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1 Introduction

Wilson loops are non-local operators in gauge theory; they serve as order parameters in

many situations. In the context of the AdS/CFT correspondence Wilson loops play a par-

ticularly important role as they are described, at leading order, by classical configurations

of strings and branes [1, 2]. These classical configurations represent a controlled departure

from the strict supergravity limit into stringy aspects of the correspondence. Indeed, the

AdS/CFT dictionary has been enlarged to include D3 and D5 branes corresponding to

Wilson loops in the symmetric and antisymmetric representations of SU(N) for N = 4

SYM [3–7].

More recently, due to the advent of localization techniques [8], the expectation values of

some supersymmetric Wilson loops have been expressed as matrix models. This situation

sets the stage, in the context of the AdS/CFT correspondence, for a very rich interplay

(for a recent review see [9]).

In this manuscript we study the expectation values of certain Wilson loops in a su-

persymmetric deformation of N = 4 supersymmetric Yang Mills known as N = 2∗ theory.
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One of our main driving motivations is to consider the prototypical dual pair in AdS/CFT,

namely, the equivalence of string theory on AdS5 × S5 with N units of RR five-form flux

and N = 4 SYM in a less symmetric corner. The hope is to extract lessons about non-

conformal theory where we expect interesting aspects of gauge dynamics play an important

role, particularly when results are no longer determined by symmetries as could be arguably

the case in many situations in the prototypical AdS5 × S5/N = 4 SYM case.

There is already a number of works which precisely address various properties of the

AdS/CFT correspondence for the case of N = 2∗ theory. For example, the intricate struc-

ture of phases in N = 2∗ was discussed in [10, 11]. Initial discussions on the holographic

side were presented in [12, 13]. Along the lines that we pursue in this paper there has

already been a number of papers evaluating expectation values of some supersymmetric

Wilson loops in N = 2∗ [14, 15]. Finally, a very recent test going beyond the leading order

and delving into quantum corrections on the holographic side [16] paves the way for more

precision holography in this context.

In this paper we consider the N = 2∗ theory with U(N) gauge group and evalu-

ate expectation values of Wilson loops in representations described by rectangular Young

tableaux with n rows and k columns. Our computation of the vacuum expectation value

of the rectangular Wilson loop relies on two key approximations. First, we assume that

the leading order answer is given by a saddle point evaluation which requires the large-N

limit. Second, we assume that the characteristic eigenvalue distribution is given by two

groups of eigenvalues which are widely separated with separation kλ/(4N). Thus, for large

separation we require large k or large λ. We provide a systematic way of introducing cor-

rections to this leading order approximation in various parameters. To carefully account

for all the corrections, we are forced, in some situations, to investigate aspects of the genus

expansion.

The rest of the paper is organized as follows. In section 2 we briefly review the

N = 2∗ theory and describe the general computational setup. Section 3 discusses the

saddle point approximation to the expectation value of the Wilson loops and highlights

generic properties. In section 4 we discuss how our computation relates to the totally

symmetric and totally antisymmetric cases that have been discussed in the literature.

Section 5 is devoted to the one-loop corrections; we discuss the general case and revisit

the totally symmetric case in detail. We conclude in section 6. In appendix A we provide

some details of the systematic genus expansion that are used in the main text and present

a pedagogically intructive example. Appendix B revisits previously overlooked details of

the computation of the Wilson loop in the totally antisymmetric representation.

2 Wilson loops in N = 2∗ theory

The N = 2∗ theory is a relevant perturbation of maximally supersymmetric N = 4 SYM

by a combination of dimension two and dimension three operators that preserves half of the

supersymmetry. The field content of N = 2∗ is the same as in theN = 4 theory. In addition

to the gauge field, there are six scalars which are typically denoted by Φ1, . . . ,Φ4,Φ,Φ
′ and

four Majorana fermions. As in N = 4, all fields are in the adjoint representation of the
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gauge group. The relevant perturbation adds equal masses to ΦI and their superpartners;

this mass scale is denoted by M0. In summary, in N = 2 language one has a vector

multiplet and a massive hypermultiplet. See [8, 13] for a presentation of the N = 2∗ theory

with details pertaining to its definition on S4.

It is quite remarkable that localization techniques can be used to compute a host of

supersymmetric observables for field theories [8]. Particularly relevant for us are certain

Wilson loops in the N = 2∗ theory defined as

WR(C) =

〈
trR P exp

[∫
C
ds(iAµẋ

µ + Φ|ẋ|)
]〉

, (2.1)

where R is an arbitrary representation of U(N) and Φ is a scalar from the vector multiplet.

The main result of [8] effectively turns expectation values of supersymmetric Wilson loops,

whose contour is the large circle on S4, in some four dimensional N = 2 supersymmetric

field theories into matrix integrals. Namely,

〈WR(C)〉 =
1

ZS4

1

Vol(G)

∫
g

[dM ]e
− 8π2R2

g2
YM

(M,M)
Z1-loop(iM)|Zinst(iM,R−1, R−1, q)|2 TrR e

2πiRM ,

ZS4 =
1

Vol(G)

∫
g

[dM ]e
− 8π2R2

g2
YM

(M,M)
Z1-loop(iM)|Zinst(iM,R−1, R−1, q)|2, (2.2)

where R is the radius of S4, and dM represents integration over hermitian matrices with

the Haar measure. More practically, for gauge invariant observables, the integral over the

Lie algebra g may be turned into an integral over its Cartan subalgebra. The instanton

partition function is the generating function of instantons of a given topological charge;

that is, it is a sum with coefficients qn = exp(2πinτ) where τ is the complexified Yang-

Mills coupling τ = θ/2π + i4π/g2YM . Therefore, in the large-N limit with a fixed ’t Hooft

coupling, λ, the instanton contribution is exponentially suppressed e−8π
2N/λ. Thus, by

working in the large-N limit, we may consistently set Zinst = 1.

Using standard matrix model techniques [17] one reduces the N = 2∗ problem to an

integration over eigenvalues, mi:

Z =

∫
dm
∏
i<j

Z1-loop(mi −mj ,M0, R)e−
8π2NR2

λ

∑
m2
i , (2.3)

where the one-loop contribution is

Z1-loop(x,M0, R) =
x2H2(x,R)

H(x+M0, R)H(x−M0, R)
, H(u,R) =

∞∏
n=1

(
1 +

R2u2

n2

)n
e−

R2u2

n .

(2.4)

Note that, in the large N limit, the difference between SU(N) and U(N) group is sup-

pressed. So from now on we do not distinguish between these two gauge groups.

The Wilson loop expectation value is obtained by evaluating

WR(C) =
〈
trR e

LM0
〉
, (2.5)
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where L = 2πR is the length of the contour C and

M = diag(m1, . . . ,mN ). (2.6)

After the scaling mi → mi/L, the partition function only depends on the product M0R

through Z1−loop, up to a proportionality constant which will be canceled when evaluating

the vacuum expectation value (vev). Therefore, it is obvious that in the limit M0R → 0,

the N = 2∗ theory simply reduces to N = 4 theory, and we will use this limit to compare

with results present in the literature. The general rule relating the results before and after

the scaling is: set R = 1/2π and then M0 7→ 2πM0R.

We will focus our analysis on higher dimensional representations following an approach

first discussed, to our knowledge, by Okuda [18] for the case ofN = 4 SYM. Some important

technical aspects of this approach were also used in [19]. One significant result within

this approach is the computation of Wilson loops in an arbitrary representation which is

equivalent to producing a spectral curve from a given Young tableau. On the holographic

side the back-reacted geometry corresponding to a Wilson loop in arbitrary representations

was constructed in [20]. Indeed, in [21] the authors elaborated on the method of [18] with

the goal of comparing with the holographic side.

The key identities that we are going to use pertain to forms of writing the trace over

a representation R. They are discussed in [18] in the context of computing expectation

values of Wilson loops in N = 4 SYM but are, of course, well known statements in group

theory [22]:

TrR e
M =

∫
dU det(1 + eM ⊗ U−1) TrRT U, (2.7)

TrR e
M =

∫
dV

1

det(1− V −1 ⊗ eM )
TrR V, (2.8)

where U and V are unitary matrices, dU and dV denote the Haar measure and RT stands

for the transpose of R.

In this manuscript we specialize to rectangular Young tableaux with n rows and k

columns. It is, therefore, natural to consider the matrix U to be a k × k unitary matrix

and the V matrix to be an n× n one. In this case we have that

TrRT = (detU)n, TrR V = (detV )k. (2.9)

Therefore the starting expressions for the Wilson loop observables are

〈WR〉 =
1

Z

∫
dMdU exp (−S(M)N=2∗) det(1 + eM ⊗ U−1)(detU)n,

〈WR〉 =
1

Z

∫
dMdV exp (−S(M)N=2∗)

1

det(1− V −1 ⊗ eM )
(detV )k, (2.10)

where S(M)N=2∗ can be read off from the partition function given in eq. (2.3). Note that

the U matrix and V matrix expressions are formally equivalent, so whichever one is more

convenient can be used. However, the results may not be identical once the saddle point

and other approximations are performed.
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3 Saddle point approximation: general properties

The vacuum expectation values of the Wilson loops we study here have a vast parameter

space (N,M0R, λ, k, n). We are going to consider always the large-N limit and explore

various regimes in the rest of the parameters. We are going to follow standard matrix

model techniques for obtaining the expectation values of the Wilson loop. Operationally,

large N means that we are going to focus on the saddle point approximation.

In this section we show some of the key properties of the eigenvalue distribution. A

number of these properties, like the separation of eigenvalues in two groups, were first

established for the N = 4 case. Our goal is to present various analytical results in the

computation of the expectation values of rectangular Wilson loops. However, to confirm

some of the results and to develop our intuition we will also conduct some numerical

explorations.

3.1 Rectangular Wilson loop

We will focus on the rectangular representation R with n rows and k columns. Collecting

various results from the previous sections, and focusing on the U matrix in (2.10), one can

write the vev of such a Wilson loop as

〈WR〉 =
1

k!(2π)k
1

Z

∫ k∏
a=1

dua

N∏
i=1

dmi exp

−2N

λ

N∑
i=1

m2
i+
∑
i<j

logZ1-loop(mi−mj)+n

k∑
a=1

ua

+
∑
a<b

log

(
2 sinh

ua−ub
2

)2

+
∑
a,i

log(1−emi−ua)

 ,
(3.1)

where

Z1-loop(x) ≡ Z1-loop(x, 2πM0R, 1/2π). (3.2)

Since the radius R can be scaled away, we set R = 1 (i.e. we take M0R → M0, and the

decompactification limit R � 1 is replaced with M0 � 1). When x is large, the one-loop

function is simply a re-scaling of the Vandermonde determinant in N = 4 theory, namely:

logZ1-loop(x)→ 2(1 +M2
0 ) log |x|, |x| � 2πM0. (3.3)

The saddle-point equations are obtained by variations with respects to the eigenvalues

mi and ua:

−4N

λ
mi +

∑
j 6=i

d

dmi
logZ1-loop(mi −mj)−

∑
a

1

eua−mi − 1
= 0, (3.4)

n+
∑
b 6=a

coth
ua − ub

2
+
∑
i

1

eua−mi − 1
= 0. (3.5)

To proceed, we make the following Ansatz [18]. The eigenvalues mi are divided into two

groups {m(1)
i : i = 1, . . . , n} and {m(2)

i : i = n + 1, . . . , N} separated by ua, which are

– 5 –
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uniformly distributed along [u, u+2πi] (max{m(2)
i } � u� min{m(1)

i }). As we will further

see, the position of u is related to various parameters in the system.

Let us now explain the limit in which the above Ansatz for the eigenvalues is verified.

Notice that approximating
1

ex − 1
' −Θ(−x), (3.6)

where Θ is Heaviside step function, and using that d
dx logZ1-loop(x)→ 0 when x→∞, the

saddle-point equations decouple and become

−4N

λ
m

(1)
i +

∑
j 6=i

d

dm
(1)
i

logZ1-loop(m
(1)
i −m

(1)
j ) + k = 0,

−4N

λ
m

(2)
i +

∑
j 6=i

d

dm
(2)
i

logZ1-loop(m
(2)
i −m

(2)
j ) = 0,

n+
∑
b 6=a

coth
ua − ub

2
− n = 0.

(3.7)

The last equation is satisfied when ua are uniformly distributed. The first two equa-

tions describe the same distribution of eigenvalues as in the partition function, centered

at kλ/4N and 0, respectively. The only difference is that λ needs to be rescaled as

λ 7→ λ(# of eigenvalues/N), namely, λn/N and λ(N − n)/N , respectively. Finally, this

solution for the eigenvalues is valid when the Heaviside approximation is correct which in

turn means that the distance between the centers of the distributions, which is kλ/4N ,

should be large.

At this point, a couple of comments are in order. Firstly, the requirement kλ/4N �
1 not only ensures that the approximation (3.6) is valid, but also guarantees that the

derivative of Z1-loop(x) is small. However, while the Heaviside approximation receives

exponentially small corrections, the latter will receive power-law corrections. Thus the

above Ansatz will be power-law corrected. Secondly, since we work in the large-N limit,

the number of columns of the rectangular representation, k, has to scale with N in order

to satisfy kλ/4N � 1 for fixed λ.

Under this approximation, the expectation (3.1) splits into three components

W = W1 +W2 +W3, (3.8)

where

W1 = −2N

λ

∑
i

(
m

(1)
i

)2
+
∑
i<j

logZ1-loop(m
(1)
i −m

(1)
j ) + k

∑
i

m
(1)
i , (3.9)

W2 = −2N

λ

∑
i

(
m

(2)
i

)2
+
∑
i<j

logZ1-loop(m
(2)
i −m

(2)
j ), (3.10)

W3 =
∑
a<b

log

(
2 sinh

ua − ub
2

)2

. (3.11)
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The first two terms are simply rescaled partition functions. For W1, we complete the square

to remove the last term in (3.9), while W2 is already centered at the origin. We thus have

W1 = F
(
λ
n

N
, n
)

+
k2λn

8N
,

W2 = F
(
λ
(

1− n

N

)
, N − n

)
, (3.12)

where F (λ,N) is the effective free energy

F (λ,N) = logZ(λ,N)− logN ! . (3.13)

The reason we subtract logN ! is because the permutation symmetry in mi is not properly

accounted for if we directly use the free energy, where the permutation symmetry will

contribute log (N − n)! + log n! − logN ! instead of 0. Therefore, in order to obtain the

correct result we need to remove this symmetry in the free energy. Note also that it is valid

to include the one-loop correction in the free energy.

Finally, W3 can be evaluated exactly when the {ua} are uniformly distributed

W3 = log(±1) + k(k − 1) log 2 + 2 log

(∏
a<b

sin
π(a− b)

k

)

= log(±1) + k(k − 1) log 2 + 2 log

(
k−1∏
i=1

sin
k
2

(
πi

k

))

= log(±1) + k(k − 1) log 2 + k log
k

2k−1

= log(±1) + k log k.

(3.14)

Therefore the vev of Wilson loop, (3.1), is

〈WR〉 = exp

(
k2λn

8N
+k log k−k log 2π+F

(
λ
n

N
, n
)

+F
(
λ
(

1− n
N

)
, N−n

)
−F (λ,N)

)
,

(3.15)

where the factor 1/k! in (3.1) is cancelled by the permutation symmetry of ua. The term

k log k will be cancelled by the one-loop correction, which will be discussed in detail in

section 5 and the rest of the terms are at most O(N2 log λ), which is subdominant to the

leading term in the strong coupling limit λ→∞. Therefore the leading term is universal,

and in particular is independent of the N = 2∗ hypermultiplet mass M0, at least in this

limit.

3.2 Error estimation and numerical explorations

Our computation of the vacuum expectation value of the rectangular Wilson loop relies

on two key approximations. First, we assume that the leading order answer is given by

a saddle point evaluation which requires the large-N limit. Second, we assume that the

characteristic eigenvalue distribution is given by two groups of eigenvalues which are widely

separated with separation kλ/4N . Thus, for large separation we require large k or large λ.

– 7 –
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Figure 1. Eigenvalue distribution in N = 2∗ theory. The parameters used in the plot above are

N = 100, λ = 100, k = 50, n = 40 and M0 = 2.

We will provide a systematic way of introducing corrections to this leading order approxi-

mation in various parameters. As can be seen for the structure of the parameter, we need

to consider corrections in k and in λ.

Let us discuss the sources of error in the approximations made in the Ansatz above

for the eigenvalue distribution. One important approximation relies on the fact that
d

dm
(1)
i

logZ1-loop(m
(1)
i − m

(2)
j ) changes slowly when j runs over all possible values in the

second group of eigenvalues. In the strong-coupling limit (large λ), the contribution of

such crossing terms is bounded by∑ 2(1 +M2)(
m

(1)
i −m

(2)
j

)2√λ(1− n/N)(1 +M2
0 ) = O

((
1 +M2

0

λ

)3/2
N3

k2

)
. (3.16)

Therefore when λ� 1+M2
0 and k = O(N3/2), the above Ansatz is reliable. For symmetric

Wilson loops, we need to carefully analyze the crossing terms, which will be performed in

the next section.

In order to demonstrate more concretely the limits that we have used, we present

numerical results for the eigenvalues for two choices of parameters. Figure 1 represent the

numerical solution to the saddle point equations for N = 100, λ = 100, k = 50 and n = 40

and M0 = 2 while figure 2 describes the distribution for N = 100, λ = 20, k = 300, n = 30

and M0 = 2. The eigenvalue distribution in both cases, despite the wide range of the

parameters, is qualitatively the same. It can also be explicitly seen from the plots that

increasing k makes the approximation better.

4 Symmetric and antisymmetric representations

In this section we discuss in detail the approximations that take place when (n, k) above

take values corresponding to the totally symmetric and totally antisymmetric representa-

tions. We recover well-established results in the context of N = 4 and those presented

– 8 –
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Figure 2. Eigenvalue distribution in N = 2∗ theory. The parameters used in the plot above are

N = 100, λ = 20, k = 300, n = 30 and M0 = 2.

for N = 2∗ albeit in a rather subbtle fashion that sheds lights on various approximations

implicitly made in the literature.

4.1 Symmetric representation

Let us start by comparing our result with the standard expression for the totally symmetric

Wilson loop in N = 4 SYM that was obtained, for the first time, in [7]:

〈WSk〉 = exp
(

2N
(
κ
√

1 + κ2 + sinh−1 κ
))

, (4.1)

where κ = k
√
λ/4N . Our general expression, given in equation (3.15), is our starting point.

First, we particularize to the totally symmetric representation: k = fN, n = 1. Since we

assumed large λ in eq. (3.15) we impose such approximation in eq. (4.1), namely, for large

λ, we approximate
√

1 + κ2 ∼ κ and sinh−1 κ� κ. In this approximation the leading term

in both, eq. (4.1) and eq. (3.15) coincide

〈WSk〉 ' exp
(
2Nκ2

)
= exp

(
f2λN

8

)
= exp

(
k2λn

8N

)
. (4.2)

It is now clear that to improve in the comparison to eq. (4.1) we need to consider

terms subleading in λ. Going back to the saddle point configuration of eigenvalues, we

recall that the interaction between m
(1)
i and m

(2)
i was ignored assuming that the distance

between them is very large (O(kλ/4N)). However, in our current situation, the eigenvalue

m ≡ m
(1)
1 is affected by (N − 1) m

(2)
i , so the interaction is of order O(N(1 + M2

0 )/fλ),

which is not negligible and hence the position of m should be corrected accordingly. The

saddle-point equation for m containing all the other eigenvalues is

− 4N

λ
m+

∑
j>1

2(1 +M2
0 )

m−mj
+ k = 0. (4.3)
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It is obvious that (4.3) is the same equation as in N = 4 theory, except that λ and f need

to be rescaled accordingly (λ 7→ λ(1 +M2
0 ), f 7→ f/(1 +M2

0 )).

In the large N limit, the summation can be replaced by an integral

∑
j>1

2(1 +M2
0 )

m−mj
' (N − 1)

∫ √λ∗r
−
√
λ∗r

dxρ(x)
2(1 +M2

0 )

m− x
=

4N

λ

(
m−

√
m2 − λ∗r

)
. (4.4)

where λ∗ = (1 − 1/N)λr and λr = (1 + M2
0 )λ. For convenience we also define κr =

κ/
√

1 +M2
0 . Then (4.3) gives the position of m

m =
√
λ∗r + κ2rλr. (4.5)

The crossing terms in saddle-point equation for the other mi is

2(1 +M2
0 )

m
= O

(
1 +M2

0

λ

)
, (4.6)

which can be safely ignored in the strong-coupling limit.

Therefore the vev of Wilson loop is obtained by evaluating

〈WSk〉 = exp

[
−2N

λ
m2 + km+ 2(1 +M2

0 )
∑
i>1

log(m−mi) + k log k−

− k log 2π + F

(
λr

(
1− 1

N

)
, N − 1

)
− F (λr, N)

] (4.7)

at the saddle-point.

The first two terms simply give

− 2N

λ
m2 + km = 2N(1 +M2

0 )
[
2κr
√
κ2r + λ∗r/λr − (κ2r + λ∗r/λr)

]
, (4.8)

and the summation over i can be replaced by an integral

2(1+M2
0 )
∑
i>1

log(m−mi)

' 2(N−1)(1+M2
0 )

∫ √λ∗
r

−
√
λ∗
r

dxρ(x) log(m−x)

= 2(N−1)(1+M2
0 )

[
logm− λ∗r

8m2
F3 2

(
1, 1,

3

2
; 2, 3;

λ∗r
m2

)]

= 2(N−1)(1+M2
0 )

[
log

(
κr+

√
κ2r+

λ∗r
λr

)
+

1

2
log λr−log 2−1

2
+

(
1+

λr
λ∗r
κ2r

)
−λr
λ∗r
κr

√
κ2r+

λ∗r
λr

]
,

(4.9)

where Fp q (a1, . . . , ap; b1, . . . , bq; z) is the generalized hypergeometric function.

The difference of free energy is (see (5.19) for more detail)

F (λ∗r , N − 1)− F (λr, N) = N(− log λr + 1 + 2 log 2)− log 2− log 2π +
1

2
log λr. (4.10)
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At the leading order, λ∗r ' λr and N − 1 ' N , so the first term in (4.9) can be written

as a arcsinh function, the last two terms is cancelled by the corresponding terms in (4.8).

Besides, the k log k in (4.7) will be cancelled by the one-loop correction. Therefore, at

leading order the above expression can be simplified to

〈WSk〉planar = exp

(
2N(1 +M2

0 )G

(
κ√

1 +M2
0

))
, (4.11)

where

G(x) = x
√

1 + x2 + sinh−1(x)− f

1 +M2
0

log 2π. (4.12)

Our result (4.11) matches with (2.6) in [15] up to a O(f) term, which will be cancelled after

considering the one-loop correction and the validity of saddle-point approximation. Now we

have explicitly shown that by including the interactions between the two sets of eigenvalues

we obtain a more precise expression for the expectation value of the Wilson loop.

Up until now the rectangular Wilson loop has been evaluated with help of (2.7); we

have shown that various higher rank Wilson loops are thus evaluated in a unifying frame-

work. However, for the totally symmetric representation, the identity (2.8) could also be

employed. Although both pictures are equivalent, it is clear that the role the parameters

enters is different, thus providing an alternative approximation.

Similar to (3.1), the Wilson loop can be written as

〈WR〉 =
1

n!(2π)n
1

Z

∫ n∏
a=1

dva

N∏
i=1

dmi exp

−2N

λ

N∑
i=1

m2
i+
∑
i<j

logZ1-loop(mi−mj)+k
n∑
a=1

va

+
∑
a<b

log

(
2 sinh

va−vb
2

)2

−
∑
a,i

log(1−emi−va)

 ,
(4.13)

and the saddle-point equation is

−4N

λ
mi +

∑
j 6=i

d

dmi
logZ1-loop(mi −mj) +

∑
a

1

eva−mi − 1
= 0, (4.14)

k +
∑
b 6=a

coth
va − vb

2
−
∑
i

1

eva−mi − 1
= 0. (4.15)

Compared with (3.4) and (3.5), the force between eigenvalues va and mi becomes attractive.

For the symmetric representation (k = fN, n = 1), we make the following ansatz: m1 is

located far away from the rest N − 1 eigenvalues, with the eigenvalues mi’s centered at 0,

and v is very close to m1. In the strong-coupling limit λ→∞, the saddle-point equations

– 11 –
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are greatly simplified

−4N

λ
m1 +

∑
j 6=i

2(1 +M2
0 )

m1 −mj
+

1

ev−m1 − 1
= 0, (4.16)

−4N

λ
mi +

∑
j 6=i,j>1

2(1 +M2
0 )

mi −mj
= 0, (4.17)

k − 1

ev−m1 − 1
= 0. (4.18)

From the first and the last equation we get exactly the same equation as (4.3). There-

fore, the position of eigenvalues m1 is precisely the same as (4.5) in both approaches and

at the leading order the vev of Wilson loop is clearly the same as (4.11).

4.2 Anti-symmetric representation

For the totally anti-symmetric representation (n = fN and k = 1), the previous saddle-

point configuration is not valid since kλ
4N is small and the interaction between the two groups

of eigenvalues cannot be ignored. However, from our intuition in the general rectangular

case when we decrease k, the saddle-point configuration is supposed to change continuously;

besides, inserting only one eigenvalue u1 will not considerably distort the Wigner distribu-

tion. We, therefore, suggest the following saddle-point configuration: the eigenvalues mi

obey the Wigner distribution and u1 is inserted into an equilibrium position, i.e.

n−
N∑
i=1

1

eu1−mi − 1
= 0. (4.19)

Approximating the sum by an integral, we get

f −
∫
dx

ρ(x)

eu−x − 1
= 0, (4.20)

whose solution is −z0 in the strong-coupling limit λ � 1, where z = z0/
√
λ is the saddle-

point in [7]

cos−1 z − z
√

1− z2 = π(1− f). (4.21)

Since the anti-symmetric representation has the symmetry f 7→ 1 − f, z 7→ −z, our result

agrees completely with [7]

〈WAn〉 = exp

(
2N

3π

√
λ sin3 θk

)
. (4.22)

Now, consider the rectangular representation n = fN, k = O(1), we suggest the fol-

lowing saddle-point configuration: the position of mi does not change and ua are uniformly

distributed along [−z0,−z0 + 2πi]. The saddle-point equation for ua is

n+
∑
b 6=a

coth
ua − ub

2
+

N∑
i=1

1

eua−mi − 1
= 0, (4.23)
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where the second term vanishes and the last term is independent of the imaginary part of

ua when λ is large, since it will be approximated by a step function. Therefore at leading

order the vev of Wilson loop is just

〈WR〉 = k! 〈WAn〉
k . (4.24)

5 One loop corrections

Going beyond the leading term is an important first step into the intricate structure of

Wilson loops. The classical example is the computation of the Lüscher term in confining

theories which is determined by the number of light degrees of freedom on the effective chro-

moelectric flux tube [23]. In supersymmetric theories and in the context of the AdS/CFT

correspondence there is the added interest in this corrections as they can be obtained, in

principle, using the dual gravity theory.

In this section we closely follow the paradigm of [24] (see also the pedagogical expo-

sition of [17]). The main result of those work is the construction of a systematic way to

compute higher order corrections. In appendix A we briefly stated the main elements of

the construction and applied to reproduced the first sub-leading term in the Wilson loop

in the fundamental representation.

The calculation for one-loop correction is an application of multi-dimensional steepest

descent formula ∫
g(x) exp(Nf(x))ddx =

1

Nd/2
exp(Nf(c))I

(
1

N

)
, (5.1)

where f has global maximum at a unique point c (the Hessian matrix Aij ≡ ∂2f/∂xi∂xj
is negative definite) and I(x) extends to a smooth function on [0,∞) such that

I(0) = (2π)
d
2

g(c)√
detA

. (5.2)

Therefore in order to calculate the one-loop correction for Wilson loop, we need to

evaluate the determinant of the Hessian matrix detA, collect the factors N−d/2 and (2π)d/2,

and then add them together to obtain the one-loop correction

− 1

2
log detA+

d

2
(log 2π − logN) = −1

2
log det(NA) +

d

2
log 2π. (5.3)

5.1 One-loop correction for rectangular representation

There are N + k variables in the integrand, so the contribution of one-loop determinant is

Wdet = −1

2
log det

x,x′
Ax,x′ +

k

2
log 2π +

1

2
log det

y,y′
By,y′ , (5.4)
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where the Hessian matrices Ax,x′ and By,y′ (x, x′ run over all the variables mi and ua while

y, y′ just run over mi) are given by

Ax,y =



A
(1)
i,j − (logZ1−loop)

′′
(
m

(1)
i −m

(2)
j

)
e−m

(1)
i

+ua(
−1+e−m

(1)
i

+ua

)2

− (logZ1−loop)
′′
(
m

(2)
i −m

(1)
j

)
A

(2)
i,j

e−m
(2)
i

+ua(
−1+e−m

(2)
i

+ua

)2

e−m
(1)
i

+ua(
−1+e−m

(1)
i

+ua

)2
e−m

(2)
i

+ua(
−1+e−m

(2)
i

+ua

)2 Aa,b


(5.5)

A
(q)
i,i = −4N

λ
+

∑
(j,r) 6=(i,q)

(logZ1−loop)
′′
(
m

(q)
i −m

(r)
j

)
−

k∑
a=1

e−m
(q)
i +ua(

−1+e−m
(q)
i +ua

)2 , q = 1, 2 (5.6)

A
(q)
i,j = − (logZ1−loop)

′′
(
m

(q)
i −m

(q)
j

)2
, i 6= j (5.7)

Aa,a = −1

2

∑
b 6=a

csch2

(
ua−ub

2

)
−

N∑
i=1

e−mi+ua

(−1+e−mi+ua)
2 (5.8)

Aa,b =
1

2

∑
b 6=a

csch2

(
ua−ub

2

)
, a 6= b (5.9)

Bmi,mi = −4N

λ
+
∑
j 6=i

(logZ1−loop)
′′

(mi−mj) , (5.10)

Bmi,mj = − (logZ1−loop)
′′

(mi−mj)
2 . (5.11)

Under the approximation
∣∣∣m(1)

i −m
(2)
j

∣∣∣� 1 (i.e. our previous saddle-point configura-

tion is valid), (eua−mi−1)−1 can be approximated by a step function and all the off-diagonal

terms vanish. It can be checked that

Ax,y →

A
(1)
i,j 0 0

0 A
(2)
i,j 0

0 0 Aa,b

 , (5.12)

Aa,b = −1

2

k2 − 1

3
δa,b +

1

2
Ãa,b , (5.13)

Ãa,b =

{∑
b 6=a csc2 (π(a− b)/k) 1 ≤ a 6= b ≤ k

0 otherwise.
(5.14)

The eigenvalues of Ã is

1

3

(
k2 − 1

)
− 2n(k − n), n = 0, 1, . . . , k − 1. (5.15)

Notice that there is a zero mode in Aa,b, which is due to the translational symmetry

in the imaginary direction, we should remove the zero mode and multiply the result by 2π.
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The determinant of Aa,b (after removing the zero mode) is

det′Aab =

k−1∏
n=1

n(k − n) = [(k − 1)!]2 , (5.16)

so the one-loop correction coming from ua is given by

− 1

2
log detAa,b = −k log k + k − 1

2
log 2π +

1

2
log k . (5.17)

The contribution coming from A
(q)
i,j is contained in the exact formula of free energy.

For Gaussian matrix model

Z = (2π)N/2
(

4N

λ

)−N2/2

G(1 +N)N ! (5.18)

where G is the Barnes-G function, so the effective free energy is

F (λ,N) = logZ−logN ! ' N2

(
1

2
log λ−3

4
−log 2

)
+N log 2π− 1

12
logN+

1

12
−logA ,

(5.19)

where A is the Glaisher-Kinkelin constant. Collecting everything together, we find

〈WR〉 = exp

(
k2nλ

8N
+ a0N

2 + a1N logN + a2N + a3 logN + a4

)
, (5.20)

where f ≡ k/N, g ≡ n/N ≤ 1 and

a0 = (g2 − g) log λ+ g(1− g)

(
2 log 2 +

3

2

)
+

1

2

[
(1− g)2 log(1− g) + g2 log g

]
, (5.21)

a1 = 0 , (5.22)

a2 = f − 1

2
f log(2π) , (5.23)

a3 =
5

12
, (5.24)

a4 =
1

12
+

log f

2
− 1

12
log g(1− g)− logA . (5.25)

The symmetry n 7→ N − n (g 7→ 1 − g) is preserved at the one-loop level. It is also

obvious that a0 ∼ log λ, so when k is large enough (k2n = O(N3)), the rectangular Wilson

loop is dominated by the leading term k2nλ/8N , which justifies our previous statement.

5.2 One-loop correction for the totally symmetric representation

Now, let us focus on the k-symmetric representation (n = 1). For simplicity we consider

the N = 4 theory (for N = 2∗ theory we only need to re-scale f and λ).
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The symmetric representation is just a special case of rectangular representation (n =

1). Notice that the one-loop correction coming from A(1) is given by

1

2
log 2π − 1

2
log

4N

λ
+
∑
j>1

2

(m−mj)
2

 ' 1

2
log 2π − log 2− 1

2
logN +

1

2
log

λκ√
1 + κ2

,

(5.26)

the correction coming from ua is (5.17) and correction coming from the difference of free

energy (4.10) is

− log 2− log 2π +
1

2
log λ, (5.27)

the contribution of whole one-loop determinant (5.4) is

Wdet =
k − 1

2
log 2π − k log k + k +

1

2
log f − 2 log 2 +

1

2
log

κ√
1 + κ2

+ log λ (5.28)

and at the one-loop level is

W 1-loop
det = −1

2
log 2π +

1

2
log f − 2 log 2 +

1

2
log

κ√
1 + κ2

+ log λ. (5.29)

Notice that the logarithm of one-loop determinant (5.17) contains a term Wdet−W 1-loop
det =

k+ 1
2k log 2π = O(N), it actually corrects the leading order behavior of symmetric Wilson

loops.

We also need to keep track of the difference between λ∗ ≡ λ(1−1/N), N −1 and λ, N

carefully. Expand (4.8) and (4.9) to the sub-leading order w.r.t. 1/N , we get the correction

coming from the interaction between m and mi

Wint = −2 log(κ+
√

1 + κ2)− log λ+ 2 log 2 + 1− κ√
1 + κ2

. (5.30)

The one-loop corrected symmetric Wilson loop is

〈WSk〉1-loop = 〈WSk〉planar +Wdet +Wint. (5.31)

or more explicitly

〈WSk〉1-loop ' 2N

(
κ
√

1 + κ2 + sinh−1 κ+
f

2
− f

4
log 2π

)
− 1

2
log

2π(κ+
√

1 + κ2)4

fκ/
√

1 + κ2
.

(5.32)

The holographic calculation of one-loop corrected expectation value for the symmetric

representation, using the spectrum of excitations previously obtained in [25], was presented

in [26]:

〈WSk〉 = 2N
(
κ
√

1 + κ2 + sinh−1 κ
)
− 1

2
log

κ3√
1 + κ2

. (5.33)

compared to which we find an extra term

2N

(
f

2
− f

4
log 2π

)
(5.34)
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at leading order, which is due to the saddle-point approximation for the variable ua. Con-

sider the identity (2.7)

TrSke
M=

1

(2π)kk!

∫ [ k∏
a=1

dua

]
exp

 k∑
a=1

ua+
∑
a<b

log

(
2sinh

ua−ub
2

)2

+
∑
a,i

log(1−emi−ua)


(5.35)

evaluated at the saddle-point configuration mi. The left hand side simply gives the sym-

metric Wilson loop operator

TrSk e
M =

∑
i1≤i2≤···≤ik

emi1+mi2+···+mik ' ekm, (5.36)

because all the other terms are exponentially suppressed when evaluated at the saddle-

point m � mi. The saddle-point approximation can be applied to the right hand side,

and the solution is the same as above: ua are uniformly distributed along the imaginary

direction and are located between the two groups of eigenvalues. The one-loop determinant

is also the same as above, and therefore the right hand side is

exp

[
km+ 2N

(
f

2
− f

4
log 2π

)
+

1

2
log f +

1

2
logN − log 2π

]
. (5.37)

It is expected to produce the same result as (5.36), so the difference implies that

the saddle-point method is not very precise and hence the error need to be subtracted

from (5.32). Therefore the corrected symmetric Wilson loop is given by

〈WSk〉 = 2N
(
κ
√

1 + κ2 + sinh−1 κ
)
− 1

2
logN − 1

2
log

(κ+
√

1 + κ2)4

2πκ/
√

1 + κ2
. (5.38)

There are various interesting features of this expression if one compares it to the holographic

computation in [26]. First, notice that it differs from the previous one-loop corrected field

theory result of [27] in that we included not only the Hessian contribution but corrections

due to interactions between eigenvalues. In the regime of large separation, kλ/(4N), be-

tween the two groups of eigenvalues that we work in, it is reasonable to consider large

κ = k
√
λ/(4N). In this limit we find that eq. (5.38) goes as − log κ2 which is twice the

value of the corresponding limit in holographic expression quoted in eq. (5.33).

We can alternatively use the V matrix (2.8) to evaluate the one-loop correction. Now

the one-loop correction comes from the determinant of such a sub-matrix (after using the

exact formula of free energy)

det

 em−v

1−em−v + e2m−2v

(1−em−v)2 −
[
4N
λ +

∑
j>1

2
(m−mj)2

]
− em−v

1−em−v −
e2m−2v

(1−em−v)2

− em−v

1−em−v −
e2m−2v

(1−em−v)2
em−v

1−em−v + e2m−2v

(1−em−v)2 +O(e−m)


= det

(
k(k + 1)− 4N

√
1+κ2

λκ −k(k + 1)

−k(k + 1) k(k + 1)

)

= −k(k + 1)
4N
√

1 + κ2

λκ
.

(5.39)
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After collecting everything together we obtain

〈WSk〉 ' exp

[
2N
(
κ
√

1 + κ2 + sinh−1 κ
)
− 3

2
logN − 1

2
log

(2π)2(κ+
√

1 + κ2)4f2

κ/
√

1 + κ2

]
.

(5.40)

Notice that the f, λ-dependence in the one-loop correction have the correct sign, but the

coefficient is different from the holographic calculation. Besides, there is also an extra logN

term, but the coefficient is −3/2, where the extra logN comes from the coupling between

v and m in one-loop determinant. Therefore the validity of saddle-point approximation of

variable v is skeptical. Notice that there does not exist a large variable coupled with v (kv

will be cancelled by
∑

log(1−emi−v)), we do need to evaluate the integral over v explicitly.

In [14], it is suggested that the contour of v is deformed so that the contour integral

picks up the pole at m and the rest part is exponentially suppressed. Hence the symmetric

Wilson loop is reduced to the following integral

〈WSk〉 =
1

Z

∫ N∏
i=1

dmi exp

−2N

λ

N∑
i=1

m2
i +

∑
i<j

logZ1-loop(mi −mj) + km

 , (5.41)

and hence we need to remove the factor k(k + 1) from the one-loop determinant (5.39).

The final result is

〈WSk〉 ' exp

[
2N
(
κ
√

1 + κ2 + sinh−1 κ
)
− 1

2
logN − 1

2
log

(2π)(κ+
√

1 + κ2)4

κ/
√

1 + κ2

]
,

(5.42)

which is the same as (5.38) up to a log 2π.

5.3 Comments on the cumulant expansion

One important element of the systematic 1/N expansion is the role of the cumulant ex-

pansion. Namely, we find that generically:

〈exp(A)〉 = exp(〈A〉+
〈
A3
〉
c

+ . . . ), (5.43)

where the first term is the leading order in N .

In this section we verify the results of [27]. More generally, we demonstrate that the

cumulant expansion does not affect the naive computation of corrections beyond the saddle

point even for N = 2∗ theory. Namely, we show that in various situations there are no 1/N

corrections other than the ones discussed in subsection 5.1 and computed by the Hessian

around the saddle point. Indeed, although we do not provide any proof here, we have

checked that a similar statement can be formulated about higher rank Wilson loops in

ABJM as computed in [28].

For N = 4 SYM, the cumulant expansion vanishes at sub-leading order, which can

be derived from orthogonal polynomials (see appendix A for some technical details and a

relevant example). Not only the strong-coupling limit of N = 2∗ SYM shares the same

property but also ABJM theory.
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There is a more general argument for the vanishing of second order cumulant in most

matrix models; here we take N = 2∗ SYM as an example. Let A be a function of mi and

ρ(m1, . . . ,mN ) be the probability distribution of eigenvalues mi. Then, when one integrates

out N − 2 eigenvalues, the resulting two-point density can be evaluated by saddle-point

approximation

ρ(m1,m2) = exp

− 2N

λ
(m2

1 +m2
2)− F

(
λ

(
1− 2

N

)
, N − 2

)

+

2∑
j=1

N

∫
dmρ(m) logZ1-loop(mj −m) +O(1)


= exp(Ng(m1) +Ng(m2) +O(1)) ,

(5.44)

where g(mj) is a function depending on the concrete form of Z1-loop.

Therefore, the sub-leading order of cumulant expansion is〈
A2
〉
c
∝
(∫

dxρ(x1, x2)ρ(x3, x4)(A(x1)A(x2)−A(x1)A(x3))

)
(5.45)

which can be evaluated using saddle-point approximation again〈
A2
〉
c
∝ (A(x∗1)A(x∗2)−A(x∗1)A(x∗3)) = 0, (5.46)

where x∗i is the saddle-point g(x∗) = 0. Since〈
Ak
〉
c

= O(N2−k), (5.47)

only the leading order is needed when evaluating one-loop corrections [29].

6 Conclusions

In this manuscript we have computed the vacuum expectation value for supersymmetric

Wilson loops in representations of U(N) described by rectangular Young tableaux with n

rows and k columns. We presented a number of analytical results and verified the robustness

of our main approximation with a combination of numerical and analytical techniques.

Our more general point of view allows to better understand the structure of corrections

of Wilson loops in large representations. For example, we have clarified how certain results

in the literature are obtained explicitly in the large-N limit but contain other implicit

assumptions. Our scheme relies on the approximation that the eigenvalues distribute into

two groups. The key parameter in this framework is the distance between the two groups of

eigenvalues which is kλ/(4N). We gave a clear interpretation to the structure of corrections

by carefully incorporating interactions among the two groups of eigenvalues depending on

the distance. In particular, for the totally symmetric Wilson loop in N = 4, by taking

into consideration the interaction among eigenvalues we improved the standing of the field

theory against the holographic prediction. First, the corrected field theory result has the
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same sign as the holographic expression. Second, our corrected expression in the large

κ = k
√
λ/(4N) regime, is − log κ2 which is twice the holographic prediction up to an

additive numerical constant. It is important to compare more systematically our approach

with different expansions including the large λ expansions presented [30, 31]. There has

recently been a particularly enlighting clarification of the order of limits and corrections for

the anti-symmetric Wilson loop in [32, 33] and it is expected that our work will contribute

to a similar elucidation in the case of the symmetric representation.

There are a number of directions that would be interesting to explore. One natural

direction pertains the gravitational counterpart of our computations. Namely, the con-

struction of geometries corresponding to Wilson loops in large rectangular representations

in N = 2∗. At first sight the task seems daunting as it involves constructing a set of

bubbling geometries such as those constructed in [20] but on the background of the Pilch-

Warner solution [34]. The intricate structure of the solutions in [20] has been connected to

the evaluation of Wilson loops in arbitrary representations in the beautiful analysis of [21].

The relative simplicity and universality of the Wilson loop expectation values we have ob-

tained in this manuscript give hope that the construction of the fully back-reacted solution

might be within reach.

On the gravity side, in the context of N = 4 holography, the higher dimensional

representations have been explored beyond the leading term in a series of work involving

the one-loop effective actions of D3 branes [25, 26] and D5 branes [35]. The classical

configuration discussed in [15] constitutes a first step in the direction of being able to

compare corrections on the holographic and field theory sides. A hopeful sign that the

situation might be clearer in this case, despite the field theory being more complicated, is

the recent positive result at the one-loop level for the fundamental representation in [16].

Similarly, it will be very interesting to develop the status of higher rank representations

Wilson loops in the context of ABJM theory. Indeed, the original work of [36] introduced

the holographic dual of the Wilson loops in higher rank representations of ABJM theory

and used the field theory matrix model to compute the leading terms. More recently,

the field theory computation has been carried beyond the leading term in [28] and the

sub-leading structure on the gravity side was clarified in [37]. It seems only natural to

elucidate the status of Wilson loops in rectangular representations of the ABJM theory.

Another interesting direction involves considering other deformations of N = 4 and N = 2

theories such as those presented in [38] where some results for simple Wilson loops were

also presented.
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A Genus one corrections

In this appendix we include the material needed to support our results regarding sub-

leading corrections to the expectation values of the Wilson loops discussed in the main text.

As an illustrative example we worked out explicitly the first correction to the Wilson

loop (fundamental representation) in the Gaussian matrix model for arbitrary λ.

Using orthogonal polynomials, the Wilson loop in fundamental representation can be

evaluated exactly [39]

〈W�〉 ≡
〈

1

N
Tr expM

〉
=

1

N

N−1∑
j=0

Lj(−λ/4N)eλ/8N , (A.1)

where Lj is the Laguerre polynomial. This Wilson loop admits a topological expansion of

the form

〈W�〉 =
2√
λ
I1(
√
λ) +

λ

48N2
I2(
√
λ) + . . . . (A.2)

In the following it will be shown how to reproduce this expansion using the loop function.

The loop function is defined as

W1(p) ≡
〈

1

N
Tr

1

p−M

〉
=

1

N

∞∑
k=0

〈
TrMk

〉
pk+1

, (A.3)

and admits a topological expansion

W1(p) =

∞∑
g=0

1

N2g
W

(g)
1 (p). (A.4)

Therefore in order to determine the Wilson loop we only need to expand the loop function

at p =∞ and replace pk+1 with k!.

There is a systematic method to calculate Wg(p) order by order [29]. Define the k-point

loop function as

Wk(x1, . . . , xk) = Nk−2
〈

tr
1

x1 −M
. . . tr

1

xk −M

〉
c

, (A.5)

where c means connected part or cumulant, admitting a topological expansion

Wk =

∞∑
g=0

W
(g)
k . (A.6)

There is a recursion relation among the loop functions

2

h∑
m=0

W
(h−m)
1 (x1)W

(m)
k (x1, . . . , xk) +W

(h−1)
k+1 (x1, . . . , xh−1)

+

h∑
m=0

k−2∑
j=1

∑
I∈Kj

W
(m)
j+1 (x1, xI)W

(h−m)
k−j (x1, xK−I)

+

k∑
j=2

∂

∂xj

W
(h)
k−1(x2, . . . , xj , . . . , xk)−W

(h)
k−1(x2, . . . , x1, . . . , xk)

xj − x1

= V ′(x1)W
(h)
k (x1, . . . , xk)− U

(h)
k (x1;x2, . . . , xk) ,

(A.7)
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where V is the potential of matrix model (for the Gaussian matrix model it is just a

quadratic function), Kj ≡ {I ⊂ K = {2, . . . , k}|I| = j}, xI ≡
∏
i∈I xi and

Uk(x1;x2, . . . , xk) ≡ Nk−2
〈

tr
V ′1(x1)− V ′1(M)

x1 −M
tr

1

x2 −M
. . . tr

1

xk −M

〉
c

. (A.8)

When k = 1, h = 1, the recursion relation reduces to

√
σ(x1)W

(1)
1 (x1) =

W
(0)
2 (x1, x1) + U

(1)
1 (x1)

M(x1)
(A.9)

where the functions M(x) and σ(x) come from the one loop function

W
(0)
1 (x) =

1

2
(V ′(x)−M(x)

√
σ(x)). (A.10)

The two-point function can be derived from the recursion relation (k = 1, h = 0)

M(x1)
√
σ(x1)W

(0)
2 (x1, x2) =

∂

∂x2

(
W

(0)
1 (x2)−W (0)

1 (x1)

x2 − x1

)
+ U

(0)
2 (x1;x2). (A.11)

In the Gaussian matrix model, the one-loop function can be derived either from the

recursion relation or directly from the Wigner distribution

W
(0)
1 (p) =

2

λ
(p−

√
p2 − λ), (A.12)

and σ(x) = p2 − λ,M(x) = 4
λ . The function U can be evaluated by definition

U2(x1) =
1

N

〈
tr
V ′(x)− V ′(M)

x1 −M

〉
= 1, (A.13)

U2(x1;x2) =

〈
tr
V ′(x)− V ′(M)

x1 −M
tr

1

x2 −M

〉
= NW

(0)
1 (x2), (A.14)

hence the two-point function is

W
(0)
2 (p, p) =

4λ

16(p−
√
λ)2(p+

√
λ)2

, (A.15)

and the one-loop function is

W
(1)
1 (p) =

1√
p2 − λ

(λ/4)2

(p2 − λ)2
. (A.16)

Expand the loop functions w.r.t. p, we have

W
(0)
1 (p) =

2p

λ

[
1−

∞∑
k=0

(
1/2

k

)(
− λ

p2

)k]
= − 2

λ

∞∑
k=0

(
1/2

k

)
(−λ)k

p2k−1
, (A.17)

W
(1)
1 (p) =

λ2

16p5

∞∑
k=0

(
−5/2

k

)(
− λ

p2

)k
=
λ2

16

∞∑
k=0

(
−5/2

k

)
(−λ)k

p2k+5
. (A.18)
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The Wilson loop at leading order is obtained by the substitution pk+1 7→ k!

− 2

λ

∞∑
k=0

(
1/2

k

)
(−λ)k

(2k − 2)!
=

2√
λ
I1(
√
λ), (A.19)

and similarly the sub-leading order is given by

λ2

16

∞∑
k=0

(
−5/2

k

)
(−λ)k

(2k + 4)!
=

λ

48
I2(
√
λ), (A.20)

which matches precisely with the exact result.

B Further remarks on the antisymmetric representation

In this appendix we review the computations of the expectation value of the k-

antisymmetric Wilson loop in N = 4 SYM, a similar treatment can be extended to N = 2∗.

We would like to scrutinize the computation of [7] and the set of approximations made in

that work.

Recall that the anti-symmetric Wilson loop is given by

〈WAk〉 =
1

Z

∫ 2πi

0
du

∫
RN

N∏
i=1

dmi exp

(
S[M ] + nu+

N∑
i=1

log
(
1− emi−u

))
, (B.1)

where S[M ] is the action for N = 4 SYM (the functional form of S[M ] is not crucial, we

just take the N = 4 theory for simplicity) which in terms of eigenvalues reads

− 2N

λ

N∑
i=1

m2
i +

∑
i<j

log(mi −mj)
2 ∼ O(N2). (B.2)

Notice that the integrand is periodic (u→ u+2πi) so it is better to think of u on a cylinder.

The authors of [7] claim that there are poles at u = mi (or a cut at [−
√
λ,
√
λ]) and

we can choose a contour homotopic to [−∞,−∞ + 2πi] for u such that it passes through

the saddle-point. However, it can be verified that the real part of the exponent in the

integrand is minimized at the saddle-point and hence the integral is not dominated by its

value at the saddle-point. Therefore, the calculation in [7] needs to be re-interpreted.

On the other hand, the solution for our saddle-point equation (3.4) and (3.5) is not

unique. In fact, apart from the saddle-point we found in (4.21) (denoted by z0), u can be

located between any two consecutive eigenvalues mi or at z0 + iπ, and the reason to choose

z0 requires a justification.

First of all, notice that after taking the exponential, there is actually not a pole or a

cut at u = mi, which implies that we can freely deform the contour for u, as long as it

belongs to the same homotopy class. Hence we can simply choose the contour [z0, z0 + 2πi]

and safely ignore the other saddle-point configurations.

Now we need to explain what happens if we choose other contours, since the integral

should be independent of the contour. In order to employ saddle-point approximation, the
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(a) <w(u). (b) =w(u).

Figure 3. Contour lines of w(u).

contour cannot be arbitrary. Actually when we apply the so called saddle-point approxi-

mation to such a integral

I(N) =

∫
dxg(x) exp [N(f(x))] , (B.3)

either steepest descend formula (=f(x) is fixed) or stationary phase formula (<f(x) is

fixed) is employed. Therefore the choice of contour should keep either the real part or the

imaginary part of

w(u) ≡ nu+
N∑
i=1

log
(
1− emi−u

)
(B.4)

constant. In general the contour line of <w(u) and =w(u) are as in figure 3.

It is evident that the only steepest descent contour is [z0, z0 + 2πi]. If a stationary

phase contour is chosen, then from figure 3b we know there is no stationary phase point

and we need to collect the contribution coming from the whole contour, where the rapid

oscillation will cancel the larger amount of real part. Let us return to the unique steepest

descent contour [z0, z0 + 2πi], along which <w(u) is maximized at z0 + iπ. Therefore the

integral (B.1) is dominated by the saddle-point z0 + iπ. In the large N and strong-coupling

limit λ� 1, the difference between the two saddle-point z0 and z0 + iπ can be ignored (in

other words, <w(u) along the contour is nearly constant) and hence our previous calculation

for anti-symmetric Wilson loop is valid.
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