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1 Introduction

Schnabl’s solution for tachyon condensation [1] in Witten’s open bosonic string field the-

ory [2] has been a remarkable achievement which has provided an elegant analytic proof

of Sen’s first conjecture [3, 4]. Schnabl’s seminal work has allowed the development of

modern analytical and numerical techniques [5–21] which have been used to explore new

analytic solutions [22–33], and the bosonic results have been extended to the case of open

superstring field theories [34–45].

There are two ways of writing Schnabl’s analytic solution; the first way is in terms of

the Bernoulli numbers Bn [1, 7, 23],

Ψ =
∑
n,p

fn,p(L0 + L†0)nc̃p|0〉+
∑
n,p,q

fn,p,q(B0 + B†0)(L0 + L†0)nc̃pc̃q|0〉 , (1.1)

fn,p =
1− (−1)p

2

π−p

2n−2p+1

1

n!
(−1)nBn−p+1 , (1.2)

fn,p,q =
1− (−1)p+q

2

π−p−q

2n−2(p+q)+3

1

n!
(−1)n−qBn−p−q+2 , (1.3)
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where the operators L0,B0 and c̃p are defined in the sliver frame and are related to the

worldsheet energy-momentum tensor T , the b and c ghosts fields respectively. A second

way of writing the solution is given in terms of wedge states with ghost insertions,

Ψ = lim
N→∞

[
ψN −

N∑
n=0

∂nψn

]
, (1.4)

ψn =
2

π2
U †n+2Un+2

[
(B0 + B†0)c̃

(
− π

4
n

)
c̃

(
π

4
n

)
+
π

2
(c̃

(
− π

4
n

)
+ c̃

(
π

4
n)

)]
|0〉 , (1.5)

where ψN with N →∞ is called the phantom term [1, 5, 12, 13].

The above equations (1.1)–(1.5) allow us to write the analytic solution, either in the

basis of curly L0 eigenstates or in the Virasoro L0 eigenstates and those level expansions

of the solution are very useful for the numerical evaluation of the energy. The result of the

energy obtained by means of the curly L0 level expansion is given in terms of a divergent

series which nevertheless can be resummed numerically by means of Padé approximants

to give a good approximation of the expected value of the D-brane tension that agrees

with Sen’s first conjecture [1, 19]. While in the case of using the usual Virasoro L0 level

expansion, the resulting expression for the energy seems to be a convergent series which

approaches to the expected value, and therefore the use of Padé approximants was not

necessary in that case [1, 17].

Another interesting analysis that could be performed is to derive Schnabl’s analytical

solution by numerical means, namely, using a similar strategy that has been employed in

the case of numerical solutions constructed in other gauges like the Siegel gauge [46–51],

and the so-called a-gauge [52–54]. Using the state space of Virasoro L0 eigenstates, we

can write a rather generic string field Ψ, subject to the gauge condition B0Ψ = 0, called

the Schnabl gauge. Truncating this string field up to some given level, we can evaluate

the normalized value of the potential defined by V (Ψ) = −S(Ψ)/T25, where S is the string

field theory action and T25 represents the value of the D-brane tension. Explicitly, the

normalized potential is given by

V (Ψ) = 2π2

[
1

2
〈Ψ, QΨ〉+

1

3
〈Ψ,Ψ ∗Ψ〉

]
. (1.6)

Extremising this potential (1.6) and keeping the coefficient corresponding to the

tachyon state fixed, we obtain the effective tachyon potential. Actually, we will obtain

many branches for this effective tachyon potential. The configuration corresponding to

Schnabl’s solution can be identified with the local minimum of the branch which connects

the perturbative with the non-perturbative vacuum.

Using curly L0 level-truncation computations, i.e., working out in the sliver frame, the

first attempt to obtain Schnabl’s solution numerically has been done in reference [55]. In

the sliver frame, the level of a state is defined as the eigenvalue of the operator L0 + 1.

For instance, the truncated level one string field, following the notation of reference [55],

is given by

Ψ = x0c̃1|0〉 − 2x1(L0 + L†0)c̃1|0〉 − 2x1(B0 + B†0)c̃0c̃1|0〉+ (higher level terms), (1.7)
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where the coefficients of the expansion x0 and x1 were chosen so that Ψ satisfies the Schnabl

gauge. Replacing equation (1.7) into equation (1.6), we obtain the level V (1,3)(x0, x1)

potential and by integrating out the coefficient x1, namely, using ∂x1V
(1,3) = 0, we can

write the coefficient x1 in terms of x0, to subsequently plugging it back into the potential,

V
(1,3)

eff (x0) ≡ V (1,3)(x0, x1(x0)), so that we are left with the effective potential which only

depends on the coefficient x0.

Since the state c̃1|0〉, defined in the sliver frame, after performing the change of basis,

becomes the tachyon state c1|0〉, the effective potential that depends on the coefficient

x0 has been identified as the effective tachyon potential. However, we have noticed that

the state c̃1|0〉 is not the only one that contains the tachyon state c1|0〉, for instance, the

truncated level four string field contains the states c̃−1|0〉 and c̃−3|0〉, which after performing

the change of basis, it can be shown that [1]

c̃−1|0〉 = (c−1 − c1)|0〉, c̃−3|0〉 =

(
c−3 −

1

3
c−1 +

1

3
c1

)
|0〉. (1.8)

Clearly these states also contain the tachyon state c1|0〉. This observation implies that the

tachyon state can get more contributions coming from states that appear at higher levels.

Leaving aside the above subtlety, and considering a truncated level five string field,

like the one given in equation (1.7), it has been shown that there exist a branch of the

potential which connects the perturbative with the non-perturbative vacuum and its local

minimum occurs at a point where x0 = 0.63680186 [55]. Note that, using equation (1.2),

the analytical value of this coefficient turns out to be x0,exact = f0,1 = 2/π = 0.63661977.

By computing the value of the remaining coefficients and evaluating the energy, the results

of [55] suggest that the numerical solution, found by means of curly L0 level-truncation

computations, seems to converge to the Schnabl’s analytical solution [1].

Since the first term alone appearing in the curly L0 level expansion (1.7) does not

represent the tachyon state, the effective potential depending on the single coefficient x0

can not be identified as being the effective tachyon potential. In order to properly determine

the effective tachyon potential, we must use an expansion of the string field such that the

lowest state should correspond to the tachyon state alone. This calculation can be done if

we express directly the string field in the Virasoro basis of L0 eigenstates.1 For instance,

up to level two states, following the notation of Sen and Zwiebach, we have

Ψ = tc1|0〉+ uc−1|0〉+ vLm−2c1|0〉+ wb−2c0c1|0〉+ (higher level terms) = tT + χ, (1.9)

where t, u, v and w are some unknown coefficients, and Lmp denotes the modes of the

matter Virasoro operator.

We have defined the field T ≡ c1|0〉 as being the tachyon contribution of the string

field, while χ represents the remaining terms which are linearly independent of the first

term T . To obtain the effective tachyon potential, we must integrate out the string field χ,

this is done by inserting the string field Ψ into the potential (1.6), solving the equation of

motion for χ and plugging back to the action. The resulting expression, as a function of the

1As usual, we define the level L of a state as the eigenvalue of the operator L0 + 1.

– 3 –



J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

single variable t is the effective tachyon potential. Note that the effective tachyon potential

computed in this way is non-unique since it depends on the choice of a specific gauge to

fix the string field Ψ. Historically, the gauge used has been the Siegel gauge b0Ψ = 0, and

the first numerical tests of Sen’s first conjecture were done in this gauge [46–50]. The most

recent Virasoro L0 level-truncation computations in Siegel gauge has been performed in

reference [18], where the author obtained a numerical solution up to the level (26, 78).

Using Virasoro L0 level-truncation computations, we are going to derive a numerical

solution Ψ for tachyon condensation in Schnabl gauge B0Ψ = 0. Since the operator B0

contains all even positive modes of the b ghost field

B0 = b0 +
∞∑
k=1

2(−1)k+1

4k2 − 1
b2k, (1.10)

Schnabl gauge fixing condition turns out to be level dependent. For instance, regarding

the w coefficient, if we impose Schnabl gauge to the truncated level two string field (1.9),

we obtain w = 0, while using a truncated level four string field, Schnabl gauge implies that

w = −2E/3, where E is the coefficient in front of the state b−2c−2c1|0〉 which appears at

level four. This result is in contrast to the case of Siegel gauge, where the gauge condition

b0Ψ = 0 implies that the coefficients satisfy some relations that are independent of the

level of the truncated string field.

In reference [1], the author conjectured that the level dependent Schnabl gauge fixing

condition would not pose problems and that the numerical high level computations of

Moeller and Taylor [49] and Gaiotto and Rastelli [50] would converge to his analytical

solution. One of the main motivations for writing this paper has been to test this conjecture

by means of explicit numerical computations.

This paper is organized as follows. In section 2, by writing a string field Ψ in terms of

the elements contained in the state space of Virasoro L0 eigenstates, we study and discuss

Schnabl gauge condition B0Ψ = 0, then using this string field expanded up to some level

L ≤ 10, we define and evaluate the truncated (L, 3L) potential. In section 3, employing

this truncated (L, 3L) potential, and integrating out the non-tachyonic fields, we construct

the effective tachyon potential and analyze its branch structure. In section 4, we analyze

and extrapolate the data of the vacuum energy. In section 5, we study and extrapolate

the data of the tachyon vev. Finally, a summary and further directions of exploration are

given in the last section.

2 Level truncation and Schnabl gauge

To perform level-truncation computations, first we define the level L of a state as the

eigenvalue of the operator L0 + 1. For instance, the zero momentum tachyon state c1|0〉 is

at level L = 0. Let us remember that the string field action has a twist symmetry under

which all coefficients of odd-twist states change sign, whereas coefficients of even-twist

states remain unchanged [46, 56]. Therefore coefficients of odd-twist states at levels above

c1|0〉 must always appear in the action in pairs, and they trivially satisfy the equations

– 4 –
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of motion if set to zero. Thus, we look for Ψ containing only even-twist states. As an

example, up to level six states, the truncated string field is given by

Ψ = tc1|0〉+ uc−1|0〉+ vLm−2c1|0〉+ wb−2c0c1|0〉+ALm−4c1|0〉+BLm−2L
m
−2c1|0〉

+ Cc−3|0〉+Db−3c−1c1|0〉+ Eb−2c−2c1|0〉+ FLm−2c−1|0〉+ w1L
m
−3c0|0〉

+ w2b−2c−1c0|0〉+ w3b−4c0c1|0〉+ w4L
m
−2b−2c0c1|0〉+ w5c−5|0〉+ w6L

m
−6c1|0〉

+ w7L
m
−4c−1|0〉+ w8L

m
−2c−3|0〉+ w9b−6c0c1|0〉+ w10b−4c−2c1|0〉+ w11b−4c−1c0|0〉

+ w12b−2c−4c1|0〉+ w13b−2c−3c0|0〉+ w14b−2c−2c−1|0〉+ w15L
m
−4L

m
−2c1|0〉

+ w16L
m
−2L

m
−2c−1|0〉+ w17L

m
−4b−2c0c1|0〉+ w18L

m
−2b−4c0c1|0〉+ w19L

m
−2b−2c−2c1|0〉

+ w20L
m
−2b−2c−1c0|0〉+ w21L

m
−2L

m
−2L

m
−2c1|0〉+ w22L

m
−2L

m
−2b−2c0c1|0〉

+ w23L
m
−3c−2|0〉+ w24L

m
−5c0|0〉+ w25L

m
−3L

m
−2c0|0〉+ w26L

m
−3L

m
−3c1|0〉

+ w27b−3c−3c1|0〉+ w28b−3c−2c0|0〉+ w29b−5c−1c1|0〉+ w30L
m
−3b−3c0c1|0〉

+ w31L
m
−2b−3c−1c1|0〉+ w32b−3b−2c−1c0c1|0〉+ w33L

m
−3b−2c−1c1|0〉. (2.1)

The next step is to impose some gauge on this truncated string field. Traditionally in

L0 level-truncation computations the Siegel gauge b0Ψ = 0 has been used. Here we are

going to impose another gauge, namely, the Schnabl gauge B0Ψ = 0, where

B0 = b0 +

∞∑
k=1

2(−1)k+1

4k2 − 1
b2k. (2.2)

As we are going to show, after imposing Schnabl gauge condition on the string field, the

coefficients t, u, v, w, · · · that appear in the L0 level expansion of the string field will

satisfy some relations.

As an explicit example, let us impose the Schnabl gauge condition B0Ψ = 0 on the

truncated level 2 string field

Ψ = tc1|0〉+ uc−1|0〉+ vLm−2c1|0〉+ wb−2c0c1|0〉. (2.3)

Since the state |0〉 has the property that bn|0〉 = 0 for n > −2, using the commutator and

anti-commutators

[bp, L
m
q ] = 0, {bp, bq} = 0, {bp, cq} = δp+q,0, (2.4)

the computation of B0Ψ, leads to

B0Ψ = −wb−2c1|0〉, (2.5)

therefore the gauge condition B0Ψ = 0 implies that

w = 0. (2.6)

Performing similar computations, if we impose the gauge condition B0Ψ = 0 on a

truncated level 4 string field, we get

wi = 0, i = 1, 2, 3, 4. (2.7)

w = −2

3
E. (2.8)

– 5 –
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Note that at level 2 the relation that the coefficient w satisfies is given by w = 0, while at

level 4 it has a different relation w = −2
3E. Going further, for a truncated level 6 string

field, using B0Ψ = 0, we can show that

w = −2E

3
+

2w12

15
. (2.9)

So in general, it turns out that the relation satisfied by the coefficients, after imposing the

gauge condition B0Ψ = 0, depends on the level of the truncated string field. This result

is in contrast to the case of Siegel gauge, where the gauge condition b0Ψ = 0 implies that

the coefficients satisfy some relations that are independent of the level of the truncated

string field. For instance, regarding to the coefficient w, if we impose the Siegel gauge

condition b0Ψ = 0 on a truncated level 2 string field, we obtain w = 0. Now, if we use a

truncated level 4 string field we also get w = 0, and even for higher levels the same relation

w = 0 holds.

In reference [1], the author has conjectured that this level dependent gauge fixing would

not pose problems and that the numerical high level computations of Moeller, Taylor [49],

Gaiotto and Rastelli [50] would converge to his analytical solution. Extrapolating our

results to higher levels, we are going to argue that the convergence of the numerical solution

to the Schnabl’s analytical solution [1], as L → ∞, will be very slow. In this respect

convergence properties of Siegel gauge is better than Schnabl gauge.

Next, let us compute the normalized value of the tachyon potential which is given by

V (Ψ) = 2π2

[
1

2
〈Ψ, QΨ〉+

1

3
〈Ψ,Ψ ∗Ψ〉

]
. (2.10)

The V (L,n) level truncated potential is obtained by replacing the truncated level L string

field into the potential (2.10) and keeping interaction terms up to the total level n, note

that 2L 6 n 6 3L. In this paper, we consider the maximum value of n, namely, we are

going to work with the truncated (L, 3L) potential.

Although the computation of the cubic interaction term becomes tedious at higher

levels, the evaluation of the truncated (L, 3L) potential is straightforward. Based on con-

servation laws [48], we have written a computer code which evaluates higher level cubic

vertices. With the help of this code, we have obtained results up to level (10, 30).2 Once we

have the potential, the next step is to impose the gauge condition and then find the station-

ary point of the potential, where in the case of Schnabl gauge when L→∞ the stationary

point should correspond to the Schnabl’s analytic solution for tachyon condensation [1].

Another interesting computation that can be done with the potential is the construc-

tion of the effective tachyon potential. In order to explain the procedure for finding the

effective tachyon potential, let us first set all components of the string field to zero except

for the first coefficient t. This state will be said to be of level zero. Thus, we take

Ψ = tc1|0〉. (2.11)

2We would like to mention that in order to test our code, before computing the numerical solution

in Schnabl gauge, we have derived the numerical solution in Siegel gauge, and shown that all our results

coincide with the ones found in references [49, 50].

– 6 –
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Substituting (2.11) into the definition (2.10), we get the level (0, 0) approximation to the

tachyon potential,

V (0,0) = 2π2

[
− t2

2
+

27
√

3t3

64

]
. (2.12)

The local minimum of the above potential is located at t0 = 0.456177, and the level (0, 0)

potential evaluated at this point has the value of V (0,0)(t0) = −0.684616.

Going to the next level, namely using the level 2 string field (2.3), and plugging it into

the definition (2.10), we obtain the following level (2, 6) potential

V (2,6) = 2π2

[
1

2

(
− t2 − u2 − 6uw + 13v2 + 26vw + 4w2

)
+

1

3

(
81
√

3t3

64
+

99

64

√
3t2u− 585

64

√
3t2v +

19

64

√
3tu2 +

√
3u3

64
− 715tuv

32
√

3

− 9

4

√
3t2w +

3

2

√
3tuw +

7553tv2

64
√

3
− 1235u2v

576
√

3
+

83083uv2

1728
√

3
− 272363v3

1728
√

3

+
65tvw

2
√

3
+
√

3tw2 +
703u2w

108
√

3
− 65uvw

6
√

3
− 47uw2

27
√

3
− 7553v2w

108
√

3
− 65vw2

9
√

3

)]
.

(2.13)

Now we need to impose the gauge condition on the string field. Notice that at level 2, both

the Siegel gauge condition b0Ψ = 0 and the Schnabl gauge condition B0Ψ = 0 imply that

w = 0. Setting w = 0 in the potential (2.13), we obtain the level (2, 6) gauge fixed potential.

Since the effective tachyon potential depends on the single variable t which corresponds to

the tachyon coefficient, we are going to integrate out the rest of the coefficients u and v.

Using the partial derivatives of the potential (with w = 0), ∂uV
(2,6) = 0, and ∂vV

(2,6) = 0,

we can write the coefficients u and v in terms of t.

Starting at level (2, 6), coefficients other than the tachyon coefficient t do not appear

quadratically, therefore we cannot exactly integrate out these coefficients u and v. We use

Newton’s numerical method to find the zeros of the partial derivatives of the potential. For

a fixed value of the tachyon coefficient t, there are in general many solutions of the equations

for the remaining coefficients, which correspond to different branches. The branch structure

corresponding to the effective tachyon potential will be analyzed in the next section.

At this point, we are interested in the branch of the effective tachyon potential con-

necting the perturbative with the non-perturbative vacuum and having a minimum value

which agrees with the one predicted from Sen’s first conjecture. For instance, the local

minimum of the level (2, 6) effective tachyon potential corresponds to t0 = 0.544204, u0 =

0.190190, v0 = 0.055963 and the potential evaluated at these points has the value of

V (2,6)(t0, u0, v0, w = 0) = −0.959376 which is about 96% of the exact answer.

The results for the tachyon vev and vacuum energy, up to level (10, 30), are shown in

tables 1 and 2. As we can see, our results in Siegel gauge are the same as the ones given in

references [49, 50]. Note that, in Schnabl gauge, at level L = 6 the energy overshoots the

predicted analytical answer of −1 and appears to further decrease at higher levels. In the

case of Siegel gauge, this phenomenon happens at level L = 14 [50]. As a first impression,

– 7 –
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L c1|0〉 ESie

0 0.456177990470 −0.684616159915

2 0.544204232320 −0.959376599521

4 0.548398986499 −0.987821756244

6 0.547932362586 −0.995177120537

8 0.547052407685 −0.997930183378

10 0.546260900230 −0.999182458475

Table 1. (L, 3L) level-truncation results for the tachyon vev and vacuum energy in Siegel gauge.

L c1|0〉 ESch

0 0.456177990470 −0.684616159915

2 0.544204232320 −0.959376599521

4 0.548938521247 −0.994651904750

6 0.548315148955 −1.003983765388

8 0.547321883647 −1.007110280219

10 0.546508411314 −1.008189759705

Table 2. (L, 3L) level-truncation results for the tachyon vev and vacuum energy in Schnabl gauge.

it seems that the level-truncation procedure is breaking down, in the case of Schnabl gauge

for L ≥ 6, and in the case of Siegel gauge for L ≥ 14. Nevertheless, by using a clever

extrapolation technique to level-truncation data obtained in Siegel gauge for L < 18 to

estimate the vacuum energies even for L > 18, in reference [50], the authors have shown

that the results may simply indicate that the approach of the energy to −1 as L → ∞
is non-monotonic, actually it is predicted that the energy reaches a minimum value for

L ∼ 27, but then turns back to approach asymptotically −1 for L→∞.

In the case of Schnabl gauge, applying Gaiotto-Rastelli extrapolation and an alter-

native technique called as Padé extrapolation to the level-truncation data for L ≤ 10

to estimate the vacuum energies even for L > 10, in section 4, we are going to predict

that the energy reaches a minimum value for L ∼ 12, and then turns back to approach

asymptotically −1 for L→∞.

For the case of the tachyon vev data obtained in Schnabl gauge which is given in

table 2. Note that the value of the tachyon vev gets a maximum value near level L = 4

and then starts to decrease. In order to reach the analytical value of 0.553465 [1], there

should be some higher value of L > 4 such that the tachyon vev stops decreasing and

then starts increasing to approach asymptotically the expected result. In the case of Siegel

gauge, it may also happen that there is some value of L > 4 such that the tachyon vev

stops decreasing. Actually, this kind of possibility has been considered in reference [61],

where the analytic value
√

3/π ∼= 0.551328 was conjectured for the tachyon vev. All these

issues related to the discussion of the tachyon vev will be analyzed in section 5.
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3 Effective tachyon potential and its branch structure

Using the (L, 3L) level truncated potential with L=2,4,6 and 8, in this section, we are

going to analyze the branch structure of the effective tachyon potential derived in Siegel

as well as in Schnabl gauge.

3.1 Branch structure in Siegel gauge

As we have seen in the previous section, the truncated level L string field can be written

as Ψ = tT + χ, where T ≡ c1|0〉 represents the tachyonic part and χ is the remaining

non-tachyonic contribution. By substituting this L0 level expansion of Ψ into the string

field action, we derive the V (L,3L) level truncated potential. Note that this potential will

depend on the tachyonic coefficient t as well as on the other non-tachyonic coefficients that

are contained in the χ term. In this subsection, using the Siegel gauge condition b0Ψ = 0,

we are going to study the effective tachyon potential.

To construct the effective tachyon potential which depends only on the tachyon coeffi-

cient t, we must integrate out the non-tachyonic coefficients. Since starting at level (2, 6),

coefficients other than the tachyon coefficient t do not appear quadratically, we cannot

exactly integrate out these non-tachyonic coefficients. Therefore, we are forced to use nu-

merical methods to study the effective tachyon potential. We have used Newton’s method

to find the zeros of the partial derivatives of the potential. For a fixed value of the tachyon

coefficient t, there are many solutions of the equations for the remaining coefficients, which

correspond to the different branches of the effective tachyon potential.

We are interested in the branches that are close to the physical branch, namely, the

branch connecting the perturbative with the non-perturbative vacuum which we label as

branch 1 for Siegel gauge and branch A for Schnabl gauge. In the case of Siegel gauge, we

have found four roots of the level (2,6) potential that correspond to four branches label by

1,2,3 and 4, where branch 1 precisely corresponds to the physical branch. To analyze these

branches 1, 2 and 3 at higher levels L > 2, we have used those roots found at level L = 2

as initial values, while to derive branch 4 at higher levels, it has been necessary to find the

corresponding root of the level (4,12) potential.

Figure 1 shows these four branches of the effective potential at levels (2,6), (4,12), (6,18)

and (8,24). The physical branch (branch 1) has the interesting property that it meets

branches 2 and 4 at points where Newton’s method becomes unstable. The location of these

points denoted as t− and t+ depends on the level and are given in table 3. At level (2,6)

it happens near t− ≈ −0.17 where branch 1 meets branch 2 from the left, and t+ ≈ 3.34

where branch 1 meets branch 4 from the right. As we increase the level of the potential,

we noticed that these two points converge to some fixed values, furthermore it seems that

branches 2,3 and 4 are getting closer to branch 1 in a smooth way. These properties related

to the branch structure where already discussed by Moeller and Taylor [49], even though

they have not identified branch 4 which meets branch 1 for positive values of the tachyon

coefficient, they have mentioned the possible existence of such a branch.
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Figure 1. Plot of branches 1, 2, 3 and 4 corresponding to the effective tachyon potential at levels

(L, 3L) with L=2,4,6 and 8, in Siegel gauge.

L = 2 L = 4 L = 6 L = 8

t− −0.1734 −0.1428 −0.1336 −0.1292

t+ 3.3468 0.9149 0.8012 0.7549

Table 3. Approximate values of the tachyon coefficients t where Newton’s algorithm stops con-

verging for branch 1 at levels (L, 3L) in Siegel gauge.

3.2 Branch structure in Schnabl gauge

The (L, 3L) potential in Schnabl gauge can be constructed after imposing the so-called

Schnabl gauge condition B0Ψ = 0 on the string field Ψ. The (L, 3L) effective tachyon

potential is then obtained after integrating out the non-tachyonic coefficients that appear

in the expansion of Ψ. We have seen that the gauge condition implies some relations that

these non-tachyonic coefficients must obey. It turns out that up to level L = 2, either Siegel

or Schnabl gauge condition implies the same relations for the non-tachyonic coefficients,

such that up to this level, the branch structure of the effective tachyon potential in Schnabl

gauge is exactly the same as in Siegel gauge.

Starting at level L = 4, Schnabl gauge condition provides relations for the non-

tachyonic coefficients that are different from the ones obtained in Siegel gauge. Therefore,

in the case of Schnabl gauge, we expect for levels L ≥ 4 a different branch structure for the

effective tachyon potential as compared to Siegel gauge. And in fact, we cannot extend the

branches found at level L = 2 to higher levels (with the exception of the physical branch).

For instance, if we try to extend these branches to level L = 4, using as initial values for

Newton’s method the zeros found from the partial derivatives of the level (2, 6) potential,
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Figure 2. Branch A of the effective tachyon potential in Schnabl gauge at different truncation

levels.

we discover that the algorithm converges to a single solution which precisely corresponds

to the physical branch.

Thus, to study properly the branch structure of the effective tachyon potential in

Schnabl gauge, for a fixed value of the tachyon coefficient t, we have been required to

obtain all the zeros of the partial derivatives of the level (4, 12) potential. As a result, we

have found many different solutions (branches) including the physical branch (named as

branch A), most of these solutions have energy scales that are far away from the physical

branch. For a matter of analysis, we will be interested in branches that are close to the

physical branch.

In figure 2, we show the plot of branch A at different truncation levels. Note that,

each time we increase the level, the profile of branch A does not change significantly and

its shape looks quite similar to branch 1 of Siegel gauge. We have also observed that

the numerical algorithm used to construct Branch A fails to converge outside some region

defined by t− < t < t+. As shown in table 4, the locations of the points t− and t+ depend

on the level and appear to converge under level-truncation to fixed values. For a better

understanding of what happens near these points and verify if they have the same origin

as in the case of Siegel gauge, we are going to study the structure of other branches that

are close to branch A.

We have discovered three different branches that are near branch A, one of these

branches (named as branch D) does not intercept any of the other two branches at least

in the region where t ∈ (t−, t+) and extends beyond this region of interest. In relation to

the other two branches (named as branch B and branch C), we observe that branch B
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Figure 3. Plot of branches A, B, C and D corresponding to the effective tachyon potential at

levels (L, 3L) with L=4,6 and 8, in Schnabl gauge.

L = 4 L = 6 L = 8 L = 10

t− −0.3139 −0.3992 −0.4124 −0.4121

t+ 2.2046 2.0496 1.9712 1.9257

Table 4. Approximate values of the tachyon coefficients t where Newton’s algorithm stops con-

verging for branch A at levels (L, 3L) in Schnabl gauge.

intercept branch A at the point t−, and branch C intercepts branch A at the point t+.

These branches B, C and D together with the branch A are shown in figure 3.

Regarding the construction of branches B and C, it turns out that for given initial

values of the non-tachyonic coefficients, Newton’s method has a limited region of conver-

gence, therefore to probe these branches in the region of interest defined by (t−, t+), we

were required to use diverse initial values for the non-tachyonic coefficients corresponding

to different fixed values of t ∈ (t−, t+). We would like to point out that branches B and

C play similar roles as branches 2 and 4 of Siegel gauge case, namely, these branches B

and C intercept branch A at the points where the numerical algorithm used to construct

branch A becomes unstable.

Another observation concerns how the structure of branches B and C changes with the

level. Branches B and C appear to approach under level-truncation to branch A. When

we move from level (4,12) to (6,18), the slope of branch B increases its value, whereas

when the level change from (6,18) to (8,24), the slope of branch B significantly decreases

its value, so that branch B seems to move towards branch A. Regarding branch C, as

shown in figure 3, the change of its slope seems to have a smooth behavior towards branch
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A, this behavior is similar to branch 4 of Siegel gauge. It would be interesting to analyze

the behavior of these branches at levels (L, 3L) with L > 10, however, at higher levels to

obtain only a few points along these branches should demand a lot of computing time.

Let us comment about the region (t−, t+) where the numerical algorithm used to

construct branch A brings convergent results. In the case of Siegel gauge, as shown in

table 3, this region seems to converge approximately to (−0.1, 0.7), while in the case of

Schnabl gauge, it converges to (−0.4, 1.9). From a mathematical point of view, it turns

out that the existence of the points t− and t+ is related to the presence of other branches

which intercept the physical branch at these points.

Regarding the physical interpretation of these branch points, let us mention that in

background independent string field theory, the tachyon potential can be shown to have

the form V (T ) = (1 + T )e−T [57–59]. While the field T is related to t through a nontrivial

field redefinition, it is clear that the potential V is unbounded below as T → −∞, and

contains no branch points to the left of the stable vacuum. Thus, the branch point found for

negative values of t is not physical. And in fact, in the case of Siegel gauge, there is a strong

evidence that the two branch points t− and t+ appearing in the numerical computation

of the effective tachyon potential are gauge artifacts arising when the field configuration

along the effective potential leaves the region of validity of the gauge condition [60]. If the

analysis of reference [60] can be extended to generic gauges, our results suggest that the

region of validity of Schnabl gauge is bigger than the region of validity of Siegel gauge.

4 Extrapolation techniques and the vacuum energy analysis

Using direct (L, 3L) level-truncation computations, we have constructed the effective

tachyon potential in Schnabl gauge up to level L = 10. Selecting the branch of the potential

that connects the perturbative with the non-perturbative vacuum and computing its local

minimum, we have determined the vacuum energy. As we can see from table 2, starting

at level L = 6, the data for the energy overshoots the conjectured value of the normalized

brane tension.

According to the data up to level L = 10, it seems that the energy will continue to

decrease. We would like to know if this pattern will be preserved at higher levels, namely,

for levels L > 10 the energy continues to decrease, or as in the case of Siegel gauge [50] it

may happen that at some level Lmin > 10 the energy reaches a minimum value and then

starts increasing to approach asymptotically, as L→∞, the expected value of −1. These

issues could be answered if, of course, we would have available data for levels L > 10.

Although we do not have this data, by extrapolating the known results we already have

up to level L = 10, we can predict the values of the energy for levels L > 10 which should

correspond (with a good degree of approximation) to the values obtained by means of

messy direct (L, 3L) level-truncation computations.

A clever extrapolation method, which we refer as Gaiotto-Rastelli extrapolation tech-

nique, has been proposed in reference [50]. In the case of Siegel gauge, this technique has

been successfully used to predict the values of the energy for levels L > 18. In this section,

after a brief review of Gaiotto-Rastelli technique, we are going to analyze our known data
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for the energy in Schnabl gauge obtained up to level L = 10. Then, we will study another

extrapolation method, and since the function that will be used to interpolate the known

values of the energy will be a rational function in L, this method will be called as Padé

extrapolation technique.

4.1 Gaiotto-Rastelli extrapolation technique

In the case of Siegel gauge, in reference [50] using direct (L, 3L) level-truncation compu-

tations, the values of the energy up to level L = 18 were obtained, and it has been shown

that at level L = 14 the data overshoots the expected value of −1. As a first impression,

it seems that the level-truncation procedure is breaking down for L ≥ 14. Nevertheless,

employing a clever extrapolation technique to level-truncation data for L ≤ 18 to estimate

the vacuum energies even for L > 18, Gaiotto and Rastelli have shown that the results

may simply indicate that the approach of the energy to −1 as L → ∞ is non-monotonic,

and actually it is predicted that the energy reaches a minimum value for L ∼ 27, but then

turns back to approach asymptotically −1 for L→∞.

Gaiotto-Rastelli extrapolation technique used the information of the effective tachyon

potentials VL(t). We have determined these potentials up to level L = 10 in Siegel as

well as in Schnabl gauges by means of (L, 3L) level-truncation computations. A detailed

discussion related to the effective tachyon potential has been given in section 3, where we

have analyzed the branch structure of this potential. In this section, we are going to work

with the physical branch,3 namely, the branch that connects the perturbative with the

non-perturbative vacuum. In the case of Schnabl gauge, this physical branch is important

because when L→∞ its local minimum should correspond to the analytical solution found

by Schnabl [1].

Given the effective tachyon potentials derived in some gauge Vi(t) with i = 0, 2, · · · , L,

the interpolating potential is defined as

VM
L (t) =

M/2∑
n=0

an(t)

(L+ 1)n
, (4.1)

where M indicates the degree of the interpolation. As we can see, the value 1+M/2 is equal

to the number of effective potentials contained in the set {V0(t), V2(t), V4(t), . . . , VL(t)} and

the functions an(t) can be expressed as linear combinations of these potentials Vi(t).

Before constructing the interpolating potentials VM
L (t) in Schnabl gauge, using the

effective potentials in Siegel gauge V Sie
i (t), we are going to construct VM

L (t). We consider

first the case of Siegel gauge, since in order to test and validate our computations, we would

like to compare our results with the well known results obtained in reference [50].

4.1.1 Siegel gauge

As a pedagogical illustration, let us construct VM
L (t) with M = 4 in Siegel gauge

V 4
L (t) =

2∑
n=0

an(t)

(L+ 1)n
. (4.2)

3Remember that this physical branch has been labelled as branch 1, and branch A, for Siegel, and

Schnabl gauge respectively.
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Note that for this value of M , we need 1 +M/2 = 3 entries, that is, the first three effective

potentials (up to level L = 4): {V Sie
0 (t), V Sie

2 (t), V Sie
4 (t)}. To obtain the coefficients a0(t),

a1(t) and a2(t), we evaluate the potential V 4
L (t) defined in (4.2) at L = 0, 2, 4 and equate

the result to the known effective potentials, namely

V 4
0 (t) = V Sie

0 (t), (4.3)

V 4
2 (t) = V Sie

2 (t), (4.4)

V 4
4 (t) = V Sie

4 (t). (4.5)

Solving the above system of equations, we can obtain the an(t) coefficients as linear

combinations of the potentials V Sie
i (t)

a0(t) =
1

8

[
V Sie

0 (t)− 18V Sie
2 (t) + 25V Sie

4 (t)
]
, (4.6)

a1(t) = −V Sie
0 (t) +

1

2

[
27V Sie

2 (t)− 25V Sie
4 (t)

]
, (4.7)

a2(t) =
1

8

[
15V Sie

0 (t)− 90V Sie
2 (t) + 75V Sie

4 (t)
]

(4.8)

Plugging these coefficients (4.6)–(4.8) into equation (4.2), we obtain the interpolating

potential V 4
L (t) in Siegel gauge

V 4
L (t) =

(
L2 − 6L+ 8

)
V Sie

0 (t) + L(25(L− 2)V Sie
4 (t)− 18(L− 4)V Sie

2 (t))

8(L+ 1)2
. (4.9)

We can use the above potential V 4
L (t) to extrapolate the values of the energy for levels

L > 4. For instance, at level L = 6, the minimum value of V 4
6 (t) happens at the point

where t0 = 0.548497 and the value of V 4
6 (t) evaluated at this point gives

V 4
6 (t0) = −0.995462. (4.10)

This result (4.10) exactly matches the result found in reference [50]. Note that the direct

(L, 3L) level-truncation computation (with L = 6) brings the value of −0.995177 for the

vacuum energy in Siegel gauge.

By following the same procedures shown above, we can obtain the interpolating po-

tentials VM
L (t) for M = 6, 8, 10. It turns out that our results are identical to the results

presented in reference [50]. Once we have learned the method of Gaiotto-Rastelli extrapo-

lation technique and validated our results in Siegel gauge, we move to the case of interest,

namely, Schnabl gauge.

4.1.2 Schnabl gauge

To construct the interpolating potentials VM
L (t) in Schnabl gauge, we follow the procedures

explained in the case of Siegel gauge. As a matter of illustration, the interpolating potential

V 4
L (t) looks similar to the one obtained in Siegel gauge (4.9). Actually we only need to

perform the replacement V Sie
L (t)→ V Sch

L (t), so that

V 4
L (t) =

(
L2 − 6L+ 8

)
V Sch

0 (t) + L(25(L− 2)V Sch
4 (t)− 18(L− 4)V Sch

2 (t))

8(L+ 1)2
. (4.11)

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

L = 4 L = 6 L = 8 L = 10

M = 4 −0.99465190 −1.00592012 −1.01115471 −1.01410566

M = 6 −1.00398376 −1.00753539 −1.00918262

M = 8 −1.00711028 −1.00822786

M = 10 −1.00818975

L = 12 L = 14 L = 16 L = 18

M = 4 −1.01597655 −1.01725962 −1.01819029 −1.01889426

M = 6 −1.01004504 −1.01053404 −1.01082671 −1.01100837

M = 8 −1.00857415 −1.00859518 −1.00847386 −1.00829192

M = 10 −1.00847289 −1.00841901 −1.00821931 −1.00796005

Table 5. Predicted values of the energy EM (L) obtained from the interpolating potentials VM
L (t)

in Schnabl gauge, at various orders of M and for L ≤ 18. In the top half of the table, the value of

the diagonal entries EM=L(L) coincide with the direct (L, 3L) level-truncation computations.

By computing the local minimum of the potential (4.11) for values of L > 4, we can

determine the extrapolated values of the energy. For instance, at level L = 6, the minimum

value of V 4
6 (t) happens at the point where t0 = 0.549303, and evaluating V 4

6 (t) at this point

gives the prediction V 4
6 (t0) = E4(6) = −1.005920 for the energy at level 6. The direct

(L, 3L) level-truncation computation (with L = 6) brings the value of E(6) = −1.003983.

Since we know the effective potentials in Schnabl gauge {V Sch
0 (t), V Sch

2 (t), · · · , V Sch
10 (t)}

up to level L = 10, we have determined the interpolating potentials VM
L (t) up the maximum

value of M = 10, and by computing the local minimum of these potentials which happens

at a point close to t0 ∼ 0.54, we can predict the values of the energy VM
L (t0) = EM (L).

Some results of these computations are shown in table 5.

As we can see from table 5, the predicted values for the energy obtained by means

of these interpolating potentials VM
L (t) are close to the values obtained by direct (L, 3L)

level-truncation computations. Note also that as we increase the value of M , the degree

of approximation improves. For instance, using M = 8, namely by only knowing level-

truncation results up to level 8, one can obtain the prediction E8(10) = −1.008227 for

the energy at level 10, to be compared to the value E(10) = −1.008189 which has been

obtained by direct (10, 30) level-truncation computation.

By analyzing the predicted values of the energy EM (L) as a function of the level, we

observed that for M > 4 the function EM (L) behaves non-monotonically, namely, as we

increase the value of the level, the function EM (L) decreases until reaching a minimum

value EM (Lmin), then for values of the level such that L > Lmin the function EM (L) starts

increasing and approaches asymptotically a value close to −1. The plot of EM (L) with

M = 10, which is shown in figure 4, illustrates clearly this point.

Using EM (L) with values of M = 6, 8, 10, we have found the corresponding values of

Lmin, and EM (Lmin) together with the asymptotic one EM (L→∞), the results are shown

in table 6. By extrapolating the level-truncation data for L ≤ 10 to estimate the vacuum

energies for L > 10, we predict that the energy reaches a minimum value at L ∼ 12, and
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Figure 4. Plot of EM (L) with M = 10, for the energy in Schnabl gauge as a function of the level.

The dashed line represents the analytical value −1.

M Lmin EM (Lmin) EM (L→∞)

6 32.98 −1.00398376 −1.01083980

8 13.14 −1.00711028 −1.00348070

10 12.47 −1.00818977 −1.00161871

Table 6. The local minimum EM (Lmin) and the asymptotic EM (L → ∞) value of EM (L) for

M = 6, 8, 10 in Schnabl gauge.

then turns back to approach asymptotically −1 as L → ∞. It should be nice to confirm

this prediction by means of direct (L, 3L) level-truncation computations.

In order to bring an additional support for the previous predicted minimum value of

the energy that should happen at L ∼ 12, in the next subsection, we are going to use the

well known results in Siegel gauge to test another method of extrapolation technique which

will then be applied to the case of Schnabl gauge.

4.2 Padé extrapolation technique

Instead of using the set of effective tachyon potentials Vi(t) with i = 0, 2, · · · , L, we are

going to use the values of the local minimum of these potentials, namely, the values of the

vacuum energy which up to level L = 10 are given in tables 1 and 2 for Siegel and Schnabl

gauges respectively.

The derivation of the vacuum energy by means of (L, 3L) level-truncation computations

is computationally less cumbersome than the construction of the corresponding effective

tachyon potential. So in this sense, an extrapolation method that uses the data of the

vacuum energy instead of the effective potential should be much simpler.
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Given the data of the vacuum energy up to some level E(0), E(2), · · · , E(L) derived

in some gauge together with the asymptotic expected value E(L → ∞) = −1, we define

the following interpolating rational function

fN (L) =

∑N
n=0 anL

n

1 +
∑N

n=1 bnL
n
, (4.12)

where N indicates the degree of the interpolation. The value 2N+1 is equal to the number

of elements contained in the set {E(0), E(2), · · · , E(L)} ∪ {E(L → ∞) = −1}. As we are

going to show by means of an explicit example, the coefficients an and bn can be determined

in terms of the data points.

Using the data of the vacuum energy in Siegel gauge up to level L = 10, we will

construct these interpolating functions fN (L). We consider first the case of Siegel gauge,

because in order to test the Padé extrapolation method, we should compare our predicted

results with the well known results obtained in reference [50].

4.2.1 Siegel gauge

As an explicit example, let us construct fN (L) with N = 1 in Siegel gauge

f1(L) =
a0 + a1L

1 + b1L
, (4.13)

for this value of N , we need 2N + 1 = 3 entries, that is the first two vacuum energies

ESie(0), ESie(2) together with the asymptotic value −1. To obtain the coefficients a0, a1

and b1, we evaluate the function f1(L) defined in (4.13) at L = 0, 2,∞ and equate the

results to the known values, namely

f1(0) = ESie(0) = −0.68461615991569, (4.14)

f1(2) = ESie(2) = −0.95937659952124, (4.15)

f1(L→∞) =
a1

b1
= −1. (4.16)

Solving the above system of equations, we can obtain the a0, a1 and b1 coefficients

a0 = −0.68461615991569, a1 = −3.38180010003359, b1 = 3.38180010003359. (4.17)

Substituting these coefficients (4.17) into equation (4.13), we obtain the interpolating

function f1(L) of order N = 1 in Siegel gauge.

Using this function f1(L), we can extrapolate the values of the energy for levels L > 2.

For instance, evaluating this function at level L = 4, we have

f1(4) = −0.97829011. (4.18)

The (L, 3L) level-truncation computation (with L = 4) brings the value of −0.98782175

for the vacuum energy in Siegel gauge. It turns out that as we increase the value of N , the

degree of approximation becomes better.
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L = 4 L = 6 L = 8 L = 10

N = 1 −0.9782901157 −0.9851868492 −0.9887581331 −0.9909419314

N = 2 −0.9951771205 −0.9979360018 −0.9991909062

N = 3 −0.9991824585

L = 12 L = 14 L = 16 L = 18

N = 1 −0.9924153031 −0.9934764189 −0.9942770695 −0.9949026734

N = 2 −0.9998305359 −1.0001802977 −1.0003796507 −1.0004953576

N = 3 −0.9998209333 −1.0001702762 −1.0003695899 −1.0004854553

Table 7. Padé extrapolation values for the vacuum energy in Siegel gauge, from L = 4 to L = 18.

The value of the entries where (4N − 2 = L) coincide with the direct (L, 3L) level-truncation

computations.

L ESie

12 −0.9998222

14 −1.0001737

16 −1.0003755

18 −1.0004937

Table 8. (L, 3L) level-truncation results for the vacuum energy in Siegel gauge extracted from

reference [50].

Using our known data points for the vacuum energy in Siegel gauge up to level L = 10

which are given in table 1, by following the same procedures shown above, we can construct

the interpolating functions fN (L) for N = 2, 3. We have evaluated these functions at some

levels, the results are presented in table 7.

By looking at table 7, we note that the extrapolated values for the energy using either

f2(L) or f3(L) for L > 10 are almost identical. Let us remark that to construct these

interpolating functions, we have only used the results up to level 10. So all values for

the energy with L > 10 are predictions that should be compared with the direct (L, 3L)

level-truncation computations. For instance, in table 8, we show the results for the en-

ergy that have been obtained in reference [50] by means of direct (L, 3L) level-truncation

computations.

Comparing the results for the vacuum energy given in table 7 (for N = 2 or N = 3 and

L > 10) with the results of table 8, we conclude that the predicted values for the energy

obtained by means of Padé extrapolation technique are quite well. Remarkably, the results

are in agreement up to the fifth significant digit.

Analyzing these interpolating functions with N = 2 and N = 3, we observed that as

we increase the value of the level, the function fN (L) decreases until reaching a minimum

value fN (Lmin), then for values of the level such that L > Lmin the function fN (L) starts

increasing and approaches asymptotically the expected value of −1. In table 9, we show

the values of Lmin and fN (Lmin) for N = 2, 3. This result is also in agreement with the
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N Lmin fN (Lmin)

2 26.62 −1.0006243552

3 26.72 −1.0006157880

Table 9. Local minimum values of fN (L) for N = 2, 3 in Siegel gauge.

result of reference [50], where the authors have predicted that the vacuum energy will reach

a minimum value close to level L ∼ 27, and then for L > 27 approaches asymptotically the

value of −1.

Having tested the Padé extrapolation technique, we are going to apply this method to

the case of Schnabl gauge.

4.2.2 Schnabl gauge

To construct the interpolating functions fN (L), we employ the data for the vacuum energy

in Schnabl gauge, this data is given in table 2 up to level L = 10. Remember that we also

need to use the asymptotic value ESch(L→∞) = −1.

As a matter of illustration, let us choose N = 2. To determine the coefficients a0, a1,

a2, b1 and b2 that define the interpolating function of order N = 2

f2(L) =
a0 + a1L+ a2L

2

1 + b1L+ b2L2
, (4.19)

we must solve the following system of equations

f2(0) = ESch(0) = −0.68461615991569, (4.20)

f2(2) = ESch(2) = −0.95937659952124, (4.21)

f2(4) = ESch(4) = −0.99465190475076, (4.22)

f2(6) = ESch(6) = −1.00398376538869, (4.23)

f2(L→∞) =
a2

b2
= −1. (4.24)

This system of equations can be easily solved to determine the corresponding values for

the coefficients an and bn. Therefore, in this way we can also construct the interpolating

function of order N = 3.

We have evaluated these functions fN (L) at some levels, and the results are presented

in table 10. Note that, as in the case of Siegel gauge, the extrapolated values for the energy

using either f2(L) or f3(L) for L > 10 are almost identical.

Analyzing the interpolating functions fN (L) with N = 2 and N = 3, we observed that

as we increase the value of the level, the function fN (L) decreases until reaching a minimum

value fN (Lmin), then for values of the level such that L > Lmin the function fN (L) starts

increasing and approaches asymptotically the expected value of −1. In table 11, we show

the values of Lmin and fN (Lmin) for N = 2, 3. This result is in agreement with the result

obtained by means of Gaiotto-Rastelli extrapolation technique, see table 6, where we have
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L = 4 L = 6 L = 8 L = 10

N = 1 −0.9782901157 −0.9851868492 −0.9887581331 −0.9909419314

N = 2 −1.0039837654 −1.0070218437 −1.0079880990

N = 3 −1.0081897597

L = 12 L = 14 L = 16 L = 18

N = 1 −0.9924153031 −0.9934764189 −0.9942770695 −0.9949026734

N = 2 −1.0081595132 −1.0080037353 −1.0077135987 −1.0073747284

N = 3 −1.0084698491 −1.0084085581 −1.0081970219 −1.0079220265

Table 10. Padé extrapolation values for the vacuum energy in Schnabl gauge from L = 4 to

L = 18. The value of the entries where (4N − 2 = L) coincide with the direct (L, 3L) level-

truncation computations.

N Lmin fN (Lmin)

2 11.76 −1.0081618558

3 12.43 −1.0084765080

Table 11. Local minimum values of fN (L) for N = 2, 3 in Schnabl gauge.

L E10(L) f3(L)

12 −1.00847289 −1.0084698491

14 −1.00841901 −1.0084085581

16 −1.00821931 −1.0081970219

18 −1.00796005 −1.0079220265

Table 12. Extrapolated values for the vacuum energy derived by means of E10(L) and f3(L), from

L = 12 to L = 18 in Schnabl gauge.

predicted that the energy reaches a minimum value at L ∼ 12, and then turns back to

approach asymptotically −1 as L→∞.

As a matter of comparison of the two extrapolation methods studied for the case of the

vacuum energy in Schnabl gauge, using E10(L) and f3(L) we have constructed table 12,

where some extrapolated values for the vacuum energy from L = 12 to L = 18 are shown.

Note that these values can be directly extracted from tables 5 and 10 respectively. We have

chosen the interpolating functions E10(L) and f3(L), because these are the best estimates

we have for the vacuum energy.

By explicit (L, 3L) level-truncation computations with L > 10, it would be interesting

to confirm the above predicted results. Since the minimum value for the energy data should

happen at L ∼ 12, the direct (L, 3L) level-truncation computations must be performed, at

least, up to level L = 14.

5 The tachyon vev

Before analyzing the tachyon vev in the case of Schnabl gauge, we are going to study the

tachyon vev in the case of Siegel gauge.

– 21 –



J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

5.1 Siegel gauge

In the case of Siegel gauge, the results for the tachyon vev obtained from (L, 3L) level-

truncation computations are shown in table 1. As we can see, the value of the tachyon

vev has a maximum value near level L = 4 and then starts to decrease. We would like

to know if this behavior (which we call scenario S1) will continue for higher values of L,

namely, the tachyon vev decreases for values of L ∈ (4,∞) and approaches monotonically

to some asymptotic value as L → ∞. Another possible behavior (which we call scenario

S2) is the one where for some very large value of L > 4, the value of the tachyon vev stops

decreasing and then starts increasing until reaching some asymptotic value as L→∞, i.e.,

a non-monotonic behavior. Since we do not have an analytic expression for the tachyon

vacuum solution in Siegel gauge, at this point we do not know which of these two possible

scenarios S1 or S2 will be the right one.

Scenario S2 is compatible with the claim given in reference [61] where the analytic

value
√

3/π ∼= 0.5513 has been conjectured for the tachyon vev. However, in reference [50],

the asymptotic value of 0.5405 has been predicted for the tachyon vev, and the authors have

suggested that the conjecture [61] for an exact value
√

3/π is falsified. Therefore, according

to [50], scenario S1 should be the correct one. Moreover, recent numerical results up to

level L = 26 seem to confirm this scenario [18].4

Here we are going to present a criterion that will allow us to rule out one of the two

scenarios. Let us start by using a rational function in L to interpolate the data for the

tachyon vev shown in table 1 together with the asymptotic point at L→∞

R
(α)
n,Sie(L) =

a0 + a1L+ a2L
2 + a3L

3 + · · ·+ anL
n

1 + b1L+ b2L2 + b3L3 + · · ·+ bnLn
. (5.1)

The parameter α has two possible values, namely, α = 1 in the case of scenario S1 and

α = 2 in the case of scneario S2. Since we have seven data points (which include the point

at infinity), we set n = 3. The subscript Sie means that we are working in Siegel gauge.

Let us choose the asymptotic point given by the value 0.540500250625 obtained from

reference [50], we require that this point together with the data of table 1 match the rational

function (5.1) with n = 3 and α = 1. Thus to determine the coefficients ai and bi we simple

compare R
(1)
3,Sie, for each value of L = 0, 2, 4, · · · , 10 and L→∞, with all the data points.

For instance, the point at infinity should be given by

lim
L→∞

R
(1)
3,Sie(L) =

a3

b3
= 0.540500250625. (5.2)

In this way we get a system of seven equations for the coefficients ai and bi which can be

easily solved. Once these coefficients are known, the next step is to analyze the rational

function R
(1)
3,Sie(L).

One thing we can do is to evaluate R
(1)
3,Sie(L), for values of L > 10 and compare the

results with the actual data of reference [18]. The result of these computations for values

4Actually reference [18] only discusses the results for the energy. In relation to the tachyon vev in

the traditional Siegel gauge, I. Kishimoto has kindly shared with us his data of (L, 3L) level-truncation

computations for levels between L = 12 and L = 26.
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L R
(1)
3,Sie(L) R

(2)
3,Sie(L) (L, 3L) results

12 0.545607760344 0.545609456916 0.545608067009

14 0.545074327209 0.545079892413 0.545075133495

16 0.544635438085 0.544646969866 0.544636805350

18 0.544270056598 0.544289404544 0.544271966369

20 0.543962103018 0.543990840810 0.543964497784

22 0.543699517709 0.543738965854 0.543702325407

24 0.543473234578 0.543524496424 0.543476381413

26 0.543276370655 0.543340368308 0.543279787348

Table 13. The rational functions R
(1)
3,Sie(L) and R

(2)
3,Sie(L) compared with the direct (L, 3L) level-

truncation computations in Siegel gauge.

of L between 12 to 26 are shown in table 13. Performing similar computations, but now

for the case of the conjectured asymptotic value [61], namely, for scenario S2

lim
L→∞

R
(2)
3,Sie(L) =

a3

b3
=

√
3

π
= 0.551328895421, (5.3)

we obtain another set of coefficients ai and bi which define the rational function R
(2)
3,Sie(L).

In table 13, we show some values of the rational function R
(2)
3,Sie(L) compared with the

direct (L, 3L) level-truncation computations.

Comparing the results shown in table 13, we see that the rational interpolating func-

tion R
(1)
3,Sie(L) fits better the actual data obtained by direct (L, 3L) level-truncation com-

putations, for instance, if we compare the data starting at level L = 22, we can observe

improvement. We can take this result as a hint to choose R
(1)
3,Sie(L) instead of R

(2)
3,Sie(L),

and thus scenario S1 should be more likely than S2. Next, we are going to bring another

argument in favor of scenario S1.

For a moment, let us suppose that scenario S2 is the right one, so in this case, in order

to reach the asymptotic value
√

3/π ∼= 0.5513, we would like to know at which value of L

the tachyon vev starts to increase. From results up to level L = 26, we can see that if there

exists a point where the tachyon vev start to increase, this value must be a very high one.

We can find this point using the interpolating rational function R
(2)
3,Sie(L). In figure 5, we

show a plot of R
(2)
3,Sie(L), and we can determine that the tachyon vev starts to increase at

a point close to L ∼ 94.

By adding the two more extra data points given in the fourth column of table 13 (the

ones at L = 12 and L = 14), we can obtain the interpolating function of order R
(2)
4,Sie(L).

We expect that the behavior of the function R
(2)
4,Sie(L) will not be much different than the

function R
(2)
3,Sie(L). For instance, the point where the tachyon vev starts to increase obtained

by using R
(2)
4,Sie(L) should be close to the one obtained by using R

(2)
3,Sie(L). However, by

analyzing R
(2)
4,Sie(L) we observe that there is no local minimum where the tachyon vev starts
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Figure 5. Plot of R
(2)
3,Sie(L) for the tachyon vev as a function of level in Siegel gauge. The dashed

line represents the conjectured value
√

3/π.
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Figure 6. Plot of R
(2)
4,Sie(L) for the tachyon vev as a function of level in Siegel gauge. The dashed

line represents the conjectured value
√

3/π.

to increase, moreover there is a point of discontinuity near L ∼ 11908. Figure 6 clearly

illustrates our point.

From the above results and by computing higher interpolating functions (with n > 4),

we conclude that the set of functions R
(2)
n,Sie(L) do not seem to converge to some smooth

function in the limit case n→∞. This bad behavior indicates that scenario S2 is not the

correct one.
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Figure 7. Plot of the functions R
(1)
n,Sie(L) for the tachyon vev as a function of the level in Siegel

gauge. The dashed line represents the asymptotic value 0.5405 obtained in reference [50]. The

curves for n = 3, 4, 5, 6, 7 appear superimposed in the figure.

By performing similar analysis for the case of the interpolating functions R
(1)
n,Sie(L),

namely, for scenario S1 we get a nice behavior that is illustrated in figure 7, the functions

R
(1)
n,Sie(L) converge to a smooth function in the limit case when n → ∞. This is a clear

indication that scenario S1 is the right one. In the following subsection, we are going to

analyze the case of Schnabl gauge.

5.2 Schnabl gauge

The results for the tachyon vev in Schnabl gauge obtained from (L, 3L) level-truncation

computations are shown in table 2. Note that as in the case of Siegel gauge, the value of

the tachyon vev has a maximum value near level L = 4 and then starts to decrease.

Since in the case of Schnabl gauge the analytic (asymptotic) value of the tachyon

vev is known [1], the two scenarios S1 and S2 should be the same. Let us compute the

interpolating functions R
(2)
n,Sch(L) corresponding to scenario S2.

We use a rational function in L to interpolate the data for the tachyon vev shown in

table 2 together with the asymptotic point at L→∞

R
(2)
3,Sch(L) =

a0 + a1L+ a2L
2 + a3L

3

1 + b1L+ b2L2 + b3L3
. (5.4)

Since we have seven data points (which include the point at infinity), we have set n = 3. As

usual, to obtain the seven unknown coefficients ai and bi, we require that the data points

in table 2 coincide with the rational function (5.4) evaluated at the known values of the

direct (L, 3L) level-truncation computations for L = 0, 2, 4, 6, 7, 10 and the asymptotic one

L→∞ (the analytic result). For instance, at level L = 0, we obtain

R
(2)
3,Sch(L = 0) = a0 = 0.456177990470, (5.5)
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L R
(2)
3,Sch(L)

12 0.545904273712

14 0.545468779861

16 0.545160525135

18 0.544947247026

20 0.544805165981

22 0.544716903893

24 0.544669683450

26 0.544654007673

Table 14. The rational function R
(2)
3,Sch(L) for some values of L > 10.

while using the asymptotic value, we have the following equation

lim
L→∞

R
(2)
3 (L) =

a3

b3
= 0.553465566934. (5.6)

In this way, we get a system of seven equations for the coefficients ai and bi which can be

easily solved. Once these coefficients are known, the next step is to analyze the rational

function R
(2)
3,Sch(L).

Let us evaluate R
(2)
3,Sch(L) for values of L > 10 between 12 to 26, the results are shown

in table 14. Note that for levels close to L = 24, the value of the tachyon vev seems to

stop decreasing. At levels, between L = 24 and L = 26 the value of the tachyon vev is

almost the same, this indicates that we are close to a point where we have reached a local

minimum. In figure 8, we show the plot of R
(2)
3,Sch(L), as we can see, at level close to L = 26,

the tachyon vev starts increasing and then approaches asymptotically the analytic value

shown as the dashed line.

By adding two more extra data points obtained by direct (L, 3L) level-truncation

computations for L = 12 and L = 14, we can derive the interpolating function of order

R
(2)
4,Sch(L). We expect that the behavior of this function R

(2)
4,Sch(L) will not be much different

from the function R
(2)
3,Sch(L), for instance, the point where the tachyon vev starts to increase

obtained by using R
(2)
4,Sch(L) should be close to the one obtained by using R

(2)
3,Sch(L). In

fact, this behavior is observed as shown in figure 9. We expect that when n → ∞ the set

of functions R
(2)
n,Sch(L) converges to some smooth function.

To be honest, since we have not computed the values of the tachyon vev for L = 12 and

L = 14 by means of direct (L, 3L) level-truncation computations, to derive the interpolating

function R
(2)
4,Sch(L) we have used the data shown in the second column of table 14 for L = 12

and L = 14 with four digits of precision, namely, the values 0.5459 and 0.5454 respectively.

We hope that the actual (L, 3L) level-truncation computation will confirm these values for

the tachyon vev.
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Figure 8. Plot of the function R
(2)
3,Sch(L) shown as the continuous line. The dashed line represents

the asymptotic value 0.5534 obtained in reference [1].
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Figure 9. Plot of the function R
(2)
3,Sch(L) shown as the continuous line compared with the function

R
(2)
4,Sch(L) represented as the dashed line for the tachyon vev as a function of the level in Schnabl

gauge. The dotted line represents the asymptotic value 0.5534 obtained in reference [1].

The above results suggest that at level close to L ∼ 26, the value of the tachyon vev

starts to increase until reaching the asymptotic value of 0.5534. Figure 9 illustrates this

point. We leave as a future research project, the test of the validity of this prediction by

means of direct (L, 3L) level-truncation computations for levels L > 10.
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6 Summary and discussion

Using either Siegel or Schnabl gauge, we have constructed the effective tachyon potential

and analyzed its branch structure by means of Virasoro L0 level-truncation computations.

It would be interesting to extend this analysis to higher levels and to probe the physical

branch in a much larger region. We should use a different gauge such that its region of

validity must be greater than Siegel or Schnabl gauges, for instance, we could explore the

so-called linear b-gauges studied in reference [16].

Selecting the physical branch of the effective tachyon potential in Schnabl gauge,

namely, the branch that connects the perturbative with non-perturbative vacuum and

computing its local minimum, we have derived data points for the energy as well as for the

tachyon vev.

Regarding the data for the energy obtained by direct (L, 3L) level-truncation compu-

tations, we have observed that at level L = 6 the energy overshoots the expected analytical

answer of −1, and appears to further decrease at higher levels. This result indicates that

the approach of the energy to −1 as L → ∞ is non-monotonic. By applying two kind of

extrapolation techniques to the level-truncation data for L ≤ 10 to estimate the vacuum

energies even for L > 10, we have predicted that the energy reaches a minimum value at

L ∼ 12, and then turns back to approach asymptotically −1 as L→∞.

Regarding the data for the tachyon vev, we have found that starting at level L = 4,

the value of the tachyon vev decreases. To reach the analytical value of 0.553465, we have

noted that there should be some higher value of L > 4 such that the value of the tachyon

vev stops decreasing and then starts increasing until reaching this analytical value. We

have predicted that for L > 4 the tachyon vev reaches a minimum value for L ∼ 26, and

then turns back to approach asymptotically the expected analytical result.

By explicit (L, 3L) level-truncation computations with L > 10, it would be interesting

to confirm the above predicted results. Since the minimum value of the energy data should

happen at L ∼ 12, the direct (L, 3L) level-truncation computations must be performed, at

least, up to level L = 14. While in the case of the tachyon vev data, to confirm the existence

of a minimum value close to level L ∼ 26, we will need to perform the calculations, at least,

up to level L = 28. These issues will be the subject of a future research project.

Finally, since the modified cubic superstring field theory [62] as well as Berkovits super-

string field theory [63] are based on Witten’s associative star product of open bosonic string

field theory, using rather generic gauge conditions, our results can be naturally extended

to analyze numerical solutions in the context of these open superstring field theories.

Acknowledgments

EAA would like to thank Ted Erler and Isao Kishimoto for useful discussions. The research

of AFS is supported by CAPES grant 1675676. The research of RS is supported by CAPES

grant 1627292.

– 28 –



J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv.

Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].

[2] E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253

[INSPIRE].

[3] A. Sen, Descent relations among bosonic D-branes, Int. J. Mod. Phys. A 14 (1999) 4061

[hep-th/9902105] [INSPIRE].

[4] A. Sen, Universality of the tachyon potential, JHEP 12 (1999) 027 [hep-th/9911116]

[INSPIRE].

[5] Y. Okawa, Comments on Schnabl’s analytic solution for tachyon condensation in Witten’s

open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].

[6] Y. Okawa, Analytic methods in open string field theory, Prog. Theor. Phys. 128 (2012) 1001

[INSPIRE].

[7] E. Fuchs and M. Kroyter, Schnabl’s L(0) operator in the continuous basis, JHEP 10 (2006)

067 [hep-th/0605254] [INSPIRE].

[8] E.A. Arroyo, Conservation laws and tachyon potentials in the sliver frame, JHEP 06 (2011)

033 [arXiv:1103.4830] [INSPIRE].

[9] L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP

01 (2008) 020 [hep-th/0606131] [INSPIRE].

[10] I. Ellwood and M. Schnabl, Proof of vanishing cohomology at the tachyon vacuum, JHEP 02

(2007) 096 [hep-th/0606142] [INSPIRE].

[11] Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with

general projectors, hep-th/0611110 [INSPIRE].

[12] T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083

[hep-th/0611200] [INSPIRE].

[13] T. Erler, Split string formalism and the closed string vacuum. II, JHEP 05 (2007) 084

[hep-th/0612050] [INSPIRE].

[14] M. Schnabl, Algebraic solutions in open string field theory — A lightning review,

arXiv:1004.4858 [INSPIRE].

[15] E. Fuchs and M. Kroyter, Analytical solutions of open string field theory, Phys. Rept. 502

(2011) 89 [arXiv:0807.4722] [INSPIRE].

[16] M. Kiermaier, A. Sen and B. Zwiebach, Linear b-gauges for open string fields, JHEP 03

(2008) 050 [arXiv:0712.0627] [INSPIRE].

[17] T. Takahashi, Level truncation analysis of exact solutions in open string field theory, JHEP

01 (2008) 001 [arXiv:0710.5358] [INSPIRE].

[18] I. Kishimoto, On numerical solutions in open string field theory, Prog. Theor. Phys. Suppl.

188 (2011) 155 [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.2006.v10.n4.a1
https://doi.org/10.4310/ATMP.2006.v10.n4.a1
https://arxiv.org/abs/hep-th/0511286
https://inspirehep.net/search?p=find+EPRINT+hep-th/0511286
https://doi.org/10.1016/0550-3213(86)90155-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B268,253%22
https://doi.org/10.1142/S0217751X99001901
https://arxiv.org/abs/hep-th/9902105
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902105
https://doi.org/10.1088/1126-6708/1999/12/027
https://arxiv.org/abs/hep-th/9911116
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911116
https://doi.org/10.1088/1126-6708/2006/04/055
https://arxiv.org/abs/hep-th/0603159
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603159
https://doi.org/10.1143/PTP.128.1001
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,128,1001%22
https://doi.org/10.1088/1126-6708/2006/10/067
https://doi.org/10.1088/1126-6708/2006/10/067
https://arxiv.org/abs/hep-th/0605254
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605254
https://doi.org/10.1007/JHEP06(2011)033
https://doi.org/10.1007/JHEP06(2011)033
https://arxiv.org/abs/1103.4830
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4830
https://doi.org/10.1088/1126-6708/2008/01/020
https://doi.org/10.1088/1126-6708/2008/01/020
https://arxiv.org/abs/hep-th/0606131
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606131
https://doi.org/10.1088/1126-6708/2007/02/096
https://doi.org/10.1088/1126-6708/2007/02/096
https://arxiv.org/abs/hep-th/0606142
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606142
https://arxiv.org/abs/hep-th/0611110
https://inspirehep.net/search?p=find+EPRINT+hep-th/0611110
https://doi.org/10.1088/1126-6708/2007/05/083
https://arxiv.org/abs/hep-th/0611200
https://inspirehep.net/search?p=find+EPRINT+hep-th/0611200
https://doi.org/10.1088/1126-6708/2007/05/084
https://arxiv.org/abs/hep-th/0612050
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612050
https://arxiv.org/abs/1004.4858
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.4858
https://doi.org/10.1016/j.physrep.2011.01.003
https://doi.org/10.1016/j.physrep.2011.01.003
https://arxiv.org/abs/0807.4722
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4722
https://doi.org/10.1088/1126-6708/2008/03/050
https://doi.org/10.1088/1126-6708/2008/03/050
https://arxiv.org/abs/0712.0627
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0627
https://doi.org/10.1088/1126-6708/2008/01/001
https://doi.org/10.1088/1126-6708/2008/01/001
https://arxiv.org/abs/0710.5358
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.5358
https://doi.org/10.1143/PTPS.188.155
https://doi.org/10.1143/PTPS.188.155
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.Suppl.,188,155%22


J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

[19] E.A. Arroyo, Cubic interaction term for Schnabl’s solution using Pade approximants, J.

Phys. A 42 (2009) 375402 [arXiv:0905.2014] [INSPIRE].

[20] E. Aldo Arroyo, Level truncation analysis of regularized identity based solutions, JHEP 11

(2011) 079 [arXiv:1109.5354] [INSPIRE].

[21] E.A. Arroyo, Comments on regularization of identity based solutions in string field theory,

JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].

[22] T. Takahashi and S. Tanimoto, Marginal and scalar solutions in cubic open string field

theory, JHEP 03 (2002) 033 [hep-th/0202133] [INSPIRE].

[23] T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10

(2009) 066 [arXiv:0906.0979] [INSPIRE].

[24] M. Murata and M. Schnabl, Multibrane solutions in open string field theory, JHEP 07

(2012) 063 [arXiv:1112.0591] [INSPIRE].

[25] T. Masuda, Comments on new multiple-brane solutions based on Hata-Kojita duality in open

string field theory, JHEP 05 (2014) 021 [arXiv:1211.2649] [INSPIRE].

[26] H. Hata and T. Kojita, Singularities in K-space and multi-brane solutions in cubic string

field theory, JHEP 02 (2013) 065 [arXiv:1209.4406] [INSPIRE].

[27] T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open

string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].

[28] L. Bonora, S. Giaccari and D.D. Tolla, Analytic solutions for Dp-branes in SFT, JHEP 12

(2011) 033 [arXiv:1106.3914] [INSPIRE].

[29] L. Bonora, S. Giaccari and D.D. Tolla, The energy of the analytic lump solution in SFT,

JHEP 08 (2011) 158 [Erratum ibid. 04 (2012) 001] [arXiv:1105.5926] [INSPIRE].

[30] M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for marginal

deformations in open string field theory, JHEP 01 (2008) 028 [hep-th/0701249] [INSPIRE].

[31] N. Mertes and M. Schnabl, String field representation of the Virasoro algebra, JHEP 12

(2016) 151 [arXiv:1610.00968] [INSPIRE].

[32] M. Jokel, Real tachyon vacuum solution without square roots, arXiv:1704.02391 [INSPIRE].

[33] E.A. Arroyo, Comments on real tachyon vacuum solution without square roots,

arXiv:1706.00336 [INSPIRE].

[34] Y. Okawa, Analytic solutions for marginal deformations in open superstring field theory,

JHEP 09 (2007) 084 [arXiv:0704.0936] [INSPIRE].

[35] T. Erler, Tachyon vacuum in cubic superstring field theory, JHEP 01 (2008) 013

[arXiv:0707.4591] [INSPIRE].

[36] E.A. Arroyo, Generating Erler-Schnabl-type solution for tachyon vacuum in cubic superstring

field theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].

[37] R.V. Gorbachev, New solution of the superstring equation of motion, Theor. Math. Phys.

162 (2010) 90 [Teor. Mat. Fiz. 162 (2010) 106] [INSPIRE].

[38] I.Ya. Aref’eva, R.V. Gorbachev and P.B. Medvedev, Pure gauge configurations and solutions

to fermionic superstring field theories equations of motion, J. Phys. A 42 (2009) 304001

[arXiv:0903.1273] [INSPIRE].

– 30 –

https://doi.org/10.1088/1751-8113/42/37/375402
https://doi.org/10.1088/1751-8113/42/37/375402
https://arxiv.org/abs/0905.2014
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2014
https://doi.org/10.1007/JHEP11(2011)079
https://doi.org/10.1007/JHEP11(2011)079
https://arxiv.org/abs/1109.5354
https://inspirehep.net/search?p=find+EPRINT+arXiv:1109.5354
https://doi.org/10.1007/JHEP11(2010)135
https://arxiv.org/abs/1009.0198
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.0198
https://doi.org/10.1088/1126-6708/2002/03/033
https://arxiv.org/abs/hep-th/0202133
https://inspirehep.net/search?p=find+EPRINT+hep-th/0202133
https://doi.org/10.1088/1126-6708/2009/10/066
https://doi.org/10.1088/1126-6708/2009/10/066
https://arxiv.org/abs/0906.0979
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0979
https://doi.org/10.1007/JHEP07(2012)063
https://doi.org/10.1007/JHEP07(2012)063
https://arxiv.org/abs/1112.0591
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0591
https://doi.org/10.1007/JHEP05(2014)021
https://arxiv.org/abs/1211.2649
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2649
https://doi.org/10.1007/JHEP02(2013)065
https://arxiv.org/abs/1209.4406
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4406
https://doi.org/10.1007/JHEP10(2012)113
https://arxiv.org/abs/1207.6220
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.6220
https://doi.org/10.1007/JHEP12(2011)033
https://doi.org/10.1007/JHEP12(2011)033
https://arxiv.org/abs/1106.3914
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3914
https://doi.org/10.1007/JHEP08(2011)158
https://arxiv.org/abs/1105.5926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5926
https://doi.org/10.1088/1126-6708/2008/01/028
https://arxiv.org/abs/hep-th/0701249
https://inspirehep.net/search?p=find+EPRINT+hep-th/0701249
https://doi.org/10.1007/JHEP12(2016)151
https://doi.org/10.1007/JHEP12(2016)151
https://arxiv.org/abs/1610.00968
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.00968
https://arxiv.org/abs/1704.02391
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.02391
https://arxiv.org/abs/1706.00336
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00336
https://doi.org/10.1088/1126-6708/2007/09/084
https://arxiv.org/abs/0704.0936
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0936
https://doi.org/10.1088/1126-6708/2008/01/013
https://arxiv.org/abs/0707.4591
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4591
https://doi.org/10.1088/1751-8113/43/44/445403
https://arxiv.org/abs/1004.3030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3030
https://doi.org/10.1007/s11232-010-0006-6
https://doi.org/10.1007/s11232-010-0006-6
https://inspirehep.net/search?p=find+J+%22Theor.Math.Phys.,162,90%22
https://doi.org/10.1088/1751-8113/42/30/304001
https://arxiv.org/abs/0903.1273
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1273


J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

[39] E.A. Arroyo, A singular one-parameter family of solutions in cubic superstring field theory,

JHEP 05 (2016) 013 [arXiv:1602.00059] [INSPIRE].

[40] E. Aldo Arroyo, Level truncation analysis of a simple tachyon vacuum solution in cubic

superstring field theory, JHEP 12 (2014) 069 [arXiv:1409.1890] [INSPIRE].

[41] E. Aldo Arroyo, Comments on multibrane solutions in cubic superstring field theory, PTEP

2014 (2014) 063B03 [arXiv:1306.1865] [INSPIRE].

[42] E. Aldo Arroyo, Multibrane solutions in cubic superstring field theory, JHEP 06 (2012) 157

[arXiv:1204.0213] [INSPIRE].

[43] T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107

[arXiv:1009.1865] [INSPIRE].

[44] T. Erler, Marginal solutions for the superstring, JHEP 07 (2007) 050 [arXiv:0704.0930]

[INSPIRE].

[45] T. Erler, Analytic solution for tachyon condensation in Berkovits‘ open superstring field

theory, JHEP 11 (2013) 007 [arXiv:1308.4400] [INSPIRE].

[46] V.A. Kostelecky and S. Samuel, On a nonperturbative vacuum for the open bosonic string,

Nucl. Phys. B 336 (1990) 263 [INSPIRE].

[47] A. Sen and B. Zwiebach, Tachyon condensation in string field theory, JHEP 03 (2000) 002

[hep-th/9912249] [INSPIRE].

[48] L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09

(2001) 038 [hep-th/0006240] [INSPIRE].

[49] N. Moeller and W. Taylor, Level truncation and the tachyon in open bosonic string field

theory, Nucl. Phys. B 583 (2000) 105 [hep-th/0002237] [INSPIRE].

[50] D. Gaiotto and L. Rastelli, Experimental string field theory, JHEP 08 (2003) 048

[hep-th/0211012] [INSPIRE].

[51] W. Taylor, A perturbative analysis of tachyon condensation, JHEP 03 (2003) 029

[hep-th/0208149] [INSPIRE].

[52] M. Asano and M. Kato, Level truncated tachyon potential in various gauges, JHEP 01

(2007) 028 [hep-th/0611190] [INSPIRE].

[53] I. Kishimoto and T. Takahashi, Numerical evaluation of gauge invariants for a-gauge

solutions in open string field theory, Prog. Theor. Phys. 121 (2009) 695 [arXiv:0902.0445]

[INSPIRE].

[54] I. Kishimoto and T. Takahashi, Numerical evaluation of gauge invariants for a-gauge

solutions in open string field theory, Theor. Math. Phys. 163 (2010) 710 [arXiv:0910.3025]

[INSPIRE].

[55] E. Aldo Arroyo, The tachyon potential in the sliver frame, JHEP 10 (2009) 056

[arXiv:0907.4939] [INSPIRE].

[56] M.R. Gaberdiel and B. Zwiebach, Tensor constructions of open string theories. 1:

Foundations, Nucl. Phys. B 505 (1997) 569 [hep-th/9705038] [INSPIRE].

[57] A.A. Gerasimov and S.L. Shatashvili, On exact tachyon potential in open string field theory,

JHEP 10 (2000) 034 [hep-th/0009103] [INSPIRE].

– 31 –

https://doi.org/10.1007/JHEP05(2016)013
https://arxiv.org/abs/1602.00059
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.00059
https://doi.org/10.1007/JHEP12(2014)069
https://arxiv.org/abs/1409.1890
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1890
https://doi.org/10.1093/ptep/ptu078
https://doi.org/10.1093/ptep/ptu078
https://arxiv.org/abs/1306.1865
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1865
https://doi.org/10.1007/JHEP06(2012)157
https://arxiv.org/abs/1204.0213
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0213
https://doi.org/10.1007/JHEP04(2011)107
https://arxiv.org/abs/1009.1865
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1865
https://doi.org/10.1088/1126-6708/2007/07/050
https://arxiv.org/abs/0704.0930
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0930
https://doi.org/10.1007/JHEP11(2013)007
https://arxiv.org/abs/1308.4400
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4400
https://doi.org/10.1016/0550-3213(90)90111-P
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B336,263%22
https://doi.org/10.1088/1126-6708/2000/03/002
https://arxiv.org/abs/hep-th/9912249
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912249
https://doi.org/10.1088/1126-6708/2001/09/038
https://doi.org/10.1088/1126-6708/2001/09/038
https://arxiv.org/abs/hep-th/0006240
https://inspirehep.net/search?p=find+EPRINT+hep-th/0006240
https://doi.org/10.1016/S0550-3213(00)00293-5
https://arxiv.org/abs/hep-th/0002237
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002237
https://doi.org/10.1088/1126-6708/2003/08/048
https://arxiv.org/abs/hep-th/0211012
https://inspirehep.net/search?p=find+EPRINT+hep-th/0211012
https://doi.org/10.1088/1126-6708/2003/03/029
https://arxiv.org/abs/hep-th/0208149
https://inspirehep.net/search?p=find+EPRINT+hep-th/0208149
https://doi.org/10.1088/1126-6708/2007/01/028
https://doi.org/10.1088/1126-6708/2007/01/028
https://arxiv.org/abs/hep-th/0611190
https://inspirehep.net/search?p=find+EPRINT+hep-th/0611190
https://doi.org/10.1143/PTP.121.695
https://arxiv.org/abs/0902.0445
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0445
https://doi.org/10.1007/s11232-010-0054-y
https://arxiv.org/abs/0910.3025
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.3025
https://doi.org/10.1088/1126-6708/2009/10/056
https://arxiv.org/abs/0907.4939
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.4939
https://doi.org/10.1016/S0550-3213(97)00580-4
https://arxiv.org/abs/hep-th/9705038
https://inspirehep.net/search?p=find+EPRINT+hep-th/9705038
https://doi.org/10.1088/1126-6708/2000/10/034
https://arxiv.org/abs/hep-th/0009103
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009103


J
H
E
P
0
1
(
2
0
1
8
)
0
0
7

[58] D. Kutasov, M. Mariño and G.W. Moore, Some exact results on tachyon condensation in

string field theory, JHEP 10 (2000) 045 [hep-th/0009148] [INSPIRE].

[59] D. Ghoshal and A. Sen, Normalization of the background independent open string field theory

action, JHEP 11 (2000) 021 [hep-th/0009191] [INSPIRE].

[60] I. Ellwood and W. Taylor, Gauge invariance and tachyon condensation in open string field

theory, hep-th/0105156 [INSPIRE].

[61] H. Hata and S. Shinohara, BRST invariance of the nonperturbative vacuum in bosonic open

string field theory, JHEP 09 (2000) 035 [hep-th/0009105] [INSPIRE].

[62] I.Ya. Arefeva, P.B. Medvedev and A.P. Zubarev, New representation for string field solves

the consistency problem for open superstring field theory, Nucl. Phys. B 341 (1990) 464

[INSPIRE].
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