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1 Introduction

In the modern approach to scattering amplitudes, N = 4 super Yang-Mills (SYM) theory [1,

2] has played a key conceptual role, especially in the planar limit of a large number of

colors where the theory becomes integrable [3–8] and its amplitudes become dual to Wilson

loops [9–15]. So much is known about the analytic structure of scattering amplitudes in

planar N = 4 SYM that the first amplitude with non-trivial kinematic dependence, the

six-point amplitude, can be bootstrapped to at least five loops [16–22].

Ironically, the finite parts of the six-point amplitude (the remainder function and ratio

function), which are polylogarithmic functions of three variables, are now known to higher

loop orders than is the dimensionally-regulated infrared-divergent prefactor — the BDS

ansatz [23] — even though the latter depends only on four constants per loop order. One

of these constants, the (light-like) cusp anomalous dimension [24, 25] is known to all orders

in planar N = 4 SYM, thanks to integrability [5]. The cusp anomalous dimension controls

the double pole in ǫ in the logarithm of the dimensionally regularized BDS ansatz. The

single pole is controlled by the “collinear” anomalous dimension. In planar N = 4 SYM,

it is known analytically through three loops [23, 26], and it was computed numerically at

four loops a decade ago [27]. The nonplanar contribution to the four-loop collinear anoma-

lous dimension was computed numerically very recently [28, 29]. The collinear anomalous

dimension also enters the Regge trajectory for forward scattering [10, 30, 31]. An eikonal

(Wilson line) version of it enters both the threshold soft anomalous dimension for thresh-

old resummation [32–35] and the rapidity anomalous dimension for transverse momentum

resummation [35–38].

The BDS ansatz also contains two finite constants at each loop order, one for the four-

point amplitude and one for the five-point amplitude. One of these constants is known ana-

lytically at three loops [23], but the other is only known numerically at this loop order [39].

The purpose of this paper is to provide an analytical value for one of the four constants

in question at four loops, namely the collinear anomalous dimension in planar N = 4

SYM. We do so by leveraging two recent four-loop computations in QCD in the large Nc

limit [40, 41], as well as the principle of maximal transcendentality [42–45]. This principle

states that for suitable quantities, such as the BFKL and DGLAP kernels, the result in

N = 4 SYM can be obtained from that in QCD by converting the fermion representation
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from the fundamental (quarks) to the adjoint (gluinos) and then keeping only the functions

that have the highest transcendental weight. In momentum space (x-space) these functions

are typically iterated integrals, and the weight is the number of iterations; in Mellin-moment

space, it corresponds to the number of sums in the nested sums [46]. Here we will only need

the notion of weight for ordinary Riemann zeta values, ζn ≡ ζ(n), for which the weight is

n. Also, the weight is additive for products, and rational numbers have weight zero.

The complete set of observables to which this principle can be applied is still unclear.

Besides anomalous dimensions, it has also been successfully applied to form factors, matrix

elements of gauge-invariant operators with two or three external partons [47–51], and to

certain configurations of semi-infinite Wilson lines [34, 35]. However, it does not hold for

scattering amplitudes with four or five external gluons, even at one loop [52], in the sense

that there are maximally transcendental parts of the QCD one-loop amplitudes which have

different rational prefactors from the corresponding N = 4 SYM amplitudes.

Here we will apply the maximal transcendentality principle to the collinear anomalous

dimension. This quantity depends on the method of regularization. We will compute its

value in dimensional regularization — in fact, in a supersymmetric version of dimensional

regularization such as dimensional reduction. The collinear anomalous dimension has also

been computed using the so-called massive, or Higgs, regularization [53–57]. The Higgs-

regulated result begins to differ from the dimensionally-regularized value starting at three

loops [57], the last value for which it is known. A dual conformal regulator for infrared

divergences has also been defined [58]; however, the multi-loop values of the collinear

anomalous dimension in this scheme are still under investigation [59].

One might think that the collinear anomalous dimension in planar N = 4 SYM could

simply be read off from the leading transcendental terms in the large-Nc quark collinear

anomalous dimension [40]. However, the full-color expression for this quantity is a polyno-

mial in the adjoint and fundamental quadratic Casimirs, CA and CF . In the large-Nc limit,

CA → Nc while CF → Nc/2. In order to apply the principle of maximal transcendentality

at large Nc, we should first set CF → CA; that is, CA → Nc and CF → CA → Nc, not Nc/2.

There is not enough information left in the large-Nc limit to make the correct replacement.

However, if we can first convert the collinear anomalous dimension to an appropriate

eikonal (Wilson line) quantity, then we can make the correct replacement. In a conformal

theory, this “eikonal bypass” only requires [60] knowledge of the virtual anomalous dimen-

sion, the coefficient of δ(1 − x) in the DGLAP kernel. The virtual anomalous dimension

in large-Nc QCD was computed recently at four loops [41], and we can make use of its

leading transcendental part to do the conversion. Once we have the eikonal quantity, we

use its non-abelian exponentiation property [61, 62], which means that it is “maximally

non-abelian”. That is, at any loop order, it can contain only one quadratic Casimir for the

representation of the Wilson line; the remaining group theory factors must all be CA. (A

subtlety that arises when quadratic Casimir scaling does not hold is addressed in section 3.)

This information suffices to allow us to apply the principle of maximal transcendentality

and extract the eikonal quantity in planar N = 4 SYM. Then we use the virtual anomalous

dimension in planar N = 4 SYM, which has been computed to all orders using integrabil-

ity [63–65], to convert back to the non-eikonal collinear anomalous dimension.
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This paper is organized as follows. In section 2 we briefly review the infrared structure

of scattering amplitudes, form factors and Wilson loops in planar N = 4 SYM. In section 3

we carry out the computation and then conclude.

2 Review of infrared structure of planar N = 4 SYM

In this section we give a very brief review of the infrared structure of scattering ampli-

tudes, form factors and Wilson loops in planar N = 4 SYM. In general, multi-loop n-point

amplitudes can be factorized into soft, collinear and hard virtual contributions, where soft

gluon exchange can connect any of the n hard external legs [66, 67]. This factorization

has consequences for the infrared poles in ǫ of dimensionally-regularized multi-loop ampli-

tudes [68, 69].

In the planar limit, the soft structure simplifies enormously, because only color-adjacent

lines can exchange soft gluons, and the infrared structure of the amplitude for n external

adjoint particles becomes the product of n “wedges”, each equivalent to the square root

of a Sudakov form factor for producing two adjoint particles [23]. The infrared behavior

of the Sudakov form factor was studied using factorization and renormalization group

evolution, beginning in the 1970s [70–75]. Besides the β function (which of course vanishes

inN = 4 SYM), the only quantities that enter are the (light-like) cusp anomalous dimension

γK [24, 25] and an integration constant for a function G(q2), which we will refer to as the

collinear anomalous dimension and denote by G0 [69, 75].

We consider gauge group SU(Nc) and adopt the “integrability” notation for the large-

Nc coupling constant,

g2 ≡ Nc
g2YM

(4π)2
= CA

αs

4π
=

λ

(4π)2
=

a

2
, (2.1)

where αs = g2YM/(4π), λ = Ncg
2
YM is the ’t Hooft coupling, and a was used e.g. in ref. [23].

The quadratic Casimir in the adjoint representation is CA = Nc, while in the fundamental

representation it is CF = (N2
c − 1)/(2Nc).

We expand the cusp and collinear anomalous dimensions in terms of g2:

γK(g) =
∞
∑

L=1

g2Lγ̂
(L)
K , (2.2)

G0(g) =

∞
∑

L=1

g2LĜ
(L)
0 . (2.3)

(Note that another normalization is often used for the cusp anomalous dimension, γK =

2Γcusp.) The cusp anomalous dimension is known to all orders, thanks to integrability [5].

The first four terms in its perturbative expansion are:

γplanar N=4
K = 8 g2 − 16 ζ2 g

4 + 176 ζ4 g
6 −

(

1752 ζ6 + 64 (ζ3)
2
)

g8 . (2.4)

We give the previously-known three-loop result for G0(g) below, in eq. (3.5).
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In a non-conformal theory, when the differential equation for the Sudakov form factor

is integrated up, infrared poles are obtained that involve integrals over functions of the

running coupling in D = 4 − 2ǫ dimensions. Because planar N = 4 SYM is conformally

invariant, the integrals can be performed analytically. One obtains for the color-ordered

n-point scattering amplitude An [23]:

ln

(

An

Atree
n

)

= −
1

8

∞
∑

L=1

g2L

L2 ǫ2

(

γ̂
(L)
K + 2L ǫ Ĝ

(L)
0

)

n
∑

i=1

(

µ2

−si,i+1

)Lǫ

+ finite, (2.5)

where si,i+1 = (ki + ki+1)
2.

The form factor F (Q2) for producing two adjoint particles corresponds to setting n = 2

in this formula, in which case the two wedges have the same kinematics,

lnF (Q2) = −
1

4

∞
∑

L=1

g2L

L2 ǫ2

(

γ̂
(L)
K + 2L ǫ Ĝ

(L)
0

)

(

µ2

−Q2

)Lǫ

+ finite, (2.6)

Wilson loops for light-like n-gons Cn contain ultraviolet poles rather than infrared ones.

These poles have a very similar form (with ǫ → −ǫ due to their ultraviolet nature) [10]:

lnWCn
= −

1

8

∞
∑

L=1

g2L

L2 ǫ2

(

γ̂
(L)
K − 2L ǫ Ĝ

(L)
0, eik

)

n
∑

i=1

(

µ2
UV

−x2i,i+2

)−Lǫ

+ finite, (2.7)

where x2i,i+2 = (xi−xi+2)
2 are invariant distances between the corners of the polygons xµi .

The amplitude-Wilson loop duality makes the identification (xi − xi+2)
2 = (ki + ki+1)

2.

While the leading double poles in Wilson loops are governed by the same quantity as in

amplitudes, namely γK , a different quantity appears in the subleading poles, G0, eik, whose

expansion is defined by

G0, eik(g) =
∞
∑

L=1

g2LĜ
(L)
0, eik . (2.8)

instead of G0.

The relation between G0 and G0, eik was explored in ref. [60], where it was shown that

for a conformal theory, they obey a particularly simple relation,

G0 = G0, eik + 2B . (2.9)

(Empirical evidence for this kind of relation was given in refs. [32, 76].) Here B, sometimes

called Bδ or the virtual anomalous dimension, is the coefficient of the first subleading term

in the limit as x → 1 of the DGLAP kernel for parton i to split to parton i:

Pii(x) =
γK

2(1− x)+
+Bi δ(1− x) + . . . . (2.10)

In a general theory, B = Bi depends on the type of parton i (also the leading, cusp, term

in eq. (2.10) depends on the color representation of parton i), but in N = 4 SYM B is the

same for all partons, by supersymmetry.
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In planar N = 4 SYM, thanks to dual conformal symmetry, the gluon Regge trajectory

governing the forward limit of the four-point amplitude can be computed from the cusp

and collinear anomalous dimensions [10, 30, 31]. The result is [10]

∂

∂ ln s
lnA4(s, t)

∣

∣

∣

s≫t
= ωR(−t), (2.11)

where

ωR(−t) =
1

4
γK ln

(

µ2

−t

)

+
1

4ǫ

∫ g2

0

dg′2

g′2
γK(g′) +

1

2
G0 +O(ǫ). (2.12)

Hence our four-loop result for G0 will also provide ωR(−t) to the same order.

3 The computation

In ref. [40], the quark form factor was computed to four loops in the large Nc limit of QCD,

and the cusp and collinear anomalous dimensions for large-Nc QCD were determined from

it. In ref. [44] it was proposed that the N = 4 super-Yang-Mills results for the twist-

two anomalous dimensions (which includes the cusp anomalous dimension, but not the

collinear anomalous dimension) could be extracted from the leading transcendental terms

in the QCD result by setting CF → CA. Through three loops, where full-color QCD results

are known, the same extraction procedure also works for the collinear anomalous dimension.

Unfortunately, as mentioned in the introduction, the large Nc limit corresponds to

CF =
N2

c − 1

2Nc
→

Nc

2
=

CA

2
. (3.1)

The factor of 1/2 means that the CF → CA replacement can’t be deduced in general

from the large Nc limit. However, there is a workaround, the eikonal bypass discussed

in the introduction, which involves converting the non-eikonal quark collinear anomalous

dimension to an eikonal (Wilson line) quantity [60], with the help of the recent four-loop

result for the DGLAP kernels in the large Nc limit of QCD [41]. In particular, we need

the coefficient of δ(1− x) in this result, the virtual anomalous dimension. We will see that

th CF → CA replacement can be performed for the eikonal quantity we have constructed.

Afterwards, one can use the virtual anomalous dimension for planar N = 4 SYM [63–65]

to convert back to the non-eikonal collinear anomalous dimension. We will find an analytic

expression that is quite close to the numerical result [27].

Through four loops, the leading transcendental part of the leading-color quark collinear

anomalous dimension is [40, 77, 78]

γq|L.C.L.T. = 7 ζ3 g
4 −

(

68 ζ5 +
44

3
ζ2ζ3

)

g6 +
(

705 ζ7 + 144 ζ2 ζ5 + 164 ζ3 ζ4

)

g8 . (3.2)
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Through three loops, we also know the full group-theoretical decomposition [77]:

γq|L.T. = CF

{

(26CA−24CF )ζ3

(

αs

4π

)2

−

[

(

136C2
A+120CFCA−240C2

F

)

ζ5+

(

88

3
C2
A+16CFCA−32C2

F

)

ζ2ζ3

]

(

αs

4π

)3

+ . . .

}

. (3.3)

Letting CF → CA, theN = 4 SYM result, for a gluon or gluino in the adjoint representation

is [44, 79]:

γN=4 = 2 ζ3

(

CA αs

4π

)2

−

(

16 ζ5 +
40

3
ζ2ζ3

)

(

CA αs

4π

)3

+ . . . . (3.4)

In refs. [23, 69], the collinear anomalous dimension G0 was evaluated to two and three

loops in planar N = 4 SYM, although to this order there are no subleading color terms.

The result is

GN=4
0 = −4 ζ3

(

CA αs

4π

)2

+

(

32 ζ5 +
80

3
ζ2ζ3

)

(

CA αs

4π

)3

− . . . . (3.5)

Comparing with eq. (3.4), there is a difference in normalization convention by a factor of

two: G0 = −2γ.

In ref. [41], the twist-two anomalous dimensions or DGLAP kernels were computed

in the large Nc limit of QCD to four loops. In the limit that x → 1, as in eq. (2.10),

the coefficient of the leading 1/(1 − x)+ term is the cusp anomalous dimension [25]. The

next-to-leading term as x → 1 is the coefficient of δ(1 − x), sometimes called the virtual

anomalous dimension, or Bδ, or just B. The large-Nc, leading transcendentality terms in

B for quarks are given by [41, 80]:

Bq|L.C.L.T. = 20 ζ5 g
6 −

(

280 ζ7 + 40 ζ2 ζ5 − 16 ζ3 ζ4

)

g8 . (3.6)

Through three loops, we also know the full group-theoretical decomposition [80]:

Bq|L.T. = CF

{

−12(CA − 2CF )ζ3

(

αs

4π

)2

+

[

(

40C2
A + 120CFCA − 240C2

F

)

ζ5 + 16CF (CA − 2CF )ζ2ζ3

]

(

αs

4π

)3

+ . . .

}

. (3.7)

Letting CF → CA, the N = 4 SYM result, for a gluon or gluino, is [44]:

BN=4 = 12 ζ3

(

CA αs

4π

)2

−
(

80 ζ5 + 16 ζ2ζ3

)

(

CA αs

4π

)3

+ . . . . (3.8)
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We now use eq. (2.9) to construct the eikonal quantity

G0, eik = G0 − 2B = −2 γq − 2B (3.9)

in N = 4 SYM for a Wilson line in the fundamental “F” representation through three

loops, using eqs. (3.3) and (3.7):

G0, eik,F = CF

{

−28CA ζ3

(

αs

4π

)2

+

(

192 ζ5 +
176

3
ζ2ζ3

)

C2
A

(

αs

4π

)3

+ . . .

}

. (3.10)

We see that all the CF terms cancel, except for the overall one. This result reflects non-

abelian exponentiation for this type of Wilson line [61, 62]. These results agree with the

leading transcendental part of the results for f q
L in ref. [32].

The threshold soft anomalous dimension γs defined in refs. [34, 35] (called γW in

ref. [33]) is the same as G0, eik,F up to a conventional minus sign, γs = −G0, eik,F , and

eq. (3.10) agrees with the leading transcendental part of the QCD result in refs. [34, 35].

The rapidity anomalous dimension γr, which enters the SCET description of transverse

momentum resummation, has also been computed to three loops [35]. The result agrees

with the threshold soft anomalous dimension, up to terms that are proportional to coef-

ficients of the QCD beta function. This result was explained in ref. [38] by mapping the

appropriate configurations of Wilson lines for the two computations into each other using a

conformal transformation. Hence we will obtain the four-loop values of both the threshold

soft and rapidity anomalous dimensions in planar N = 4 SYM from

γs, planar N=4 = γr, planar N=4 = −Gplanar N=4
0,eik . (3.11)

In planar N = 4 SYM, the natural Wilson line is in the adjoint representation, not the

fundamental. In the large Nc limit, this collinear anomalous dimension can be obtained

from eq. (3.10) simply by multiplying by an overall factor of 2, since CA = 2CF in the large

Nc limit. What about at four loops? At this order, quadratic Casimir scaling might be

violated. That is, inspecting the color factors of all the Feynman diagrams that contribute

at this order, we see that G0, eik,F might contain — besides CF times a polynomial in CA

— a color factor of
dabcdF dabcdA

NF
=

(N2
c − 1)(N2

c + 6)

48
. (3.12)

(See e.g. eq. (2.14) of ref. [81].) If so, the corresponding term in the case of an adjoint

Wilson line would have the same numerical coefficient multiplying

dabcdA dabcdA

NA
=

N2
c (N

2
c + 36)

24
. (3.13)

However, the latter factor is precisely twice the former factor in the large Nc limit, which

is the same factor as for the conversion CF → CA in this limit. Given that there are

no CF terms in G0, eik,F except for the overall CF , G0, eik in the large Nc limit of N = 4

SYM can be extracted from the leading transcendality terms of the corresponding eikonal

– 7 –
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quantity in the large Nc limit of QCD. (The beta-function correction terms to eq. (2.9) for

a non-conformal theory are also subleading in transcendentality.)

In summary, the eikonal collinear anomalous dimension for planar N = 4 SYM can be

obtained from the large-Nc QCD results for γq and Bq through four loops, using

Gplanar N=4
0,eik = 2

(

−2γq|L.C.L.T. − 2Bq|L.C.L.T.

)

. (3.14)

Inserting eqs. (3.2) and (3.6), we obtain

Gplanar N=4
0,eik = −28 ζ3 g

4+

(

192 ζ5+
176

3
ζ2ζ3

)

g6−
(

1700 ζ7+416 ζ2 ζ5+720 ζ3 ζ4

)

g8 .

(3.15)

The virtual anomalous dimension in planar N = 4 SYM is known to all orders from

integrability [63–65]:

Bplanar N=4 = 12 ζ3 g
4 −

(

80 ζ5 + 16 ζ2ζ3

)

g6 +
(

700 ζ7 + 80 ζ2 ζ5 + 168 ζ3 ζ4

)

g8 + . . . .

(3.16)

We set L = 2 in eq. (3.16) of ref. [63], and multiply by −1/2 to account for the different

normalization convention.

The non-eikonal collinear anomalous dimension in planar N = 4 SYM is then:

Gplanar N=4
0 = Gplanar N=4

0,eik + 2Bplanar N=4 (3.17)

= −4 ζ3 g
4 +

(

32 ζ5 +
80

3
ζ2ζ3

)

g6 −
(

300 ζ7 + 256 ζ2 ζ5 + 384 ζ3 ζ4

)

g8 .

The numerical value of the four-loop coefficient is

− 1238.7477172547735332918988 . . . (3.18)

which can be compared with the number from ref. [27]:

− 1240.9(3). (3.19)

The two results are within about 0.2%, although they are not within the error budget of

0.3 reported in ref. [27]. It would be very nice to check the analysis in this paper with an

improved numerical value.

The first order at which GN=4
0 can have a subleading-color term is four loops. Recently

this term has been computed numerically [28, 29],

G
(4),N=4
0,NP = −384× (−17.98± 3.25)

1

N2
c

. (3.20)

Could one try to get an analytic value for this quantity using the methods in this paper?

One issue is that the principle of maximal transcendentality has not really been tested

yet for cases where there is a subleading-color contribution to N = 4 SYM, but one could

try nevertheless. The good news is that the simple relation (2.9) continues to hold at sub-

leading color — whereas in a non-conformal theory it would receive additional corrections

– 8 –
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depending on the infrared-finite part of a form factor [60]. The bad news is that there are

not yet analytic values for the subleading-color terms in QCD at four loops, for either γq or

Bq. (Approximate numerical values are available for Bq [41].) Once they become available,

it will be possible to compute eq. (3.20) analytically, if it is not already known by then. In

fact, the eikonal bypass of using eq. (2.9) should become unnecessary at that point, once

the full color dependence of the QCD result for γq is known.

In summary, in this paper we obtained an analytical value (3.17) for the four-loop

collinear anomalous dimension in planar N = 4 SYM, which also provides the Regge

trajectory, threshold soft anomalous dimension and rapidity anomalous dimension at this

order. We hope that this additional data point will inspire those versed in integrability

methods to try to compute this quantity to all loop orders!
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