
J
H
E
P
0
1
(
2
0
1
8
)
0
5
2

Published for SISSA by Springer

Received: November 11, 2017

Accepted: January 2, 2018

Published: January 11, 2018

Entanglement of heavy quark impurities and

generalized gravitational entropy

S. Prem Kumar and Dorian Silvani

Department of Physics, Swansea University,

Singleton Park, Swansea, SA2 8PP, U.K.

E-mail: s.p.kumar@swansea.ac.uk, d.silvani.492808@swansea.ac.uk

Abstract: We calculate the contribution from non-conformal heavy quark sources to

the entanglement entropy (EE) of a spherical region in N = 4 SUSY Yang-Mills theory.

We apply the generalized gravitational entropy method to non-conformal probe D-brane

embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in

large-rank tensor representations and the fundamental representation. For the D5-brane

embedding which describes the screening of fundamental quarks in the UV to the antisym-

metric tensor representation in the IR, the EE excess decreases non-monotonically towards

its IR asymptotic value, tracking the qualitative behaviour of the one-point function of

static fields sourced by the impurity. We also examine two classes of D3-brane embed-

dings, one which connects a symmetric representation source in the UV to fundamental

quarks in the IR, and a second category which yields the symmetric representation source

on the Coulomb branch. The EE excess for the former increases from the UV to the

IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free

energy on hyperbolic space with β = 2π increases monotonically towards the IR, support-

ing its interpretation as a relative entropy. We identify universal corrections, depending

logarithmically on the VEV, for the symmetric representation on the Coulomb branch.

Keywords: AdS-CFT Correspondence, D-branes, Wilson, ’t Hooft and Polyakov loops

ArXiv ePrint: 1711.01554

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2018)052

mailto:s.p.kumar@swansea.ac.uk
mailto:d.silvani.492808@swansea.ac.uk
https://arxiv.org/abs/1711.01554
https://doi.org/10.1007/JHEP01(2018)052


J
H
E
P
0
1
(
2
0
1
8
)
0
5
2

Contents

1 Introduction 1

2 Generalized gravitational entropy for probe branes 4

2.1 Conformal defects from D3/D5-branes and EE 6

2.2 From AdS to hyperbolic AdS 7

2.3 Warmup: a single fundamental quark 9

3 D5-brane impurity 11

3.1 AdS embeddings of the D5-brane 11

3.1.1 The constant embedding 12

3.1.2 The D5 flow solution 13

3.2 Comparison with 〈OF 2〉 17

4 D3-brane impurities 17
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1 Introduction

The holographic correspondence [1–3] between gauge theories and gravity has revealed an

intriguing link between quantum entanglement and geometry [4–7]. The prescription of [4–

6] relating the entanglement entropy of some subsystem within a quantum system to the

area of an extremal surface in a classical dual gravity framework, was put on firm footing

in [8], where the replica trick was implemented in the gravity setting dual to the subsystem

of interest, by using the method of [9]. This involves identifying a circle in the asymptotic
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geometry, which could be a compact Euclidean time direction, varying its periodicity in a

well-defined manner and calculating the resulting variation in the action so as to obtain a

gravitational or geometric entropy.

A natural extension of these ideas is to study the effect of excitations above the vacuum

state or inclusion of new degrees of freedom in the form of flavours or defects. Here it was

understood that even for flavours or defects in the quenched approximation, the application

of the Ryu-Takayanagi prescription [4, 5] appears to require knowledge of the backreaction

from the corresponding probe degrees of freedom in the dual gravitational description [10–

14]. It has been subsequently pointed out in [15] that this procedure can be circumvented

by applying the gravitational entropy method of [8] to the quenched degrees of freedom

propagating in the un-backreacted gravitational backgrounds.

In this paper, we will study pointlike defects or “impurities” that have a simple inter-

pretation, namely they are test charges or heavy quarks introduced into the vacuum state

of a large-N QFT. The coupling of the heavy quark to the quantum fields affects the entan-

glement of any region that contains the impurity, with the rest of the system. Specifically,

we are interested in the change in entanglement entropy (EE) of a spherical region of some

radius R upon introduction of a test quark in the N = 4 supersymmetric gauge theory in

3+1 dimensions, with SU(N) gauge group. This question becomes particularly interesting

if one can deform the quantum mechanics of the pointlike impurity so that the system is

not conformally invariant and the degree of entanglement is a nontrivial function of the

deformation strength. Our goal will be to examine and identify general scale dependent

properties of EE across different tractable examples of such impurities at strong ’t Hooft

coupling in the large-N theory.

In [16] the excess EE due to such heavy quarks in large rank symmetric and anti-

symmetric tensor representations were computed (both at weak and strong coupling) by

exploiting conformal invariance and relating them to known results [17–21] for supersym-

metric Wilson/Polyakov loops in the N = 4 theory. In this paper we will apply the method

of [15] based on gravitational entropy contributions to obtain the EE excess due to the cor-

responding probes (D-branes) in the gravity dual, including the effect of deformations that

trigger flows on the impurity. The main results of this paper are summarized below:

• We focus attention on heavy quark probes in the symmetric and antisymmetric ten-

sor representations of rank k, with k ∼ O(N) (within the N = 4 theory at large-N),

which are dual to D3 and D5-brane probes in AdS5×S5. In the conformal case, the

worldvolume of the probe contains an AdS2 factor, reflecting the conformal nature

of the quantum mechanics on the impurity. We calculate the contribution to the

generalized gravitational entropy from these probe branes using the proposal of [15]

and find a match with the results of [16] deduced via independent arguments. A

nontrivial aspect of the calculation and observed agreement is the role played by

the background Ramond-Ramond (RR) flux and its associated four-form potential,

specifically in the case of the D3-brane probe dual to the symmetric representation

source. The generalised gravitational entropy receives a contribution from the cou-

pling of this potential to the D3-brane probe, and matching with the CFT arguments

of [16] picks out a special choice of gauge for the four-form potential.
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• We then study certain deformations on the probes which appear as simple one-

parameter BPS solutions for the D-brane embeddings. The D5-brane solution, first

found in [22], interpolates between k sources in the fundamental representation at

short distances, and an impurity transforming in the antisymmetric representation

Ak at long distances. The deformation appears as a dimensionful parameter A in

the UV,1 and has the effect of screening the fundamental sources into the represen-

tation Ak. This is most directly seen by examining the profiles of the gauge theory

operators (e.g. OF 2 = TrFµνF
µν + . . .) sourced by the impurity where the strength

of the source first increases on short scales, subsequently turns around and decreases

monotonically (figure 4) at large distances to an asymptotic value determined by the

representation Ak.

We calculate the EE excess due to this impurity within a spherical region of radius R

surrounding the source, by mapping the causal development of the spherical region to

the Rindler wedge which is conformal to the hyperbolic space H3 with temperature

β−1 = 1
2π . The contribution of the probe to the gravitational entropy is obtained by

varying the temperature of the dual hyperbolic AdS black hole. As a function of the

dimensionless radius (AR), we find that the EE excess displays the same qualitative

behaviour (figure 3) as the profiles of gauge theory fields, namely an increase on short

scales accompanied by eventual decrease at large radii towards the asymptotic value

governed by the representation Ak.

We also find that although the EE is a non-monotonic function of the radius R,

the impurity free energy on S1 ×H3 which can be interpreted as a relative entropy,

increases monotonically from the UV to the IR.

• For the D3-brane probes, a simple BPS deformation exists which was discussed rela-

tively recently in [24] and [23]. There are two categories of these solutions (figure 1):

one yields a symmetric representation (Sk) source in the UV “dissociating” into k

coincident quarks in the IR, while the second category describes a heavy quark in

representation Sk on the Coulomb branch of the N = 4 theory with SU(N) broken to

U(1)× SU(N − 1). We apply the gravitational entropy method to these sources tak-

ing care to employ the correct gauge for the RR potential which yields the expected

result for the undeformed conformal probe. In both cases the EE excess displays

non-monotonic behaviour over short scales - first increasing as a function of R, and

reaching a maximum. At large distances, however, the two categories display quali-

tatively distinct features. The EE excess for the first class of solutions saturates in

the IR (figure 8) at a higher value (that of k fundamental sources) than in the UV

(corresponding to the representation Sk). For the Coulomb branch solution, we find

the EE excess decreases monotonically in the IR without bound with some universal

features (figure 9).

1This is a puzzling aspect of both the D3- and D5-brane non-conformal solutions we study, as both appear

to be triggered by the VEV of a dimension one operator in the UV picture [23], and implies spontaneous

breaking of conformal invariance, which should not be possible in quantum mechanics (on the impurity).

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
0
5
2

Figure 1. The two types of D3-brane embeddings in AdS5. Shown above are the proper sizes of

the two-sphere wrapped by the D3-branes as a function of AdS radial coordinate z. The figure on

the left represents an interpolation between the symmetric representation in the UV (z → 0) and

an IR spike of k strings, while the one on the right is the symmetric representation source ending

on a Coulomb branch D3-brane.

In all cases however, the free energy on S1 × H3 for each of the probes increases

monotonically from the UV to the IR, consistent with the interpretation as a relative

entropy. The IR asymptotics of this free energy for the Coulomb branch solution

exhibits certain universal features, namely, quadratic and logarithmic dependence on

the Coulomb branch VEV with the coefficient of the logarithmic term being universal.

We further confirm that D3-brane impurities with the deformations turned on, display

a screening of the source in the representation Sk. We see this for both categories of

solutions by calculating the spatial dependence of gauge theory condensates sourced

by the heavy quark impurities.

The paper is organized as follows: in section 2 we review the argument of [15] for calculating

the EE of probes without backreaction. We also review known results for the EE of

conformal probes, and for completeness, we also explictly write out the trasnformations

from AdS to AdS-Rindler and hyperbolic-AdS spacetimes. Section 3 is devoted to the

analysis of the D5-brane probe embeddings and their entanglement entropies. In section 4

we review the D3-brane BPS solutions. All details of the EE calculation for the D3-brane

impurities are presented in section 5. We summarize our results and further questions

in section 6. Certain technical aspects of the calculations including transformations of

D3-brane worldvolume integrals from one coordinate system to another and evaluation of

certain integrals are relegated to the appendix.

2 Generalized gravitational entropy for probe branes

It was argued in [15] that the entanglement entropy contribution from a finite number Nf

of flavour degrees of freedom, introduced into a large-N CFT (with a holographic gravity

dual), can be computed without having to consider explicit backreaction of flavour fields.
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A key element in this approach is the method of [8] which can, in principle, be adapted to

include the backreaction from flavour fields. However, this turns out to be unnecessary as

the leading contribution at order O (Nf/N) is determined completely by an integral over

the flavour branes in a geometry without backreaction.

The entanglement entropy of a spatial region Ad−1 in a CFT in d spacetime dimensions

can be calculated by a holographic version of the replica trick in Euclidean signature.

This is performed by considering smooth, asymptotically AdS geometries with a finite size

Euclidean circle at the conformal boundary of period 2πn (and n 6= 1) going around the

boundary ∂Ad−1 of the spatial region of interest. The classical action for these geometries

then yields the holographic entanglement entropy via,

S(Ad−1) = − n∂n [logZ(n) − n logZ(1)]|n=1 . (2.1)

This quantity only receives non-zero contribution from a boundary term within the

bulk, arising from the locus of points where the circle shrinks. This corresponds to

the Ryu-Takayanagi minimal surface [4]. Upon introducing probe branes (defects or

flavours) the complete action for the gravitational system can be separated into ‘bulk’

and ‘brane’ components:

Sg = Sbulk + ε0 Sbrane , (2.2)

where the brane contribution is parametrically smaller by a factor of ε0 ∼ Nf/N . To

paraphrase the argument of [15], if one views the backreacted metric as a small perturbation

about (the n-fold cover of) AdS, the deviation of the bulk action from AdS only appears at

order ε20. Then the probe contribution to the gravitational entropy at order ε0 is completely

determined by an integral over the brane worldvolume alone. Furthermore, the brane

embedding need only be known in ordinary AdS spacetime (with n = 1), since the inclusion

of backreaction will only affect the probe action at order ε20 and deviations of the embedding

functions at order (n − 1) will also contribute to the action at order (n − 1)2, since the

n = 1 embedding solves the equations of motion.

To compute the entanglement entropy of the region Ad−1 one applies the well known

method of [6] for the specific case when ∂Ad−1 is a sphere Sd−2. This maps the causal

development of the region within the sphere to a Rindler wedge. The spherical boundary

of the entangling region is mapped to the origin of the Rindler wedge. In this process the

reduced density matrix for the degrees of freedom inside the sphere then corresponds to

the Rindler thermal state with inverse temperature β = 2π. The latter is also conformal

to a spacetime H with hyperbolic spatial slices Hd−1, so that H ' Rt × Hd−1 [6]. The

entanglement entropy of the region Ad−1 is then given by the thermal entropy of the CFT

on H:

S (Ad−1) = lim
β→2π

(
1 − β

∂

∂β

)
logZH . (2.3)

For theories possessing a holographic dual, the computation of ZH requires a bulk (AdS)

extension of the boundary Rindler wedge away from the Rindler temperature β = 2π. This

becomes possible for the case of a CFT where we may transform the bulk extension of the

wedge to hyperbolically sliced AdSd+1 geometry. The thermal partition function on H is
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computed holographically by the classical action of the bulk Euclidean AdSd+1 geometry

with hyperbolic slices, the replica trick is implemented by allowing the inverse temperature

of the hyperbolic black hole to deviate from the value β = 2π:

logZH = −IAdS(β) . (2.4)

The unique extension of the bulk hyperbolically sliced geometry, away from β = 2π, is

related to the replica method via the observation of [8]. In particular, the value of the n

replicated partition Z(n) can be replaced by n times the replicated partition function with

the time interval restricted to the domain [0, 2π), and eq. (2.3) reduces to,

S (Ad−1) = − lim
n→1

n2∂n logZn
∣∣
2π
, logZ(n) = n logZn

∣∣
2π
. (2.5)

The method reproduces the vacuum EE area formula of [4] and will allow us to extract the

EE excess due to the insertion of defects without the need for backreaction on either the

background or the defect itself.

2.1 Conformal defects from D3/D5-branes and EE

A point-like impurity in gauge theory arises most naturally upon the introduction of a

Wilson line or heavy quark transforming in some representation of the gauge group. Wilson

lines in fundamental (�), rank-k antisymmetric (Ak) and symmetric (Sk) representations

of SU(N) are particularly nice from the perspective of gauge/gravity duality as they have

simple realisations in terms probe string and brane sources [18–21, 25–27]. Such sources

compute BPS Wilson lines in different representations in the N = 4 supersymmetric gauge

theory at strong coupling and large-N , and are introduced as probes in the dual AdS5×S5

background. In the absence of any probe deformations, the world volume metric on such

probes includes an AdS2 factor, so that the dual impurity theory is a (super)conformal

quantum mechanics.

The excess contribution from such an impurity to the EE of a spherical region in N = 4

SYM was calculated in [16] using the method described above, leading to eq. (2.3) but

where ZH is replaced by the impurity partition function in hyperbolic space, computed by

a Polyakov loop or circular Wilson loop W◦. One way to understand the appearance of the

circular Wilson loop is to note that upon mapping the causal development of a spherical

region to the Rindler wedge, the worldline of the heavy quark maps to the hyperbolic

trajectory of a uniformly accelerated particle. Upon Euclidean continuation, the hyperbolic

trajectory turns into a circle. Therefore,

Simp =

(
1− β ∂

∂β

)
lnW◦ |β=2π = lnW◦ |β=2π +

∫
S1
β×H3

√
g 〈Tττ 〉W◦ , (2.6)

where in the final expression we are required to compute the expectation value of the field

theory stress tensor on H, in the presence of the Wilson/Polyakov loop insertion. As argued

in [16], conformal invariance fixes the form of the stress tensor, and the expectation value of

the energy density integrated over S1
β×H3 depends on a single normalisation constant hw:∫

S1
β×H3

√
g 〈Tττ 〉W◦ = −8π2hw . (2.7)
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The normalisation constant hw for N = 4 SYM was calculated in [28] by relating it to the

expectation of a dimension two chiral primary field, with net result,

Simp =

(
1 − 4

3
λ∂λ

)
lnW◦ . (2.8)

While localization results can, in principle, be used to determine the circular Wilson loop

in various representations for any N and gauge coupling, we will focus attention on the

strict large-N limit at strong ’t Hooft coupling λ→∞ [17, 21]. In this limit, the following

results can be deduced for the EE contributions from the conformal impurities in the three

different representations described above:2

S� =

√
λ

6
, (2.9)

SAk =
N

9π

√
λ sin3 θk , π(1− κ) = θk − sin θk cos θk , κ ≡ k

N ,

SSk = N

(
sinh−1 κ̃ − 1

3
κ̃
√
κ̃2 + 1

)
, κ̃ ≡

√
λ k

4N
.

Our aim will be to reproduce these results for the conformal impurities using the method

of [15] and then apply the same to the case of the non-conformal impurity flows that were

discussed in [23].

2.2 From AdS to hyperbolic AdS

Now we review the maps that take the AdS-extension of the causal development of the

spatial sphere in R1,3 to hyperbolically sliced AdS5. This will help set our conventions, and

will be important subsequently since the evaluation of EE for non-conformal impurities

will involve computation of integrals over specific brane embeddings in hyperbolic-AdS

geometry, and the explicit calculation of these will require us to go back and forth between

different coordinate systems.

We first consider the transformation,

xα =
x̃α + cα

2R

(
x̃2 + z̃2

)
1 + c

R · x̃ + c2

4R2 (x̃2 + z2)
− cαR , α = 0, . . . 3 , (2.10)

z =
z̃

1 + c
R · x̃ + c2

4R2 (x̃2 + z2)
,

where c(α) = (0, 1, 0, 0). Here z is the radial AdS coordinate, with the conformal boundary

at z = 0. This is the extension of the boundary CFT special conformal transformation to

an isometry of AdS5. The map has the following actions:

• On the conformal boundary at z = 0, the ball B: x21 + x22 + x23 ≤ R2 at x0 = 0

is mapped to the half-line x̃1 ≥ 0. The causal development of B is mapped to the

Rindler wedge x̃1 > |x̃0|.
2The results quoted here differ from those of [16] by an overall factor of 1/2. We clarify the reason for

this normalization below eqs. (2.14) and (2.25).
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• The world line of the impurity on the boundary, located at the spatial origin xi = 0,

is mapped to the trajectory of a uniformly accelerated particle, x̃21 − x̃20 = 4R2, with

x̃1 > 0. In Euclidean signature this maps to one half of the circular Wilson loop

with x̃1 > 0.

• The transformation acts on the AdS5 Poincaré patch metric as an isometry:

ds2 =
dz2 + dxαdx

α

z2
→ dz̃2 + dx̃αdx̃

α

z̃2
, (2.11)

while the boundary metric itself transforms by a conformal factor. The holographic

extension of the causal development of the ball B into the AdS bulk (entanglement

wedge) is given by the causal development of the hemisphere z2 + x21 + x22 + x23 = R2

(defined at x0 = 0). This is mapped by the above isometry to the Rindler-AdS

wedge x̃1 ≥ x̃0.

The Rindler-AdS wedge is further mapped to hyperbolically sliced AdS5 by the trans-

formations listed below. First we parametrize the Rindler-AdS wedge by defining the

coordinates,

x̃1 = r1 cosh t , x̃0 = r1 sinh t , x̃2 = r2 cosφ , x̃3 = r2 sinφ , (2.12)

so that

ds2
∣∣
Rindler−AdS

=
1

z̃2
(
dz̃2 + dr21 − r21dt

2 + dr22 + r22dφ
2
)
. (2.13)

The wordline of the heavy quark on the boundary is given by r1 = 2R. In order to perform

the replica trick it is crucial that we move to Euclidean signature, via the replacement

t → iτ , so we obtain AdS in “double polar” coordinates, and the heavy quark impurity

then traces out a Polyakov loop at r1 = 2R,

ds2E =
1

z̃2
(
dz̃2 + dr21 + r21dτ

2 + dr22 + r22 dφ
2
)
, −π

2
≤ τ ≤ π

2
. (2.14)

The Euclidean time τ must be restricted to the domain where cos τ is positive, so that

x̃1 > 0. The τ -coordinate is periodic under the shifts τ → τ + 2π which also ensures that

the “double polar” geometry is free of conical singularities. The map to hyperbolically

sliced AdS5 is achieved by the transformations

z̃ =
2R

ρω
, r1 =

2R

ρω

√
ρ2 − 1 , r2 =

2R

ω
sinhu sin θ , (2.15)

ω = (coshu − sinhu cos θ) ,

which yield the Euclidean AdS5 black hole with hyperbolic horizon,

ds2
∣∣
AdS−Hyp

=
dρ2

ρ2 − 1
+ (ρ2 − 1) dτ2 + ρ2

(
du2 + sinh2 u dΩ2

2

)
. (2.16)

Once again we have the restriction −π
2 ≤ τ ≤

π
2 on the range of the Euclidean time which

has periodicity 2π, guaranteeing that the space caps off smoothly at ρ = 1. Finally, it will
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be useful to recall the coordinate transformations which directly map the entanglement

wedge in the original AdS spacetime,

ds2
∣∣
AdS

=
1

z2
(
dz2 − dx20 + dr2 + r2 dΩ2

2

)
, (2.17)

to the hyperbolic AdS5 black hole (2.16) with inverse temperature 2π. The relevant coor-

dinate transformations are (in Lorentzian signature):

z =
R

ρ coshu +
√
ρ2 − 1 cosh t

, x0 =
√
ρ2 − 1 z sinh t , r = ρ z sinhu . (2.18)

Upon continuation to imaginary time t = iτ , we must restrict to the domain of τ to

−π
2 ≤ τ ≤ π

2 . It can be shown that the pre-image of the Euclidean hyperbolic AdS black

hole, given this domain, is the interior of the hemisphere in the original (Euclidean) AdS

geometry,

x20 + r2 + z2 ≤ R2 , r, z ≥ 0 . (2.19)

Hyperbolic AdS and replica method: the replica method requires that we consider

a hyperbolic AdS black hole in which the Euclidean time has period 2πn where n 6= 1,

so that

ds2
∣∣
AdS−Hyp

=
dρ2

fn(ρ)
+ fn(ρ) dτ2 + ρ2

(
du2 + sinh2 u dΩ2

2

)
, (2.20)

fn(ρ) = ρ2 − 1 −
ρ+(ρ2+ − 1)

ρ2
, ρ+ =

1

4n

(
1 +

√
1 + 8n2

)
.

The Hawking temperature of the black hole is

β−1 = TH =
f ′(ρ+)

4π
=

2ρ2+ − 1

2πρ+
. (2.21)

It is clear that implementation of the replica trick is equivalent to varying the Hawking

temperature of the black hole, ensuring as usual, the absence of a conical singularity in the

Euclidean geometry. In this approach the entanglement entropy is given by the thermal

entropy evaluated in the hyperbolic AdS geometry. In particular, using eq. (2.5), we have

S = lim
β→2π

β ∂βI2π(β) . (2.22)

Here I2π(β) is the action of the hyperbolic AdS geometry including any probes dual to the

impurities or defects under consideration, and where the integration over Euclidean time

is restricted to the domain [0, 2π).

2.3 Warmup: a single fundamental quark

As a warmup, we compute the EE excess due to the insertion of a single fundamental

quark into the spherical entangling region. In the AdS dual, this is achieved by inserting

a probe fundamental string (F1) into the hyperbolic AdS geometry and computing the

thermal entropy from the Nambu-Goto worldsheet action in this geometry. The F1-string

– 9 –
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worldsheet is placed at u = 0, and stretches from the hyperbolic horizon at ρ = ρ+ to the

conformal boundary at ρ = ρ∞ →∞. The tension for the fundamental string, in units of

the AdS radius is

TF1 =
1

2πα′
=

√
λ

2π
, (2.23)

where λ is the ’t Hooft coupling for the N = 4 theory. Then the action for the static

F-string embedding stretched along the radial AdS coordinate is

IF1(β) =

√
λ

2π

∫ ρ∞

ρ+

dρ

∫ π
2

−π
2

dτ
√

det ∗g + IF1 c.t . (2.24)

The determinant of the induced metric ∗g on the worldsheet for this embedding is unity, and

the boundary counterterm IF1 c.t. which regularises the worldsheet action is independent

of the temperature β as it is only sensitive to UV details. Varying with respect to β, we

thus obtain

S� = β
∂ IF1(β)

∂β
=

√
λ

6
. (2.25)

Our result differs by a factor of two from that of [16], as the range of integration over

Euclidean time is restricted to −π
2 ≤ τ ≤

π
2 , which corresponds to one half of the Polyakov

loop on S1
β ×H3.

EE from stress tensor evaluation: for this simple example it is instructive to verify

how the above result can be reproduced holographically, using eq. (2.8) which relies on

the expectation value of the stress tensor in the presence of the temporal Wilson line in

Rindler frame. This computes the expectation value of the entanglement Hamiltonian

which generates time translations along the compact time direction. In particular, the EE

for the impurity is given as

S� = lnZ �
H +

∫
H

√
gH 〈Tττ 〉� . (2.26)

The ingredients in the computation can be calculated either directly in the AdS Poincaré

patch, or after translating to the hyperbolic AdS picture. In the Poincaré patch, we need to

ensure that all integrals over the Euclidean string worldsheet are restricted to the domain,

D : x20 + z2 ≤ R2 , z > 0 . (2.27)

Therefore, the impurity action in hyperbolic space is given by integrating the (Euclidean)

Nambu-Goto action in the Poincaré patch of AdS over D:

− lnZ �
H = I� =

√
λ

2π

[∫ R

ε
dz

1

z2

∫ √R2−z2

−
√
R2−z2

dx0 −
∫ R

−R
dx0

1

ε

]
= −

√
λ

2
. (2.28)

The second term is the worldsheet counterterm induced on the conformal boundary at

z = ε, as ε is taken to zero. The stress tensor expectation value3 for the heavy quark source

3The worldsheet stress tensor for the string embedding is obtained by varying with respect to the

spacetime metric, so that Tαβ = −2 ∂L
∂gαβ

, in Lorentzian signature.
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in the Unruh state, or equivalently, in hyperbolic space H would normally be computed

by reading off the normalizable mode of the metric sourced by the probe string in the

bulk. Alternatively, from the Hamiltonian formulation of the AdS/CFT correspondence,

the (regularized) energy of the probe should directly yield the energy of the corresponding

source (impurity) in the boundary CFT [29]. The result for the energy of the probe string

is thus of the form ∫
H
〈Tττ 〉� =

√
λ

2π

[∫ π/2

−π/2
dτ

∫ ρ∞

1
dρ gττ

]
, (2.29)

where ρ∞ is the UV cutoff. Keeping only the finite terms, we find∫
H
〈Tττ 〉� = −

√
λ

3
, (2.30)

so that the contribution to the EE of the spherical region from the heavy quark is

S� =

√
λ

6
. (2.31)

3 D5-brane impurity

In this section we will focus our attention on the D5-brane embedding which computes the

BPS Wilson loop in N = 4 SYM, in the antisymmetric tensor representation. The embed-

ding admits a deformation which can be interpreted as an RG flow on the worldvolume of

the impurity [23]. Our goal will be to extract the behaviour of the impurity EE along this

flow.

3.1 AdS embeddings of the D5-brane

The D5-brane embedding, dual to a straight Wilson line in the N = 4 theory, preserves an

SO(5) subgroup of the global R-symmetry. This is realized geometrically, by having the

D5-brane wrapping an S4 latitude of the five-sphere in AdS5 × S5. In the non-conformal

“flow” solution described in [23], the polar angle θ associated to this S4 latitude varies

as a function of the radial position in AdS5. We can choose the worldvolume coordinates

to be (σ, x0,Ω4), where σ parametrises the non-compact spatial coordinate on the brane.

We will eventually choose the gauge σ = z. The induced metric for such an embedding in

(Euclidean) AdS5 × S5 is,

∗ ds2 = dσ2
(
z′(σ)2

z2
+ θ′(σ)2

)
+
dx20
z2

+ sin2 θ dΩ2
4 . (3.1)

The action for the D5-brane consists of the standard Dirac-Born-Infeld (DBI) and Wess-

Zumino (WZ) terms. The latter supports the configuration when a non-zero, radial world-

volume electric field F0z is switched on. In Euclidean signature this is purely imaginary

and will be denoted in terms of the real quantity G:

G = − 2πiα′ F0σ . (3.2)
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The Wess-Zumino term for the D5-brane embedding is induced by the pullback of the RR

four-form potential C(4) determined by the volume form on AdS5 × S5. In particular, the

relevant component of C(4) is

C(4) =
1

gs

[
3

2
(θ − π) − sin3 θ cos θ − 3

2
sin θ cos θ

]
ω4 , (3.3)

where ω4 is the volume form of the unit four-sphere. The four-form potential is chosen so

that the five-form flux comes out proportional to the volume form of S5:

F(5) = dC(4) =
1

gs
4 sin4 θ dθ ∧ ω4 . (3.4)

The D5-brane embedding is then determined by the equations of motion following from

the action

ID5 = TD5

∫
d6σ e−φ

√
∗g + 2πα′ F − i gs TD5

∫
2πα′F ∧ C(4) + Ic.t. . (3.5)

The action is regularized by counterterms Ic.t.. The dilaton φ vanishes in the AdS5 × S5

background dual to the N = 4 theory, and the D5-brane tension can be expressed in terms

of gauge theory parameters as

TD5 =
N
√
λ

8π4
, λ = 4πgsN . (3.6)

The counterterms can be split in two pieces: one which regulates the UV divergences in

the action and another which fixes the number of units of string charge carried by the

embedding to be k ∈ Z [17, 23],

Ic.t. = IUV + IU(1) , (3.7)

IUV = −
∫
dx0

(
z

δ I

δ (∂σz)
+
(
θ(σ) − θ

∣∣
z=0

)
) δ I

δ (∂σθ)

) ∣∣∣
z= ε

.

IU(1) = −i
∫
dx0 dσ Fµν

δI

δFµν
= ik

∫
dx0 dσ F0σ .

The counterterm IU(1) enforces a Lagrange multiplier constraint that fixes the number of

units of string charge carried by the configuration. Putting together all these ingredients,

choosing the gauge σ = z, the final form for the D5-brane action is

ID5 = TD5
8π2

3

∫
dx0

∫
ε
dz
[
sin4 θ

√
z−4 + z−2 θ′2 − G2 −D(θ)G

]
+ IUV , (3.8)

with

D(θ) ≡ sin3 θ cos θ +
3

2
(sin θ cos θ − θ + π(1− κ)) , κ ≡ k

N
. (3.9)

3.1.1 The constant embedding

It is easy to check that the equations of motion yield a constant solution:

θ = θκ , sin θκ cos θκ − θκ + π(1− κ) = 0 . (3.10)

This solution is BPS and has vanishing regularized action in Poincaré patch. It yields the

straight BPS Wilson loop in the antisymmetric tensor representation Ak [19–21]. In all

respects the constant solution is identical to the F-string solution for a fundamental quark,

except for the normalization of the action which is controlled by θκ.

– 12 –
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Embedding in hyperbolic AdS: the contribution to the EE of a spherical region can

be calculated by applying the formula eq. (2.22) to the constant embedding in hyperbolic

AdS space (2.20). Repeating the above excercise for the solution which yields θ = θκ,

we obtain the regularized action as a function of the temperature of the hyperbolic AdS

black hole:

ID5(β) = TD5
8π2

3

∫ π
2

−π
2

dτ

∫ ρ∞

ρ+

dρ
[
sin4 θκ

√
1 − G2 − D(θκ)G

]
+ IUV . (3.11)

where G = − cos θκ. The entanglement entropy contribution from the impurity in the

antisymmetric tensor representation is then,

SAk = lim
β→2π

β∂βID5(β) =
N

9π

√
λ sin3 θκ . (3.12)

3.1.2 The D5 flow solution

The Poincaré patch action for the D5-brane embedding permits a non-constant zero tem-

perature BPS solution [22]. This solution interpolates between a spike or bundle of k

coincident strings in the UV and the blown-up D5-brane configuration corresponding to

the antisymmetric representation Ak reviewed above. In the boundary gauge theory, the

flow can be interpreted as the screening of k coincident quarks in the fundamental repre-

sentation to a source in the antisymmetric tensor representation [23]. As seen in [23], the

flow appears as a result of a condensate for a dimension one operator in the UV worldline

quantum mechanics of the impurity. The Poincaré patch BPS embedding solves the first

order equation,

z
dθ

dz
= − ∂θD̃

D̃
, D̃(θ) ≡

(
sin5 θ + D(θ) cos θ

)
, (3.13)

and is explicitly given by the solution,

1

z
=

A

sin θ

(
θ − sin θ cos θ − π(1− κ)

πκ

)1/3

, (3.14)

where A is an integration constant with dimensions of inverse length. For small z, the polar

angle θ approaches π, so that the S4 wrapped by the D5-brane shrinks to zero size and the

collapsed configuration must be viewed as k-coincident strings. In the IR limit on the other

hand, when z � 1/A, θ approaches θκ which yields the blown-up D5-brane embedding.

In order to calculate the excess EE contribution from this non-conformal impurity

in the boundary CFT, we first need to map the configuration to hyperbolically sliced

AdS (2.20). The internal angle θ of the ten dimensional geometry is unaffected by the map.

The only other active coordinate in the D5-brane embedding is the radial position z in AdS

spacetime which, upon rewriting in terms of hyperbolic Euclidean AdS coordinates (2.18),

yields the transformed solution:

1

R

(
ρ +

√
ρ2 − 1 cos τ

)
=

A

sin θ

(
θ − sin θ cos θ − π(1− κ)

πκ

)1/3

, (3.15)
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with the restriction −π
2 ≤ τ ≤ π

2 . The impurity is placed at the spatial origin, r = 0 in

R4, which corresponds to u = 0 in S1 ×H3. Since θ is a function of ρ and τ , the induced

metric on the D5-brane is,

∗ds2
∣∣
D5

=
[
fn(ρ) + (∂τθ)

2
]
dτ2 +

[
1

fn(ρ)
+ (∂ρθ)

2

]
dρ2 + 2∂ρθ ∂τθ dτ dρ

+ sin2 θ dΩ2
4 , (3.16)

where fn(ρ) is given in eq. (2.20). The D5-brane embedding, mapped to hyperbolic AdS,

must also have a non-trivial background worldvolume electric field. Since the embedding

shares only the temporal and radial directions with the bulk AdS5 geometry, there is only

one component of the field strength to switch on:

iG̃ = 2πα′ Fτρ . (3.17)

For the case with β = 2π, Fτρ can be obtained directly by transforming the field strength

in the Poincaré patch solution. To implement the replica trick, however, we first need to

consider general temperatures of the hyperbolic black hole. Using the above ansatz for the

D5-brane embedding, the action in the hyperbolic AdS background is,

ID5(β) = TD5 Vol(S4)

∫ π
2

−π
2

dτ

∫ ρ∞

ρ+

dρ

[
sin4 θ

√
1 − G̃2 + fn(ρ) (∂ρθ)

2 +
(∂τθ)2

fn(ρ)

−D(θ)G̃

]
+ IUV . (3.18)

Solving for G̃ using its equation of motion and plugging it back in,

ID5(β) = TD5
8π2

3

∫ π
2

−π
2

dτ

∫ ρ∞

ρ+

dρ

√
sin8 θ + D(θ)2 (3.19)

×

√
1 + fn(ρ) (∂ρθ)

2 +
(∂τθ)2

fn(ρ)
+ IUV .

In order to extract entanglement entropy excess due to the impurity, we need to vary this

action with repect to β and set β = 2π, whilst keeping fixed θ(ρ, τ) as the BPS solution

at β = 2π. The latter is justified because the first variation of the action with repect to θ

vanishes by the equations of motion at β = 2π.

Once the variations with respect to β are performed, the remaining integrals are most

easily evaluated in Poincaré patch coordinates, in which the D-brane embedding function

is simpler. The transformations (2.18) when restricted to the location of the heavy quark

at u = r = 0 imply,

ρ =
R2 + x20 + z2

2zR
, cos τ =

R2 − x20 − z2√
(x20 + z2 +R2)2 − 4R2z2

. (3.20)

The Jacobian for the transformation on the worldvolume back to Poincaré patch coordi-

nates is, ∣∣∣∣∂ρ∂z ∂τ∂x0 − ∂ρ

∂x0

∂τ

∂z

∣∣∣∣ =
1

z2
. (3.21)
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Figure 2. The free energy − lnZH = ID5 of the non-conformal D5-brane impurity (blue) on

H3 with β = 2π, κ = 0.5 as a function of the deformation parameter A. It interpolates between

the values of the circular Wilson lines for k coincident quarks (dotted black) in the fundamental

representation, and the antisymmetric tensor representation Ak (dashed red line).

We also note that the kinetic terms for a static Poincaré patch configuration satisfy,

z2θ′(z)2 = (ρ2 − 1)(∂ρθ)
2 +

(∂τθ)
2

ρ2 − 1
. (3.22)

We first evaluate the action (or free energy) of the BPS embedding in the hyperbolic AdS

background with β = 2π, by recasting in Poincaré patch coordinates:

ID5(2π) = TD5 Vol(S4)

∫ ∫
D
dx0 dz

d

dz

[
−1

z
D̃(θ)

]
− 2R

ε
D̃(θ)

∣∣
z=ε

, (3.23)

where D̃(θ) is defined in eq. (3.13). Although the integrand is a total derivative, the fact

that the integration region is limited to the half-disk D (eq. (2.27)), renders the evaluation

nontrivial. In particular, the integration over x0 is performed first since the integrand is

independent of time. Following this, the remaining integral can be performed numerically

after exchanging the integration variable z for θ, which is more convenient as the solution

is known explicitly for z as a function of θ. The values of the (regularized) actions for the

two types of conformal sources, fundamental and antisymmetric tensor Ak in hyperbolic

space are:

k I�(2π) = − k
√
λ

2
, IAk(2π) = − N

√
λ

3π
sin3 θκ . (3.24)

The partition function lnZH of the heavy quark source in hyperbolic space with inverse

temperature β = 2π is plotted in figure 2 as a function of the deformation parameter A. It

is a monotonically decreasing function of the size of the entangling region and interpolates

between the value for k coincident fundamental quarks in the UV and that for a source

transforming in the antisymmetric tensor representation Ak in the IR.

We note that − lnZH is like a relative entropy [30]. It is the free energy difference

between the embeddings with non-zero and vanishing deformations A in the thermal state

with β = 2π associated to the modular Hamiltonian. This explains the monotonic increase
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Figure 3. The ratio of the EE contribution due to the D5-brane impurity (thick blue) and that of

k fundamental quarks (dotted black line), as a function of the radius R of the spherical entangling

region. The deformation A drives the flow and the dimensionless tunable parameter is RA. The

red dashed line is the ratio SAk/(kS�).

of − lnZH with AR, and the vanishing slope in figure 2 for arbitrarily small deformations.

By expanding the solution for the embedding function θ(z), the deformation A can be

interpreted as the expectation value of a dimension one operator in the UV quantum

mechanics of the boundary impurity [23].

The EE contribution from the impurity is obtained by varying the “off-shell” ac-

tion (3.19) with respect to β and evaluating the first variation on the BPS solution,

SD5(RA) = lim
β→2π

β ∂βID5(β) (3.25)

= TD5 Vol(S4)

[
π

3

∂θD̃

D̃

∣∣∣∣∣
ρ=1

+
1

3

∫ π
2

−π
2

dτ

∫ ∞
1

dρ
(∂θD̃)2

D̃

1 − 2z2 sin2 τ/R2

ρ2(ρ2 − 1)

]
.

We have made use of the BPS formula (3.13) and that β∂βρ+ = −1
3 when β = 2π.

Recasting the result in terms of the integral over the domain D : x20 + z2 ≤ R2 in Poincaré

patch, we find:

SD5(RA) = lim
β→2π

β∂βID5(β) (3.26)

= TD5
8π2

3

[
π

3

sin8 θ + D2

sin5 θ + D cos θ

∣∣∣∣
ρ=1

− 1

3

∫
dx0

∫
dz θ′(z) sin θ

(
sin3 θ cos θ − D

)
×

16R4 z3
(
x40 + x20(2R

2 − 6z2) + (z2 −R2)2
)

(z2 + x20 +R2)2 ((x20 + z2)2 + 2R2(x20 − z2) +R4)2

]
.

As in the case of the free energy above, the integration over the domain D must be per-

formed numerically. The integral over the x0 coordinate can once again be obtained an-

alytically, and the final integration is achieved numerically after exchanging z for θ. The

result for the entanglement entropy excess is a function of the dimensionless combination

(RA), as plotted in figure (3). For every value of κ = k/N , we see that the entanglement

entropy contribution interpolates between that of k coincident fundamental quarks and a
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Figure 4. The VEV of the dimension four operator OF 2 dual to the dilaton, in the presence of

the non-conformal impurity, divided by the corresponding VEV due to k coincident quarks (dotted

black), plotted (solid blue) as a function of (rA). The red dashed line denotes the VEV of the same

operator in the presence of the source in representation Ak.

source in the antisymmetric representation Ak:

SD5

k S�

∣∣∣∣
AR→0

= 1 ,
SD5

k S�

∣∣∣∣
AR→∞

=
2

3πκ
sin3 θκ . (3.27)

The main notable feature of the results is that the variation of the EE with size of the entan-

gling region (or equivalently the deformation A) is non-monotonic, exhibiting a maximum

at a special value of AR of order unity, and decreasing monotonically subsequently.

3.2 Comparison with 〈OF 2〉

The D5-brane is a source of various supergravity fields in AdS5 × S5 and the falloffs of

these fields yield the VEVs of corresponding operators in the boundary gauge theory. In

particular, the dilaton falloff was used in [23] to infer the VEV of the dimension four

operator O2
F = TrF 2 + . . ., equal to the Lagrangian density of the N = 4 theory, in the

presence of the non-conformal D5-brane impurity. Since OF 2 is a dimension four operator,

for conformal impurities the VEV of this operator scales as 1/r4 where r is the spatial

distance from the heavy quark on the boundary:

〈OF 2〉 =

√
2

24π2

(
3πκ

2

) √
λ

r4
, rA� 1 , (3.28)

=

√
2

24π2
sin3 θκ

√
λ

r4
, rA� 1 .

In figure 4, we plot the dimensionless ratio 〈OF 2〉D5/〈OF 2〉� as a function of the dimen-

sionless distance from the impurity (rA). The qualitative features of the plots are similar

to those of the entanglement entropy contribution from the defect. The sources in the

fundamental representation are screened into the antisymmetric representation, but the

effect is non-monotonic as a function of the distance from the source.

4 D3-brane impurities

The D3-brane embedding with worldvolume AdS2 × S2 ⊂ AdS5 found by Drukker and

Fiol [17] computes BPS Wilson lines in the rank k symmetric tensor representation Sk [20,
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21]. In [23], a D3-brane (BPS) embedding was analyzed which interpolates between the

representation Sk in the UV and k coincident strings in the IR. We will first review the

properties of this zero temperature solution in Poincaré patch and subsequently analyze

its geometric entropy.

4.1 Poincaré patch D3-brane embedding

The D3-brane wraps an AdS2 × S2 subset of AdS5 and is supported by k units of flux.

Since the internal five-sphere plays no role we will suppress it in the discussion below.

The D3-brane impurity preserves the same symmetries as a point at the spatial origin of

the boundary CFT on R1,3. In particular, choosing the worldvolume coordinates to be

(x0, σ,Ω2) the induced metric for the relevant embedding takes the form (in Euclidean

signature),

∗ ds2
∣∣∣
D3

=
1

z2

[
dx20 + dσ2

[(
∂z

∂σ

)2

+

(
∂r

∂σ

)2
]

+ r(σ)2 dΩ2
2

]
. (4.1)

Eventually we will set σ = z after discussing the counterterms and UV regularization.

The background five-form RR flux, and its associated four-form potential play a crucial

role in stabilizing the D3-brane configuration. In particular, the pullback of the four-form

potential onto the D3-brane worldvolume is

∗ C4 = − i

gs

r2

z4
∂σr dx0 ∧ dσ ∧ ω2 , (4.2)

where ω2 is the volume-form on the unit two-sphere. We also recall that C4 is only defined

up to a gauge choice. The choice of gauge will be important when we proceed to the

calculation of the entanglement entropy contribution from the defect. The expanded D3-

brane configiuration also has a worldvolume electric field G = 2πiα′ F0σ and the a tension

TD3 = N
2π2 . Putting all ingredients together, we find,

ID3 = TD3

∫
dx0 d

3σ
√

det (∗g + 2πα′F ) − igs

∫
∗C4 + Ic.t. (4.3)

=
2N

π

∫
dx0 dσ

r2

z4

(√
(∂σr)2 + (∂σz)2 − G2 z4 − ∂σr

)
+ Ic.t. .

As in the D5-brane case, the counterterms consist of a piece that fixes the number of units

of the F-string charge to be k and another that exchanges Dirichlet boundary conditions

for Neumman ones for the active worldvolume field(s) in the embedding,

Ic.t. = IU(1) + IUV , IU(1) =
k
√
λ

2π

∫
dx0 dσ G , (4.4)

IUV = −
∫
dx0

[
r

δI

δ(∂σr)
+ z

δS

δ(∂σz)

]
UV

.

The equations of motion for G and for r(z) (after picking the gauge σ = z) [23] are solved

by BPS configurations satisfying the first order equations

∂r

∂z
= G

r2

κ̃
, G =

1

z2
, κ̃ ≡ k

√
λ

4N
. (4.5)
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The most general solution to the first order equation is,

r =
κ̃ z

1 + aκ̃ z
, (4.6)

where a is a constant of integration. The solution with a = 0 is the expanded D3-brane

solution of [17] which describes the BPS Wilson line in the symmetric tensor representation

Sk. The configuration with a > 0 on the other hand is a deformation of the worldline

theory on the corresponding heavy quark which drives a flow from the representation Sk
to k coincident quarks. Finally, the solution with a < 0 can naturally be interpreted as a

heavy quark source on the Coulomb branch [24] of the N = 4 theory with SU(N) broken to

U(1)×SU(N−1) by displacing one of N coincident D3-branes and placing it at z = −1/aκ̃.

The brane has a soliton/lump due to a W-boson state corresponding to a string or a bundle

of strings stretching from the displaced D3-brane to the conformal boundary at infinity. It

appears in the UV as a quark source transforming in the representation Sk of SU(N).

5 D3-brane entanglement entropy

5.1 Choice of C4

The calculation of EE for any of the D3-brane configurations described above is compli-

cated by the contribution from the pullback of the RR four-form potential. To understand

this statement we recall that for conformal impurities, the EE contribution has been ar-

gued to be determined by the value of the circular BPS Wilson loop [16]. It was noted

first in [17] that the calculation of the circular Wilson loop using D3-branes requires a

different choice of gauge for the RR four-form potential than the one used (cf. eq. (4.2)) to

obtain the straight Wilson line. The circular Wilson loop is related to the straight one by a

conformal transformation. Extension of this into the bulk AdS yields the coordinate trans-

formation (2.10) from (Euclidean) Poincaré patch AdS to the Rindler-AdS metric (2.14).

Crucially, if one simply uses the transformed version of the RR four-form potential (4.2)

one does not obtain the correct result for the circular Wilson loop. Instead one must use

the natural form for the four-form potential in (Euclidean) Rindler-AdS:

ds2E =
1

z̃2
(
dz̃2 + dr21 + r21dτ

2 + dr22 + r22dφ
2
)
, (5.1)

C4

∣∣
Rindler−AdS

= − i

gs

r1r2
z̃4

dr1 ∧ dτ ∧ dr2 ∧ dφ ,

and transform these to hyperbolic AdS using eq. (2.15). This procedure was shown to yield

the result for the circular Wilson loop [17] in the representation Sk. It was also noted in [17],

that C4 in eq. (5.1) is gauge equivalent to the corresponding expression (4.2) in Poincaré

patch so that C4|Rindler−AdS = C4|Poincare′ + dΛ3. Upon transforming to hyperbolic AdS

coordinates, the above four-form potential reads,

i gsC4 = ρ2(ρ2−1) sinh2 u sinϑ du ∧ dτ ∧ dϑ ∧ dϕ+
ρ sinhu sin2 ϑ

coshu−cosϑ sinhu
dρ ∧ dτ ∧ du ∧ dϕ

− ρ sinh2 u sinϑ(sinhu − cosϑ coshu)

coshu− cosϑ sinhu
dρ ∧ dτ ∧ dϑ ∧ dϕ , (5.2)
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where (ϑ, ϕ) are standard angular coordinates on the spatial two-sphere. The term propor-

tional to ρ4 is the natural four-form potential on the hyperbolically sliced AdS background

whose exterior derivative yields the volume form (the five-form flux F5) on AdS5. The

remaining terms can be shown explicitly to combine and reduce to a pure gauge transfor-

mation. Importantly, these must be retained in order to obtain the correct result for the

D3-brane circular Wilson loop.

The BPS embedding (4.6) for the D3-brane in hyperbolic AdS coordinates is

ρ sinhu = κ̃
ρ coshu +

√
ρ2 − 1 cos τ

κ̃ (aR) + ρ coshu +
√
ρ2 − 1 cos τ

, (5.3)

and can be viewed as specifying u as a function u(τ, ρ) of the radial AdS coordinate ρ and

Euclidean time τ . The undeformed, conformal solution is obtained when aR→ 0, yielding

ρ sinhu = κ̃. The pullback of C4 onto the worldvolume of this embedding contains only

two of the three terms in (5.2):

∗C4 =

[
ρ2(ρ2 − 1) ∂ρu −

ρ(sinhu − cosϑ coshu)

coshu− cosϑ sinhu

]
sinh2 u sinϑ dρ∧ dτ ∧ dϑ∧ dϕ . (5.4)

Then the Wess-Zumino term of the D3-brane action, upon integration over the spatial S2

yields:

IWZ = −igsTD3

∫
∗C4 (5.5)

=
N

2π

∫ π
2

−π
2

dτ

∫ ∞
1

dρ
[
ρ2(ρ2 − 1) sinh2 u ∂ρu + ρ(u − sinhu coshu)

]
.

Note that we have only made use of the fact that u = u(ρ, τ), without using the explicit

form of the BPS solution.

The next question we must ask is whether C4 needs to be modified when the tem-

perature β of the hyperbolic black hole is different from 2π, an issue which will become

relevant when we implement the replica trick. Any modification in C4 can only be pure

gauge, and such choice of gauge will require independent justification. The simplest as-

sumption is that C4 remains unchanged even with β 6= 2π. This is natural, but we will see

that this approach leads to a result for the entanglement entropy in disagreement with [16]

which relates the EE contribution to the circular Wilson loop via eq. (2.6) for conformal

impurities (the a = 0 embedding).

We propose a simple modification to C4 when β 6= 2π. This modification needs to be

pure gauge and temperature dependent in just the right way so as to reproduce the entan-

glement entropy result for the symmetric representation as predicted by [16]. Importantly,

we would like it to only have support at the locus of points where the τ -circle shrinks,

namely at the hyperbolic horizon ρ = ρ+ (2.21), when β 6= 2π. Based on these criteria we

find that the shift,

C4 → C4 − F(ρ+) sinh2 u sinϑ du ∧ dτ ∧ dϑ ∧ dφ , (5.6)
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with

F(1) = 0 , ∂βF(ρ+)
∣∣
ρ+=1

= −2

3
, (5.7)

satisfies all requirements. The precise dependence on ρ+ is not important. The function

must vanish when ρ+ = 1 (or β = 2π) and its first derivative is constrained by matching

to the entanglement entropy for the conformal impurity. For concreteness, we take

F(ρ+) = ρ2+(ρ2+ − 1) , (5.8)

because it has the effect of modifying the relevant component of C4 in a natural way,

ρ2(ρ2 − 1) sinh2 u du ∧ dτ ∧ dω2 → ρ2 fn(ρ) sinh2 u du ∧ dτ ∧ dω2 . (5.9)

5.2 D3-brane action in hyperbolic AdS

The D3-brane solutions with a 6= 0 are non-static embeddings in hyperbolic AdS, given by

eq. (5.3), so that u = u(τ, ρ). Formally, the action for these embeddings evaluated in the

hyperbolic AdS black hole geometry with generic β is,

ID3(β) =
2N

π

∫ π
2

−π
2

dτ

∫ ∞
ρ+

dρ

[
ρ2 sinh2 u

√
1 + ρ2fn(ρ)(∂ρu)2 + ρ2

(∂τu)2

fn(ρ)
− G2

+ ρ2 fWZ(ρ) sinh2 u ∂ρu + ρ(u − sinhu coshu) + G κ̃

]
+ IUV . (5.10)

We have introduced the function fWZ(ρ) which includes a slight generalization of the pure

gauge shift (5.9):

fWZ(ρ) = ρ2 − 1 − γ
ρ2+(ρ2+ − 1)

ρ2
, (5.11)

where γ can be treated as a free parameter, so that we may see how different choices of

γ affect the final results. Note that this shift in C4 is pure gauge for any value of γ and

vanishes at β = 2π. The equation of motion for the electric field G is algebraic. Solving

for it and substituting the result into the D3-brane action, we obtain,

ID3(β) =
2N

π

∫ π
2

−π
2

dτ

∫ ∞
ρ+

dρ

[√(
κ2 + ρ4 sinh4 u

)(
1 + ρ2fn(ρ)(∂ρu)2 + ρ2

(∂τu)2

fn(ρ)

)

+ρ2 fWZ(ρ) sinh2 u ∂ρu + ρ(u − sinhu coshu)

]
+ IUV . (5.12)

5.3 Conformal D3-embedding: symmetric representation

We will first rederive results for the action and the entanglement entropy of the conformal,

or a = 0 embedding. The straight Wilson line in the symmetric representation is given

by the Poincaré patch embedding r = κ̃ z, which after transforming to hyperbolic AdS

coordinates, becomes,

κ̃ = ρ sinhu . (5.13)
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It is fairly easy to check that this embedding solves the equations of motion following

from the action (5.10) with β = 2π, treating G and u as independent degrees of free-

dom. Plugging this solution into eq. (5.12), we find that the Born-Infeld and Wess-Zumino

terms almost cancel out each other at the level of the integrands, leaving behind only the

contribution linear in u, so that

ID3(2π)
∣∣
a=0

= 2N

∫ ρ∞

1
dρ ρ sinh−1

(
κ

ρ

)
+ IUV . (5.14)

Following the procedure described earlier, the UV counterterm is,

IUV = ρ
δI

δ(∂uρ)

∣∣∣∣
ρ=ρ∞�1

= −κ ρ∞ . (5.15)

Performing the integrals and subtracting off the divergent piece against the UV countert-

erm, we obtain the well known result of [17] for the circular Wilson loop,

ID3(2π)
∣∣
a=0

= −N
(
κ̃
√

1 + κ̃2 + sinh−1 κ̃
)
. (5.16)

Now, we turn to the entanglement entropy contribution due to the impurity in the sym-

metric representation Sk. Differentiating the off-shell action ID3(β) with respect to β, we

find for the conformal (a = 0) embedding:

SSk = lim
β→2π

β ∂βID3(β) (5.17)

= N

(
2γ + 1

3
sinh−1 κ̃ − 2γ − 1

3
κ̃
√

1 + κ̃2
)
.

Setting γ = 1 we obtain precisely the expression for the EE associated to symmetric tensor

representation (2.9). This fixes the choice of gauge to be as given in eq. (5.9). Interestingly,

the limit of small κ̃ is actually independent of γ and yields the EE entropy associated to k

fundamental strings:

SSk ' k

√
λ

6
= kS� , κ̃� 1 . (5.18)

Thus, the value of γ could not have been fixed by matching to the result for k fundamental

quarks in the limit of small κ̃.

5.4 Action on S1
β ×H3 with deformation a > 0

Having identified the appropriate gauge in which the RR four-form yields the correct EE

for the symmetric representation, we turn to the calculation for the non-conformal solution

with a 6= 0. We first evaluate the action for the D3-brane flow solution when mapped

to the hyperbolic AdS geometry. This yields the free energy of the impurity on S1
β ×H3

at a temperature β−1 = 1
2π . If evaluated directly on the Poincaré patch embedding (4.3)

restricted to the domain D : z2 + r2 + x20 ≤ R2, the result does not match the circular

Wilson loop.4 Therefore, it is necessary to first formulate the calculation in the hyperbolic

AdS embedding with the correct gauge choice for C4.

4In this case the DBI and Wess-Zumino terms cancel at the level of the Langrangian densities, leaving

behind only the counterterms Ic.t. = 2N
π

∫ ∫
D dx0dz κ̃G + IUV. For the conformal embedding r = zκ̃, the

integration is simple, and the result does not match the circular Wilson loop.
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Figure 5. The free energy − lnZH = ID3(2π) of the D3-brane impurity in hyperbolic space with

β = 2π and κ̃ = 7.0 increases towards the IR as the deformation (aR) is increased. In the UV it

matches the symmetric Wilson loop (dashed red line) and asymptotes in the IR towards k times

the circular Wilson loop in the fundamental representation.

In appendix A, we show the steps involved in computing the D3-brane action by first

writing it in the Euclidean hyperbolic AdS background, and subsequently translating it to

an integral over the worldvolume restricted to the domain D in Poincaré patch:

D : x20 + z2 + r(z)2 ≤ R2 , r(z) =
κ̃z

1 + aκ̃z
. (5.19)

We find that the action for the non-conformal impurity placed in hyperbolic space H3 at

β = 2π is given by the expression,

ID3(2π) =
2N

π

∫ ∫
D
dx0 dz

[
κ̃

z2
− aκ̃4

z(1 + azκ̃)4
+

aκ̃4

z(1 + azκ̃)4
(5.20)

×

{ (
(x20 +R2)2 − z4 + 2r(z)2(x20 −R2) + r(z)4

)
r(z)4 + 2r(z)2(x20 + z2 −R2) + (x20 + z2)2 + 2R2(x20 − z2) +R4

}]

−N(u+ − sinhu+ coshu+) − 4Nκ̃
R

ε
.

Here u+ is the value (A.9) of u(ρ, τ) at the hyperbolic AdS black hole horizon ρ = 1

where the Euclidean temporal circle parametrized by τ , shrinks smoothly. The expression

satisfies some immediate checks. For vanishing a, only the first term of the integrand above

survives and we obtain the result for the Wilson loop in the symmetric representation Sk
upon integrating over the domain D and including the horizon contribution depending on

u+. In the opposite limit of large a, the first term in the integrand dominates once again

and reduces to the action for k strings. Another interesting feature of the integrand is that

it contains a-dependent terms which individually produce logarithmic divergences at small

z, but these cancel precisely against each other ensuring that the UV divergence structure

is unaltered. Figure 5 shows that the free energy ID3(2π) < 0 increases monotonically as a

function of (aR) and smoothly connects the symmetric representation (UV) to k coincident

quarks in the IR. Analogously to the D5-brane case, this points to an interpretation in
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Figure 6. The free energy − lnZH = ID3(2π) of the D3-brane solution with a < 0 in hyperbolic

space with β = 2π and κ̃ = 0.7. For small deformations (UV), it matches the symmetric Wilson

loop, but as |aR| is increased, the free energy increases, becomes positive and scales as (aR)2.

terms of a relative entropy, since the deformation a corresponds to an expectation value of

a dimension one operator in the UV [23], and can be viewed as labelling a state different

from the thermal one.

5.5 Action for D3-brane embedding with a < 0

The D3-brane embedding with a < 0 can be interpreted as a heavy quark on the Coulomb

branch of the N = 4 theory where SU(N) is broken to U(1) × SU(N − 1). In particular,

it can be viewed as the symmetric representation Wilson line evaluated on the Coulomb

branch. Since the proper size of the S2 wrapped by the D3-brane diverges at z = |aκ̃|−1,

lim
z→|aκ̃|−1

r

z
→ ∞ , (5.21)

it represents a flat D3-brane at z = |aκ̃|−1 with a spike stretching to the AdS-boundary.

As in the case of both the D5- and D3-brane embeddings with a > 0, the action for this

configuration in hyperbolic space is a monotonically increasing function of |aR| (figure 6).

However, unlike the previous examples, for large enough |aR| the free energy becomes

positive and increases without bound as |aR|2 .

In the limit of large negative a, the action (5.20) can be obtained analytically and the

result shown to agree with the numerical evaluation in figure 6. The analytical approx-

imation is based on the observation that for |aR| � 1, we are evaluating the hyperbolic

space action for a Coulomb branch configuration corresponding to a D3-brane placed at

z = |aκ̃|−1. The situation is shown in figure 7. For large enough |aR|, most of the contri-

bution to the action is from the Coulomb branch D3-brane and the effect of the k strings (in

the representation Sk) stretching to the conformal boundary is negligible. To implement

this we consider the integrand in (5.20), and rewrite it using z(r) = r/(1 + |a|r)κ̃, so that

r is the independent variable. In the limit |aR| � 1, we find:

ID3(2π)
∣∣
|aR|�1

= − N(u+ − sinhu+ coshu+)||aR|�1 (5.22)

+
N

π

∫ R

0
dr

∫ √R2−r2

0
dx0

2r2κ̃2|a|2(r2 + x20 −R2)

r4 + 2r2(x20 −R2) + (x20 +R2)2
.
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Figure 7. Left: intersection of z2 + r2 = R2 with the D3-brane embedding (thick, blue curve)

for κ̃ = 0.1 and aR = −100. Centre: the same curves for κ̃ = 0.05 and aR = −5. Right: plot of the

intersection point z = zmax as a function of |aR| for κ̃ = 0.02.

The first term is the horizon contribution determined by radial coordinate u on the D3-

brane where it intersects the hyperbolic horizon at ρ = 1. Using the coordinate trans-

formations (2.18), a D3-brane at z = |aκ̃|−1 intersects the horizon (the boundary of the

domain D in Poincaré patch) at,

coshu+ = κ̃|a|R� 1 =⇒ u+ ≈ ln(2κ̃|a|R) . (5.23)

We thus obtain,

ID3(2π)||aR|�1 ' N

(
1

2
(κ̃aR)2 − ln(2κ̃|a|R)

)
. (5.24)

This is not the entanglement entropy for the probe, but has a natural interpretation as

the relative entropy of the Coulomb branch state. The basic features are in line with the

expected UV divergent contributions to EE in four dimensional field theories [6] where the

leading cutoff dependence is quadratic and non-universal and the subleading divergence is

logarithmic with a universal coefficient. The VEV on the Coulomb branch, given by the

position of the D3-brane at z = (|a|κ̃)−1 determines the masses of W -boson states and

acts as a UV cutoff for the abelian factor on the Coulomb branch. The overall factor of

N arises due to the N − 1 species of W -boson states being integrated out, viewed as open

strings stretching between the single separated D3-brane and the stack of (N−1) coincident

branes. The coefficient (after factoring out the overall N) of the logarithmic contribution

and its sign agrees with expected value [6] of −4a∗4 for a 4D CFT where a∗4 = 1
4 is the

A-type trace anomaly coefficient for one N = 4 multiplet. Note that the gauge parameter

γ has no effect on the free energy at β = 2π.

It is worth stressing that the logarithmic dependence originates entirely from the Wess-

Zumino term of the D3-brane action from the coupling to the four-form potential, in the

same gauge which yields the correct result for the circular Wilson loop. The quadratic

dependence on a receives contributions from both DBI and Wess-Zumino terms.
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Figure 8. Left: the D3-brane EE with a > 0 for κ̃ = 0.9 (left) increases with increasing aR.

It appears to overshoot slightly the IR value of kS� = 2
3Nκ̃ indicated by the dashed black line.

Right: the overshoot is clearer at larger κ̃ as shown on right for κ̃ = 6.0 before it settles to the value

for k fundamental quarks.

5.6 EE for D3-brane impurity

Now we can move on to discussing the EE contribution from the D3-brane embedding.

Differentiating the off-shell action (5.12) with respect to β, the entanglement entropy of

the defect is,

SD3 = lim
β→2π

β∂βID3(β) (5.25)

=
4N

3π

∫ π
2

−π
2

dτ

∫ ∞
1

dρ

[
(aRκ̃2 coshu − (κ̃− ρ sinhu)2 sinhu)

2aRκ̃

(
(∂ρu)2 − (∂τu)2

ρ2 − 1

)
+ 2γ sinh2 u ∂ρu

]
+

2N

3

(
aRκ̃(κ̃2 + sinh4 u+)

aRκ̃2 coshu+ − sinhu+(κ̃− sinhu+)2
+ u+ − sinhu+ coshu+

)
. (5.26)

The gauge parameter γ for the four-form potential must be set to unity, in order to recover

the expected result of [16] for the symmetric representation in the UV. The UV countert-

erms in the action ID3 are independent of β and do not contribute to entanglement entropy.

The terms outside the integral are boundary contributions that arise from evaluating the

integrand at the horizon. The γ-dependent shift also reduces to a horizon contribution:

2 sinh2 u ∂ρu = −∂ρ(u − sinhu coshu) . (5.27)

Using the expressions in appendix A, this can be reduced to an integral over the domain

D in Poincaré patch, where the integration over time (x0) can be performed analytically

and the final integration over the radial coordinate numerically.

Positive a: the entanglement entropy for a > 0 solutions exhibits features (figure 8) that

appear counterintuitive at first sight. The EE contribution increases from the UV towards

the IR (aR � 1). Given the interpretation of the D3-brane embedding with a > 0 [23],
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Figure 9. The entanglement entropy for a < 0 solutions with κ̃ = 0.05. At low values of |a|R it

tracks the result for k quarks, departing from it near |a|R ≈ 1/κ̃, and finally scaling as ∼ −Na2
for large enough a.

and the results of [16] this is not really a surprise. The physical significance of this remains

to be understood. We further note that the entanglement entropy rises linearly at a = 0,

whilst the free energy (figures 5 and 6) rises quadratically for small a. Finally, figure 8

exhibits an overshoot before settling down to the large aR value for k fundamental quarks.

Negative a: let us now turn to the D3-brane embedding with a < 0 which represents

a heavy quark source in the symmetric representation with k ∼ O(N) on the Coulomb

branch of the N = 4 theory with SU(N) broken to U(1)×SU(N − 1). For small enough κ̃,

we can interpret it as a smooth configuration arising from a collection of k strings ending

on a single D3-brane placed at z = (κ̃|a|)−1. When the size of the entangling sphere on the

boundary is small, i.e. |a|R� 1, the entanglement entropy should match that of k quarks

(bundle of coincident strings). In the AdS dual picture, this is due to the fact that the

expanded D3-brane remains hidden behind the hyperbolic black hole horizon and we have

k F-strings stretching from the boundary to the hyperbolic horizon. In Poincaré patch, this

is simply the geometrical statement (depicted in figure 7) that the D3-brane embedding

intersects the surface z2 + r2 = R2 at z ≈ R when κ̃ � 1 and |aR| � 1/κ̃. As the size

of the region is increased smoothly and |aR| ≈ 1/κ̃, the expanded portion of the D3-brane

at z = 1/(κ̃|a|), enters the domain z2 + r2 < R2. At this point the entanglement entropy

should exhibit a (smooth) crossover to qualitatively different behaviour which is eventually

completely determined by the Coulomb branch VEV. This is precisely what we see in

figure 9. For large enough κ̃ (greater than a critical value κ̃c ≈ 0.6), the non-monotonic

feature disappears and the EE decreases monotonically.

As in the case of the free energy for a < 0 solutions, we analyse the integrand

in eq. (5.25) and find that the entanglement entropy exhibits the large |a| asymptotic

behaviour:

SD3

∣∣
aR�1

= N

[
−1

3
(|a|Rκ̃)2 − c(κ̃)|a|R +

2

3
ln (2|a|Rκ̃)

]
. (5.28)

We now have both quadratic and logarithmic contributions, and surprisingly, a term linear

in |a|. The interpretation of the linear term is unclear as we have only determined its

coefficient numerically for different values of κ̃. One observation we can make is that the
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linear term is not simply a Coulomb branch effect as it is not a function of the VEV κ̃|a|
(the separation of the D3-brane from the stack), unlike the other two terms; it also depends

nontrivially on κ̃.

5.7 Comparison with 〈OF 2〉

The expectation value of the marginal field theory operator OF 2 dual to the dilaton reflects

the strength of the source. This expectation value was computed for the D3-brane embed-

ding with a > 0 in [23] and the strength found to decrease monotonically with distance

from the source:5

〈OF 2〉(r) →
√

2

4π

κ̃
√

1 + κ̃2

r4
, 0 < ar � 1 , (5.29)

→
√

2

4π

κ̃

r4
, ar � 1 .

Repeating the exercise for the embeddings with a < 0, we obtain,

〈OF 2〉(r) =
3
√

2

16π r4

∫ 1
|a|r κ̃

0
dy (1 − |a|r κ̃y) y (5.30)

×

(y2 +

(
1 − κ̃y

1 − |a|r κ̃y

)2
)− 5

2

−

(
y2 +

(
1 +

κ̃y

1− |a|rκ̃y

)2
)− 5

2

 .
This expression makes clear that r4〈OF 2〉 is a function of the dimensionless combination

|a|r. It was obtained by rescaling the integration variable z in eq. (B.1), the radial AdS

coordinate, and defining y = z/r. Using this we find that the asymptotic values for the

VEV of the operator for a < 0 are,

〈OF 2〉(r) →
√

2

4π

κ̃
√

1 + κ̃2

r4
, |a|r � 1 , (5.31)

→
√

2

4π

κ̃2

r4
, |a|r � 1 .

The large r asymptotics is completely controlled by the location of the displaced Coulomb

branch D3-brane with the flux on it due to the Wilson line or heavy quark probe. In the

limit, |a|r � 1, the integrand in (5.30) behaves like a Dirac δ-function and receives all its

contributions from a region very close to the location of the Coulomb branch brane (see

appendix B for details). Once again, the strength of the source decreases with increasing

distance and as shown in figure 10 it is a monotonic function of |a|r.

6 Discussion and summary

The calculations presented in this paper, coupled with the observations in earlier work [23],

raise several questions. We discuss these below.

5The result for the conformal (a = 0) D3-brane embedding was first obtained in [31].
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Figure 10. The strength of 〈OF 2〉 sourced by the D3-brane impurity for a > 0 (left) and a < 0

(right) with κ̃ = 1.2. For a > 0 it interpolates between the value for the symmetric representation

Sk (dashed red) and k fundamental quarks (dashed black). When a < 0, the large r value of the

ratio 〈OF 2〉D3/〈OF 2〉� = κ̃ (dashed orange), which can be bigger or smaller than unity.

The worldline theory for the degrees of freedom on a heavy quark impurity in the rep-

resentation Ak (or Sk) is given by a fermionic (or bosonic) quantum mechanics interacting

with the N = 4 degrees of freedom [20]:

Iimp = IN=4 +

∫
dt
[
iχ†m∂tχ

m + χ†m
(
A0 + n̂JφJ

)m
n
χn + µ(χ†mχ

m − k)
]
, (6.1)

where µ is a Lagrange multiplier which enforces the constraint that the fermion or boson

number equals k. The {χm} are N flavours (boson or fermion) with m = 1, 2, . . . N ,

transforming in the fundamental representation of the SU(N) gauge group. A0 and {φI}
are, respectively, the temporal component of the gauge field and the six adjoint scalars of the

N = 4 theory. For the superconformal circular (Euclidean) Wilson loop, the combination(
A0 + n̂JφJ

)
can be integrated out [32, 33] to obtain a bilocal quartic fermion or scalar

interaction:

Iimp =

∫ β

0
dτ

(
χ†m∂τχ

m +
λ

8Nπ2β2

∫ β

0
dτ ′χ†m(τ)χn(τ)χ̄n(τ ′)χm(τ ′)

)
. (6.2)

The deformations we have considered in this paper should, in principle, be viewed as

deformations of the quantum mechanics (6.1). Specifically, the D3-brane solution, whose

UV description is the Wilson loop in representation Sk associated to the bosonic version of

the quantum mechanics, the deformation in question can be naively interpreted as being

due to the VEV of a dimension one operator ∼ χ†(n̂JφJ)χ [23]. This is a singlet under

spatial SO(3) rotations and the SO(5)R subgroup of the R-symmetry left unbroken by

internal orientation (choice of n̂) of the BPS Wilson line. The fluctuation analysis in [23]

and [34] confirms the existence of such a dimension one operator in the BPS spectrum of

the conformal D3-brane embedding dual to the symmetric Wilson loop. In the fermionic

case which corresponds to the IR description of the D5-brane impurity, the deformation is

by an irrelevant operator of dimension four ∼ χ†
(
n̂JDαφ

J
)2
χ [35].

It would be extremely interesting to understand how the flows indicated by the brane

embeddings emerge from deformations of the impurity quantum mechanics discussed above.
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The naive interpretation of the D3-brane deformation as a VEV of a dimension one op-

erator [23] in the impurity theory is particularly puzzling, as it would imply spontaneous

breaking of conformal invariance in the associated quantum mechanics (which should not

be possible). This is plausible for the case a < 0 which corresponds to a Coulomb branch

configuration. In this situation the deformation gets related to a scalar VEV in the ambi-

ent four dimensional theory, which feeds into the impurity quantum mechanics. However,

this does not explain what happens for a > 0 deformations. It is worth noting that the

D5-brane solution also appears to be triggered in the UV by the VEV of a dimension one

operator [23].

By explicit evaluation we have seen that the free energy − lnZH on H ' S1 ×H3 for

each of the nonconformal impurities (both D5- and D3-brane) is a monotonically increasing

function of the size of the deformation parameter. This is the behaviour expected for the

relative entropy of excited states, relative to the thermal one. On the other hand, the

change in the entanglement entropy of a region of radius R (in flat space) due to the D5-

brane impurity and the a < 0 D3-brane defect, is non-monotonic for small R, eventually

becoming a decreasing function of R for large R. This statement, however, does not apply

to the a > 0 D3-brane solution for which the jump in EE, while always bounded, increases

non-monotonically and saturates at a finite value in the IR.

The fact that the jump in EE due to the (pointlike) defects is non-decreasing or non-

monotonic, while puzzling, is not immediately in conflict with the g-theorem [36, 37] and its

holographic version [38, 39]. The latter apply to CFTs in 1+1 dimensions with a boundary

impurity or to CFTs in d dimensions with a d−1 dimensional boundary. This includes the

Kondo model where an effective 1+1 dimensional description is obtained after reducing to

the s-wave modes [40]. Evidently, this is not the case for our problem where the pointlike

impurity is placed in an ambient 3 + 1 dimensional CFT at large-N , with an AdS5 gravity

dual (without degrees of freedom confined to an AdS3 subspace as in [41]).

Overall, it would clearly be very interesting to understand the physical reason behind

the very different behaviours of entanglement entropy for the different types of sources

and how these qualitative features of entanglement relate to the strength of the sources as

indicated by the long range falloff of the fields coupled to them.

Technically, the calculation of the gravitational entropy contribution from the D3-

brane probes involved a new aspect not encountered previously, namely, the role of RR

potentials and their inherent gauge ambiguity. The choice of gauge was fixed by matching

to the result of [8] for entanglement entropy of the symmetric representation source in the

absence of any deformation. Given that this is crucial for obtaining the correct result via

the replica method, a first principles understanding of the gauge choice would be desirable.
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Andy O’Bannon, Carlos Núñez, David Tong and Dan Thompson. SPK would also like

to thank the Galileo Galilei Institute for Theoretical Physics (GGI) for hospitality and

providing a stimulating atmosphere, and INFN for partial support, while this work was be-

– 30 –



J
H
E
P
0
1
(
2
0
1
8
)
0
5
2

ing completed during the program “New Developments in AdS3/CFT2 Holography”. This

work was supported by STFC grants ST/L000369/1, ST/P00055X/1 and ST/K5023761/1.

A Transformations for D3-brane embedding

For the D3-brane non-conformal embedding, we need to evaluate the action and its deriva-

tive with respect to β in the hyperbolic AdS geometry. The embedding (5.3) implicitly

specifies u = u(τ, ρ). To calculate the action and the entanglement entropy, we require

the derivatives ∂τu and ∂ρu as functions of the hyperbolic AdS coordinates (τ, ρ, u) and

Poincaré patch coordinates (x0, z, r). We first use the transformations (2.18) (after Wick

rotation to Euclidean signature) and the BPS solution (4.6) to evaluate the derivatives in

the D3-brane action:

∂u

∂ρ
=
− ρ cos τ√

ρ2−1
− coshu + aR κ̃2 sinhu

(κ̃−ρ sinhu)2

ρ
(

sinhu− aR κ̃2 coshu
(κ̃−ρ sinhu)2

) ,
∂u

∂τ
=

√
ρ2 − 1 sin τ

ρ
(

sinhu− aR κ̃2 coshu
(κ̃−ρ sinhu)2

) . (A.1)

Next, we note that the combination of derivatives of u that appears in the DBI portion of

the D3-brane action simplifies considerably:

1 + ρ2(ρ2 − 1)(∂ρu)2 +
ρ2(∂τu)2

ρ2 − 1
=

(aR)2κ̃2
(
κ̃2 + ρ4 sinh4 u

)
[aRκ̃2 coshu − (κ̃− ρ sinhu)2 sinhu]2

(A.2)

Then the on-shell action in hyerbolic AdS space with β = 2π is

ID3(2π) =
2N

π

∫ π
2

−π
2

dτ

∫ ∞
1

dρ

[
aRκ̃

(
κ̃2 + ρ4 sinh4 u

)
aRκ̃2 coshu − (κ̃− ρ sinhu)2 sinhu

(A.3)

+ρ2(ρ2 − 1) sinh2 u ∂ρu + ρ(u− sinhu coshu)

]
+ IUV .

Evaluating the integral in hyperbolic space coordinates is unwieldy since u(ρ, τ) is a com-

plicated function. Instead, we translate back to Poincaré patch coordinates. The Jacobian

for this transformation, (evaluated on the D3-brane worldvolume) is:∣∣∣∣∂ρ∂z ∂τ∂x0 − ∂ρ

∂x0

∂τ

∂z

∣∣∣∣ =
1

z2
1

(aR) κ̃2
(
(aR) κ̃2 coshu − sinhu(κ̃− ρ sinhu)2

)
(A.4)

The hyperbolic AdS coordinates can be written in terms of Poincaré patch variables:

ρ =

√
r(z)4 + 2 r(z)2(z2 + x20 −R2) + (R2 + x20 + z2)2

2 z R
, (A.5)

sin τ =
2x0R√

r(z)4 + 2 r(z)2(z2 + x20 −R2) + (R2 + x20 + z2)2 − 4 z2R2
,

sinhu =
2 r(z)R√

r(z)4 + 2 r(z)2(z2 + x20 −R2) + (R2 + x20 + z2)2
,
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where r(z) = κ̃z/(1 + aκ̃z). We may now simplify the individual terms in the integrand

in (A.3) quite substantially. The Jacobian and the DBI piece combine to yield:

I1 = dτ dρ
aRκ̃

(
κ̃2 + ρ4 sinh4 u

)
aRκ̃2 coshu − (κ̃− ρ sinhu)2 sinhu

= dx0 dz

(
κ̃

z2
+
r(z)4

z6 κ̃

)
. (A.6)

The Wess-Zumino terms can be combined to yield a piece which is a total derivative:

ρ2(ρ2 − 1) sinh2 u ∂ρu + ρ(u − sinhu coshu) (A.7)

= ρ4 sinh2 u ∂ρu +
1

2

∂

∂ρ

[
ρ2 (u − sinhu coshu)

]
.

Transforming the first of these two to Poincaré patch variables we find:

I2 = dτ dρ ρ4 sinh2 u ∂ρu

= dx0 dz

[
−r(z)3

z5
+

r(z)2

z5aκ2

(
κ̃− r(z)

z

)2

(A.8)

×

( {
(x20 +R2)2 − z4 + 2r(z)2(x20 −R2) + r(z)4

}
r4 + 2r(z)2(x20 + z2 −R2) + (x20 + z2)2 + 2R2(x20 − z2) +R4

)]

Finally the total derivative contribution evaluates to

I3 = −N (u+ − sinhu+ coshu+) , sinhu+ =
κ̃ coshu+

κ̃ aR + coshu+
, (A.9)

where u+ is the value at the hyperbolic horizon ρ = 1, and the contribution from the

boundary at ρ→∞ is vanishingly small. The complete action for the solution can now be

written as the sum of these different terms:

ID3(2π) =
2N

π

∫ ∫
D

(I1 + I2) − N (u+ − sinhu+ coshu+) − 4Nκ̃
R

πε
. (A.10)

where, the last term is the UV counterterm, and,∫ ∫
D

(I1 + I2) =

∫ zmax

ε
dz

∫ √R2−r2−z2

−
√
R2−r2−z2

dx0

[
κ̃

z2
− aκ̃4

z(1 + azκ̃)4
(A.11)

+
aκ̃4

z(1 + azκ̃)4

{ (
(x20 +R2)2 − z4 + 2r(z)2(x20 −R2) + r(z)4

)
r(z)4 + 2r(z)2(x20 + z2 −R2) + (x20 + z2)2 + 2R2(x20 − z2) +R4

}]
.

B Evaluation of 〈O2
F 〉D3

Following the analysis presented in [23] and setting a = −|a|, we have

〈O2
F 〉D3 =

3
√

2

16π r

∫ |aκ̃|−1

0
dz (1− |a|κ̃z) z (B.1)

×

(z2 +

(
r − κ̃z

1− |a|κ̃z

)2
)− 5

2

−

(
z2 +

(
r +

κ̃z

1− |a|κ̃z

)2
)− 5

2

 .
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The z-integration is cut off at z = 1/|a|κ̃ where the embedding terminates in the blown

up Coulomb branch D3-brane. We can then define the rescaled variable x = |a|κ̃z
which yields:

〈O2
F 〉D3 =

3
√

2

16πr6κ̃2a2

∫ 1

0
dx (1− x)x (B.2)

×

( x2

|aκ̃r|2
+

(
1 − x/|ar|

1− x

)2
)− 5

2

−

(
x2

|aκ̃r|2
+

(
1 +

x/|ar|
1− x

)2
)− 5

2

 .
Since x is bounded between 0 and 1, in the large r limit we need to examine the function

lim
ε→0

1

(y2 + ε2)n
. (B.3)

This is sharply peaked at x = 0. Integrating across any finite interval containing y = 0,

we obtain

lim
ε→0

∫ b

−b
dy

1

(y2 + ε2)n
=

√
πΓ
(
n− 1

2

)
ε2n−1 Γ(n)

. (B.4)

Therefore we make the replacement,

1

(y2 + ε2)n
→
√
πΓ
(
n− 1

2

)
ε2n−1 Γ(n)

δ(y) . (B.5)

Only the first of the two terms in the expression for 〈O2
F 〉D3 yields a δ−function with

support in the interval 0 ≤ x ≤ 1. Thus, assuming |a|r � 1,

〈O2
F 〉D3 =

√
2 κ̃2a2

4πr2

∫ 1

0
dx(1− x)x−4δ

(
1

x
− 1

a|r|(1− x)

)
=

√
2 κ̃2

4π r4
, (B.6)

where the δ-function has support at x = |a|r/(1 + |a|r).

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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