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1 Introduction

Conformal field theories (CFTs) in general dimensions are quantum field theories that are

invariant under global conformal transformations. They play an important role in various

areas of theoretical physics, from critical phenomena to high energy physics.

A CFT is characterized by correlation functions of its local operators. The spectral

data of the local operators are their scaling dimensions and representations of the rotation

group. The primary operators correspond to the lowest states of the dilation operator. By

acting with the momentum operator, we obtain the descendant operators of higher scaling

dimensions. Usually, a local operator is a linear combination of primaries and descendants.

The Operator Product Expansion (OPE) of two local operators reads

Oi(x)Oj(0) =
∑
k

C ′ijk(x, ∂y)Ok(y), (1.1)

where k runs over the primary operators and ∂nyOk(y) are the descendants. The power

series C ′ijk(x, ∂y) in ∂y are determined by conformal invariance up to some multiplicative
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factors Cijk called OPE coefficients or structure constants of the operator algebra.1 The

normalized two-point functions of the primary operators are fixed by conformal symmetry,

while the three-point functions are determined by conformal invariance up to the OPE

coefficients. By operator product expansions, n-point functions reduce to sums of (n− 1)-

point functions. Therefore, all the information of the correlation functions of the local

operators is encoded in the spectral data and the OPE coefficients, which are called the

CFT data.

The OPE algebra is associative because correlation functions are independent of how

the operator product expansions are performed. In the conformal bootstrap program [1–3],

OPE associativity is promoted to a dynamical principle. This non-perturbative approach

is not based on the Lagrangian or Hamiltonian formalism. Instead, one attempts to solve

conformal field theories using only the consistency conditions from the OPE associativity,

together with some physical assumptions, such as unitarity or fusion rules. In the case

of four-point functions, the non-trivial consistency conditions for the CFT data are the

equivalence of three possible OPE channels. They are also called crossing equations.

In 2d, the global conformal symmetry is extended to the infinite dimensional Virasoro

symmetry. Exact solutions can be obtained when the number of Virasoro primaries is

finite. In particular, the exact solutions of the 2d minimal model CFTs [3] are among the

most important applications of the conformal bootstrap program.

In the modern numerical bootstrap approach [4] (see [5]–[56] for later developments),

significant progress has been made in determining the low-lying CFT data of various CFTs.

By studying the crossing equations geometrically, the possible solution regions are bounded

by the positivity constraints from unitarity. As a prominent example, the 3d Ising CFT

does not have an exact solution yet, but its low-lying CFT data can be determined to

high precision, as the relevant parameter space of the lowest scalars is confined to a small

isolated region by considering a set of four-point functions [24, 31, 43]. Although unprece-

dented precision has been achieved, the CFT data of high spin and large scaling dimension

operators remain unknown.

It is important that the infinite number of subleading operators are irrelevant to the

achieved precision. This indicates that the CFT data of these low-lying operators already

provide a successful approximation of the 3d Ising CFT which is consistent with crossing

symmetry. It reminds us of the spirit of Effective Field Theory, where the effective descrip-

tion is insensitive to the operators beyond the cutoff. In the context of AdS/CFT [57–59],

the effective description of a boundary CFT is related to the decoupling of heavy massive

states in the bulk [60].2

The success of the modern numerical bootstrap approach is a surprise,3 as crossing

symmetry is expected to relate one low-lying operator to an infinite number of fast spinning

operators of large scaling dimensions. For example, in the analytic bootstrap approach,

some general properties of the high spin spectrum can be deduced from the light-cone limits

1If there is more than one possible tensor structure, Cijk is a set of numbers.
2Note that we do not assume all CFTs have bulk dual theories.
3A plausible explanation is that the conformal block expansion converges exponentially fast in the

Euclidean regime [61, 62].
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of the crossing equations [63, 64].4 On the contrary, the developments in the numerical

approaches indicate that crossing symmetry also gives surprisingly strong constraints on

the low-lying CFT data themselves.

To understand this surprise, we want to investigate two questions:

• How much are the low-lying CFT data constrained by crossing symmetry?

• When does a truncated spectrum provide a consistent, effective description?

These two questions are related and overlapping. On the one hand, the CFT data of

the low-lying spectrum are heavily constrained by crossing symmetry when the crossing

equations are approximately solved by the low-lying spectrum. On the other hand, if

a truncated spectrum almost solves the crossing equations, then the CFT data of the

operators above the cutoff can only induce small perturbations of the low-lying CFT data,

and their OPE coefficients should be much smaller than those of the low-lying operators.

Therefore, the essential point is whether the low-lying/truncated CFT data approximately

solve the crossing equations.5

To solve the crossing equations, the standard way in the modern bootstrap approach

is to expand the equations around the crossing symmetric point u = v = 1/4. In this

work, we will solve the crossing equations in a different manner. Instead of expanding the

crossing equations, we will directly construct the crossing solutions using explicitly crossing-

symmetric functions. We would like to call this approach “inverse conformal bootstrap”.

To proceed further, we will propose a truncation ansatz. In this truncation framework,

we can concentrate on a few low-lying operators and derive some relations for the CFT data

of the truncated spectrum. This truncation ansatz is in spirit analogous to the Shifman-

Vainshtein-Zakharov sum rules in QCD [75, 76]. In this work, we will focus on the minimal

fusion rule of two identical scalar operators6

φ1 × φ1 = I + φ2 + T, (1.3)

where φ1, φ2 are scalar primary operators, I is the identity operator and T is the stress

tensor.7 We assume there is one relevant operator in the original fusion rule and it is a

scalar.8 We also consider longer fusion rules for 2d CFTs to capture the decoupling of

subleading operators.

4See [53, 65–74] for more results along the lines of large spin expansions.
5The observation that the numerical unitary bounds are converging and almost saturated by the 2d mini-

mal models and the 3d Ising CFT indicates the crossing equations are approximately solved by the truncated

spectra of these physical CFTs, which is related to the extremal functional method [7, 15, 20, 52, 53].
6The crudest fusion rule is given by

φ1 × φ1 = I + φ2. (1.2)

In section 2.3, this truncated OPE will be discussed in detail as the simplest example of our truncation

ansatz.
7The idea of solving the crossing equations by a severely truncated fusion rule was first proposed by

Gliozzi [77]. See [78–82] also for some later results.
8It is also possible that there is no relevant operator, which was examined in the 2d CFTs in [82].
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Using the truncation ansatz, the OPE coefficients P2, PT are approximated by some

rational functions of the scaling dimensions ∆1, ∆2 and the spacetime dimension d. In-

terestingly, it turns out many physical CFTs are consistent with the same equations, so

these relations are universal! This phenomenon echoes the emergence of universality in low

energy physics as the effective description is insensitive to the microscopic details.

The paper is organized as follows.

In section 2, we describe our inverse approach to the conformal bootstrap program and

a natural truncation ansatz arising from this perspective. The general truncation procedure

is illustrated by a toy example.

In section 3, we apply the truncation framework to the conformal field theories in two

dimensions. We focus on the 2d minimal models where the exact expressions of the 4-point

functions are known, so we can compare our estimates of the OPE coefficients with the

exact values. We also show how one can identify the 2d Lee-Yang CFT and the 2d Ising

CFT in the truncation framework based on the phenomenon of operator decoupling.

In section 4, we consider conformal field theories in general dimensions. In contrast to

section 3, we assume the presence of twist gaps. After deriving the approximate equations

of the OPE coefficients, we examine several physical CFTs in various dimensions and show

the universal equations are consistent with the well-established results.

In section 5, we further discuss our results and propose some directions for future

investigations.

2 Inverse bootstrapping method

In the quantum inverse scattering method [83], one begins with the solutions of a non-

trivial consistency condition, i.e. the Yang-Baxter equation [84, 85]. Analogously, in the

inverse bootstrapping method, we will start from the solutions of a non-trivial consistency

condition, namely the crossing equation (2.1) to be defined below.9 The CFT data can

be directly deduced from a given crossing symmetric function. By working at the level of

the solution space, the inverse perspective provides us with a natural truncation ansatz

obeying the crossing equation (2.1).

2.1 Crossing symmetric functions

In Polyakov’s original paper on the conformal bootstrap [2], he devised an alternative

approach10 which was less explored compared to the standard one. In this approach,

one starts from some explicitly crossing-symmetric building blocks which however contain

unphysical logarithmic terms. Then physical operator product expansions require some

consistency conditions so that the logarithmic terms cancel out, leading to constraints on

the CFT data. As an example, Polyakov reproduced the lowest order anomalous dimensions

of the Wilson-Fisher fixed point in d = 4− ε dimensions.

9See also the recent works [86–88] which study the systematic constructions of crossing symmetric

solutions.
10This approach was revisited and extended in the recent works [89–92].
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The idea of our inverse approach is similar to Polyakov’s alternative method, but we use

some information of the general structure of conformal blocks, so our crossing-symmetric

building blocks are compatible with operator product expansions. The starting point is

the non-trivial crossing equation

v∆G(u, v) = u∆G(v, u), (2.1)

where G(u, v) is the conformal invariant part of the four-point function of identical scalar

operators

< φ(x1)φ(x2)φ(x3)φ(x4) >=
1

(x2
12x

2
34)∆

G(u, v), (2.2)

the conformal invariant cross-ratios are defined as

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.3)

and ∆ is the scaling dimension of the external scalar operator φ.11

Let us introduce a two-variable function

H(u, v) = v∆G(u, v). (2.5)

The crossing equation (2.1) indicates H(u, v) is a symmetric function of u and v.

If H(u, v) is a symmetric polynomial function, it can be decomposed into

H(u, v) =
∞∑

m,n=0

cm,n (umvn + unvm), m ≤ n, (2.6)

where the crossing symmetric building blocks are

umvn + unvm. (2.7)

For example, in 4d free CFTs, the 4-point function of the canonical scalar corre-

sponds to

H4d free(u, v) = v(1 + u+ u/v) = uv + (u+ v). (2.8)

In general, H(u, v) is not necessarily a polynomial function. For instance, in the 2d Ising

CFT, the four point function of the spin operator corresponds to

H2d Ising(u, v) =

√
1 +
√
u+
√
v√

2
. (2.9)

If we expand H(u, v) around u = v = 0, the crossing symmetric building blocks are

umvn + unvm, u1/2+mvn + unv1/2+m, (2.10)

11There is another crossing equation

G(u, v) = G(u/v, 1/v). (2.4)

Since we only consider four-point functions of identical scalar operators, the second crossing equation (2.4)

is solved if all the exchanged operators have even spins. We focus on the first crossing equation (2.1) in

this work.
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where the exponents are extended to rational numbers. The half-integer exponents 1/2+m

have clear physical interpretation in the operator product expansions: they are related

to the twists of the exchanged operators. To see their physical interpretation, we need

to examine the series expansion of conformal blocks (see appendix A for more details),

which reads

Fτ, l(u, v) = uτ/2(1− v)l[1 +O(1− v)] +O(uτ/2+1), (2.11)

where τ, l are the twist and the spin of the exchanged primary operator.12 From the general

structure of the series expansion, we know the exponents of the symmetric power functions

are given by τ/2 +m.

In the 2d Ising CFT, the four-point function of the spin operator is a linear combination

of two Virasoro conformal blocks, corresponding to the identity operator and the energy

operator. We can decompose the Virasoro block of the energy operator into global blocks.

One can check that the twists of the low spin primary operators are precisely τ = 1, which

explains the presence of 1/2 in the exponents. Note that, in a generic CFT, the twists of

primary operators are not restricted to rational numbers. Furthermore, in a non-unitary

CFT, the twists can also violate the unitary bounds.

In (generalized) free CFTs and 2d Minimal models, where exact expressions of the 4-

point functions are known, we can explicitly decompose H(u, v) into the crossing symmetric

building blocks

uτ/2+mvτ
′/2+n + uτ

′/2+nvτ/2+m, (2.13)

where τ, τ ′ are the twists of the exchanged primary operators.13

As a working assumption, we assume H(u, v) can be decomposed into the crossing

symmetric building blocks (2.13). It not clear what are the necessary conditions for the

existence of this series representation. This issue was also discussed in [69].

If we expand the symmetric function H(u, v) by a smooth deformation parameter, up

to some subtleties of potential infinite sums, we should obtain symmetric polynomials of

log u, log v at each order. In addition, the degrees of the polynomials should match with

the expansion orders. In [69], Alday and Zhiboedov conjectured that this is always the

case in the four-point functions in weakly coupled CFTs, where the deformation parameters

correspond to some small coupling constants. As test examples, they checked the four-point

function of identical half BPS scalars in N = 4 supersymmetric Yang-Mills theory [93, 94]

to two-loop order and the correlators of Konishi operators [95] to one-loop order.

In the ε-expansion, we have a different deformation parameter. In the φ4 Wilson-Fisher

CFT, the parameter is ε = 4 − d and the zeroth order expression is given by (2.8). We

expect and check that the first order correction should be a degree-1 polynomial in log u

12The scaling dimension of the exchanged primary operator is

∆ = τ + l. (2.12)

For scalar operators, the twists are equal to the scaling dimensions. In this work, we use twists as the

independent spectral parameters, instead of scaling dimensions.
13When the external scalars are different, the crossing symmetric building blocks are not necessarily

symmetric functions, as the exchanged operators in s- and t- channels may be different.
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and log v [
h1(u, v) log u+ h2(u, v) log u log v + (u↔ v)

]
ε, (2.14)

where the classic results in [96] are used.14,15

The Mellin representation of H(u, v) is a contour integral of usvtM(s, t), whereM(s, t)

is the Mellin amplitude up to some normalization convention. We expect in the Mellin

space the crossing equation (2.1) translates into the requirement that poles are crossing-

symmetric in s- and t- channels. A celebrated example of crossing symmetric pole structure

is the Veneziano amplitude [97] involving the Gamma function. In 2d CFTs, one finds that

the Mellin amplitudes16 of the 2d Ising CFT and the 2d Lee-Yang CFT are also given by

products of Gamma functions with rational poles symmetric in the s- and t- channels [69].

Furthermore, a recent work [99] on the holographic 4-point functions of half BPS operators

in Type-IIB supergravity on AdS5 × S5 shows that, in the case of identical operators,

a simple Mellin amplitude with manifestly crossing-symmetric poles can reproduce the

previous explicit results in [100–103]. The formulation of the bootstrap ansatz in [99] is

similar to our inverse bootstrap perspective.

In fact, in [103], which is based on the position space, the general 4-point functions

are directly constructed from a finite number of crossing symmetric building blocks. In

some sense, our inverse bootstrap ansatz (see the precise formulation in (2.17)) is a non-

supersymmetric generalization of the ansatz in [103]. To proceed further, we will introduce

a truncation procedure so that the less symmetric CFTs become finite-dimensional prob-

lems as well.

The free correlators are clearly linear combinations of the crossing symmetric building

blocks (2.13). We argue that if some interacting CFTs are connected to free theories by

smooth, continuous deformations, H(u, v) should also allow an expansion in terms of the

crossing symmetric building blocks (2.13)

H(u, v) =
∑
i,j

∞∑
m,n=0

cm,ni,j (uτi/2+mvτj/2+n + uτj/2+nvτi/2+m), (2.15)

where τi runs over the twist spectrum from low to high twists and the indices run over two

possibilities

i < j, or i = j, m ≤ n. (2.16)

If i = j and m = n, the summand has only one term to avoid over-counting.

A concise, equivalent representation of (2.15) is

H(u, v) =
∑
i,j

∞∑
m,n=0

cm,ni,j uτi/2+mvτj/2+n, (2.17)

14Note that h1(u, v) and h2(u, v) are power series of u, v. We only verified (2.14) to a few orders. In

principle, (2.14) can be proved using the closed form expression of the scalar conformal block.
15A more non-trivial check would be the ε2 order terms which can be done using the second order

correction to the OPE coefficients recently obtained in [90, 91].
16The use of Mellin transform in the context of CFTs was initiated in [98].
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where the crossing equation (2.1) requires

cm,ni,j = cn,mj,i . (2.18)

If the twist spectrum is discrete and bounded from below, then one can reconstruct

the series order by order. Note that we do not assume unitarity.

Let us first consider the limit u � 1 but v fixed at a finite value. From the s-

channel OPE expansion, we can identify the minimal twist τ1 from the leading asymptotic

behavior of H(u, v) ∼ uτ1/2f1(v). The second lowest twist can be determined from the

leading asymptotic behavior of H(u, v) − uτ1/2f1(v) ∼ uτ2/2f2(v). In principle, we can

recover the twist spectrum by repeating this procedure. Note some of them are the twists

of the descendants.

From crossing symmetry, this series expansion is dominated by crossing symmetric

building blocks (2.13) of small exponents. Then we can consider the limits u � 1, v � 1

to fix the coefficients cm,ni,j of the crossing symmetric building blocks (2.13). For example,

we have f1(v) ∼ c0,0
1,1 v

τ1/2. In principle, we can reconstruct the series expansion (2.17)

order by order in the small u, v expansion.

Naively, in the lightcone limit, where u, v → 0, the leading crossing-symmetric building

block is uτmin/2 vτmin/2. For instance, we have τmin = 0 in the 2d Ising CFT, while τmin =

−2/5 in the 2d Lee-Yang CFT. However, this leading term can be absent. If the identity

has the lowest twist and the twist spectrum is gapped, the leading crossing-symmetric

combination becomes uτmin/2 v∆ + u∆ vτmin/2 with τmin = 0.

Now let us introduce the concept of “twist family”17

{τi} :=
τi
2
,
τi
2

+ 1,
τi
2

+ 2,
τi
2

+ 3, . . . , (2.19)

which generalizes the Virasoro modules in 2d CFTs and will be useful later. In H(u, v),

the exponents in the form τi/2 + m are in the same twist family {τi}. They are related

to exchanged operators of twists τi + 2m.18 In the s-channel OPE, we can identify the

contributions of the exchanged operators in the same twist family with a partial sum by

fixing i ∑
τO⊂{τi}

PO FτO, lO(u, v) =
∞∑

m,n=0

uτi/2+mvn
∑
j

cm,ni,j vτj/2−∆, (2.20)

where FτO, lO(u, v) is the conformal block of the exchanged operator O. These partial sums

generalize the Virasoro conformal blocks in 2d CFTs.

If there is a finite number of exchanged operators in the same twist family {τi}, then

the left hand side contains logarithmic terms

uτi/2+m vn log v (2.21)

17See [73, 74] also for the recently proposed interesting concept “twist conformal block”, which is a special

combination of global conformal blocks in the same twist family.
18The minimum value of the exponents in a twist family {τi} can be larger than τi/2 if there is more

than one exchanged operator with twist τi and the lowest order term cancels out.
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from the small v asymptotic behavior of the conformal blocks. In order to reproduce the

same logarithmic singularity, the right hand should contain power law singularities due to

negative exponents

τj/2−∆ < 0. (2.22)

Then we can expand the power functions

vτj/2−∆ = e(τj/2−∆) log v = 1 + (τj/2−∆) log v +O[(log v)2], (2.23)

which requires an infinite number of negative exponent terms to cancel all the higher order

logarithmic singularities. In particular, in unitary CFTs where the primaries obey the

unitary bounds, there exist an infinite number of exchanged spinning operators Oi whose

anomalous dimensions satisfy

0 ≤ γi < 2γφ, (2.24)

where γφ = ∆ − (d − 2)/2 is the anomalous dimension of the external scalar. We have

assumed only a finite number of exchanged scalar operators have scaling dimensions smaller

than 2∆. In this way, we deduce a general property of the high spin spectrum first obtained

in [63, 64].

2.2 Truncating the fusion rules

For each symmetric function in the form of (2.17), we can deduce the corresponding spec-

trum and the OPE coefficients of the exchanged operator

G(u, v) = v−∆H(u, v) = 1 +
∑
k

Pk Fτk, lk(u, v). (2.25)

where Pk, to be more precise, are the squares of the OPE coefficients

Pk = C2
φφOk

. (2.26)

In principle, we can search for physical CFTs by scanning the space of crossing sym-

metric functions. However, to match with the conformal partial wave expansions, we need

to expand v around v = 1

vα = [1− (1− v)]α = 1− α(1− v) +O[(1− v)2]. (2.27)

Then the high order terms also contribute to the low-lying conformal data. We need to know

the exact expression of H(u, v) to obtain the exact CFT data of the low-lying operators.

In a generalized free CFT, H free(u, v) involves only one crossing symmetric building

block and the free parameter is the scaling dimension of the external scalar operator. But

in a generic interacting CFT, we have an infinite number of parameters. In some 2d

CFTs, we can group the global CFT data according to a finite number of Virasoro primary

operators, then the parameter spaces have finite dimensions. In general, the parameter

spaces of interacting CFTs seem to be infinitely dimensional.

At the level of crossing symmetric functions, we can impose functional truncations.

In other words, we can reduce the dimension of the parameter space to a finite number

– 9 –
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by restricting to the subspace of crossing symmetric functions which are constructed from

a finite number of crossing symmetric building blocks (2.13). In this inverse approach,

we are equipped with natural truncation schemes which are compatible with the crossing

equation (2.1).

In this work, the truncation ansatz consists of three steps:

• Step 1:

In the first step, we truncate the physical fusion rule to a few low-lying operators

φ× φ = I +O1 +O2 + · · ·+Op, (2.28)

so we have a finite number of exchanged primary operators. Here, we impose a cutoff

and omit the primary operators of small OPE coefficients. The exponents of the

crossing symmetric building blocks are grouped into a finite number of sets according

to their twist families.

• Step 2:

Although we have truncated the fusion rules, H(u, v) still involves an infinite number

of exponents. In the second step, we introduce a cutoff M for the twists. In each

twist family {τi}M , the possible exponents are then limited to

{τi}M →
τi
2
,
τi + 2

2
, . . . ,

τi + 2M − 2

2
,
τi + 2M

2
. (2.29)

Now we have only a finite number of crossing symmetric building blocks from the

truncated twist families {τi}M . Let us denote the number of inequivalent twist fam-

ilies by N

{τi}M , with i = 1, 2, . . . , N. (2.30)

• Step 3:

In the third step, we require G(u, v) = v−∆H(u, v) reproduces the truncated fusion

rule (2.28). This amounts to expanding G(u, v) around {u, v} = {0, 1} and matching

the series coefficients with those of the conformal blocks. For each twist family,

we impose

uτi/2
M∑

m,n=0

N∑
j=1

cm,ni,j um vτj/2+n−∆ ∼
∑

τO⊂{τi}

PO FτO,lO(u, v), (2.31)

where M is the twist cutoff and N is the number of twist families. Now we introduce

the descendant cutoff K and the matching is valid for the low lying spectrum of the

twist family {τi}M
∆ ≤ τi +K, τ ≤ τi + 2M, (2.32)

where the second equation is from Step 2. The descendant cutoff K can also be

understood as a scaling dimension cutoff.
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Intuitively, we can interpret the scalar primary with scaling dimension τi as the higher

dimensional generalization of the Virasoro scalar primary. Then a term

uτi/2+m(1− v)l (2.33)

is associated with a level k = 2m + l descendant with spin l and scaling dimension

∆i,k = τi + 2m+ l.

To exactly reproduce the truncated fusion rule, we need an infinite number of crossing-

symmetric building blocks. Since we introduce a cutoff M to the maximum twist in

the second step, the left hand side of (2.31) already miss some high-twist terms. In

addition, even if we focus on the low-twist terms, the fusion rule from H(u, v) will

inevitably involve additional operators with large scaling dimensions.

In technical terms, when we expand the left hand side of (2.31) around v = 1, only

the low order terms can match with the right hand side, because the parameter space

is now finite-dimensional. Beyond the descendant cutoff K, the series coefficients will

not match, which translates into the presence of additional operators with dimensions

∆ > τi +K. The operators beyond the descendant cutoff may be related to physical

conformal multiplets with large scaling dimensions in the untruncated spectrum.

The precise matching conditions can be expressed as

uτi/2
N∑
j=0

M∑
m,n=0

cm,ni,j um vτj/2+n−∆ −
∑

τO⊂{τi}

PO FτO,lO(u, v)

=

M∑
m=0

uτi/2+mO[(1− v)max(K−2m+1, 0)] +O(uτi/2+M+1), (2.34)

where, in the second line, the first term is due to the descendant cutoff K and the

second term is related to the twist cutoff M . We have used some information of the

series expansion of spinning conformal blocks. We also use the max function to avoid

negative exponents.

Above, we explain the general truncation procedure. Let us emphasize that we are not

considering the lightcone expansion around u = v = 0. In the truncated functional space,

the “effective” coefficients cm,ni,j of the same CFT depend on the truncation cutoffs19 and

they are different from those in the lightcone expansion.20 The power function building

blocks (2.13) are just an intuitive and efficient basis for the crossing-symmetric functions.21

19Although cm,n
i,j do not converge in the severe trunctions, the low-lying CFT data usually become more

accurate as we introduce more primary operators and increase the twist and descendant cutoffs.
20The lightcone expansion may correspond to the limit where the cutoffs are sent to infinity, in analogy

to the UV fixed point of a renormalization group flow.
21As we will see in section 4, the results of the 2d CFTs are reasonably accurate even if we use a “wrong”

basis from the perspective of the lightcone expansion. The physical CFT data are not very sensitive to the

difference in the two bases. The exceptions are the OPE coefficients of the stress tensor in the 2d Lee-Yang

and Ising CFTs, where the first order estimate (3.28) generates the exact values.
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One should think of v−∆H(u, v) as a trial crossing solution expanded around {u, v} =

{0, 1}.22 The OPE convergence is rapid as the expansions are in the Euclidean regime.23

The assumption in the truncation procedure is that the OPE coefficients of the sub-

leading operators are much smaller than those of the low-lying operators. The low-lying

operators are those with low twists τ and small scaling dimensions ∆.24 Step 1 is about

primary operators and the corresponding conformal multiplets, while Step 2 and Step 3

are about descendant operators. The physical CFTs should be the case due to the rapid

OPE convergence.

From the matching conditions (2.34), we obtain a set of polynomial equations

1

k!

N∑
j=0

M∑
n=0

(∆− τj/2− n)k c
m,n
i,j =

∑
τO⊂{τi}

PO bm,k(τO, lO, d), (2.36)

i = 0, 1, . . . , N, k = 0, 1, . . . ,K − 2m, (2.37)

where bm,k(τO, lO, d) are the series coefficients of the conformal block of the exchanged

operator O in d-dimensional spacetime (see appendix A) and (x)n is the Pochhammer

symbol

(x)n = Γ(x+ n)/Γ(x). (2.38)

We interpret these equations as a system of linear equations, where the unknowns

correspond to the OPE coefficients PO and the crossing symmetric function coefficients

cm,ni,j . The coefficients of the linear system are polynomials of the scaling dimension ∆ of

the external scalar, the spectral data {τO, lO} and the spacetime dimension d. The linear

system is non-homogeneous due to the fixed OPE coefficient of the identity operator.

After choosing the truncated fusion rule and the twist cutoff M , the number of un-

knowns is fixed, so we can consider an appropriate descendant cutoff K which lead to

enough equations to solve the unknowns.25 If the determinant is non-zero, we can solve

the linear system. The solutions are rational functions. In the fractions, the denomina-

tors are given by the same determinant and the numerators are linear combinations of the

determinants of the minors.

In particular, the OPE coefficients are approximated by some rational functions26 of

the spectral data {∆, τO, lO} and the spacetime dimension d. Since we do not use any

information of a specific CFT, the relations27 between the OPE coefficients and the spectral

22A countable basis for the crossing-symmetric functions is

(u− a)m(v − a)n + (u− a)n(v − a)m, m, n = 0, 1, 2, . . . , (2.35)

around the Euclidean crossing symmetric point u = v = a ≥ 1/4.
23The Euclidean regime is defined by 4u ≥ (u− v + 1)2.
24Since the spin l of an operator is the difference between its scaling dimension ∆ and twist τ , i.e.

l = ∆− τ . The low-lying operators have low spins as well. We assume ∆ and τ are bounded from below.
25There might be several choices if the number of equations are slightly larger or smaller than that of the

unknowns.
26A rational function is a fraction of two polynomial functions.
27Note that they are approximate relations because of the truncation procedure.
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data are universal and model-independent! In other words, these relations should apply to

different CFTs, as long as they are consistent with the truncated fusion rule.

In section 3 and section 4, we examine some concrete CFTs in various dimensions. It

turns out that many physical CFTs are consistent with the minimal fusion rule

φ1 × φ1 = I + φ2 + T, (2.39)

where φ1, φ2 are scalar operators, I is the identity operator and T is the stress tensor.

Let us discuss a subtlety concerning the degeneracy of twist-0 operators. The fusion

rules of two identical scalars always contain the identity operator. In d > 2, typically only

the identity operator has a vanishing twist

τI = 0. (2.40)

In unitary CFTs, when d > 2, the twist spectra are gapped because of the unitary bounds

∆ ≥

{
(d− 2)/2, if l = 0;

d− 2 + l, if l > 0,
(2.41)

which translate into twist gaps between the identity operator and the exchanged operators

τ ≥

{
(d− 2)/2, if l = 0;

d− 2, if l > 0.
(2.42)

In some non-unitary CFTs, such as the 3d Lee-Yang CFTs, the twist-0 state is also non-

degenerate in the twist spectrum.

If the identity operator is the only operator with zero twist, we can deduce from the

crossing equation (2.1) that G(u, v) and H(u, v) contain some universal terms

G(u, v) = 1 +

(
u

v

)∆

+ . . . , H(u, v) = v∆ + u∆ + . . . , (2.43)

where the second terms correspond to operators in the twist family {τ = 2∆}. In (gen-

eralized) free CFTs, all the exchanged operators are in the double-twist family. However,

in interacting CFTs, we usually do not find operators with twists 2∆ + 2n. Therefore, in

the crossing-symmetric function H(u, v), we will introduce a twist family {τ = 2∆}, but

impose the OPE coefficients in this double-twist family vanish when the descendant levels

are lower than the cutoff K.

In 2d CFTs, both the identity operator, the stress tensor and many higher spin oper-

ators have zero twist, so it is possible that G(u, v), H(u, v) do not contain the universal

terms. We will not introduce the double-twist family {τ = 2∆} in the study of 2d CFTs

in section 3.

Before moving to a toy example of the truncation ansatz, we want to compare our

truncation ansatz with Gliozzi’s ansatz [77]:
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• In both methods, the fusion rules are severely truncated. The use of fusion rule

truncations in our approach is inspired by Gliozzi’s work [77]. Our motivation is to

better understand the effective descriptions of CFTs and their general structure in

the spirit of Effective Field Theory. To our understanding, Gliozzi’s main motivation

is to extend the standard numerical bootstrap method beyond unitary CFTs using

the determinant technique. Our method also applies to non-unitary CFTs.

• In our inverse approach, the crossing equation (2.1) is exactly solved by crossing sym-

metric functions. In Gliozzi’s approach, the crossing equation (2.1) is approximately

solved following the standard numerical approach [4]. In more details, our approach

expands the crossing solutions around the conformal block boundary condition point

(u, v) = (0, 1), while Gliozzi’s approach expands the crossing equation (2.1) around

the crossing symmetric point u = v = 1/4. As a result, our method involves polyno-

mial equations, while Gliozzi’s method deals with transcendental equations.

In addition, our approach requires many additional unknowns to parametrize the

crossing symmetric function H(u, v). A related consequence is that we can consider

even more severe truncations of the fusion rules than Gliozzi’s method. But the

number of unknowns grows much faster when we consider more operators.

2.3 Toy example: φ1 × φ1 = I + φ2

Let us consider a toy example of the truncation ansatz. The truncated fusion rule reads

φ1 × φ1 = I + φ2. (2.44)

The absence of the stress tensor may seem unphysical,28 but this truncation can be

consistent when φ2 is a relevant operator, i.e. ∆2 < ∆T = d. The truncation ansatz

outlined above can be carried out explicitly. The result is simple but non-trivial.

We follow the three-step ansatz:

1. To begin with, the conformal invariant part of < φ1(x1)φ1(x2)φ1(x3)φ1(x4) > reads

G(u, v) = v−∆1
∑
i,j=0,2

∞∑
m,n=0

cm,ni,j u
τi/2+mvτj/2+n, (i,m) ≤ (j, n), (2.45)

where the possible values of τi are determined by the truncated fusion rule

τ0 = 0, τ2 = ∆2. (2.46)

Here we use the 2d scheme without taking into account the issue of twist gaps.

The crossing equation (2.1) implies that v∆1G(u, v) should be a symmetric function

in (u, v), so the coefficients cm,ni,j satisfy the crossing symmetric conditions

cm,ni,j = cn,mj,i . (2.47)

28In generalized free CFTs, the stress tensor is usually absent from the OPEs.
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2. In the second step, we set the twist cutoff to zero, namely

M = 0. (2.48)

In other words, we truncate the crossing symmetric function to the lowest order in

u, so G(u, v) has only 4 terms

G(u, v) = c0,0
0,0 v

−∆1 + c0,0
0,2 v

∆2/2−∆1 + c0,0
0,2 u

∆2/2v−∆1 + c0,0
2,2 u

∆2/2v∆2/2−∆1 , (2.49)

where we have used the crossing symmetric condition

c0,0
2,0 = c0,0

0,2. (2.50)

Let us introduce a simplified notation for this toy example

ci,j = c0,0
i,j . (2.51)

3. In the last step, let us set the descendant cutoff to be

K = 1, (2.52)

then the number of equations is the same as the number of unknowns.

According to the descendant cutoff, we expand the crossing symmetric function

around v = 1 to the first order

G(u, v) = a0,0 + a0,1(1− v) + u∆2/2 [a2,0 + a2,1(1− v)] +O[(1− v)2], (2.53)

where ai,j are related to ci,j by

a0,0 = c0,0 + c0,2,

a0,1 = c0,0 ∆1 + c0,2 (∆1 −∆2/2),

a2,0 = c0,2 + c2,2,

a2,1 = c0,2 ∆1 + c2,2 (∆1 −∆2/2). (2.54)

Then we require that G(u, v) reproduces the series expansions of the conformal blocks

at low orders

G(u, v) = 1 + P2F∆=∆2,l=0(u, v) +O[(1− v)2]

= 1 + P2 [1 + b0,1(∆2, 0, d)(1− v)] +O[(1− v)2], (2.55)

where from the series expansion of conformal blocks (see appendix A) we have

b0,1(∆2, 0, d) =
∆2

4
. (2.56)

There are 4 equations for 4 unknowns {P2, c0,0, c0,2, c2,2}. The linear system is

given by

a0,0 = 1, a0,1 = 0, a2,0 = P2, a2,1 = P2
∆2

4
. (2.57)
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When the determinant is non-zero, i.e. 3∆2 6= 4∆1, the linear system (2.57) has a

unique solution

c0,0 = 1− 2∆1

∆2
, c0,2 =

2∆1

∆2
, c2,2 =

2∆1

∆2

4∆1 −∆2

3∆2 − 4∆1
, (2.58)

and

P2 =
4∆1

3∆2 − 4∆1
. (2.59)

The spacetime dimension d does not play a role because the series coefficients of a con-

formal block are d-independent at the lowest twist order (m = 0). The OPE coefficient P2 is

a simple rational function (2.59) of the scaling dimensions ∆1,∆2 of the scalar operators.29

If we use the scheme for d > 2 CFTs, the identity part in the crossing symmetric

functions will be replaced by the double-twist power function with τ0 = 2∆1. In addition,

in the third step, the OPE coefficients for the double-twist block should vanish. With the

same cutoff parameters (M,K) = (0, 1), we obtain a linear system and the solutions of ci,j
are different. However, the solution of the OPE coefficient P2 is the same as (2.59). The

relation (2.59) is independent of which scheme is used.

The degenerate case ∆2 = 4∆1/3 has a curious interpretation in 2d. In [82], the

same relation for the scaling dimensions was found numerically using Gliozzi’s determinant

method. Then it was identified with the exact solution of a special Virasoro fusion rule

φ1 × φ1 = φ2, where the identity operator is absent. When ∆1 is positive, the central

charge is larger than one because c = 1 + 16∆1. The decoupling of the identity operator is

captured by the degeneracy condition in the toy example.

From the severely truncated fusion rule (2.44), we obtain a simple relation (2.59) for

the conformal data P2,∆1,∆2. Given the scaling dimensions of φ1, φ2, we can estimate

the OPE coefficient P2 using the model-independent, d-independent equation (2.59). In

table 1, we compare some estimates from (2.59) with the known results. Although the

estimate equation (2.44) is very simple, the first significant figures agree with these known

values. In the case of (generalized) free CFTs, our estimate coincides with the exact value.

In particular, the 3d estimates are surprisingly accurate.

If we increase the twist cutoff and the corresponding descendant cutoff, the estimates

of P2 become less accurate, which indicates some subleading operators should be taken

into account.

3 2d minimal model CFTs

In two dimensions, the global conformal symmetry is extended to the infinite dimensional

Virasoro symmetry. Exact solutions of some CFTs are known as their operator algebras

29One may derive an analogous relation by directly expanding v∆1 [1+P2 G∆2,0(u, v)] around the crossing

symmetric point u = v = 1/4 and requiring the coefficients of (u− 1/4) and (v− 1/4) match. The result is

a transcendental equation

P2 = − ∆1

(∆1 + v ∂v − v ∂u)F∆2,0(u, v)

∣∣∣
u→1/4, v→1/4

. (2.60)

However, this estimate equation is not as accurate as (2.59).
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P2 free φ4 WF 2d LY 2d Ising 3d LY 3d Ising

estimate 2 2− ε −4 0.2 -4 1.0

exact/numerical 2 2− 2ε/3 −3.7 0.25 −3.9 1.1

Table 1. The estimates of the OPE coefficient P2 from (2.59) and the known results from exact

solutions [96, 104] or numerical conformal bootstrap [53, 77] in several CFTs. We only show two

significant figures. Input parameters are the scaling dimensions of φ1, φ2 from the exact results [96,

104] or numerical conformal bootstrap [53, 77]. LY and WF stand for Lee-Yang and Wilson-Fisher.

To derive the estimates of P2 in the Lee-Yang CFTs, we only use the information that ∆1 = ∆2

and the analytic estimate is P2 = −4. The relative errors in 3d interacting CFTs are smaller than

those in 2d.

become finitely dimensional. In this section, we examine the 2d minimal models using our

truncation ansatz.

In the 2d minimal models [104], the Virasoro primary operators φr,s are labeled by

two integers (r, s). In general, a null state appears at level l = rs in the Verma module

V (c, ∆r,s), where ∆r,s are the scaling dimensions of the Virasoro primary operators φr,s.

Let us consider φ1,2 which has a null descendant at level 2. The 4-point function of φ1,2

satisfies a second order differential equation due to the level-2 null state. The general

solution is a linear combination of two independent solutions. They correspond to two

Virasoro conformal blocks from the Virasoro fusion rule

φ1,2 × φ1,2 = φ1,1 + φ1,3 , (3.1)

where φ1,1 is the identity operator. The scaling dimensions of φ1,2, φ1,3 are

∆1,2 = ∆, ∆1,3 =
2

3
(1 + 4∆). (3.2)

A Virasoro conformal block can be decomposed into an infinite number of global con-

formal blocks in the same twist family. In particular, the Virasoro conformal block of

the identity operator contains the stress tensor block, as the stress tensor is a Virasoro

descendant of the identity operator.

There are two integration constants in the general solution of the 4-point function of

φ1,2. One of them is fixed by the OPE coefficient of the identity operator. The ratio of the

two constants is determined by the crossing equation (2.1). The explicit solution reads

G(z, z̄) = FVirasoro
1,1 (z)FVirasoro

1,1 (z̄) + P1,3 F
Virasoro
1,3 (z)FVirasoro

1,3 (z̄), (3.3)

where the (anti-)holomorphic Virasoro blocks are

FVirasoro
1,1 (z) = (1− z)−∆

2F1

[
1− 2∆

3
, −2∆,

2(1− 2∆)

3
; z

]
,

FVirasoro
1,3 (z) = (1− z)

1+∆
3 z

1+4∆
3 2F1

[
2(1 + ∆)

3
, 1 + 2∆,

4(1 + ∆)

3
; z

]
, (3.4)
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the Virasoro OPE coefficient P1,3 is

P1,3 =
21− 8

3
(1+∆) Γ

(
2(1−2∆)

3

)2
Γ(1 + 2∆)2

[
sin
(
π(1+16∆)

6

)
− cos

(
π(1+4∆)

3

)]
π Γ
(

7+4∆
6

)2 , (3.5)

and the variables z, z̄ are related to u, v by

u = zz̄, v = (1− z)(1− z̄). (3.6)

In the crossing symmetric solution (3.3), we have a free parameter ∆. In unitary minimal

models, it takes some positive rational values

∆ = ∆1,2 =
1

2
− 3

2(m+ 1)
, m = 3, 4, 5, . . . (3.7)

and the central charge reads

c = 1− 6

m(m+ 1)
. (3.8)

A more general way to parameterize ∆ is

∆ = ∆1,2 =
1

8

[
5− c−

√
(1− c)(25− c)

]
. (3.9)

By extending the central charge c to a continuous parameter, we obtain an interpolat-

ing solution between unitary minimal models [14]. Non-unitary minimal models are also

included where ∆ are given by some rational numbers different from the unitary values.

Let us decompose G(u, v) into global conformal blocks

G = 1 + P2Gτ2, l2 + PT GτT , lT + P3Gτ3, l3 + . . . (3.10)

and the global fusion rule corresponds to

φ1 × φ1 = I + φ2 + T + φ3 + . . . . (3.11)

The global spectral data of the low-lying primary operators in the OPE are

∆1 = ∆1,2 = ∆, ∆2 = ∆1,3 =
2

3
(1 + 4∆), (3.12)

{τ2, l2} = {∆2, 0}, {τT , lT } = {0, 2}, (3.13)

{τ3, l3} = {∆2, 2}. (3.14)

Note that the identity operator I and the stress tensor T have the same twist, while the

operators φ2, φ3 also have the same twist.

The global OPE coefficients of the low-lying operators are

P2 = P1,3, PT =
∆(1 + ∆)

2(5− 4∆)
, (3.15)

P3 = − (1 + ∆)(2 + 5∆)(1− 8∆)

6(7 + 4∆)(5 + 8∆)
P1,3, (3.16)

where P1,3 is defined in (3.5).
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LY m=3 m=4 m=5 m=6 m=7

P2 −3.7 0.25 0.37 0.45 0.50 0.53

PT /P2 0.010 0.13 0.15 0.17 0.19 0.21

P3/PT 0 0 0.046 0.070 0.082 0.091

Table 2. The exact values or ratios of the OPE coefficients P2, PT , P3 in several 2d minimal

models [104]. LY stands for the 2d Lee-Yang CFT. The parameter m indicates 2d unitary minimal

modelsM(m+1,m). We only show two significant figures. |PT | are always smaller than |P2|, while

|P3| are much smaller than |PT |. P3 vanishes in the 2d Lee-Yang and Ising CFTs.

In table 2, we compare the exact OPE coefficients of some 2d minimal models. We can

see the OPE coefficients of the stress tensor T are smaller than those of the leading scalar

φ2, which explains the good estimates for the 2d CFTs in the toy example in section 2.3.

There is a hierarchy in the OPE coefficients of the leading and subleading spin-2 operator

{T, φ3}. From the ratios of the OPE coefficients, we expect the 2d Lee-Yang CFT can be

easily truncated and the estimates for the 2d unitary minimal models are more accurate

when m is small.

In section 3.1, we consider the minimal fusion rule in the 2d CFTs

φ1 × φ1 = I + φ2 + T, (3.17)

where φ2 is assumed to be a scalar operator and T is the stress tensor. Instead of scanning

the complete two dimensional parameter space {∆1, ∆2}, we simply set the spectral data

of φ1, φ2 to (3.12), (3.13), so the parameter space becomes one dimensional.30 Then we

compare the estimates of the OPE coefficients P2, PT from the truncation ansatz with the

exact results (3.15).

The OPE coefficient P3 of the spin-2 operator φ3 has some interesting features. It

vanishes at ∆ = −2/5, −1, 0, 1/8. These zeros are related to 2d minimal models M(5, 2)

and M(m + 1, m) with m = 0, 2, 3.31 In particular, M(5, 2) and M(4, 3) correspond to

the 2d Lee-Yang CFT and the 2d Ising CFT. In other words, the two physical CFTs can

be identified from the decoupling of the subleading operator φ3. In section 3.2, we inves-

tigate this phenomenon in our truncation framework by adding operators to the minimal

fusion rule.

30We leave the complete scanning of the two-dimensional parameter space {∆1, ∆2} for future study.
31When ∆ = 0 or ∆ = −1, the OPE coefficient of the stress tensor PT also vanishes, so these two cases

are in some sense trivial or unphysical. In the first case (m = 2), φ1,2 becomes an identity operator (∆ = 0)

and the 4-point function reduces to 1

G(u, v)
∣∣
∆→0

= 1. (3.18)

In the second case (m = 0), the scaling dimensions are ∆1 = −1 and ∆2 = −2. The 4-point function of φ1

reduces to

G(u, v)|∆→−1 =
2

3
[1 + u−1 + (u/v)−1], (3.19)

so we have a non-unitary free theory L ∼ φ1 �2φ1 and φ2 is a composite operator φ2 ∼ φ2
1.
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3.1 Minimal fusion rule: φ1 × φ1 = I + φ2 + T

Let us consider the minimal fusion rule

φ1 × φ1 = I + φ2 + T (3.20)

in the context of 2d CFTs. The identity operator and the stress tensor are in the same

twist family {τ0 = 0}. The scalar operator φ2 is in the second twist family {τ2 = ∆2}.
The conformal invariant part of the 4-point function becomes

G(u, v) = v−∆1
∑
i,j=0,2

M∑
m,n=0

cm,ni,j u
τi/2+mvτj/2+n, (3.21)

where M is the twist cutoff.

We consider different approximation schemes:

• At the zeroth order approximation, we set the twist cutoff as

M (0) = 0. (3.22)

Since we have one more unknown PT than the toy example in section 2.3, we need

one more equation. We increase the descendant cutoff of the twist family {τ0 = 0} to

K0 = 2, because the new equation contains PT . The solution of the linear system is

P
(0)
2 =

4∆1

3∆2 − 4∆1
, P

(0)
T =

1

4
∆1(∆2 − 2∆1). (3.23)

The expression of P2 is the same as the result (2.59) in the toy example. Let us

substitute ∆1, ∆2 with (3.12), then we have

P
(0)
2 =

2∆

1 + 2∆
, P

(0)
T =

1

6
∆(1 + ∆). (3.24)

• Then we consider the first order approximation where the twist cutoff becomes

M (1) = 1. (3.25)

An appropriate descendant cutoff is

K(1) = 3. (3.26)

The number of unknowns is 12 and the number of equations is (4 + 2) × 2 = 12,

so we can solve the linear system. Using the minimal model values (3.12), the

solutions become

P
(1)
2 = − 12∆(−2 + ∆)(5 + 8∆)(−13 + 7∆ + 2∆2)

−670− 1435∆ + 492∆2 + 884∆3 − 424∆4 + 192∆5
, (3.27)

P
(1)
T =

∆(1 + 4∆)(−54− 137∆ + 63∆2 + 69∆3 + 4∆4)

−670− 1435∆ + 492∆2 + 884∆3 − 424∆4 + 192∆5
. (3.28)
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P2 LY m=3 m=4 m=5 m=6 m=7 η

0th -4 0.2 0.286 0.333 0.364 0.385 < 30%

1st -3.70 0.243 0.353 0.415 0.454 0.481 < 10%

2nd -3.62 0.246 0.364 0.434 0.479 0.511 < 5%

exact -3.65 0.25 0.373 0.446 0.496 0.532

Table 3. The estimates of the OPE coefficient P2 at different approximation orders and their

exact values. LY stands for the 2d Lee-Yang CFT. The parameters m indicate 2d unitary minimal

models M(m+ 1,m). We only show three significant figures. The estimates are more accurate at

high orders. The relative errors η
(i)
2 are defined as |1−P (i)

2 /P exact
2 |. The relative errors increase as

we consider larger ∆.

The denominators coincide because they are from the same determinant. Surprisingly,

P
(1)
T gives the exact values of the central charges of the 2d Lee-Yang and Ising CFTs.32

• If we go to the second order

M (2) = 2, (3.29)

the appropriate descendant cutoff is

K(2) = 5. (3.30)

We need to neglect one equation so that the numbers of equations and unknowns

match. We consider two schemes: in the first one, we neglect the last equation

(m = M, k = K) in the twist family {τ0}; in the second one, we omit the last

equation (m = M, k = K) in the twist family {τ2}. The solutions turn out to be the

same rational functions of ∆. They are denoted by

P
(2)
2 , P

(2)
T . (3.31)

Their explicit expressions are much more involved, so we will not write them down.

The estimates for P2 are improved, but the estimates for PT are less accurate. The

scaling dimensions associated with the descendant cutoff are already much higher

than those of the operators in the truncated fusion rules, so we will not go to higher

orders.

In table 3 and table 4, we compare the estimates at different approximation or-

ders with the exact results. Using the minimal fusion rule, the first order approxima-

tions (3.27), (3.28) already give estimates of the OPE coefficients with less than 10%

relative errors.

The truncated fusion rule is not restricted to the operator products of the lowest scalar

operators. In fact, in many 2d minimal models, φ1,2 is not the primary operator with the

lowest scaling dimension.

32In [15], as a warm-up example of the extremal functional method, similar estimates of the two OPE co-

efficients were discussed by numerically solving the truncated crossing equations. If we do not assume (3.12)

and use the same input ∆1 = 0.125, ∆2 = 1.03 from [15], the first order approximation of P2 is the same,

but the approximate central charge c ∼ 0.48 is closer to the exact value c = 0.5 than the estimate in [15]

which is c ∼ 0.45.
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PT LY m=3 m=4 m=5 m=6 m=7 η

0th -0.04 0.023 0.04 0.052 0.061 0.068 < 50% (not LY)

1st -0.018 0.016 0.030 0.042 0.052 0.059 < 10%

2nd -0.021 0.017 0.034 0.048 0.061 0.072 < 35%

exact -0.018 0.016 0.029 0.039 0.048 0.055

Table 4. The estimates of the OPE coefficient PT at different approximation orders and their

exact values. LY stands for the 2d Lee-Yang CFT. 2d unitary minimal models M(m + 1,m) are

denoted by m. We only show two significant figures. The optimal estimates are from the first order

approximations. Surprisingly, the approximate equation P
(1)
T in (3.28) generates the exact values

in the cases of the 2d Lee-Yang CFT and the 2d Ising CFT. We suspect this is related to the

decoupling of the spin-2 operator φ3. The relative errors η
(i)
T are defined as |1 − P (i)

T /P exact
T |. In

the first order approximation, the relative errors increase for larger ∆. However, the second order

approximation is less accurate, which indicates the importance of subleading operators.

3.2 Operator decoupling

In the interpolating solution between 2d minimal models, the OPE coefficient P3 of the

subleading spin-2 operator (τ3 = ∆2) vanishes when ∆ takes some special values. The zeros

at ∆ = −2/5 and ∆ = 1/8 correspond to the 2d Lee-Yang CFT and the 2d Ising CFT.

We want to study the operator decoupling phenomenon in the truncation framework.

It is necessary to introduce the subleading operators to the truncated fusion rules. The

decoupling of the subleading spin-2 operator φ3 provides alternative definitions of the 2d

Lee-Yang CFT and the 2d Ising CFT.

3.2.1 2d Lee-Yang CFT

Let us introduce the subleading spin-2 operator φ3 to the truncated fusion rule

φ1 × φ1 = I + φ2 + T + φ3. (3.32)

At the zeroth order, we set the twist cutoff as M (0) = 0 and the corresponding de-

scendant cutoff is K(0) = 2. At the first order, the twist cutoff is M (1) = 1 and the

appropriate descendant cutoff is K(1) = 3. In both cases, we need one more equation be-

yond the descendant cutoff. We always use the first equation beyond the descendant cutoff

{m = 0, k = K + 1} in the second twist family {τ = ∆2}. We choose the second twist

family because these equations involve P3, then the solutions of P3 are more accurate. In

figure 1, we compare the exact function of P3(∆) with the first-order and the second-order

estimate functions.

According to the first order solution, the Lee-Yang value is determined by the polyno-

mial equation

130− 359∆− 2511∆2 − 2099∆3 − 128∆4 + 192∆5 = 0, (3.33)

and the approximate Lee-Yang root is

∆estimate
2d Lee-Yang ∼ −0.401, (3.34)
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Figure 1. The exact values (blue) of the OPE coefficient P3(∆) as a function of the scaling dimen-

sion ∆ of φ1,2 and its estimates in the zeroth (orange) and the first (green) order approximations.

The qualitative behavior of the first order estimate is close to the exact function. The Lee-Yang

root of the first order estimate is rather accurate.

where we only show three significant figures. The first order estimate of the Lee-Yang root

is close to the exact value

∆exact
2d Lee-Yang = −0.4. (3.35)

In figure 1, The first order estimate P
(1)
3 matches with the qualitative behavior of the

exact solution. The estimate for the Ising value is ∆ ∼ 0.16, which is not far from the

exact value ∆ = 0.125. To improve the Ising estimate, we need to introduce the higher

operators.

3.2.2 2d Ising CFT

To obtain a more accurate Ising root, we introduce one more primary operator φ4 to the

truncated fusion rule

φ1 × φ1 = I + φ2 + T + φ3 + φ4. (3.36)

The possible choices for φ4 are

{τ4, l4} = {4, 0}, {0, 4}, {∆2 + 4, 0}, {∆2, 4}. (3.37)

From the exact solution, we know the third operator {τ = ∆2 + 4, l = 0} also decouples at

the 2d Ising point (∆ = 1/8), so we will not consider this possibility. The OPE coefficients

of the other operators are in the same order of magnitude.33

To improve the accuracy of the 2d Ising root, we increase the twist cutoff to the second

order (M = 2). The number of unknowns is 25. The appropriate descendant cutoff is K = 5

and the number of equations is (6 + 4 + 2) × 2 = 24, so we need one more equation. We

again use the first equation beyond the descendant cutoff (m = 0, k = K+1) in the second

33In principle, we should add all of them, but in this preliminary study we consider the minimal

modification.
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P3( )

exact
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Figure 2. The exact values (blue) of the OPE coefficient P3(∆) as a function of the scaling

dimension ∆ and its second order estimates with different φ4 operators: {τ4, l4} = {4, 0} (orange),

{τ4, l4} = {0, 4} (green). The two approximate functions almost coincide when ∆ is smaller than

the Ising root. The estimate functions are close to the exact function between ∆ = −0.05 and

∆ = 0.15. The Ising roots are rather accurate in the second order approximations, but the Lee-

Yang roots are less accurate than the first order result.

twist family {τ = ∆2}. The solutions of P3 are the same for the choices {τ4 = 4, l4 = 0}
and {τ4 = ∆2, l4 = 4}. As a result, we have two independent solutions corresponding to

{τ4, l4} = {4, 0}, {0, 4}. (3.38)

In figure 2, the exact function and two second order approximate functions of P3(∆)

are presented. The Ising roots of the two estimate function are given by the same polyno-

mial equation

39504∆ + 280496∆2 + 331542∆3 + 91875∆4

− 45629∆5 − 25992∆6 − 1728∆7 + 512∆8 = 10080. (3.39)

The numerical value of the approximate Ising root is

∆estimate
2d Ising ∼ 0.1257, (3.40)

where we only show 4 significant figures. The estimate value is close to the exact value

∆exact
2d Ising = 0.125. (3.41)

From the decoupling of the subleading operator φ3, we are able to obtain a rather accurate

estimate of the 2d Ising scaling dimension in the truncation framework.

4 CFTs in various dimensions

In this section, we investigate CFTs in general dimensions in the truncation framework.

In section 4.1, we derive the approximate relations corresponding to the minimal fusion
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rule. Then we examine these relations in the canonical free CFTs and the Wilson-Fisher

CFTs. We also apply these relations to the Lee-Yang CFTs and the Ising CFTs in

various dimensions.

4.1 Minimal fusion rule: φ1 × φ1 = I + φ2 + T

We mainly consider the minimal fusion rule

φ1 × φ1 = I + φ2 + T, (4.1)

where I is the identity operator, {φ1, φ2} are primary scalar operators and T is the stress

tensor. Let us assume that only the identity operator has a vanishing twist

τI = 0. (4.2)

Then, from crossing symmetry, the identity term leads to a double-twist family {τ = 2∆1}
in the conformal partial wave expansion of G(u, v)

G(u, v) = 1 +
(u
v

)∆1

+ u∆1 + . . . (4.3)

In the crossing symmetric function, we have two universal crossing-symmetric building

blocks

H(u, v) = (v∆1 + u∆1) + u∆1v∆1 + . . . (4.4)

The 4-point function of the fundamental scalar in a free theory contains only the universal

part. The general form of the crossing symmetric function becomes

H(u, v) = v∆1 + u∆1 +
∑
i,j

M∑
m,n=0

cm,ni,j uτi/2+mvτj/2+n, (4.5)

i, j = 0, 2, T, (i,m) ≤ (j, n), (4.6)

where the double twist family corresponds to i = 0, namely

τ0 = 2∆1. (4.7)

The coefficient of the second universal crossing symmetric building block indicates

c0,0
0,0 = 1. However, since we only use the crossing equation (2.1), we will promote c0,0

0,0 to a

free parameter.

Due to the non-degeneracy of the twist-0 operator in the twist spectrum, there is only

one twist-0 term v∆1 , corresponding to the identity operator. To simplify the notation,

we use 0 to indicate the double-twist family and hopefully this notation will not lead

to confusion.

Let us derive the estimate equations of the OPE coefficients P2, PT using the minimal

fusion rule:
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• At the zeroth order, we set the twist cutoff as

M (0) = 0. (4.8)

The appropriate descendant cutoff is

K(0) = 2. (4.9)

The number of equations is slightly larger than the number of unknowns. We need

to omit one equation.

1. In the first scheme, we omit the last equation (k = K) in the twist family

{τ = ∆2}. The solutions of the OPE coefficients are

P
(0,1)
2 =

4∆1

3∆2 − 4∆1
, P

(0,1)
T =

∆1∆2(∆2 − 2∆1)

4(∆2 + 2− d)
. (4.10)

When d = 2, the OPE coefficients reduce to the 2d results (3.23).

2. In the second scheme, we neglect the last equation (k = K) in the double twist

family {τ = 2∆1}. The zeroth order estimates of the OPE coefficients are

P
(0,2)
2 =

4∆1

3∆2 − 4∆1
, P

(0,2)
T =

∆1∆2(∆2−2∆1)(4∆1−2∆2+4∆1∆2−3∆2
2)

8(2∆1 + 2− d)(4∆1 − 3∆2)(∆2 + 1)
.

(4.11)

The d = 2 limit of PT is different from that in (3.23).

3. In the third scheme, we omit the last equation in the twist family {τ = d− 2}.
However, the linear system has no solution because the equations do not contain

PT . This scheme is inconsistent.

We have two different schemes for the zeroth order approximation. The estimate

equation P
(0,1)
T in (4.10) works better than the more complicate equation P

(0,2)
T

in (4.11). In the examples, we only present the zeroth order estimates of (4.10)

and then focus on the first order estimates.

• At the first order, we set the twist and the descendant cutoffs as

M (1) = 1, K(1) = 4. (4.12)

The number of unknowns is 23, while the number of equations is (5 + 3) × 3 = 24.

To obtain a solution, we need to omit at least one equation. However, no general

solution is found if only one equation is neglected, which means not all the equations

are compatible with each other. This is related to the fact that we can solve P2, PT
using less than 23 equations. We consider three different choices:

1. In the first case, we decrease the descendant cutoff of the double twist family

{τ0 = 2∆1} to K
(1)
0 = 3. The solutions are denoted by

P
(1,1)
2 , P

(1,1)
T . (4.13)
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2. In the second case, we choose a lower descendant cutoff for the twist family

{τ2 = ∆2}: K(1)
2 = 3. The solutions are given by

P
(1,2)
2 , P

(1,2)
T . (4.14)

3. In the third case, we lower the descendant cutoff of the twist family {τT = d−2}
to K

(1)
T = 3. The solutions are

P
(1,3)
2 , P

(1,3)
T . (4.15)

In each scheme, we use only 22 equations to solve the linear system. Although one

cm,ni,j remains arbitrary, the solutions of the approximate OPE coefficients P2, PT are

fixed. The free parameter can be determined using an appropriate equation beyond

the descendant cutoff.

Due to the large number of unknowns in the linear system, the first order solutions

are fractions of two high order polynomials. We will not write down their explicit

expressions.

We mainly examine the first order estimates in the concrete examples

P
(1,i)
2 , P

(1,i)
T , i = 1, 2, 3. (4.16)

Although we assume the twist-0 operators are non-degenerate, we also test these approx-

imate relations in 2d CFTs. They give accurate estimates for the 2d OPE coefficients as

well, which confirms our previous statement that the CFT data are insensitive to the choice

of our basis functions.

4.2 Canonical free scalar theory

Let us consider the canonical free scalar field theory in general dimensions. The La-

grangian reads

L =
1

2
(∂φ1)2. (4.17)

In the 4-point function of φ1, the conformal invariant part G(u, v) is

G(u, v) = 1 +
(u
v

) d−2
2

+ u
d−2

2 (4.18)

and the associated crossing symmetric function is

H(u, v) = v
d−2

2 + u
d−2

2 + (u v)
d−2

2 . (4.19)

Note that we do not assume d is an integer.

We can decompose G(u, v) into conformal blocks

G(u, v) = 1 + P2 Fτ2, l2(u, v) + PT FτT , lT (u, v) + . . . , (4.20)

where the fusion rule is

φ1 × φ1 = I + φ2 + T + . . . , (4.21)
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and φ2 is a composite operator

φ2 ∼ (φ1)2. (4.22)

The spectral data of the low-lying operators are

{∆1 = (d− 2)/2, l1 = 0}, {∆2 = d− 2, l2 = 0}, {τT = d− 2, lT = 2}. (4.23)

All exchanged operators are in the double-twist family {τ = 2∆1}.
The exact values of P2, PT as functions of the spacetime dimension d are

P2 = 2, PT =
d(d− 2)2

16(d− 1)
. (4.24)

Let us check the estimates of the OPE coefficients by substituting

∆1 =
1

2
(d− 2), ∆2 = d− 2 (4.25)

into the approximate OPE coefficients from the truncation procedure.

The zeroth order estimates (4.10) give

P
(0,1)
2 = 2, P

(0,1)
T =

(d− 2)2

8
. (4.26)

The estimate of the OPE coefficient P2 are exact, but that of PT is not accurate.

Now we move to the first order approximations. Surprisingly, all the first order esti-

mates (4.13), (4.14), (4.15) give the exact values

P
(1,i)
2 = 2, P

(1,i)
T =

d(d− 2)2

16(d− 1)
. (4.27)

Note that we do not make the assumption that the spacetime dimension d is an integer,

so d is a continuous parameter. We do not consider generalized free theories because the

stress tensor usually decouples and their fusion rules are not consistent with the minimal

fusion rule.

4.3 φ2n Wilson-Fisher CFTs

Since the first order approximations give the exact OPE coefficients of the free scalar

theory, it is interesting to consider small deformations of the free CFTs. We now examine

the Wilson-Fisher CFTs where the ε-parameter can be considered as a small deformation

parameter. Note that we do not introduce global internal symmetry, so there is only one

fundamental scalar operator in each case.

For φ4 theory in d = 4− ε dimensions [96], the conformal data of the low-lying opera-

tors are34

∆1

∣∣
φ4 = 1− ε

2
+O(ε2), ∆2

∣∣
φ4 = 2− 2

3
ε+O(ε2) (4.28)

P exact
2

∣∣
φ4 = 2− 2

3
ε+O(ε2), P exact

T

∣∣
φ4 =

1

3
− 11

36
ε+O(ε2). (4.29)

34There is one more relevant operator, i.e. φ4, but its squared OPE coefficient is of higher order in ε. We

will not consider its contribution.
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The first order estimates (4.13), (4.14), (4.15) of the OPE coefficients gives

P
(1,1)
2

∣∣
φ4 = 2− 59

90
ε+O(ε2), P

(1,1)
T

∣∣
φ4 =

1

3
− 29

108
ε+O(ε2), (4.30)

P
(1,2)
2

∣∣
φ4 = 2− 85

126
ε+O(ε2), P

(1,2)
T

∣∣
φ4 =

1

3
− 209

726
ε+O(ε2), (4.31)

P
(1,3)
2

∣∣
φ4 = 2− 59

90
ε+O(ε2), P

(1,3)
T

∣∣
φ4 =

1

3
− 29

108
ε+O(ε2), (4.32)

where the results of the first and the third schemes are different at the ε2 order. If we keep

only three significant figures of the numerical values, the OPE coefficients become

P exact
2

∣∣
φ4 = 2− 0.667 ε+O(ε2), P exact

T

∣∣
φ4 = 0.333− 0.306 ε+O(ε2), (4.33)

P
(1,1)
2

∣∣
φ4 = 2− 0.656 ε+O(ε2), P

(1,1)
T

∣∣
φ4 = 0.333− 0.269 ε+O(ε2), (4.34)

P
(1,2)
2

∣∣
φ4 = 2− 0.675 ε+O(ε2), P

(1,2)
T

∣∣
φ4 = 0.333− 0.276 ε+O(ε2), (4.35)

P
(1,3)
2

∣∣
φ4 = 2− 0.656 ε+O(ε2), P

(1,3)
T

∣∣
φ4 = 0.333− 0.269 ε+O(ε2). (4.36)

The estimates of P2 are close to the exact value, while those of PT are slightly less accurate.

For φ6 theory in d = 3+ε dimensions, the scaling dimensions of the low-lying scalars are

∆1

∣∣
φ6 =

1

2
+

1

2
ε+O(ε2), ∆2

∣∣
φ6 = 1 + ε+O(ε2), (4.37)

then, to the ε1-order, the approximate equations (4.13), (4.14), (4.15) in the three schemes

give the same estimates

P
(1,i)
2

∣∣
φ6 = 2 + 0 ε+O(ε2), P

(1,i)
T

∣∣
φ6 =

3

32
+

11

64
ε+O(ε2), (4.38)

where the ε0-order terms are the free OPE coefficients in 3d. To the ε1-order, the conformal

data look like a canonical free scalar theory in d = 3 + ε dimensions. It will be interesting

to check whether the corrections at the ε1-order are good estimates by computing P2, PT
in a different method.

We do not consider the φ3 theory in d = 6− ε dimensions due to the singular contribu-

tion in the conformal block of the exchange primary φ, which is induced by the conformal

multiplet recombination �φ ∼ φ2. However, we can consider lower spacetime dimensions.

We study the Lee-Yang CFTs in 2 ≤ d < 6 dimensions in section 4.4.

4.4 Lee-Yang CFTs in d = 2, 3, 4, 5 dimensions

The non-trivial fixed points of the φ3 theory correspond to the Lee-Yang CFTs [105]. In

the Lee-Yang CFTs, the two scalars φ1, φ2 coincide, so their scaling dimensions are equal

to each other

∆1 = ∆2. (4.39)

The edge exponent σ is related to the scaling dimension of φ1 by

σ =
∆1

d−∆1
. (4.40)
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d=2 d=3 d=3 d=4 d=4 d = 5

σinput −1/6 0.076 0.085 0.259 0.2685 0.4105

P
(1,1)
2 −3.63 −3.90 −3.88 −2.82 −2.67 −0.858

P
(1,2)
2 −3.63 −3.90 −3.88 −2.80 −2.65 −0.807

P
(1,3)
2 −3.63 −3.90 −3.88 −2.83 −2.67 −0.859

P
exact/numerical

2 −3.65 −3.91 −3.88(1) −2.86 −2.72(1) −0.95(2)

Table 5. The first order estimates of the OPE coefficient P2 of the Lee-Yang CFTs in various

dimensions and the exact value [104] or the numerical values from conformal bootstrap [77, 78].

We only show three significant figures of the estimates. The estimates are most accurate in three

dimensional spacetime. The estimates in 5d seem to be the least accurate.

d=2 d=3 d=3 d=4 d=4 d = 5

σinput −1/6 0.076 0.085 0.259 0.2685 0.4105

P
(1,1)
T −0.016 0.0017 0.0024 0.070 0.082 0.31

P
(1,2)
T −0.016 0.0017 0.0024 0.066 0.079 0.24

P
(1,3)
T −0.016 0.0017 0.0024 0.071 0.083 0.31

P
exact/numerical
T −0.018 0.0023 − 0.13 − −

Table 6. The first order estimates of the OPE coefficient PT in various dimensions and the exact

value [104] or the numerical bootstrap values [77]. The input data are from [77, 78]. Some of the

numerical values are absent. We only show two significant figures of PT . The 2d estimate is close to

the exact value, but the 3d and 4d estimates are less consistent with the bootstrap results in [77].

In table 5 and table 6, we use the numerical values of the edge exponent in various

dimensions to compute the estimates of the OPE coefficients P2, PT . In 2d, we use the

exact value of σ and compare with the exact OPE coefficients [104]. In higher spacetime

dimensions, the input values are from [77, 78], then in table 5 we compare the estimate

results with those in [77, 78]. If the input values of the edge exponent are accurate, the

estimates of PT are the predictions of our truncation ansatz.

In 3d and 4d, we consider two different sets of input values from [77, 78]. In 3d,

the estimates of P2 match with the numerical results particularly well. It seems the OPE

coefficient P2 in 3d is mainly determined by the edge exponent.35 In contrast, the estimates

of the stress tensor OPE coefficients are less close to the results in [77].

As the dimension of spacetime increases, the estimates are less consistent with the

previous numerical results, which signals the importance of subleading operators. For

instance, |PT | is much smaller than |P2| in 3d, but they are in the same order of magnitude

in 5d.

35Note that |PT /P2| is very small in 3d, which explains the accuracy of the 3d estimates of P2.
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d=2 d=3

(∆1, ∆2)input (0.125, 1) (0.5181, 1.413)

(P2, PT )(0,1) (0.2, 0.023) (0.96, 0.17)

(P2, PT )(1,1) (0.254, 0.018) (1.12, 0.12)

(P2, PT )(1,2) (0.252, 0.018) (1.11, 0.11)

(P2, PT )(1,3) (0.254, 0.019) (1.12, 0.12)

(P2, PT )exact/numerical (0.25, 0.016) (1.11, 0.11)

Table 7. The estimates of the Ising OPE coefficient P2, PT in 2d and 3d, the 2d exact values [104]

and the 3d numerical bootstrap values [53]. We only show three significant figures of P2 and

two significant figures of PT . The zeroth order equations are (4.10) and the first order equations

are (4.13), (4.14), (4.15). The first order estimates for the OPE coefficients of the 3d Ising CFT are

rather accurate.

4.5 Ising CFTs in d = 2, 3 dimensions

In this subsection, we want to test our estimate equations (4.13), (4.14), (4.15) in the Ising

CFTs. The 2d Ising CFT corresponds to the 2d minimal model with m = 3, so its exact

CFT data are known. The 3d Ising CFT is the most prominent example of the modern

numerical bootstrap method, where the low-lying conformal data are determined to high

precision [53].

In table 7, we present the estimates of the OPE coefficients P2, PT by the zeroth order

equations (4.10) and the first order equations (4.13), (4.14), (4.15). The estimates for the

3d Ising CFT are particularly accurate. The 2d estimates are slightly less accurate.

5 Discussion

In this work, we develop a novel approach to study conformal field theories using the con-

formal bootstrap. This approach is different from the standard method. Our starting point

is the crossing symmetric functions, so the non-trivial crossing equation (2.1) is manifestly

solved. Let us emphasize that, after introducing the cutoffs, the truncated crossing sym-

metric functions are studied in the Euclidean regime where the OPE convergence is rapid.

In this new perspective, we have a natural truncation ansatz in the crossing solution

space. We focus on the minimal truncated fusion rule

φ1 × φ1 = I + φ2 + T, (5.1)

and derive some relations for the CFT data of the truncated spectrum. From these ap-

proximate relations, one can estimate the OPE coefficients using the scaling dimensions

of two scalar operators. For instance, if one measures the scaling dimensions of the two

scalars φ1, φ2, we can predict the magnitude of the three point function coefficient of

< φ1 φ1 φ2 >. The prediction should be accurate if the coefficients of other three point

functions < φ1 φ1O > |O6=φ2 are comparably small.
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In section 4, we test the first order approximate equations (4.13), (4.14), (4.15) in sev-

eral CFTs in various dimensions. The estimates of the OPE coefficient P2 are particularly

accurate and the estimates of PT are consistent with the well-established results. In 2d

CFTs, due to the absence of twist gaps, the structure of the crossing-symmetric functions

is slightly different, so we have different estimate equations (see section 3.1). But the equa-

tions (4.13), (4.14), (4.15) also give rather accurate estimates of the 2d OPE coefficients.

Therefore, the equations (4.13), (4.14), (4.15) are universal!

In section 3.2, the 2d Lee-Yang and the 2d Ising CFTs are identified in our truncation

framework based on the phenomenon of operator decoupling. It will be very interesting

to investigate the decoupling of subleading operators analytically in 3d CFTs, which was

observed in the numerical bootstrap study of the 3d Ising CFT [20].

Let us stress that the estimate equations (4.13), (4.14), (4.15) work exceptionally well

in 3d, i.e. in the 3d Lee-Yang CFT and the 3d Ising CFT. In the traditional analytic

methods, 3d CFTs are the least accessible because they are far from the free theories in

the ε-expansions and, unlike the 2d minimal models, they do not have exact solutions. The

encouraging results suggest that we should further develop this approach to study the 3d

CFTs systematically.

To improve the truncation ansatz, we need to understand why sometimes higher order

approximations or longer truncated fusion rules do not give better estimates. We think this

is related to the fact that the truncation ansatz is not a perturbation procedure where one

expands the results in terms of some small parameters. By higher order, we instead mean

the cutoffs are increased and the space of crossing symmetric functions is enlarged. In

addition, all the operators in the truncated fusion rules are treated equally without using

the information that the leading operators are more important.36 As a result, after we

introduce more operators to the fusion rules, the estimates for the leading OPE coefficients

sometimes become less accurate, which can be traced back to the instability of the sub-

leading operators. An interesting direction to be investigated is to develop a perturbation

procedure where the OPE coefficients of the subleading operators are the small expansion

parameters. A byproduct may be a better control of the error estimations. Note that we

do not attempt to assign error bars in the present work.

It is also important to understand how to incorporate the O(N) models in our trun-

cation framework. For example, in ~φ4 theory, the OPE of two fundamental scalars φi, φj
involves more than one relevant scalars: a singlet and a traceless tensor operators, corre-

sponding to the composite operators ~φ2 and φiφj − δij ~φ2/N . In the minimal fusion rule,

there is only one relevant scalar, so it seems that we need to extend the truncated fusion

rule. The issue of mixed correlators also deserves investigation.

It would be interesting to consider the truncation framework in different coordinate

systems or even different representation. For example, it was showed in [106] that the polar

coordinate has better convergent properties. In the Mellin representation, the conformal

blocks, which are infinite series in the position space, are instead related to polynomials of

finite degrees [98, 107–111].

36However, the estimate equations know the OPE coefficients of the leading operators should be larger.

By leading operators, we mean operators of low scaling dimensions and low spins.
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An ambitious direction is the extension to general quantum field theories without

conformal symmetry. In the truncation procedure, we do not consider the high level de-

scendants, but they play an important role in preserving conformal invariance. It seems

the rapid OPE convergence is more crucial than conformal symmetry in this bootstrap

method. It is natural to extend the inverse bootstrap approach to general QFTs.

For practical reasons, we mainly discuss the approximate results from the truncation

procedure in this work. Now we switch to the discussion of exact results. If some CFTs

share the same general solution of the crossing equations, they are connected by continuous

deformations of the spectral data {∆i, li} and the spacetime dimension d, while the OPE

coefficients are determined by crossing symmetry. The fact that many physical CFTs are

consistent with the same approximate relations seems to indicate that they are connected

to each other. One example is the Wilson-Fisher fixed points which smoothly connect free

CFTs with interacting φn theories,37 with the spacetime dimension d being the deformation

parameter.38 Another example is the interpolation between the 2d minimal models where

the deformation parameter corresponds to the central charge. In both cases, the unitary

CFTs are smoothly connected by some non-unitary CFTs.39

Then we have two interesting questions. Are the general solutions of the crossing

equations unique? If not, can we classify them? To address these two questions, we

need to understand better the topology of the space of crossing symmetric functions, i.e.

the solution space of the crossing equations. In a connected region, we expect the OPE

coefficients share a universal formula as a function of {d,∆i, li}, but one should distinguish

the spectral data of the operator under consideration from the others.

A different, but more physical, classification will be based on the shortest, consistent

truncation of a given fusion rule. Since in this work we only consider CFTs with single

fundamental scalar operator in the Lagrangian descriptions, it is natural that the fusion

rules with single relevant scalar are in the same “universality class”. The unexpected

feature is that the differences in discrete symmetries seem to be less crucial. Perhaps

continuous symmetries are more important, as we have additional conserved currents. One

of the simplest examples is the O(N) model discussed above.
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A Series expansion of conformal blocks

In this appendix, we summarize some relevant properties of the series expansion of confor-

mal blocks [110, 121–125]. The twist and the spin of the exchanged primary operator O
are denoted by τ, l. The scaling dimension ∆ is given by

∆ = τ + l. (A.1)

We will use τ and l as the independent spectral data of the exchanged primary field.

The conformal invariant part of a four-point function can be decomposed into a sum of

conformal blocks. The conformal block of the primary O and its descendants has a double

power series representation

Fτ, l(u, v) = uτ/2
∞∑

m,n=0

bm,n(τ, l, d)um(1− v)n. (A.2)

The series coefficients at the lowest twist order (m = 0) have a closed form expression

b0,n(τ, l, d) =
(τ/2 + l −∆12/2)n−l (τ/2 + l + ∆34/2)n−l

(n− l)! (τ + 2l)n−l
, (A.3)

where ∆12, ∆34 are defined by the scaling dimensions of the external scalar operators

∆12 = ∆1 −∆2, ∆34 = ∆3 −∆4, (A.4)

(x)n is the Pochhammer symbol

(x)n = Γ(x+ n)/Γ(x), (A.5)

and b0,n(τ, l, d) vanishes if n−l is a negative integer. From the quadratic Casimir equation of

conformal blocks [125], when m > 0, the series coefficients bm,n satisfy a recursion relation

[m(2m+ 2n− d) + n(n− 1)− l(l − 1) + τ(2m+ n− l)]bm,n
= (τ/2 +m+ n− 1−∆12/2)(τ/2 +m+ n− 1 + ∆34/2) (bm,n−1 + bm−1,n)

+2(n+ 2)(n+ 1)bm−1,n+2 − (n+ 1)(2m+ 3n+ τ −∆12 + ∆34)bm−1,n+1 (A.6)

with

bm,n = 0, if n < 0 or n < l − 2m. (A.7)

From this recursion relation, the first two coefficients at each twist order also have

closed form expressions

bm, l−2m =
(−1)m(−l)2m

m! (l + d/2−m− 1)m
, (A.8)

and

bm, l−2m+1 =
1

2
bm, l−2m(l + τ/2−m−∆12/2 + ∆34/2−∆12 ∆34 b̃m, l−2m+1), (A.9)
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with

b̃m, l−2m+1 =
2m(l − 1) + (l + 1)(d− 2) + τ(2m− l − 1)

2(l − 2m+ 1)(d− τ − 2)(2l + τ)
. (A.10)

If the external scalars are identical, the second coefficient has a simple expression

bm,l−2m+1

∣∣∣
∆12=∆34=0

=
(−1)m(−l)2m

2(m!)(l + d/2−m− 1)m
(l + τ/2−m) . (A.11)

At high twist orders, the first few coefficients at each twist order vanish because l −
2m < 0. Then the first non-zero coefficients correspond to bm,0.

To some extent, the spin l can be considered as a continuous parameter.

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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