe have performed the analysis that follows also without taking (gab) to be diagonal producing the
same conclusions.
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To investigate whether there are solutions preserving 20 supersymmetries, it remains to
consider the integrability condition of the gravitino KSE (4.36). Indeed using the ex-
pressions (E.18) and (E.19) for the curvature of this homogeneous space, the integrability
condition along the directions 7 and ra gives X2 = (27/8)a; ' while along the ra and sb
directions requires additional projections. For example after taking the trace with §%° and
setting 7 = 1 and s = 2, the condition is I''**¢, = ¢, which leads to solutions that
preserve 16 supersymmetries or less, where the gamma matrices are in the ortho-normal
frame and I'" = I'",T" = I'>*". Hence there are no N > 16 AdS, solutions.

Next let us turn to investigate the solutions of the linear system (4.47). The last
condition implies that

a4

either fB5=0 or X =-— (4.51)

ayay
To continue consider first the case that 5 # 0.

Bs # 0. Substituting the second equation in (4.51) into the linear system (4.47), one
finds that

a 3
53?2 +Bias =0, (as—a1)B3+ §a2ﬂ1 =0,

a 3
62?1 taifs=0, (as—a2)Br+ 5018 =0. (4.52)

Now there are several cases to consider. First suppose that the parameters of the metric
a1, a9, a4 are such that the only solutions of the linear system above are 51 = 89 = B3 =
B4 = 0. In such case Y = (51 and Y has the same algebraic properties as that of the
SU(4)/SU(3) case with 8 =~ = 0 and o = 35. As a result, the algebraic KSE together
with the Einstein equation for the warp factor imply that 85 = 0 as well and so Y = 0. This
violates our assumption that 85 # 0. In any case, the 4-form flux F' is electric which we
have already investigated above and have found that such a configuration does not admit
solutions with N > 16 supersymmetries.
Next suppose that the parameters of the metric are chosen such that

either B1=p£3=0, or By=p3,=0. (4.53)
These two cases are symmetric so it suffices to consider one of the two. Suppose that

B2 = B4 =0 and B, 83 # 0. In such a case

3
Za% —ag(ay —ay) =0, (4.54)

with %a% — ayg(aq — as) # 0. Setting Py = T7196 P, = I and P3 = I'™%4, the algebraic
KSE can be written as

1
[18( ~ 381 P PyPy + B3(Py + Po + Py) = 3B5(PLPy + PPy + PoPy) )T

1 1
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|Py, Py, Ps3) relations for the fluxes

) [§(=81 + Bs = 365) + JXTu]l) = )
[+, 4 ) 1+, ,+> =) | (5361 + B3 +365)0s + 3XTu]l) = 74)
) r+ T35 = o =3+ XL = )

= - *> [§(B1 — B3 = 365)0= + 5 XT4]|-) = 7zl

Table 6. Decomposition of (4.55) KSE into eigenspaces.

As Py, Py, P; are commuting and have eigenvalues +1, the above algebraic equation de-
composes into eigenspaces as tabulated in table 6.

To find solutions with 20 supersymmetries or more, we can either choose one of the two
eigenspaces with 3 linearly independent eigenspinors and both eigenspaces with a single
eigenspinor or both eigenspaces with 3 linearly independent eigenspinors. In the former
case the algebraic KSE will admit 20 Killing spinors and in the latter 24 Killing spinors.

Let us first consider the case with 20 Killing spinors. In such a case, we find that

pr=0s, BP1=305, (4.56)
and
1, 1., 1
ZX%2=— 4.
3671 T g (2A2° (4.57)

where we have considered the second eigenspace with 3 eigenspinors in table 6. The case
where the first such eigenspace with 3 eigenspinors is chosen can be treated in a similar
way. The condition (4.57) follows as an integrability condition to the remaining algebraic
KSE involving T', and I';,. On the other hand, the field equation of the warp factor (4.4)
implies that

1

VR (4.58)

7 2 1 2
_ ZX?% =
M&+9

which together with (4.57) gives 1 = 0 and so Y = 0. The solution cannot preserve
N > 16 supersymmetries.
Next consider the case with 24 Killing spinors. In this case, we find that

361 = —P3, (4.59)

and the integrability of the remaining algebraic KSE gives

2 1

1, 1
— — X = . 4.
367 g (2A2 (4.60)
On the other hand the field equation of the warp factor (4.4) gives
1 2 1 1
) G R iy - S 4.61
9 +951+665 €2A2 ( 6)
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| Py, P, Ps3) relations for the fluxes
[+ ++) [15 (4o — 985)T": + 3 XTu|-) = 75l
|+, 4, =), [ = +), =+, +)
= =) =+ =) =) (6550 + 3 XTa]l) = 7zl°)
— = =) [1(—40a = 965)T: + 3 XTu]|") = 74l)

Table 7. Decomposition of (4.66) KSE into eigenspaces.

Comparing this with (4.60), one finds that the 4’s vanish and so Y = 0. Thus there are no
solutions with N > 16 for either 51, 83 or (s, 84 non-vanishing.

It remains to investigate the case that all §1,...,85 # 0. This requires that the
determinant of the coefficients of the linear system (4.52) must vanish, i.e.

3 3
Z“g —as(as —a1) =0, zaf —ayq(as —az) = 0. (4.62)

Taking the difference of the two equations, we find that

3
either a1 =as, or a4= Z(al + ag). (4.63)

Substituting a4 above into (4.62), we find that a; = az. So without loss of generality, we
set a; = ag = a. Then the linear system (4.52) can be solved to yield

B3 =—3B1, B2=—-304. (4.64)

Setting

Py = cosOT™0 4+ sin T2 | Py = cos 1% 4 sin 17126

Py = cos 07204  gin gr'7315 (4.65)

the algebraic KSE (4.7) can be rewritten as

1
[18 (aPLP2P3+ a(Py + Py + P3) — 305(PLPy + PLP3 + PaP3))T,

1 1
+ 3XF3;:| o4 = MO'+, (466)

where tan = (3/82 and o = /33 + 33. As these Clifford algebra operations commute
and have eigenvalues 41, the restrictions of this equation to the eigenspaces of P;, P> and
P35 are given in table 7.

To find solutions with 20 supersymmetries, one needs to consider the eigenspace in
table 7 with 6 eigenspinors. In such a case the integrability of the remaining KSE re-
quires that

1

— X
3655+9
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Comparing this with the field equation of the warp factor

1 1 1 1 1
LS < Y. 2y, L on2 2y _
9 +6ﬁ5+18(5l +54)+54(52 + B3) PAZ

we find that all £’s must vanish and so Y = 0. Thus the flux F is electric and as we have

(4.68)

demonstrated such background does not admit N > 16 AdS, supersymmetries.

Bs = 0. Since the backgrounds with electric flux F' cannot preserve N > 16 supersymme-
tries, we have to assume that at least one of the pairs (81, f3) and (52, 84) do not vanish. If
either the pair (51, 83) or (2, 84) is non-vanishing, the investigation of the algebraic KSE
proceeds as in the previous case with 85 # 0. In particular, we find that the algebraic
KSE (4.7) together with the field equation for the warp factor imply that all 3’s vanish
and the flux F' is electric. So there are no solutions preserving N > 16 supersymmetries.
It remains to investigate the case that (1, [52,083,84 # 0. If this is the case, the
determinant of the linear system (4.47) must vanish which in turn implies that

3 3
222 ax(x+, /2 )=0, -2 px(x+, /-2 )=0. (469
4aiaq asay 4 asay ai1a4
The solution of these equations is
3 a1 +a

either a; =as, or X =-—-

4 A/ A10204 '

Substituting the latter equation into (4.69), one again finds that a; = as. So without loss

(4.70)

of generality we take a; = ag in which case

1 3

X =- . 4.71
o N T (4.71)
For the latter case, the linear system (4.47) gives

B3 = =361, P2=—3Ps. (4.72)
After setting 5 = 0, the investigation of the algebraic KSE can be carried out as that

either X =

described in table 7. As a result after comparing with the field equation for the warp
factor, the 8’s vanish and F' is electric. Thus there are no solutions preserving N > 16
supersymmetries.

It remains to investigate the case that X = 1/(2,/a4) in (4.71). In this case, the linear
system (4.47) gives

p1=p3, B2=Ppa. (4.73)
Using the P;, P, and Ps as in (4.65), the algebraic KSE (4.7) becomes

1 1 1
E( —3aP P, P; + Oz(Pl + P+ Pg))rz + gXFx o4 = €7A0'+ ,

and the solutions in the eigenspaces of P, P, and P are described in table 8. To pre-

(4.74)

serve N > 16 supersymmetries, one has to consider either one of the eigenspaces with 3
eigenspinors and the eigenspace with 2 eigenspinors or both of the eigenspaces with 3 eigen-
spinors. In either case, one finds that all 8’s vanish and so Y = 0. Then F is electric and
such solutions do not preserve N > 16 supersymmetries. Therefore we conclude that the
homogenous space Sp(2)/A(Sp(1)) does not give rise to AdS4 backgrounds with N > 16.
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|P1, Pa, Ps3) relations for the fluxes
|+, +, ) 1=, =, =) §XTal) = 75l
o =) =) =) | [Gols + 3XTu]l) = 7))
= = 4), I= 4, =), [+, = =) | [=3al: + 3 XTa]l) = 741)

Table 8. Decomposition of (4.74) KSE into eigenspaces.

4.6.3 Sp(2)/Sp(1)

The geometry of this homogeneous space is described in appendix E where the definition of
the generators of the algebra and expressions for the curvature and invariant forms can be
found. A left-invariant frame is ¢4my = (°W, + E’“TT(JF), wherea=1,...,4and r=1,2,3.
Then the most general left-invariant metric is

ds® = adgpl° + g, 071° (4.75)

where a > 0 is a constant and (g,s) is any constant 3 x 3 positive definite symmetric matrix.

To simplify the computations that follow, it is convenient to use the covariant properties
of the decomposition of sp(2) = so(5) as described in (E.9) to restrict the number of
parameter in the metric. In particular, observe that the decomposition (E.9) remains
invariant under the transformation of the generators

T = 05T, W, = USW,, T =10, (4.76)

T

where O € SO(3) and U € Spin(3) C SO(4) defined as
o, 1Y) =uIrHu—t, (4.77)

as IT(JF) are the gamma matrices of the Majorana spinor representation of so(3) on
R'=C?a C?. Furthermore notice that ULgf)U_1 = Lgf) as U is generated by LEJF) which
commute with all Is(f). The orthogonal rotations O act on the matrix (g,s) as g — OgO~!.
As (O,U) is an automorphism of so(5) which leaves the decomposition (E.9) invariant, we
can use O to put the matrix (g,s) into diagonal form. So from now on without loss of
generality, we set (g,s) = diag(by, ba, bs) with by, by, bs > 0, see also [35].

The left-invariant 4-forms are generated by

1 1
Y €abedl® NN prg = Serpal” AN I (4.78)

T4l

where
I = (I to NP (4.79)

S

Therefore the 4-form flux Y can be chosen as

Y =ay+068%prs, (4.80)
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where o and 8 are constants. Then it is straightforward to find that the Bianchi identity
dY = 0 implies that

grs = . (4.81)

Furthermore define o = %emtﬂr A 05 A €% and choose as top form dvol = a®v/b1babz o A ).
Then the field equation for Y, d x, Y = XY, gives the linear system

3 3

avbibbs 1Y% 6,87 X
N b, 87 = Voibobs Xa, S P 5= _ 2
2 P habs Xa S e T oty 3

3
2 1

b8 + by — =67 S b | = /brbobaX (57— o7 182

<5+5 3 tltﬂ) 1b2b3 (5 3 /8)7 (4.82)

where there is no summation over the indices r and s on the left-hand side of the last
equation and 3 = §,,8"°.

Before we proceed to investigate the solutions of the linear system, notice that if
8" =0, then a = 0 and so F' is electric. The supersymmetry preserved by these solutions
will be investigated later. As we shall demonstrate such solutions cannot preserve more
than 16 supersymmetries.

Furthermore writing Y = a1) + Y3, where Y3 = 3"p,, the field equation of the warp
factor in (4.4) can be written as

1 1 1
X2 4 — (V)= —
9 180‘ ™t + 432( 5)” = 2 A2

As we shall demonstrate, the compatibility of this field equation with the algebraic KSE

(4.83)

rules out the existence of N > 16 backgrounds.
Returning to the solutions of (4.82), let us focus on 8" with r # s. There are several
cases to consider.

Either 8" # 0 for all » # s or 3" = 0 for all » # s. If 5" r # s, are all
non-vanishing, the last equation in (4.82) implies that

by
V/b1bab3

As a result, the metric is invariant under SO(3) and this can be used to bring 5™ into

by =by=by, X =2

(4.84)

diagonal form. Of course (5"¢) is also diagonal if 8" = 0 for all r # s.
So without loss of generality, we can assume that (57%) is diagonal. Setting

Jl — F6714 ’ J2 — 1'16723 ’ J3 — 1—\7524 ’ (485)

where all gamma matrices are in the ortho-normal basis and {T*} = {I'*,T**"}, the alge-
braic KSE can be written as

(é[—aa 211 Js + (VOB + o) + VB2 J5(1 + J1.Jo)

ﬁ
1 1
+ Vb33 J5(J1 + )} L, + erm>a+ = 0 (4.86)
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|J1, Ja, J3) relations for the fluxes
, a1
(5l-aa?+2 e (VBB! £ /525
V5. + 3XT0)|) = 741
+ =3 =+ 5 (gaa s + 3XTa) |) = 751
— a1
(§l-aa™?+2 e (VB B + VB2 5%
FV0sB¥)T: + 3XT0)[) = g4|°)

|+, +, £)

|_7_7:l:>

Table 9. Decomposition of (4.86) KSE into eigenspaces.

The decomposition of the algebraic KSE into the eigenspaces of the commuting Clifford
algebra operators Ji, Jo, J3 is illustrated in table 9.
To construct N > 16 solutions, we have to include the eigenspace with four eigen-
spinors. The integrability condition of the remaining KSE described in table 9 gives
1 1. 9 1

—ala 4+ X

36 9" T pAz (487)

Comparing (4.87) with the field equation for the warp factor (4.83), we find that a=/"*=0.
Therefore Y = 0 and so F is electric.

812,313 £ 0 and 322 = 0. As the other two cases for which either 813 =0 or 82 =0
with the rest of the components non-vanishing can be treated in a similar way, we take
without loss of generality that 323 = 0 and 32, 313 # 0. In such a case, the last condition
in (4.82) gives

b1 + by

X = . by—bs. 4.88
N (4.88)

The metric is invariant under an SO(2) C SO(3) symmetry which acts with the vector

representation on the vector (32, 413) and leaves the form of (37%) invariant. As a result
up to an SO(2) transformation, we can set 3'3 = 0 as well. Furthermore, if by # bs, the
diagonal terms in the last condition in (4.82) give

/311 — _622 — _633 ) (489)

On the other hand if b; = by the analysis reduces to that of the previous case. Therefore
for by # b, Y can be written as

Y = atp + B (p11 — p22 — p33) + B2 (p12 + pa1) - (4.90)

Introducing the Clifford algebra operators

Jy = cos T 4 gin gr0™ | Jy = cos AT —sin AT gy = 11234 (4.91)
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|J1, J2, J3) relations for the fluxes
B
wﬂ> wm>&¢7+¢EMD+§XmN»=
4, £, +) |-, %, +) (2aa™2T, + 1XT,) ) = A1)
(%[ aa_2+\2/a—b2 (:F\/Eﬂll
(B2 + (B2 (Vb1 — VE))IT- + SXT, )| = 1)

)

o~
S=

|i7—7_>

Table 10. Decomposition of (4.92) KSE into eigenspaces.

where tan§ = 312/, the algebraic KSE can be written as

@[ J%(J@thﬂ—h)
VAT BRR(/biy + o) (1 - Jg)) }mlxrx)ﬁ = ov (492)

3
The decomposition of the algebraic KSE into the eigenspaces of the commuting Clifford
algebra operators Ji, Jo, J3 is illustrated in table 10.
To construct solutions preserving more than 16 supersymmetries, we have to include
the eigenspace with four eigenspinors leading again to the integrability condition (4.87).
Comparing again with the field equations of the warp factor (4.83), we deduce that F
is electric.

B13 = 323 = 0 but 312 #£ 0. All three cases for which only one of the three off-diagonal
components of (57°) is non-zero can be treated symmetrically. So without loss of generality,
one can take 13 = 323 = 0 but 3'2 # 0. In this case, the last equation in (4.82) has four
branches of solutions depending on the choice of the by, by and bs components of the metric.

1.by=by=b3=0
The last equation in (4.82) then implies X = 2/+/b and the aforementioned residual
SO(3) symmetry can be used to put 8" to be diagonal.

2. by = ba, by # b3
The last equation in (4.82) then implies X = 2//b3 and 332 = 0. The aforementioned
residual SO(2) symmetry can be used to put 5"* to be diagonal.

3. bo #£ bs, by + by = 2b3
The last equation in (4.82) then implies X = (b1 + bz)/+/b1bobs and B = 322 =0
In such a case, Y reads

Y = a + B ps3 + B2 (p12 + pa1) - (4.93)
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|1, J2, J3) relations for the fluxes
(%[ O‘a72+m(i\/gﬂ33
—B12(£v/by — VD)L + %er> 1) = &)
o d) o) (oo + éxrx) ) =2l
—512(i\/§+ x/T))]Fz + %Xl‘x> 1) = ]

H:v"i'?_)

|:|:7_7_>

Table 11. Decomposition of (4.95) KSE into eigenspaces.

Choosing
Jl — 1'\1457’ J2 — F2467 , J3 — F1234’ (494)

the algebraic KSE can be written as

1 5 a!
(6 [aa J3+ === \/W (
_512(\/@J1 — \/ajz)(l — J3)> :|Fz + ;XF$> 04 = ELAO-JF : (495)

V3BT Ta(1 — J5)

The decomposition of the algebraic KSE into the eigenspaces of J1, Jo, J3 is illustrated
in table 11. Again the eigenspace with four eigenspinors has to be included in the
construction of N > 16 backgrounds. As a result, this leads to the integrability
condition (4.87) which together with the warp factor field equation (4.83) imply that
F' is electric.

. by # b, by + by # 2b3
The last equation in (4.82) then implies

X = (b1 +b2)/\/bibobz, [ =522 = 333203 — by —by)/(by —ba).  (4.96)
In such a case, Y reads

b1 — bo

b—bp33> + 8% (p12 + p21) - (4.97)

Y =atp + g <P11—p22+ 2,

With the choice of commuting Clifford algebra operators as in (4.91), the algebraic
KSE can be written as

<é{aa—2<}3+ @ ((bl b2)Vhs i1, gy 1)

Vb1b2bs \ b1+by—2b3
1 1
(B11)2+(B12)2 \/7J1+\/7J2 1—J3) >] z+3XPx>U+:MU+' (4.98)
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|J1, J2, J3) relations for the fluxes

(%[_aa72+ 2q~! (+ (b1 —b2) \ﬁﬁll

’:l:7+a_> Vb1b2b3 b1+ba—2b3
(B2 + (B12)2(£v/b1 + Vb2))]T. + %er) 1) = A&l
Axbirl by (aa?T. + 5XT.) ) = A1)
- a (b1—=b2)v/b3
|i7 e _> <%[ ad 2—i_\2/7b2 (:F bll+b22 2b3 611

(B2 + (B2 (Vb1 — VE))IT- + SXT, )| = 1)

Table 12. Decomposition of (4.98) KSE into eigenspaces.

The decomposition of the algebraic KSE into the eigenspaces of Jy, Js, J3 is illustrated
in table 12.

To construct N > 16 solutions, we again have to include the eigenspace with four
eigenspinors which leads to the integrability condition (4.87). Comparing with the
warp factor field equation (4.83), we again deduce that F' is electric.

It remains to investigate the number of supersymmetries preserved by the solutions
for which F' is electric. For this, one has to investigate the integrability condition of the
gravitino KSE (4.36). Using the expression for the curvature of metric in (E.25)—(E.28)
and requiring that the solution preserves N > 16, we find that

1
5% (I ) a (Rcd,mnrm” - 18X2ch) 04 =0, (4.99)
implies that
TS 1 2
7(5 Grs — —a> X2 =0. (4.100)

18
Next requiring again that N > 16, one finds that the condition

1
568 (1H)) (Rcd,mnrmn — X2rcd) o, =0. (4.101)

18

gives that

1
P gpqerst — §a_1€tpqur9qs —2g4p€lrs =0,
3 1
_Zgrs + g(qugpq(srs + adps — Ea 2 x? 0rs =0. (4102)
Substituting (4.100) into the second equation in (4.102), one finds after a bit of analysis that
b1 = by = bs. (4.103)
Setting b=b; = by = b3 and substituting this back into (4.100) and (4.102), one deduces that

20 =b, X?*=9p!. (4.104)
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As X2 = 9072472 we have b = (?A? and a = (1/2)/2A%. The rest of the integrability
condition is satisfied without further conditions. So every solutions that preserves N > 16
supersymmetries is maximally supersymmetric and so locally isometric to AdS, x S”.

One can confirm this result by investigating the Einstein equation (4.5). As all solutions
with electric F' are Einstein Rg) = (1/6)X?24;j, it suffices to identify the left-invariant
metrics on Sp(2)/Sp(1) that are Einstein. There are two Einstein metrics [35, 36] on
Sp(2)/Sp(1) given by

X2=0b"', 2a=0b, by=by=0b3=0b, (4.105)
and
2 81,4
X :%b 5 2a:5b, b1:b2:b3:b, (4106)

where the first one is the round metric on S”, see also [37]. The second one does not give
N > 16 supersymmetric solutions.

5 Conclusions

We have classified up to local isometries all warped AdS,4 backgrounds with the most general
allowed fluxes in 10- and 11-dimensional supergravities that preserve N > 16 supersymme-
tries. We have demonstrated that up to an overall scale, the only solutions that arise are
the maximally supersymmetric solution AdS, x S” of 11-dimensional supergravity [17, 18]
and the N = 24 solution AdS; x CP? of IIA supergravity [16]. These two solutions are
related via dimensional reduction along the fibre of the Hopf fibration S' — S7 — CP3.

The assumption we have made to prove these results is that either the solutions are
smooth and the internal space is compact without boundary or that the even part gg of
the Killing superalgebra of the backgrounds decomposes as gy = $0(3,2) @ to. In fact
these two assumptions are equivalent for N > 16 AdS, backgrounds. It may be possible
to weaken these assumptions but they cannot be removed altogether. This is because
in such a case additional solutions will exist. For example the maximally supersymmetric
AdS; x S% solution of 11-dimensional supergravity [38] can be re-interpreted as a maximally
supersymmetric warped AdS, solution. However in such case the “internal” 7-dimensional
manifold M7 is not compact and the even subalgebra of the Killing superalgebra gg does
not decompose as §0(3,2) & to.

We have identified all AdSs backgrounds up to a local isometry. Therefore, we have
specified all the local geometries of the internal spaces G/H of these solutions. However
the possibility remains that there are more solutions which arise via additional discrete
identifications Z\G/H, where Z is a discrete subgroup of Z C G. The AdSs x Z\G/H
solutions will preserve at most as many supersymmetries as the AdSs x G/H solutions. As
in IIB and massive ITA supergravities there are no N > 16 AdS; x G/H solutions, there
are no N > 16 AdS, x Z\G/H solutions either. In ITA theory, the possibility remains that
there can be AdSy x Z \(C]P’3 solutions with 24 and 20 supersymmetries. In D = 11 super-
gravity as AdSy x S7 preserves 32 supersymmetries, there may be AdS; x Z\S” solutions
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preserving 28, 24 and 20 supersymmetries. Such solutions have been used in the context
of AdS/CFT in [39]. A systematic investigation of all possible N > 16 AdSs x Z\G/H
backgrounds will involve the identification of all discrete subgroups of . The relevant
groups here are SU(4) and Spin(8), see e.g. [46] for an exposition of discrete subgroups of
SU(4) and references therein.

It is clear from our results on AdSs backgrounds that supersymmetric AdS solutions
which preserve N > 16 supersymmetries in 10- and 11-dimensions are severely restricted.
Consequently there are few gravitational duals for superconformal theories with a large
number of supersymmetries which have distinct local geometries. For example, the super-
conformal theories of [40-42] have gravitational duals which are locally isometric to the
AdSs x S° maximally supersymmetric background as there are no distinct local AdSs ge-
ometries that preserve strictly 24 supersymmetries [10]. In general our results also suggest
that there may not be a large number of backgrounds that preserve N > 16 supersymme-
tries in 10- and 11-dimensional supergravities. So it is likely that all these solutions can be
found in the future.
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A Notation and conventions

Our conventions for forms are as follows. Let w be a k-form, then
1

i i 2 1.0 2 i1...0
v Ewnzkdli A Adat Wij = Wily.. 1 Wj el Wt = Wiy .., W bk <A1)
We also define
_ i1...0 _ i2...7 _ 12...0
(74Y - wlllk]-_‘ F 3 (%}il - wl1121kr k ) mil - Fil k+1wi2...ik+1 3 (AZ)

where the I'; are the Dirac gamma matrices.

The inner product (-,-) we use on the space of spinors is that for which space-like
gamma matrices are Hermitian while time-like gamma matrices are anti-hermitian, i.e. the
Dirac spin-invariant inner product is (I, -). The norm || - [|= /(-,-) is taken with respect
to (-, -), which is positive definite. For more details on our conventions see [5-7].

B Homogeneous and symmetric spaces

In the following section we shall collect some useful properties of homogeneous spaces which
have facilitated our analysis of AdS4 backgrounds. A more detailed review can be found
in e.g. [43, 44].
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Consider the left coset space M = G/H, where G is a compact connected semisimple
Lie group G which acts effectively from the left on M = G/H and H is a closed Lie
subgroup of G. Let us denote the Lie algebras of G and H with g and b, respectively.
As there is always an invariant inner product on g, it can be used to take the orthogonal
complement of h in g and so

g=hom. (B.1)

Denote the generators of h with he, a = 1,2,...,dimbh and a basis in m as my, A =
1,...,dim g—dim§. In this basis, the brackets of the Lie algebra g take the following form

[hom h,B] = focﬁfy h'y ) [haamA] = faAB mp,

[ma,mg] = fap” mc + fap® ha - (B.2)

If f45¢ =0, that is [m, m] C b, the space is symmetric.
Let g : U C G/H — G be a local section of the coset. The decomposition of the
Maurer-Cartan form in components along h and m is

g g =" ma+Q%hy, (B.3)

which defines a local left-invariant frame ¢4 and a canonical left-invariant connection Q%
on G/H. The curvature and torsion of the canonical connection are

1 1
RY = d0° + ifgf‘ﬂﬁ AQY = —ichaﬁB ALC

1
T = de? + focQP N 1C = -3 feceB A, (B.4)

respectively, where the equalities follow after taking the exterior derivative of (B.3) and
using (B.2). If G/H is symmetric, then the torsion vanishes.
A left-invariant p-form w on G/H can be written as

1
w:HwAl_”ApﬁAl/\.../\KAP, (B.5)

where the components wy, .. 4, are constant and satisfy

faa P wa,. a5 =0. (B.6)

The latter condition is required for invariance under the right action of H on G. All
left-invariant forms are parallel with respect to the canonical connection.
It remains to describe the metrics of G/H which are left-invariant. These are written as

ds? = gap 4P, (B.7)
where the components gap are constant and satisfy

far® gBe + faB® gac =0. (B.8)
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For symmetric spaces, the canonical connection coincides with the Levi-Civita connection
of invariant metrics. So all non-vanishing left-invariant forms are harmonic and represent
non-trivial elements in the de Rham cohomology of G/H. However if G/H is strictly
homogeneous this is not the case since the canonical connection has non-vanishing torsion.

Suppose G/ H is homogeneous and equipped with an invariant metric g. To describe the
results of the paper, it is required to find the Levi-Civita connection of g and its curvature.
Let @ be the Levi-Civita connection in the left-invariant frame. As the difference of two
connections is a tensor, we set

g = Q% fap® + Q5. (B.9)
As @ is metric and torsion free, we have

®ap+Ppa=0,
At + 4 AP =0. (B.10)

These equations can be solved for ) to find that

1
g = Q% fupt + 3 (9" foB" 9cp + 9P foc® gsE + foB™) (C. (B.11)

In turn the Riemann curvature 2-form R4 B 18

1

Rip=_(Qc*eQp 5—-Qp 6Qc5—Qr s fop® — fop® fap™) CONP. (B.12)

N3

This is required for the investigation of the gravitino KSE. Note that the expression for
d4 5 is considerably simplified whenever the coset space is naturally reductive because the
structure constants fapc = fa g gor are then skew symmetric.

C su(k)

Here we shall collect some formulae that are useful in understanding the homogeneous
spaces that admit a transitive action of a group with Lie algebra su(k). A basis over the
reals of anti-hermitian k& x k traceless complex matrices is

1 v(ab) . . c 2
(Map)°a = 5(0a0ba = 0°0aa) ,  (Nav)“a = (2 ); <5a Obd + Op“Oad — k5ab5cd> , (C1)
where v(ab) is a normalization factor and a,b,c,d = 1,...,k. The trace of these matrices

yields an invariant inner product on su(k). In particular the non-vanishing traces are

1
tr(MabMa’b’) = _5(5aa’5bb’ - 5ab’5ba’) )

v(ab)v(a't)

tr(Nop Ny ) = — 5

2
(5aa’5bb' + 5ab’5ba’ - kéabéa’b’> . (02)
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It is customary to choose the normalization factors v such that all generators have the
same length. In such a case, they will depend on k. However in what follows, it is more
convenient to choose v = 1. The Lie brackets of su(k) are

1
[Mab7 Ma’b’] = 5(51)@’ ab! 5ab’Mba’ - 5aa’Mbb/ - 5bb/Maa/) 5
1
[MabaNa’b’] = 5(
1
[Naba Na’b’] = _5(517(1’ ab’ T+ 5ab’Mba’ + 5aa’Mbb’ + 6bb’Maa’) . (03)

5ba’ abl — 5ab/ Nba’ - 5aa’Nbb’ + 5bb’ Naa’) )

We shall proceed to describe the homogeneous spaces in (1.1) and (1.2) that admit a
transitive SU(k) action.

C.1 M* =CP1 =SU(k)/S(U(k) x U(1))
To describe the CP*~! homogeneous space, we set
5] :E(u(k‘— 1) @u(l)) :R<Mr35Nr35Nkk)> , m:R<Mrk,N5k> , (04)

where r;s = 1,...,k—1. The brackets of the Lie subalgebra s(u(k —1) ®u(1)) can be read
off from those in (C.3) while those involving elements of m are

1 1 1 1
[MrkaMs ] = _§Mr57 [MrkaNs ] = iNrs - iérstka [NrkaNs ] = _§MT‘87 (05)
and
1 1
[M’I’87 Mtk] - 5(5tsMrk - 5trMsk) ’ [Mr87 Ntk] - 5(5tsNrk - 5tT’Nsk) ;

1 1
[NTS7 Mtk] = 5(5tsNrk + 5trNsk) ) [N’I‘S7 Ntk] = _5(6tsMrk + 5t7‘Msk) )
[Nkk, Mg] = — Ny, [Nik, Neg| = Mg - (C.6)

The left-invariant frame is £4my = "M, + ¢" N,1. The most general left-invariant metric
can be expressed as

ds® = a (6,07 0° + 65507 0%) (C.7)

where a > 0 is a constant. The left-invariant forms of CP*~! are generated by the (Kihler)
2-form

w=adsl" NI, (C.8)

The non-vanishing components of the curvature of the metric in the ortho-normal frame are

1 1 1 1
Rrs,pq = _ﬁ (67“(1531) - aérpésq) ’ Rrs,ﬁij = _E <5rcj§sﬁ - a&"ﬁd@tj) ;
1 1 1
Rrspg = 3 (0ra0sp + 0rp0sg) + 5 0rsOpg,  Rispg = — 7 (0rq0sp — Orpdsq) - (C.9)

This expression of the curvature matches that in (3.33) for CP® up to an overall scale.
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C.2 M* =SU(k)/SU(k — 1)
Next let us turn to the SU(k)/SU(k—1) homogeneous space. The embedding of su(k—1) =

R(Mﬂf_l), N,gf_l)% where r,s =1,...,k — 1, into su(k) = R(MC(L]Z), Né§)> is given by
1

MED = p® o NED = NB 5 N (C.10)

rs rs r k—1

Asm = R(ng), NS(Z), N ,5?), the (non-vanishing) commutators involving elements of m are
k

a8 M) = 5 N = SN - e N,
NG NG = —%Mﬁf_l) : (C.11)
and
0D, ) = SGM ) — M), YN = SN - s N )
N, 301 = L8+ LN ),
NG, N = b M) — 2 (M) + 50 M),
NG M = =Ny NG Ny ) = My (C.12)

Setting (4Am 4 = EA’”Mfllj) +E’ZN;:) +0ON ,g,:) for the left-invariant frame, a direct computation
reveals that the most general invariant metric is

ds? = a (8,507 0° + 85507 0%) + b(1°)? (C.13)

where a,b > 0 are constants. Moreover the left-invariant 2- and 3-forms for k = 4 are
generated by

O=2063" N, °A®, Rey, Imgy, (C.14)
and their duals, where
1 R o R o~ . —~
=3 €rst (074 il7) A (05 +il5) A (0 + il (C.15)

is the holomorphic (3,0)-form.
However for convenience, we re-label the indices of the left-invariant frame as ¢~ =/¢",
0 =0" 0" = r=1,2,3 in which case the left-invariant metric can be rewritten as

ds® = a6 l™" + b ({7)? = §,pne™e™ + (e)?, (C.16)
where we have introduced an ortho-normal frame e™ = ./al™ e’ = Vb7, and
m,n=1,...,6. Note also that up to an overall scale, the left-invariant 2- and 3-forms

can be re-written in terms of the ortho-normal frame. In particular, we have
w=e2+e*+e%, e"Aw, Rey, Imy, (C.17)
where
x = (e! +ie?) A (e® +iet) A (e 4 ief). (C.18)

We shall use this ortho-normal basis to solve the KSEs for this internal space.
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D The Berger space B” = Sp(2)/Sp(1)max

To describe the geometry of the Berger space B, one identifies the vector representation
5 of s0(5) = sp(2) with the symmetric trace-less representation of s0(3) = sp(1) and then
decomposes the adjoint representation of so(5) in s0(3) representations as 10 = 3 & 7,
where 7 is the symmetric traceless representation of s0(3) constructed with three copies of
the vector representation. As a result so(5) = s0(3) & m, where s0(3) and m are identified
with the 3-dimensional and 7-dimensional representations, respectively.

This decomposition can be implemented as follows. Consider the basis Wy,
a,b,e,d=1,...,5,

(Wab)a = 6566a — 640ad (D.1)
in s0(5) leading to the commutators
Wab, Wary] = (860 Watr + Sab Woar — daa Wity — Sty Waa) - (D.2)

Then re-write each basis element using the 5 representation so(3) as W,s4,, where
r, s, t,u = 1,2,3. Decomposing this into so(3) representations, one finds that

Wrs,tu = Oruést + Osu(srt + Ort(;su + Ostéru
+ fpstSpru + 6pmepsu + 6psuSp'r‘t + 6pruspst s (DS)

where O € s0(3) and S € m. Using this one can proceed to describe the homogeneous space
B". However, this decomposition does not automatically reveal the G structure which is
necessary in the analysis of the supersymmetric solutions. Instead, we shall follow an adap-
tation [34] of the description in [23] and [45, appendix A.1]. For this use the inner product

1
<Wab7 Wa’b/> = _itr(WabWa’b’) s (D4)

which is s0(5) invariant and the basis Wy, a < b, is ortho-normal. In this basis, the struc-
ture constants of s0(5) are skew-symmetric. Then identify the so(3) subalgebra of so(5)
with the span of the ortho-normal vectors

1 1
hi = ﬁ(—Wu — Wag + V3Wss), hy = 7
1
hg = ﬁ(—2Wl4 + W23) . (D5)

We choose the subspace m to be orthogonal to so(3) and an ortho-normal basis in m

(—W13 + Wou + \/§W25) ,

introduced as

1 1
mi = ——(AWio—Wsa+V3Ws5), mo=——(AWi34+Was+v/3Was),
1 2\/5( 12— Way 35) 2 2\/5( 13+ Way 25)
1 1 1
m3=ﬁ(—W14—2W23), m4=§(\/§W34+W35)7 m5=§(\/§W24—W25)7
mg=Wis, m7r=Wys. (D.6)
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Then it is straightforward to show that
1 , 1
[ha, hg] = —Eaﬁfyhv y [ha7 mz] = kaijmj 5 [mi, TTLj] = 790ijkmk + kijaha 5 (D?)

V5 V5

where ¢ is given in (4.13), the indices are raised and lowered with the flat metric and

klz—mmg/\mg—;’mz/\mﬁ—;mg/\m5+55m4/\m7+2\1/5m5/\m6,
9 3 3 3 1 2
:ﬁml/\mg—77711/\mg—77713/\7714—ﬁmz;/\mﬁ—i—%mg,/\nw7
k:3:——ml/\mg——ml/\m5——3m2/\m4+im4/\m5+lm6/\m7.
2V5 2 2 2V5 V5

So fijk = %gpijk and the Jacobi identities imply that ¢ is invariant under the representa-
tion of 50(3) on m. Therefore the embedding of 50(3) in s0(7) defined by (k!, k2, k3) factors
through go. This is useful in the analysis of the gravitino KSE.

E so(5) =sp(2)

To describe the various homogeneous spaces that we are using which admit a transitive
action of a group with Lie algebra so(5) = sp(2), choose a basis in s0(5) as

1

(Mzp)ai = 5%z 953 — 054 9pa): (B.1)
in sp(2) = s0(5), where Mdg,&,l; =1,...,5. The commutators are
1
[M&B’ M&’B’] = 5(6&5’Ml~7d’ + 65&’M&5’ — 681}/M&d’ — 6ad/Ml~)l~)’) . (EZ)

In what follows, we shall describe various decompositions so(5) = h@m for different choices
of a subalgebra h and summarize some of their algebraic and geometric properties that we
are using in this work.

E.1 M®% = Sp(2)/U(2)

The subalgebra h and m are spanned as

u(2) = u(2) = R (T}, Tr) = R {56 " Mar, M), (E.3)

and
m =R (Myq) =R (M4, My5,) (E.4)
respectively, where r,s,t = 1,2,3 and a,b,c,... = 4,5. In this basis the non-vanishing

commutators are
1 ¢ 1 ¢ 1
[TT7TS] = _561”5 T;, [TT’7 Msa] = _§6rs Mg , [T77 Mra] = _§€abM'rba

1 1
[M’/‘aa Msb] = _§5ab€rstﬂ - i(srseabT'? . (E5)
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Clearly this is a symmetric coset space admitting an invariant metric
ds® = a 0,50apl" %" = 6,50, %€, (E.6)
where a > 0 is a constant, and ¢"* and €"® = /a £"®* are the left-invariant and ortho-normal

frames, respectively. The curvature of the symmetric space in the ortho-normal frame is

1 1
Rra sbtcud = @(&‘tésu - 5ru65t)6ab60d + EémétuQLbecd 5 (E7)

which is instrumental in the investigation of the gravitino KSE in section 3.5.1.

E2 M =Sp(2)/(Sp(1) x U(1))

Viewing the elements of Sp(2) as quaternionic 2 x 2 matrices, Sp(1) x U(1) C Sp(1) x Sp(1)
is embedded in Sp(2) along the diagonal. To describe this embedding choose a basis in
sp(2) = so0(5) as in (E.1) and set

T

1
T(:I:) _ 56rst]w-st £ ]\41"47 W, = \@MzzSa (ES)

where r = 1,2,3 and now a = 1, ...4. In terms of this basis, the non-vanishing commutators
of sp(2) are

TH, 7)) = /T | [T® Ww,] = %(qui))baWba
W Wi = —5 (I )T + ()Tl ), (£.9)
where
(I = Fops,  (ID)a=48%, (D)% = et (E-10)

Observe that (Ir(i)) are bases in the spaces of (anti-)self-dual forms in R* and that
IIE = 6,1 — eIl (E.11)
The subalgebra h and m are spanned as
h=sp(1) ®u(l) = RIS, 747), (E.12)
and

m=R(W,, T\, 75, (E.13)

respectively. Introducing the left-invariant frame, ¢4my = (4W, + €£T7~(+), where r = 1,2,

the left-invariant metric can be written as
ds? = a S0P 4 b 6,05 = Spee’ + 5,.e et (E.14)

where a,b > 0 and we have introduced the ortho-normal frame e* = \/a (%, e = Vb er.
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The curvature of this metric in the ortho-normal frame is

1 3b 3b
Rapcd = ( > (Oac Ovd — dad Ope) + ((I§+))ab<I§+))cd — (I?E+))a[b(1§+))cd]> :

2a 1642 1642
b 1 b (+)
= T, 5 rs - T T4 o s I ab
Rarps = 15,2000 + <4a 16a2> rs(l3 " Jab
1 b N 1
Rapyrs = <2a - &12> GE(IES ))aba Rysu = gﬁﬁﬁw' (E.15)

We shall use these expressions in the investigation of the gravitino KSE in section 3.5.2.

E.3 M7 = Sp(2)/A(Sp(1))

The decomposition of the Lie algebra sp(2) = so(5) suitable for the description of this
homogeneous space is as in (E.3) but now h and m are spanned as

h=R(T,), m=R(M.,T7), (E.16)

respectively, where r = 1,2,3 and a = 4, 5. Introducing the left-invariant frame as ¢4t4 =
"M, + 7Ty, the left-invariant metric is

ds? = 8rsgapl™ 0% + ag(07)?, (E.17)

where (gqp) is a symmetric constant positive definite 2 x 2 matrix and a4 > 0 is a constant.
The curvature of this metric in the left-invariant frame is

1 — T a
Rpcqa,"*sb = ——=ay 16175(159 “((Ag)ec — asecc) ((Ag)ap + aseap)

16
1 _
t g% 167 0psg" ((Ag)ed — as€ea) (Ag)ey + asec)
1 1
b St 00 (09 g0, — 1) — S0yl — 08, (B
and
7 1 —1 de t1to
R7a?"7 bs = Eazl ((Ag)ad + a4€ad)g Eeb((s Gtito — a4)5rs
1 _
— 3% L ((Ag)ab + asean)byrs (E.19)
where
(A9)ab = €a”gap + €6 9da » (E.20)
(g?) is the inverse matrix of (gq) and the indices of € are raised and lowered with 6,,. The

Ricci tensor again in the left-invariant frame is

-1

a 1 1
Rra sb = f?gdc(Ag)da(Ag)cb - Egdc(Ag)cbeda + T690deca€db(5tlt29t1t2 - 2a4)

-1 -1

a a 5}
+ 1476(Ag)adgdcecb 5t1t29t1t2 - %ead(Ag)db + géab 57"5 ) (E21)
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and

3 3
Ror = =2 (54,0, — 0) + Sasdug™ — S (Agdag™.  (E22)

It is straightforward to compute the Ricci tensor for (gq) diagonal. This concludes the
summary of the geometry for this homogeneous space.

E.4 M7 = Sp(2)/Sp(1)
The decomposition of the Lie algebra sp(2) = so(5) suitable for the description of this

homogeneous space is as in (E.9), where in this case

50(3) = R(T\T)Y,  m=R(W,, T, (E.23)

T
and where 7 = 1,2,3 and a@ = 1,...,4. Introducing the left-invariant frame as ¢4my =
0OW, + 07T, 7«(+), the most general left-invariant metric is

ds® = alupl®l° + g, 071° (E.24)

where a > 0 is a constant and (g,s) is any constant 3 x 3 positive definite symmetric matrix.
The non-vanishing components of the curvature tensor of this metric in the left-invariant

frame is
a ! a !
Rcd,ab = F [5a65pT6qs(I;()+))ecgrs(I¢§+))db - (d) C) - ?5(166]"‘5(15 (I;()+))ebgT8(I(§+))cd
1
+ 5((535&, — 535012) R (E25)
ail a72 G/il
Rrsab = poququst(It(-"-))ab - ?qut(lt(-i_))abgprgqs - 7€rst5pq(fz(,+))abgqt , (E.QG)
s 1 sm n pt sm,_ tn (+) 1 sp(7(+) a”! sm
Ryo®y = é [g Emr gnp5 + 9 em gnr} (It )ab + ger (Ip )ab + 1765ab(S 9mr
~1
a
+ Eesmngmr (Ir,(7,+))ab , (E27)
and
Rrs,pq = glerslq = Ersmepanmna (E28)
where
1
an = iémkdnlgkl(5q1q25p1p29q1plgq2p2)
1
- 29mn + 5mn5pquq - Z(Smk(snlgkl((sqlq2gq1qz)2 ) (E'29)
and the matrix (¢"*) is the inverse of (g,s). The Ricci tensor in the left-invariant frame is
a? 3
Ry, = _?&)quqdab + §6ab )

1 _
R,s = Za 25mngmrgns + (5rs(5pquq - 5rp55quq)5mnan + 6rpgmems + 5spgmemr

— Opq 9?1 X s — 0psgP1 X g - (E.30)

It is straightforward to find the Ricci tensor for (g,s) diagonal. This homogeneous space
admits two Einstein metrics one of which is the round sphere metric on S”. This will be
explored further in the investigation of the gravitino KSE in section 4.6.3.
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