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1 Introduction and discussion

The black hole information paradox [1, 2] is a sharp and intriguing consistency challenge

for any theory of quantum gravity. String Theory offers a microscopic interpretation of

black hole entropy as an enumeration of an exponentially-large number of microstates of

the black hole [3]. It is natural to ask what the gravitational description of individual

microstates is, and whether microstates have non-trivial structure on horizon scales, thus

providing quantum “hair” for the black hole.

For extremal black holes, it has been shown that certain (coherent or semi-classical)

microstates have classical descriptions that are smooth, globally hyperbolic supergravity

solutions. These horizonless solutions have the same mass, charge and angular momenta as

black holes with a classically-large horizon area, and are known as “microstate geometries”,

“black hole solitons”, or “fuzzball solutions” [4–12]. For the two-charge small supersymmet-

ric black hole, such supergravity solutions (and limits thereof) provide, upon quantization,

a basis for the full space of black hole microstates [4, 13–15], and it has been argued that the

same may be true of the three-charge large supersymmetric black hole [16]. Of course, even

when there is a basis of solutions described by smooth horizonless supergravity solutions,

typical microstates are complicated quantum superpositions of such basis states.

These supergravity constructions rely on the property that both for BPS [17–21] and

for extremal non-BPS systems [22–24], the supergravity equations of motion reduce to
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solvable systems of linear equations, to which solutions can be found relatively straightfor-

wardly. Constructing such families of solutions for non-extremal black holes is much more

complicated, as it involves solving several coupled second-order non-linear PDEs which, in

the absence of supersymmetry or extremality, do not have any a priori reason to factorize.

Hence, despite its importance for resolving the information paradox and investigating the

experience of infalling observers [25–28], building structure at the horizon of non-extremal

black holes has proven much more difficult.1

The first non-extremal horizonless microstate solutions were found by Jejjala, Madden,

Ross and Titchener (JMaRT) [34], and involve a single topologically-nontrivial three-cycle,

that forms a smooth bolt in the core of the solutions. These solutions have both of their an-

gular momenta larger than those of classical black hole solutions, and decay via ergoregion

emission [35]. In a near-BPS limit, the solutions have a large AdS3 × S3 region, with the

ergoregion deep inside the throat; the ergoregion emission exactly matches the Hawking

radiation emitted by the holographically-dual CFT states [36, 37]. The JMaRT solutions

were found by taking certain limits of the general Cvetic-Youm family of solutions [38], and

unfortunately this procedure does not directly enable more general constructions. Hence,

for almost ten years there was little progress in this direction, except for some artisanal

constructions [39–41].

The first glimmer of hope that a systematic way to build non-extremal solutions might

exist appeared two years ago, when two of the present authors found a solvable system that

allows a layer-by-layer construction of non-extremal supergravity solutions [42, 43], allow-

ing for multi-center generalizations of the JMaRT [34] and running-Bolt [39] solutions.

This layered structure is a nontrivial generalization of the corresponding natural struc-

tures for supersymmetric and non-supersymmetric extremal solutions based on nilpotent

subalgebras [24, 44–46].

Using this graded system, the first non-extremal horizonless solution that contains

two topologically-nontrivial three-cycles (or “bubbles”) was recently constructed [47]. The

construction adds a Gibbons-Hawking center to the JMaRT solution, at a finite distance

from the bolt, which gives rise to an additional three-cycle. This two-bubble construction

also succeeded in lowering one of the two angular momenta below the black-hole bound,

while the second angular momentum remained slightly over-rotating.

The system of [43] therefore appears to be the tool of choice for constructing smooth

horizonless solutions with non-extremal black hole charges.2 However, this system is quite

cumbersome to solve in the form in which it was originally derived.

The purpose of this paper is to de-mystify this system by rewriting all its equations

in terms of new variables that simplify the differential equations, and to find a general

family of axisymmetric solutions that represents a non-extremal extension to the general

axisymmetric BPS and almost-BPS multicenter solutions.

1There are some alternative approaches, including the construction of near-extremal microstates using

probe antibranes [29, 30], investigating string production near black hole horizons [31, 32], and investigating

the physics of soft particles [33]. However, such approaches lack either the generality or the precision and

control that fully-backreacted supergravity solutions offer.
2JMaRT solutions have also recently been constructed using inverse scattering methods [48], which,

though currently less developed, offer another promising route to finding multicenter nonextremal solutions.
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The configurations described in this paper are solutions to six-dimensional N = (1, 0)

supergravity coupled to nT tensor multiplets, with three commuting isometries. Upon

dimensional reduction, these configurations become solutions to five-dimensional super-

gravity coupled to nT + 1 vector multiplets, with symmetric scalar manifold isometry

group SO(1, 1) × SO(1, nT ). Our new variables also have the advantage of making this

symmetry manifest.

The new system of equations has four layers, and can be thought of as a deformation

of the BPS and almost-BPS systems by additional functions that describe the deviation

from extremality. We construct a general family of solutions in which the ansatz functions

contain poles along an a priori singular three-dimensional surface and an arbitrary collection

of isolated centers. This three-dimensional surface is similar to that appearing in the general

Cvetic-Youm family of solutions [38], and which can be made into a smooth bolt for certain

values of the parameters [34]. The existence of this bolt distinguishes our solutions from the

BPS and almost-BPS families, to which our solutions reduce upon taking the appropriate

extremal limits.

In the extremal systems, the poles of the ansatz functions can be chosen in such a way

as to allow for finite-size regular black hole (or black ring) horizons. One can ask whether

the present system contains similar solutions involving finite-size regular black objects

together with a smooth bolt. As a by-product of our general regularity analysis, we show

that no such solutions exist. This is a highly nontrivial result, given that our system

has the same structure as the BPS and almost-BPS systems. It would be interesting to

understand whether this is an accidental feature of the particular system of equations we

use, or is rather a consequence of a deeper reason for non-existence of extremal black holes

in non-extremal solutions, as we will discuss momentarily.3

Much like in the BPS and almost-BPS solutions, generic values of the parameters ap-

pearing in the ansatz lead to solutions with curvature singularities. Smooth horizonless

solutions can be obtained by imposing certain constraints on these parameters. The result-

ing metric has similar behaviour near the poles of the bolt and near the added Gibbons-

Hawking centers as the two-bubble solution of [47], with additional parameters allowed by

the more general solution of this paper. These geometries are supported by fluxes on the

bolt, on the cycles between the bolt and the Gibbons-Hawking centers, and also on the

cycles between all the pairs of centers. Although these cycles are not all homologically

independent, the corresponding fluxes are not additive4 because the three-spheres that

shrink are different at each Gibbons-Hawking center.

Finally, we impose absence of closed time-like curves near the special points of the

solution, and construct the so-called “bubble equations” arising from these conditions.

These equations have a similar, but considerably more complicated form compared to the

corresponding bubble equations for extremal solutions. As in extremal solutions, these

equations restrict the positions of the various centers.

3Note that the system constructed in [43] explicitly forbids asymptotically four-dimensional non-extremal

black holes, as the Noether charges of those black holes lie outside the duality orbits allowed by that system.

However, a priori this does not rule out asymptotically five-dimensional solutions.
4The flux on a cycle linking points A and B is not the sum of the fluxes on the cycles linking A and C

and linking C and B with appropriate signs.
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Our local analysis suggests that a large class of such solutions with arbitrary many

centers should exist, although in this paper we will not explicitly solve the full set of posi-

tivity and integrality conditions to construct new explicit solutions. (An explicit example is

already provided by the the two-bubble solution of [47], where a complete smoothness anal-

ysis was performed.) However, the existence of a structure similar to the bubble equations

for extremal solutions makes us optimistic that many more smooth multicenter solutions

exist in this system, and it is interesting to anticipate what kind of physics might arise

from such smooth multicenter non-extremal solutions.

Of particular physical importance is the possibility of constructing solutions that have

angular momenta within the range of parameters corresponding to regular black holes,

and that resemble a single-center black hole at large distances. For BPS solutions, these

requirements are met by so-called “scaling solutions”, which are solutions for which only the

ratios of the distances between centers are fixed, whereas the overall scale can (classically)

be tuned arbitrarily [7, 49]. The scaling solutions develop an arbitrarily long AdS2 throat

(characteristic of extremal black holes) which is capped smoothly. Furthermore, since the

angular momenta arise from dyonic interactions between the fluxes, in the scaling regime

one has much more control over their values [7, 12].

The non-extremal microstate geometries known to date do not exhibit scaling

behaviour, and carry total angular momenta that violate the black hole regularity

bound [34, 47]. In addition, these solutions have ergoregions that are significantly larger

than that of the corresponding Cvetic-Youm black hole [38]. It is therefore natural to ask

whether non-extremal scaling solutions, with lower angular momenta, exist. The crucial

difference between non-extremal solutions and extremal solutions is that we do not expect

non-extremal solutions to display arbitrary scaling, since this would produce a throat of

infinite proper length, and therefore would not resemble a non-extremal black hole throat.

One therefore expects that, if non-extremal scaling solutions exist, there should be

a mechanism to enforce a truncated form of scaling behaviour. The absence of extremal

black hole horizons within our general solution may be regarded as a positive indication

of the existence of such a mechanism: if such a solution existed, one would expect to find

similar horizonless solutions in which the extremal black hole horizon is replaced locally

by a corresponding smooth scaling solution, with an arbitrarily long throat.

We therefore expect that solutions to the non-extremal bubble equations presented in

this paper should include families that display truncated scaling behaviour between the

Gibbons-Hawking centers. We believe that an exploration of this physics is of central

importance for the development of the microstate geometry programme for non-extremal

black holes.

This paper is organized as follows. In section 2 we directly present our new incarnation

of the system of [43], giving all the supergravity fields in terms of the functions appearing

in the system. We further present our general solution describing a non-extremal bolt

interacting with an arbitrary number of extremal centers, and discuss the BPS and almost-

BPS limits of both the general system and the solution. In section 3 we discuss the general

properties of our solution, including the restrictions required for our desired asymptotics,

and the analysis of potential black hole horizons arising at the various special points of
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the solution. In section 4 we discuss the conditions required for smoothness near these

special points, analyzing in turn the conditions for local smooth geometry and for absence

of closed time-like curves. Finally, appendix A provides the map from the original version

of the system in [43] to the one described in the present paper, while appendix B contains

the explicit expressions for the vector fields arising from the general multi-center solution

given in the main text.

2 The supergravity ansatz

In section 2.1 we present the general structure of our system of differential equations

describing solutions to six-dimensional supergravity. In section 2.2 we then give the general

solution involving a single bolt and a set of arbitrarily many centers. We provide a short

discussion of the extremal limits of the system in section 2.3.

2.1 The theory and the equations

We consider solutions to six-dimensional N = (1, 0) supergravity coupled to nT tensor

multiplets. The field content of this theory is the metric, nT + 1 twisted self-dual two-form

potentials Ca, and nT scalar fields parametrized by nT +1 scalars, ta, subject to a quadratic

constraint, where we use the non-standard numbering a, b = 1, 2, 4, 5, . . . , nT +2 (the index

3 is reserved for later convenience, since 3 is naturally a distinguished index when nT = 1).

In the later parts of this paper we will focus our attention on the model containing a

single tensor multiplet (nT = 1), whose field content reduces to a single unrestricted two-

form potential, C = C1, and a scalar, φ, viewed as the Type IIB dilaton. Upon reduction

to five and four dimensions this model gives rise to the familiar STU model. For the time

being, we emphasize that we keep nT general.

Upon reduction on a circle, one obtains five-dimensional minimal supergravity coupled

to nT + 2 vector multiplets, which we label by the index I, using the standard numbering

I = 1, 2, 3, . . . nT + 2. We are interested in constructing smooth horizonless solutions that

correspond to microstates of generic non-extremal black holes in these five-dimensional the-

ories (or black strings in the above six-dimensional theories). We will focus on solutions that

are asymptotically flat in five dimensions, and asymptotically R4,1 × S1 in six dimensions.

For the general six-dimensional model with nT tensor multiplets, the five-dimensional

theory is described by totally symmetric structure coefficients, CIJK , of a particular type,

defined as follows. Let ηab be the (mostly negative) Minkowski metric of SO(1, nT ), with

the following non-zero entries:

ηab :

{
η12 = η21 = 1,

ηab = −δab for a, b = 4, . . . nT + 2 .
(2.1)

Then the structure coefficients CIJK are defined by requiring that for all vectors HI ,

we have
1

6
CIJKHIHJHK =

1

2
ηabHaHbH3 . (2.2)
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We also define the function |H| via

|H|2 =
1

2
ηabHaHb . (2.3)

Note that |H|2 is not strictly positive for arbitrary Ha, but the latter can be restricted

such that it is. For the STU model considered in later sections, one simply has η12 = 1,

C123 = 1, and all components not related by symmetry equal to zero.

To construct non-supersymmetric solutions to this theory, we use the partially-solvable

system of differential equations of [43], whose solutions automatically solve the equations of

motion of supergravity. However, the parametrization of the system appearing in [43, 47]

was rather complicated, thus making it hard to find explicit solutions in a systematic way.

To remedy this, we introduce a new parametrization of the same system, resulting in a

much more systematic form of the differential equations. As an added bonus, this new

version of the system makes manifest the symmetries of the models based on (2.2), which

are also present in the extremal systems of solutions to the same theory, both BPS and

almost-BPS alike. Here, we concentrate on the new parametrization directly; in appendix A

we give the explicit change of variables from the version of the system presented in [43].

The new system of equations involves 2nT +7 functions on a three-dimensional base

space, of which two functions, V , V , can be thought as specifying an auxiliary four-

dimensional Ricci-flat gravitational instanton with an isometry. Unlike in the Floating

Brane ansatz [39], the full metric of this instanton does not appear in our six-dimensional

metric; only the three-dimensional base metric appears as a warped component of the six-

dimensional metric. An additional nT + 2 pairs of functions, KI , LI , can be thought as

parametrizing the nT + 2 vector multiplets in five dimensions. The remaining function, M ,

corresponds to an angular momentum.

The three-dimensional base space metric, γij , and the functions, V , V , are altogether

a solution to the following nonlinear system of differential equations:

∆V =
2V

1 + V V
∇V ·∇V , ∆V =

2V

1 + V V
∇V ·∇V ,

R(γ)ij = −
∂(iV ∂j)V

(1 + V V )2
, (2.4)

describing a four-dimensional gravitational instanton. The general solution to the Eu-

clidean Einstein equations with one isometry is of course not known, but starting from any

known instanton solving (2.4), one obtains a solvable system of equations in this auxiliary

base space. In particular, the Laplacian, ∆, appearing in the remainder of this section is

the one computed using the metric γij .

The equations for the rest of the functions that determine the solution then become

∆KI =
2V

1 + V V
∇V ·∇KI ,

∆LI =
1

2

V

1 + V V
CIJK ∇KJ ·∇KK , (2.5)

∆M = ∇·
(

V

1 + V V

(
LI∇KI − 2M∇V

))
,
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where the structure constants CIJK are given in (2.2). When solved in the order outlined

above these equations are linear, and therefore represent a solvable system on the base

specified by a solution to (2.4).

Any solution to the system (2.5) gives rise to a metric, two-forms and scalar fields that

solve the supergravity equations of motion. The six-dimensional Einstein-frame metric is

given in terms of a function, W , a vector of functions, HI , and three vector fields, A3, k

and w0. Anticipating our focus on asymptotically-flat solutions in five dimensions in the

next section, we write the metric as:

ds2 =
H3

|H|
(dy +A3)2 − W

H3|H|
(dt+ k)2 + |H|

(
1

W
(dψ + w0)2 + γijdx

idxj
)
. (2.6)

The notation for the Kaluza-Klein vector field A3 is motivated by the fact that it is one of

the gauge fields appearing symmetrically in the STU model in the five-dimensional theory.

The vectors A3 and k decompose as

A3 = A3
t (dt+ ω) + α3 (dψ + w0) + w3 , k =

µ

W
(dψ + w0) + ω , (2.7)

where A3
t , α

3, µ and w0, ω are three scalars and two vector fields on the three-dimensional

base. The functions W , µ, HI appearing in the metric are given in terms of the functions

(V, V̄,KI , L
I ,M) as follows:

W =

(
(1 + V )M − 1

2
KIL

I +
1

24

V

1 + V V
CIJK KIKJKK

)2

+
1−V

1+V V

(
1

6
CIJKKIKJKKM+

1

3
(1+V )CIJKL

ILJLK− 1

4
CIJKKJKKCILML

LLM
)
,

HI =
1

2
CIJK L

JLK −KIM +
1

2

V

1 + V V

(
(KJL

J)KI −
1

2
CIJKL

J CKLP KLKP

)
,

µ = (1 + V )M2 − 1

2
M KIL

I −
(

1 + 2
V − 1

1 + V V

)
CIJK L

ILJLK

+
1

2

V

1 + V V

(
− 1

12
CIJK KIKJKKM +

1

4
CIJKKJKK CILML

LLM
)
. (2.8)

Similarly, the vector fields ω, w0 and w3 are determined by the first-order equations

?dω = dM − V

1 + V V

(
LI dKI − 2M dV

)
, (2.9)

?dw0 = −(1 + V ) dM − 1

2

1− V V − 2V

1 + V V

(
LI dKI − 2M dV

)
+

1

2
KI dL

I

− 1

24

V

1 + V V
d
(
CIJK KIKJKK

)
+

1

24

CIJK KIKJKK

(1 + V V )2

(
V 2dV + dV

)
,

?dwI = dLI − 1

4

V

1 + V V
d
(
CIJK KJKK

)
+

1

4 (1 + V V )2
CIJK KJKK

(
V 2dV + dV

)
,

where the Hodge star in taken in the metric γij and we have given the wI in an

SO(1, 1)× SO(1, nT ) covariant form; the wa will appear in the matter sector, as we will

discuss shortly.
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The nT + 1 scalar fields, ta, are given by the expression

ta =
Ha

|H|
, (2.10)

with the HI as in (2.8). This set of constrained scalars can be decomposed into the nT
physical scalar fields, namely the dilaton, φ, and the nT − 1 real axions, ςa, for a = 4 to

nT + 2, as

ta :


t1 = eφ ,

t2 = e−φ + 1
2e
φ
∑

b ς
2
b ,

ta = eφςa for a = 4, . . . nT + 2

(2.11)

leading to the expressions

eφ =
H1

|H|
, ςa =

Ha

H1
. (2.12)

The SO(nT )\SO(1, nT ) coset representative is parametrized in terms of the physical

scalars as

V =

 eφ eφ

2 (ςT ς) eφςT

0 e−φ 0

0 ς 1

 , (2.13)

where 1 is the (nT − 1)-dimensional identity matrix, so that V is a square (nT + 1)-

dimensional matrix. The matrix V defines the symmetric SO(1, nT ) matrix M = V TV ,

which is given by

Mab =
HaHb

|H|2
− ηab . (2.14)

The inverse of M is Mab = ηacηbdMcd.

The nT + 1 two-form potentials, Ca, give rise to one anti-self-dual and nT self-dual

three-form field strengths Ga = dCa, satisfying the twisted self-duality equations

Mab ?6 Gb + ηabGb = 0 . (2.15)

The two-form potentials, Ca, can be expressed in terms of three-dimensional quantities.

We first introduce the scalars Aat , βa and αa with the latter identified as axions in the

reduction to four dimensions. Additionally, we introduce the three-dimensional one-forms

wa, va and ba; the wa are determined by (2.9), while va and ba will be defined shortly.

Finally, we define the two-forms in three dimensions, Ωa, through

dΩa = va ∧ dw0 − ηabwb ∧ dw3 + ba ∧ dω . (2.16)

In terms of these quantities, we have

Ca = ηabA
b
t (dy + w3) ∧ (dt+ ω) + ηabα

b (dy + w3) ∧ (dψ + w0)− βa (dt+ ω) ∧ (dψ + w0)

− ηabwb ∧ (dy + w3) + ba ∧ (dt+ ω) + va ∧ (dψ + w0) + Ωa . (2.17)

Note that the Ωa ensure that the field strengths, Ga, depend on the vectors wa, ba and va
only through the gauge-invariant quantities dwa, dba and dva. The Ωa vanish for axisym-

metric solutions, since all vector fields have components only along the angular coordinate
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around the axis, implying that their wedge products appearing in (2.16) vanish identi-

cally. We only construct axisymmetric solutions in the current work, so we henceforth set

Ωa to zero.

The one-forms, va, ba in (2.17) are determined in terms of the functions appearing in

the ansatz by solving the first-order equations

?dbI =
1− V

1 + V V
dKI +

KI

(1 + V V )2

(
(V − 1)V dV + (1 + V )dV

)
, (2.18)

?dvI = − V

1 + V V
dKI +

KI

(1 + V V )2

(
V 2dV + dV

)
, (2.19)

where we again give a fully covariant form for completeness, even though db3, dv3 are not

relevant for our solution. The explicit form for these one-forms can be obtained straight-

forwardly for any given solution to the system (2.4), (2.5). The scalars βa are given by

βa =
Ha

|H|2

(
L3 − 1

2

V

1 + V V
ηbcKbKc

)
. (2.20)

Similarly to the vectors wa, the electric potentials Aat and axions αa in (2.17) are also

extended by the scalars A3
t , α

3 of (2.7) in the five-dimensional reduction of the theory. For

the STU model (nT = 1), on which we shall concentrate in later sections, these scalar fields

for I = 1, 2, 3 are given by (note that the Einstein summation convention does not apply

in the following two equations)

AIt =
1

2HI

(
2 (1 + V )M −

∑
J

KJL
J +

1

2

V K1K2K3

1 + V V
− 2KIL

I V − 1

1 + V V

)
, (2.21)

αI =
1

HI

(
M − V KIL

I

1 + V V

)
. (2.22)

The corresponding expressions for these fields in more general models are straightforward

to obtain.5

We close this general discussion of the system by pointing out a symmetry that was

not evident in the variables used in [43, 47], but becomes clear in the covariant version of

the system described above. For some constants, kI , one can verify that the equations (2.5)

5Defining detH = 1
6
CIJKHIHJHK , one must make the replacements

1

HI
→ 1

2 detH
CIJKHJHK ,

KIL
I

HI
→ 1

2 detH

(
CIJKHJHKKLL

L + LI CJKLKJHKHL − CIJLKJ CLPQL
P CQRSHRHS

)
. (2.23)
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transform linearly among themselves under the transformation defined by

KI → KI + kIV ,

LI → LI +
1

2
CIJK kJKK +

1

4
CIJK kJkKV ,

M →M +
1

2
kIL

I +
1

8

V

1 + V V
CIJK kIKJKK

+
1

4

(
1− 1

2

1

1 + V V

) (
CIJK kIkJKK +

1

3
CIJK kIkJkKV

)
. (2.24)

It then follows that one may act with this symmetry on any solution for KI , L
I and M

to obtain a new solution. It will prove useful in packaging our general solution in the next

section to make use of the following invariant combinations

LI − 1

4V
CIJK KJKK , M − 1

2V
KIL

I +
1

4V
2

2 + V V

1 + V V
K1K2K3 . (2.25)

When acting on the vector fields this symmetry leaves the combination dω+dw0 invariant,

and transforms:

dvI → dvI + kI dρ ,

dvI − dbI → dvI − dbI − kI dσ ,

dwI → dwI − 1

2
CIJK kJ(dvK − dbK) +

1

4
CIJK kJkK dσ ,

dw0 → dw0 +
1

2
kIdw

I − 1

8
CIJK kIkJ(dvK − dbK)− 1

4
k1k2k2 dσ , (2.26)

where we have used the conserved currents

? dρ =
V dV − V dV

(1 + V V )2
, ?dσ =

dV + V
2
dV

(1 + V V )2
. (2.27)

This symmetry is conjugate in SO(4, 3 + nT ) to the gauge transformations/spectral flows

appearing in the BPS and almost-BPS systems [50–52], via an S-duality and a change of

time coordinate t→ t− ψ.

2.2 The solution

In this paper, we focus on solutions containing a single bolt and an arbitrary number of cen-

ters, by which we mean locations in which the ansatz functions have poles, and which can

potentially become smooth Gibbons-Hawking centers for certain choices of parameters. A

necessary starting point is obtaining an appropriate solution to (2.4). Throughout this pa-

per, we work with a solution to these equations specified by choosing the three-dimensional

base to be the base space of the Euclidean Kerr solution:

γijdx
idxj =

(
1 +

a2 sin2 θ

r2 − c2

)
dr2 + (r2 − c2 + a2 sin2 θ)dθ2 + (r2 − c2) sin2 θdϕ2 , (2.28)

where a and c are real constants, and we take a > c > 0 by convention. This is a natural

choice for axisymmetric solutions above the extremality bound, but is not unique in general.

– 10 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
7

At the locus r = c, the base metric γij is singular. In our full six-dimensional solution,

this singularity can be resolved into a bolt, with two nuts at the North pole and South pole

of the bolt, defined by cos θ = ±1 respectively (we follow the terminology of [53]). Such

a smooth bolt is present in the JMaRT solution [34] and the two-bubble solution of [47].

The solutions that we consider can be thought of as adding an arbitrary number of centers

to this bolt.

In order to look for explicit solutions, we restrict attention to axisymmetric solutions

built on the base (2.28). This implies that all centers outside the bolt at r = c must lie on

the symmetry axis, i.e. at cos θ = ±1 and r > c. Similarly, all vectors on the 3D base are

constrained to have a single component along ϕ, for example

ω = ωϕdϕ , wI = wIϕdϕ . (2.29)

We now proceed to construct an explicit solution. The first step is to find functions V

and V that solve (2.4) with the base metric (2.28). We shall take V and V to be those of

the Euclidean Kerr-NUT solution:

V = 1 +
m−

r − a cos θ
,

V =
a2 − c2

m−

1

Σ+
≡ a2 − c2

m−(r + a cos θ) + c2 − a2
, (2.30)

where m− is a (real-valued) constant of integration, and where we defined the combination

Σ+ for later convenience. With this choice for the base metric and the functions V and

V , one may proceed to solve the remaining equations in (2.5) in the order in which they

appear, since they become linear equations with sources involving the functions obtained

by the previous steps.

The first of (2.5) is homogeneous in the KI and allows for zero modes with simple

poles anywhere on the axis. Using a to label a point at position RA along the axis, we

denote by ΣA the Euclidean distance

ΣA =

√
(r2 − c2) sin2 θ + (RA − r cos θ)2 . (2.31)

Then we find the solution for the KI

KI ≡ hI + K̃I = hI + kIV +
∑
A

2nA
I

Σ+ ΣA

(
r + a cos θ +

a2 − c2

RA − a
cos θ

)
, (2.32)

where hI , kI and nA
I are integration constants and Σ+ was defined in (2.30) above. Note

that the second term in KI can be introduced via the symmetry transformation (2.24),

so that one can solve the equations without it, then re-introduce it by hand. A similar

structure is present in LI and M ; in order to parametrize this in what follows, we have

introduced above the function K̃I which asymptotes to zero.

It turns out that a combination of the shift parameters, kI , and the asymptotic con-

stants, hI is relevant for describing the solution. We therefore introduce the shorthand

notation

qI = kI − hI , (2.33)

which will be used in the functions below. The parameters qI will also be convenient

quantities to use in the discussion of regularity in the next section.
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With this notation, the solution for the LI takes the form

LI =
CIJKK̃JK̃K

4V
+ lI +

pI−
r + c cos θ

+
pI+

r − c cos θ
+
∑
A

P IA
ΣA

(2.34)

− m−
a2−c2

∑
A,B

CIJKnA
Jn

B
K

ΣAΣB

(
(r+a cos θ)− (a2−c2)

(RA−a)(RB−a)
(r−(RA+RB−a) cos θ)

)
.

Note that the first term in LI includes all terms that depend on kI ; this follows from

the invariance of the combination (2.25) and can be seen to reproduce the dependence

in (2.24). The constants pI± and P IA parametrize harmonic components of this solution

sourced at the poles of the bolt and at the Gibbons-Hawking points respectively. Here,

we chose to disregard any higher multipole harmonic functions sourced at these locations,

which can in principle be added to (2.34). We make this restriction using intuition from the

extremal multi-center solutions, BPS and almost-BPS, in which such higher order harmonic

pieces in the LI are not physically relevant.

The same comments apply to the kI -dependent terms in M , for which we find the

solution:

M =
K̃IL

I

2V
− 1

12V
2

2 + V V

1 + V V
CIJKK̃IK̃JK̃K +

1

1 + V V

(
l0 − m−

2 (a2 − c2)
Σ+ l

IK̃I

)
+

Σ+

r2 − c2 + a2 sin2 θ

[
q0 + J+

(
2 cos θ

r − c cos θ
− (a+ c) sin2 θ

(r − c cos θ)2

)
+ J−

(
2 cos θ

r + c cos θ
− (a− c) sin2 θ

(r + c cos θ)2

)
+
∑
A

q0
A

(
r (RA + a)− cos θ

(
aRA + c2

))
ΣA

+
∑
A

JA (r2 − c2)(cos θ RA − r) + a sin2 θ(r RA − c2 cos θ)

Σ3
A

]

+
∑

A,ε=±

pIεn
A
I

(RA−a)ΣA

[
m−
a+εc

− m−Σ+(RA − a)

(a2 − c2)(r − εc cos θ)
+

(
a+ εc

a− εc

)
a− εc−m− cos θ

r − εc cos θ

− 2

a− εc
a (a− εc) (r + εc cos θ)− am−(r cos θ + εc) +m−a

2 sin2 θ

r2 − c2 + a2 sin2 θ

]
+
∑
A,B

nA
I P

I
B

RA − a
1

V ΣA ΣB

×[
−(RA − a)− a2 − c2

r2 − c2 + a2 sin2 θ

(
a2 sin2 θ +

(ΣA − ΣB)2 − (RA −RB)2

2 (RA −RB)

)]
+

m−

3V (1 + V V )

∑
A,B,C

CIJKnA
I n

B
Jn

C
K

ΣA ΣB ΣC

×{
(2 + V + V V )

[
r + a cos θ

a2 − c2
+ cos θ

(
1

RA − a
+

1

RB − a
+

1

RC − a

)]
− (RA +RB +RC − 3a)(r − a cos θ) + (a2 − c2) cos θ

(RA − a)(RB − a)(RC − a)

(
1 + cos2 θ V + V V sin2 θ

)
+

2m−a

(RA − a) (RB − a) (RC − a)
V cos 2θ

}
. (2.35)
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In the above, the term that contains (RA−RB) in the denominator should be understood to

be zero when a=b. Here, the constants l0, q0, J±, JA and q0
A parametrize zero modes for M .

We close this section by forewarning the reader that we impose a redefinition of the

P IA in the following sections and in appendix B, in order to simplify expressions. Explicitly,

we set

P IA = CIJK nA
J(pAK − qK) , (2.36)

where the pAI are triplets of constants at each Gibbons-Hawking center. While this does

not impose any restriction for general nA
I , pAI , the redefinition (2.36) is particularly useful

when considering vectors nA
I of restricted rank, as we shall see later.

2.3 Extremal limits

In view of the manifest SO(1, 1)×SO(1, nT ) symmetry, the present system lends itself easily

to comparison with the BPS and almost-BPS systems. In order to obtain an extremal limit,

one must ensure that the three-dimensional base of the metric is flat, which implies that

the Ricci tensor in (2.4) must vanish. There are two ways of obtaining this result, namely

setting either V or V to a constant.

In the explicit solution in section 2.2, V can be made constant while keeping V non-

trivial only by holding m− fixed and non-zero and taking the limit a→ c, in which case V

becomes zero. Alternatively, V can be made constant while keeping V non-trivial only by

sending m− to zero and a→ c, keeping the ratio (a2 − c2)/m− = p0 fixed. In this case V

becomes equal to 1. In both extremal limits, since a→ c, the metric (2.28) degenerates.

Upon setting V to a constant, one finds that the defining equations (2.5) reduce to the

almost-BPS system as given in [22], upon identifying the combination V/(1 + V V ) as a

harmonic function. In the explicit solution in eq. (2.30), we have V = 0, and V is harmonic

with a single pole at r − c cos θ. The KI become harmonic, as can be seen directly from

eq. (2.5), or by setting a = c in (2.30) and (2.32). The remaining functions, LI and M , as

given by (2.34)–(2.35), are consistent with the solution to the almost-BPS equations with

a single pole in V , as given in [23, 54]. However, the embedding of the various functions

in the supergravity solution described by (2.8) is not the standard one; rather, it is related

to the one in [22, 23, 54] by a four-dimensional S-duality and a gauge transformation.

Similarly, setting V to a constant simplifies in a different way the defining equa-

tions (2.5), this time leading to the BPS system. Setting V = 1 for definiteness, and

introducing the notation HΛ, HΛ for Λ = 0, I for the BPS functions that form a symplectic

vector of functions, one finds the following change of variables:

V =
2

H0
− 1 , KI = −2

HI
H0

, LI = HI +
1

2H0
CIJKHJHK ,

M = −1

2

(
H0H0 +HIHI

)
− 1

H0
H1H2H3 . (2.37)

In terms of the explicit solution in section 2.2, in the BPS limit H0 has a single pole at

r + c cos θ, while the remaining harmonic functions are those of a standard BPS smooth
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solution. In this limit, defining dv0 to be the BPS limit of −2 dσ in eq. (2.27), we have(
?dwΛ

?dvΛ

)
=

(
dHΛ

dHΛ

)
, (2.38)

and

? dω =
1

2

(
HΛdHΛ −HΛdHΛ

)
. (2.39)

With these definitions, the symmetry in (2.24) survives and its action on the vector fields

and harmonic functions is conjugate to a spectral flow transformation with parameters

−1
2 kI , through a gauge transformation in five dimension that amounts to the redefinition

H0 → H0 − 2. We observe that this is consistent with the transformation (2.27), noting

that bI vanish identically in the BPS limit.

3 General properties of the solution

In this section we analyze the local regularity conditions on the parameters of the general

solution in section 2.2, focusing on the various interesting locations, namely asymptotic

infinity, the centers away from the bolt, and the bolt itself. As mentioned above, we

are interested in microstates of black holes in five dimensions (and black strings in six

dimensions) and so we are interested in solutions with R4,1 × S1 asymptotics.

We first consider the behaviour of the solution near asymptotic infinity in section 3.1,

identifying the appropriate constraints. We then proceed in section 3.2 to analyze the

possibility of obtaining regular black hole horizons at any of the special points in the bulk,

namely the poles of the bolt and the centers away from the bolt, and show that such regular

horizons cannot be built using our ansatz, unless one takes an extremal limit.

3.1 Asymptotics

In the solution that is obtained by directly substituting (2.32)–(2.35) in the relevant expres-

sions, various components of the metric and fields tend to non-zero constants at asymptotic

infinity. In order to obtain standard asymptotics, we first make a set of gauge transforma-

tions and coordinate transformations to set these constants to zero. These operations do

not impose any constraints on the parameters of the general solution.

We start by shifting away the asymptotic constants from the off-diagonal components of

the metric and the two-forms Ca, using a set of diffeomorphisms and gauge transformations.

Specifically, one can shift to zero the asymptotic values of the scalars αa, βa and Aat in (2.17)

by a gauge transformation on the two-forms, provided that one redefines the vector fields as

wa′ = wa +Aat
∣∣
∞
ω + αa

∣∣
∞
w0 ,

v′a = va − βa
∣∣
∞
ω + ηab α

b
∣∣
∞
w3 ,

b′a = ba + ηabA
b
t

∣∣
∞
w3 + βa

∣∣
∞
w0 , (3.1)

where primes denote redefined quantities, we denote asymptotic values by
∣∣
∞

, and we

use (2.2). Having done these redefinitions, we immediately drop the primes on the above

expressions, and likewise for the following two steps.
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Next, one may remove the asymptotic constants of A3
t and α3 that appear in the

Kaluza-Klein gauge field A3 given in (2.7), by a diffeomorphism that mixes the coordinate

y with t and ψ at infinity, provided that one makes the redefinitions

v′a = va + α3
∣∣
∞
ηabw

b ,

b′a = ba +A3
t

∣∣
∞
ηabw

b ,

β′a = βa + α3
∣∣
∞
ηabA

b
t . (3.2)

Additionally, one can shift away the constant values of ω, w3 and the wa at infinity by

making an appropriate diffeomorphism that mixes the coordinates t, y with ϕ, as well as by

doing a further gauge transformation on the two-forms; these do not induce any additional

redefinitions. A final redefinition we use is a diffeomorphism mixing time with one of the

compact directions, t = t′ + γ ψ, and introducing the redefined fields

ω′ = ω − γ w0 , µ′ = µ+ γ W , αI ′ = αI + γ AIt , v′I = vI + γ bI (3.3)

where the value of γ will be determined by the asymptotic conditions below. We again

immediately drop the primes on all the above expressions.

The concrete expressions for the various asymptotic constants appearing in the above

redefinitions are straightforward to obtain using the solution given in section 2.2, but are

not illuminating and play no role in the following. Therefore, we refrain from giving them

explicitly and henceforth work with the quantities after (3.1) and (3.2) have been applied.

We next discuss the conditions arising from the asymptotics that impose constraints

on the parameter space. For simplicity we shall consider only one tensor multiplet; the

generalization to arbitrary nT is straightforward, but requires the introduction of a unit

norm vector of SO(1, nT ). To obtain our desired R4,1 × S1 asymptotics, we impose the

fall-off behaviour

W =
1

r2
+O

(
1

r3

)
, HI =

1

r
+O

(
1

r2

)
, µ = O

(
1

r3

)
. (3.4)

It turns out that the µ obtained from (2.8) contains an asymptotic r−2 term that can be

eliminated using the redundancy (3.3), for the specific value

γ = −1 +
m−
4

+
1

2
hI

(
pI+ + pI− +

∑
A

P IA

)
+
a2 − c2

8m−
CIJKhI qJ qK

+
m−
2
CIJKhI

∑
A,B

nA
J

RA − a
nB
K

RB − a
+

1

2
CIJKhIqJ

∑
A

nA
K . (3.5)

We henceforth proceed with the solution obtained after (3.3) with γ as in (3.5) has

been applied.

In order to simplify the analysis, we take the same approach as in [47] and fix the

asymptotic values of gyy and the dilaton. (Note that there is no loss of generality in doing

this, since we keep the radius of the y circle explicitly as Ry, and since more general
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asymptotic values of e2φ can be restored straightforwardly by rescaling.) This results in

the following restrictions on the asymptotic constants l0, lI and hI :

l0 = lI =
1

2
, hI = 1 , (3.6)

while we also find convenient to use (2.33) to eliminate the parameters kI in favour of the

qI , as

kI = 1 + qI , (3.7)

where qI are now a triplet of unrestricted real parameters. Given (3.6), the fall-off condi-

tions (3.4) are imposed by fixing the parameter q0 that appears in the harmonic part of

the function M in (2.35), as

q0 = −1 +
1

4
m− +

a2 − c2

2m−
q1 q2 q3 −

1

2
qIΞ

I +
∑
A

(
JA − (RA + a) q0

A

)
+
∑
A

(
1

4
CIJKqIqJn

A
K −m−

nA
I

RA − a

(
pI+
a+ c

+
pI−
a− c

))
, (3.8)

where we defined the shorthand quantity

ΞI ≡ pI+ + pI− +
a2 − c2

4m−
CIJKqJqK +

∑
A

P IA +
∑
A

CIJKnA
J

(
qK +

m−
RA − a

∑
B

nB
K

RB − a

)
,

(3.9)

which will be useful in the following.

Once the conditions (3.6)–(3.8) are imposed, the expressions given in section 2.2 pro-

duce an asymptotically R4,1 × S1 solution. However, this solution does not yet possess

the asymptotics of a single-center black hole in five spacetime dimensions. The reason is

that the asymptotic conditions on the metric leave room for the gauge fields to have a

more general behaviour at infinity. In order to restrict to black hole asymptotics, one has

to introduce the vectors of five-dimensional electric charges, QI , and the corresponding

constants governing the asymptotic fall-off of the scalars, EI , defined as

QI = 4
a2 − c2

m−
qI + 8

∑
A

nA
I − 2m−ΞI + 2CIJKΞJΞK , (3.10)

EI = 4
a2 − c2

m−
qI + 8

∑
A

nA
I + 2m−ΞI + 2CIJKΞJΞK . (3.11)

An asymptotic solution describing a single center five-dimensional black hole must satisfy

the conditions

E2
1 −Q2

1 = E2
2 −Q2

2 = E2
3 −Q2

3 , (3.12)

or in other words that all the components of the vector E2
I−Q2

I be equal. This only imposes

two conditions on the various parameters.
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3.2 Absence of black holes

As already mentioned in the Introduction, the solvable system under consideration does not

allow for single-center black hole solutions. However, one may consider the possibility of ob-

taining solutions that contain black holes at the special points of the base space: the centers

away from the bolt, and the centers at the poles of the bolt. As part of our general regularity

analysis, we now provide a simple analysis ruling out this possibility, therefore restricting

the range of interesting solutions within this system to smooth horizonless geometries.

In order to have a black hole horizon at a given special point located at r∗ = 0, the

six-dimensional metric (2.6) must be well-behaved around r∗ = 0. This condition requires

that the base metric, γij , be regular, and that the series expansions around r∗ = 0 of the

metric functions, W , µ and HI , be:

W ∼ w2

r2
∗
, HI ∼

hI
r2
∗
, µ ∼ wJL sin θ

r3
∗

, (3.13)

with strictly positive coefficients w, hI . In addition, one must check the regularity of the

would-be horizon, and in particular that it has finite area. The horizon area of a five-

dimensional extremal black hole is controlled by the combination

e−4U =
H1H2H3 − µ2

W
=
S2 + J2

L sin2 θ

r4
∗

, (3.14)

where 16π2S > 0 is the horizon area.

We now analyze in turn the centers away from the bolt, and the centers at the poles

of the bolt.

Centers away from the bolt. We start with the centers away from the bolt, so we set

r∗ = ΣA where a denotes any such center. Near any of these centers, the base metric is

smooth by construction, so we need only consider the metric functions. It is a cumbersome

but straightforward exercise to expand W , µ and HI for the solution given in section 2.2

around ΣA = 0, and to investigate whether it is possible to obtain the behaviour (3.13) by

imposing restrictions on the parameters of the solution.

Considering first the highest poles, and using the notation det nA ≡ nA
1n

A
2n

A
3 , we find

the behaviour6

W = −8m2
−JA(detnA)

R2
A − c2

(RA − a)3

cos θA
Σ5

A

+O(Σ−4
A ) ,

µ = (1 + γ)W − 8 m−JA(detnA)
RA

|RA|
(RA − a)

R2
A − c2

(RA − a)3

cos θA
Σ5

A

+O(Σ−4
A ) ,

HI = 2 JA n
A
I

R2
A − c2

RA − a
cos θA

Σ3
A

+O(Σ−2
A ) . (3.15)

One could a priori make several choices in order to cancel these poles. However, any

restriction on the bolt background parameters, as m−, a or c would either lead to an

extremal limit or degenerate the base, so we restrict to fixing only local parameters at the

6Recall that γ is the shift that imposes the correct asymptotics in µ, see below eq. (3.4).
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center. One must have |RA| > c in order for the distance from the bolt to make sense, and

assuming that not all the components of nA
I vanish, one is forced to set JA = 0 in order to

make the cubic poles of HI vanish in (3.15). If all the nA
I are zero, one obtains the quartic

pole W ∼
(
cos θAJA(RA + a)

)2
/Σ 4

A , so that indeed one must set JA = 0.

Continuing with the next-order poles, using the condition JA = 0 in order to simplify

the result, we find the following structure:

W = m2
−
(
m2
−(detnA)2 F1(RA,m−, a, c) cos2 θA + FA

W

) 1

Σ4
A

+O(Σ−3
A ) ,

µ = m−
(
m2
−(detnA)2 F2(RA,m−, a, c) cos2 θA + FA

µ

) 1

Σ4
A

+O(Σ−3
A ) ,

HI = m− (m−(detnA)nA
I F3(RA,m−, a, c) cos θA + FA

I )
cos θA

Σ2
A

+
H̃A
I

Σ2
A

+O(Σ−1
A ) , (3.16)

where the Fk(RA,m−, a, c) for k = 1, 2, 3 are three independent functions of the quantities

displayed in the argument, while the FA
W , FA

µ , FA
I , H̃A

I are independent functions of the

same quantities as the Fk, the variables pI± at the bolt and P IA at the center. The explicit

expressions for these functions are rather cumbersome, and are not needed for the present

argument; the fact that the Fk are functionally independent means that the only way to

remove the unwanted poles proportional to cos2 θA in (3.16) using only local variables at

center a is to set nA
1n

A
2n

A
3 = 0. We therefore impose this, so that the nA

I are rank-2 vectors

at each center. For the purpose of exposition, and without loss of generality, we implement

this by setting nA
3 = 0. Then (3.16) reduces to

W = m2
−

(
nA

1P
1
A − nA

2P
2
A

)2
(RA − a)2 Σ4

A

+O(Σ−3
A ) ,

µ = (1 + γ)W +m−
RA

|RA|
(RA − a)

(
nA

1P
1
A − nA

2P
2
A

)2
(RA − a)2 Σ4

A

+O(Σ−3
A ) ,

HI = 2m−{−nA
1 , n

A
2 , 0} RA

|RA|

(
nA

1P
1
A − nA

2P
2
A

)
(RA − a)2

cos θA
Σ2

A

+
HA
I

Σ2
A

+O(Σ−1
A ) , (3.17)

where the HA
I are the appropriate restriction of the H̃A

I in (3.16). We therefore find that the

antisymmetric combination nA
1P

1
A−nA

2P
2
A controls all the unwanted poles and must vanish.

The general solution to this equation can be parametrized by (the term proportional to

the qI is added for later convenience)

P IA = CIJK nA
J(pAK − qK) , (3.18)

where the arbitrary component P 3
A is parametrized by both pA1 and pA2 ; this is arranged to

ensure that there will be no loss of generality when nA
I is constrained to be rank 1, as it

will be shortly. This parametrization is invariant under the further shift pA1 → pA1 + εnA
1 ,

pA2→pA2−εnA
2 . We thus henceforth adopt the redefinition (3.18), as anticipated in eq. (2.36).

At this stage the HI now have the desired behaviour described in (3.13), while both

W and µ still contain Σ−3
A poles, which we now consider. In the interest of brevity we

suppress in the following analysis the terms proportional to J± and pI±, anticipating our
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later result that J± = pI± = 0 for any regular solution. The functions W and µ, together

with the Σ−2
A poles of the HI when the nA

I are rank-2 vectors, then take the form

W = 2m−
RA

|RA|

(
(R 2

A − a2) p̃A3 + (a2 − c2)q̃A3
)

(RA − a) (R2
A − c2)

nA
1 n

A
2

q̃0
A

Σ3
A

+O(Σ−2
A ) ,

µ =

(
1 + γ +

RA

|RA|
RA − a
m−

)
W − nA

1n
A
2 p̃

A
3 q̃

0
A

Σ3
A

+O(Σ−2
A ) ,

HI = {−nA
1 q̃

0
A , −nA

2 q̃
0
A , n

A
1 n

A
2 (p̃A3 )2} 1

Σ2
A

+O(Σ−1
A ) , (3.19)

where we used the shorthand definitions

p̃A3 ≡ pA3 −
RA

|RA|
m−

RA − a

(
1− 2

∑
B 6=A

sign(RA −RB)n3B

RB − a

)
,

q̃0
A ≡ 2

(R 2
A − c2)

RA − a
q0
A −

1

2
CIJK(pAI − qI)(pAJ − qJ)nA

K

q̃A3 ≡ q3 +
RA

|RA|
m−

(
RA + a

a2 − c2
+ 2

∑
B 6=A

(
1

RB − a
+
RA + a

a2 − c2

)
n3B

|RB −RA|

)
. (3.20)

Setting either of nA
1 , n

A
2 , q̃

0
A to zero would also set to zero the double pole of one component

of the HI . Therefore, the only possibility to cancel the cubic pole of W without reducing

the rank of the double pole of HI is to set (R 2
A − a2) p̃A3 + (a2 − c2)q̃A3 = 0. However, from

the form of µ in (3.19), we see that cancelling the cubic pole in W automatically implies

that H1H2H3 − µ2 ∼ O(Σ−5
A ), and therefore that the horizon area vanishes. This implies

that (3.13) and (3.14) cannot be satisfied. We therefore conclude that it is not possible to

obtain a regular extremal black hole with finite horizon located at a finite distance from

the non-extremal bolt.

Poles of the bolt. We now turn to the poles of the bolt, where the metric behaves the

same way as the centers away from the bolt, analyzed above. The analysis is the same for

both the North and South pole, so we write r∗ = r±, and expand for small r∗. To do this

we introduce coordinates centered on the North / South pole via

r =
1

2

(
r±+

√
r 2
± ± 4c r± cos θ± + 4c2

)
, cos θ = ± 1

2c

(
r±−

√
r 2
± ± 4c r± cos θ± + 4c2

)
.

(3.21)

Then near the poles, the three-dimensional base metric γij behaves as

γijdx
idxj ∼ $±(θ±)(dr 2

± + r2
±dθ

2
±) + r 2

± sin2 θ±dϕ
2 , (3.22)

with the function

$±(θ±) ≡ a2 + c2 ∓ (a2 − c2) cos θ±
2c2

. (3.23)

Up to this θ-dependent factor, which reduces to unity in the BPS limit, the behaviour of the

various functions required for the existence of a black hole horizon is again that in (3.13).
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Computing the expansions of W and µ, one obtains

W =

(
(a± c)2 (a∓ c∓ (a± c) cos θ±)2

4 c4$±(θ±)2
J 2
± ∓

a± c
c$±(θ±)

m−p
1
±p

2
±p

3
±

)
1

r 4
±

+O(r −3
± ) ,

µ =
m− ∓ a+ c

m−
W +O(r −3

± ) , (3.24)

and therefore one must separately impose J± = 0 and p1
±p

2
±p

3
± = 0 for the quartic poles of

these functions to vanish.

We set J± = 0 and without loss of generality we choose p3
± = 0. Having done this, one

can examine the cubic poles of W and µ and the quadratic poles of the HI at r± = 0, and

find expressions parallel to those in (3.19). The cubic pole of W can be eliminated by either

demanding p2
± = 0 (so that the vector pI± is rank-1), or by solving a linear equation for one

of the other parameters (say pI∓) associated to the antipodal pole. However, exactly as for

the centers away from the bolt, setting the vector pI± to be rank-1 also eliminates some of the

quadratic poles in HI . Similarly, the alternative choice of solving for an antipodal charge

pI∓ implies that the sextic pole of H1H2H3−µ2 vanishes, as before. Therefore, we rule out

the possibility of a solution with a finite-size black hole horizon at the poles of the bolt.

4 Conditions for smooth solutions

We turn now to the analysis of the conditions required for obtaining globally-hyperbolic

smooth solutions from our general solution in section 2.2. The general analysis implies three

sets of constraints: the first set comprises algebraic relations between various parameters,

the second set involves a set of inequalities, and the last set involves quantization conditions

on specific combinations of the parameters.

The algebraic equations on the parameters of the solutions follow from the absence of

curvature singularities or event horizons at the special points, and the absence of Dirac-

Misner string singularities between the special points. The inequalities are the positivity

conditions for the dilaton and the signature of the metric to be the same at each special

point, and for the absence of closed time-like curves. Finally, the absence of singularities

requires the metric to be well-defined on each local patch, with meshing maps that pre-

serve the periodicity of the angular coordinates. This gives quantization conditions on the

parameters, as well as arithmetic constraints to avoid orbifold singularities. For further

details we refer to [47], in which this complete analysis was carried out for an explicit exam-

ple smooth solution containing a non-extremal bolt interacting with one Gibbons-Hawking

center (a solution which is of course contained in the present system). While the first set

of algebraic equations can be dealt with systematically, the second and the third sets of

constraints can in practice only be analyzed case by case. In this paper we focus on the

first set of constraints and leave the analysis of the other constraints (and hence the full

construction of new explicit smooth horizonless solutions) for future work.

In section 4.1 we derive and solve the algebraic constraints associated to the absence of

curvature singularities or event horizons at the special points. In section 4.2 we derive the

algebraic constraints ensuring the absence of Dirac-Misner string singularities between the
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centers and the vanishing of the Kaluza-Klein vector ω on the bolt, which is also required

for the absence of closed time-like curves. The latter equations define a set of “bubble equa-

tions” involving the positions of the centers that resembles the corresponding conditions

for absence of Dirac-Misner string singularities in analogous extremal solutions. However,

we shall see that these “non-extremal bubble equations” are much more complicated, and

we do not discuss their solution in this paper.

4.1 Local smooth geometry

In order to have local smooth geometry at a center, r∗ = 0, a necessary condition is that

the metric functions W , µ and HI behave as:

W =
W 2
∗ (θ)

r2
∗

+O
(

1

r∗

)
, HI =

hI∗(θ)

r∗
+O

(
r0
∗
)
, µ = O

(
1

r∗

)
, (4.1)

where W 2
∗ (θ) and hI∗(θ) are strictly positive functions of θ.

When the special points are away from the bolt, the function W 2
∗ (θ) is a constant, and

moreover is the square of an integer (the Gibbons-Hawking charge); we therefore write it as

W =
N2

A

Σ2
A

+O(Σ−1
A ) , NA ∈ Z . (4.2)

For such a center, the local five-dimensional spatial geometry is that of a Z|NA| quotient

of R4×S1. This is a simple generalization of what is known as a Gibbons-Hawking center

in four spatial dimensions; for ease of notation we will simply refer to this as a Gibbons-

Hawking center. For more details, see the discussion in [47].

At the poles of the bolt, a factor of $±(θ±) defined in eq. (3.23) again enters, and

we have

W =

(
N±

$±(θ±) Σ±

)2

+O(Σ−1
± ) , N± ∈ Z . (4.3)

In order to impose (4.1), one must first cancel the higher-order poles analyzed in the

preceding section. We must therefore impose

J± = JA = 0 , (4.4)

as explained below (3.15) and (3.24). Concentrating first on the centers away from the

bolt, recall that canceling the higher poles in (3.17) moreover requires nA
I to vanish along

one component and P IA to be parametrized as (3.18), leading to the pole structure (3.19).

The requirement that the quadratic poles of HI vanish also removes the cubic poles of

W and µ, so we focus on the HI . The quadratic poles of HI can be set to zero in three

ways: (i) all three nIA vanish; (ii) two nIA vanish and q̃0
A in (3.20) vanishes; (iii) both q̃0

A

and p̃3A in (3.20) vanish. However, setting q̃0
A = p̃3A = 0 also cancels the first order pole of

H3, and respectively for the three other choices, so that option (iii) must be disregarded.

In option (i), nIA = 0, one must relax the ansatz (2.36) for P IA to be non vanishing, and

one finds that P IA must be rank 1 in order for the quadratic poles in HI to vanish. This

solution can nonetheless be considered as a degenerate limit of option (i) in which nA = 0,

so we shall not consider it independently.
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We therefore concentrate on option (ii), which sets the nA
I to be of rank-1 at each center:

CIJKnA
Jn

A
K = 0 , (4.5)

and to impose

q0
A =

1

4

RA − a
R2

A − c2
CIJKnA

I (pAJ − qJ)(pAK − qK) . (4.6)

Considering the definition of the P IA in (2.36) along with the condition (4.5), we note that

the component of the pAI along the direction of nIA does not appear in the solution. The

pole at the center a is therefore eventually parametrized by one non-zero component of nIA
and two components of pAI . This is also in agreement with the solutions found in [47], in

which the ansatz assumed that only nA
3 6= 0.7

In the BPS limit, this solution reproduces the behaviour of a standard smooth super-

symmetric Gibbons-Hawking center, with

H0 ∼ q0
A

ΣA

, HI ∼ P IA
ΣA

, HI ∼
nIA
ΣA

, H0 ∼ 0 , (4.7)

up to overall normalization factors. Note that this is the S-dual of a supertube center

(see for example [55, 56]).

We note that the integer Gibbons-Hawking charge appearing in eq. (4.2) is given by

NA =
1

2

∑
I

nA
I p

A
I+1p

A
I+2 −

1

2

a2 − c2

R2
A − c2

∑
I

nA
I (pAI+1 − qI+1)(pAI+2 − qI+2)

+m−
∑
I,B 6=A

RA

|RA|
nA
I+1n

B
I+2

|RA −RB|

(
pAI

RB − a
−

pBI
RA − a

)
. (4.8)

The same analysis applies in the vicinity of the poles of the bolt. One finds that in

order to cancel the double poles of all the HI , the pI± must be at most rank 1. A further

condition must be implemented, which can be obtained for either pI± = 0 or constraining

the qI , but the second leads to a cancellation of the first order pole of one of the HI

function. The only consistent solution is therefore to set

pI± = 0 . (4.9)

Note that this choice implies that in the solution of section 2.2, there are no remaining pa-

rameters that are intrinsic to the poles of the bolt (the parameters a, c,m−, qI are associated

to the bolt as a whole, rather than to its poles). One determines then the Gibbons-Hawking

charges N± at the poles as

N± = −a± c
2 c

(
1 +

∑
A

NA

)
∓ x

2
, (4.10)

7Since that solution was given in the context of a different parametrization for the system, a complete

translation to the language of this paper is a cumbersome but straightforward task; the map is given in

appendix A.
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where we introduced the integer

x =
a2 − c2

2m−
q1q2q3 (4.11)

+
a2 − c2

2 c

∑
I,A

RA

|RA|
nA
I

RA − a

(
(RA − a)2

R2
A − c2

(pAI+1 − qI+1)(pAI+2 − qI+2)− qI+1qI+2

)
.

Note that the Gibbons-Hawking charge is only additive in the extremal limit in which a = c,

such that N+ +N− +
∑

A
NA = −1, because the bolt is only regular in six dimensions for

an integer a
c greater than 1. The two Gibbons-Hawking charges must be integral, implying

that x must be an integer with the same parity as a+c
c (1 +

∑
A
NA).

4.2 Absence of closed time-like curves

We finally examine the constraints arising from the absence of closed time-like curves.

While this is hard to do in general since it requires a careful analysis of the global properties

of solutions, a first strong requirement is that the vector ω, describing the time fibration,

is globally defined over the space-like base. Given that the solution under consideration is

axisymmetric, the global definition of ω amounts to the condition that ωϕ is continuous on

the symmetry axis.

It is straightforward to use the expression in appendix B together with the restric-

tions (4.4)–(4.9) to compute the potential discontinuities of ω at the bolt and at the

Gibbons-Hawking centers. Note that eq. (3.8) already ensures that ω is single-valued

at asymptotic infinity, so we only need to impose its continuity at the special points in the

bulk. This leaves us with potential discontinuities at the Gibbons-Hawking centers and a

potential discontinuity on the bolt.

In order to write the conditions for the the vector field ω to be continuous, let us

introduce the following shorthand quantity, that will also be useful below:

C0 ≡
m−
2

+
a2 − c2

2m−

∑
I

qI+1qI+2 +
∑

A,I 6=J
nA
I p

A
J + 2m−

∑
I,A,B

nA
I+1

RA − a
nB
I+2

RB − a
, (4.12)

as well as the sign, εAB, depending on the position of centers

εAB ≡
RA −RB

|RA −RB|
. (4.13)

In terms of these quantities and the Gibbons-Hawking charges NA given in (4.8), the

conditions required for the discontinuities of the vector field ω to vanish at the Gibbons-

Hawking centers are given by8

C0NA +
∑
I 6=J

nA
I p

A
J + 2

∑
I,B 6=A

nA
I+1n

B
I+2

pAI − pBI
|RA −RB|

=
RA

|RA|
a2 − c2

m−

RA − a
R2

A − c2

∑
I

nA
I (pAI+1 − qI+1)(pAI+2 − qI+2)

+m−
RA

|RA|
∑
I

nA
I

RA − a

(
1− 2

∑
B

εAB

nB
I+1

RB − a

) (
1− 2

∑
C

εAC

nC
I+2

RC − a

)
. (4.14)

8Note that we use the rank 1 condition (4.5) of nIA to simplify these formulae.
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We now consider the continuity of ω at the bolt. The coordinate ϕ degenerates only

on the poles of the bolt, not everywhere on the bolt; however ωϕ is constant on the bolt,

and so must vanish identically on the bolt by continuity [47]. One can also verify that the

same condition ωϕ|B = 0 is required for the quadratic pole of the function µ to vanish on

the poles of the bolt. Simplifying the expression of ωϕ|B assuming that (3.8) and (4.14)

hold, one obtains:

a

c
ωϕ
∣∣
B

=
a2 − c2

cm−

(∑
A

NA + 1 +
a2 − c2

4m−
q1q2q3

)
− C0

(
x

2
+
∑
A

NA + 1

)

+
a2 − c2

4 c

∑
I

qI

(
1 + 2

∑
A

RA

|RA|
nA
I+1

RA − a

)(
1 + 2

∑
B

RB

|RB|
nB
I+2

RB − a

)
(4.15)

+
m−
2

(
1+2

∑
A

RA

|RA|
nA

1

RA−a

)(
1+2

∑
B

RB

|RB|
nB

2

RB−a

)(
1+2

∑
C

RC

|RC|
nC

3

RC−a

)
,

where x is the integer defined in (4.11).

The vanishing of the expressions (4.14) and (4.15) is the analogue of the bubble equa-

tions appearing in extremal solutions, both BPS and non-BPS alike [23, 57, 58]. Indeed,

imposing the BPS limit a → c,m− → 0 with a2−c2
m−

kept fixed as in section 2.3, one finds

that these constraints reduce to the BPS bubble equations for a set of Gibbons-Hawking

centers defined by the harmonic functions HΛ, HΛ of (2.37) with restricted poles according

to (4.7). It is in particular straightforward to see that these equations become linear in

the inverse distances. This is consistent with the fact that the bolt reduces to a pair of

Gibbons-Hawking centers in the BPS limit [10, 59, 60]. The connection to the Almost-BPS

system in the limit given in section 2.3 is less straightforward, as it leads to a non-standard

duality frame. In the almost-BPS extremal limit, the poles of the ansatz functions at the

South pole of the bolt turn out to vanish identically (in particular N− = 0 in (4.10)).

It is also important to compute the value of the vector w0 defining the fibration over

ψ on the bolt,

a

c
w0
ϕ

∣∣
B

= 1 + x+
∑
A

(
1− a

c

RA

|RA|

)
NA , (4.16)

since the regularity conditions at the bolt imply that

a

c
= m− n , a

c
w0
ϕ

∣∣
B

= m+ n , (4.17)

for two integers m and n [34, 47]. One then finds that the Gibbons-Hawking charges at

the poles of the bolt are automatically integers:

N+ = −m−
∑
RA>c

NA , N− = n−
∑

RA<−c
NA . (4.18)

Let us summarize the set of free parameters in our solutions and the physical/geome-

trical quantities they correspond to. In the following we switch back to discussing solutions
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of general six-dimensional supergravity theories with nT tensor multiplets. One can con-

sider that c and RA are determined by the bubble equations (4.14) and (4.15). Then

the parameters qI , a, m− at the bolt are understood to parametrize the two integers m

and n characterizing its topology, the flux Qa = 1
4π2

∫
B Ga over the bolt 3-cycle, and the

radius Ry associated to the y coordinate. Each new Gibbons-Hawking center is a Z|NA|
quotient of R4 × S1 parametrized by two integers NA and MA (for the action on the ad-

ditional circle), and its presence introduces one new 3-cycle that supports nT + 1 fluxes

FA
a = 1

4π2

∫
ΣA

Ga [47]. We thus see that each Gibbons-Hawking center is parametrized by

nT + 2 parameters nA
I , p

A
I for nT + 3 new physical quantities NA, MA, F

A
a . We therefore

understand that the additional integers MA (say) can be thought of as determined in terms

of the other quantities. Given integer values for m, n, Qa, NA and FA
a , it would be nice if

the MA were automatically integers, however this is rather difficult to check. Moreover, for

the solution to have the same asymptotics as a Cvetic-Youm black hole, one must constrain

nT + 1 additional parameters to satisfy (3.12). Therefore, on one of the Gibbons-Hawking

centers, the fluxes FA
a must be determined in terms of other parameters. For a single addi-

tional center, the only free parameter is its Gibbons-Hawking charge N1, as in the solution

derived in [47].

It will be very interesting to explore the space of non-extremal smooth horizonless su-

pergravity solutions contained in our general solution. Work in this direction is in progress.
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A Relation to the Floating JMaRT system

In this appendix we briefly describe the relation of the solvable system given in section 2.1

to the “Floating JMaRT” system constructed in [43] and used in [47] to obtain an explicit

solution with a single Gibbons-Hawking center together with a smooth bolt. The system

in [43] is based on a set of Ernst potentials for an auxiliary Euclidean Maxwell-Einstein

solution, denoted by E± and Φ±, together with six more functions, LI andKI , for I = 1, 2, 3,

where there was no explicit triality covariance despite the naming. To avoid confusion with

the functions of the same name appearing in this paper, we will use the notation LI (old)

and KI
(old) for the functions appearing in [43].
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Explicitly, in terms of the functions appearing in the ansatz in section 2.1, we have the

identifications

E+ = − K3

2 +K3 + 2V
, E− =

2

V
− 1 ,

Φ+ = λ
1 +K3 + 2V

2 +K3 + 2V
, Φ− =

2

λ

V − 1

V
, (A.1)

for the Ernst potentials, where λ is a free parameter, set to λ = m−/e− when comparing

with the explicit Maxwell-Einstein solution used in [43]. Note that this is not an honest

redefinition, since the four original Ernst potentials are mapped to only three functions.

This is a particular choice inspired by the fact that the nontrivial Maxwell-Einstein solu-

tions we use are such that E− and Φ− are those of an extremal solution and are therefore

not independent.

We then proceed to the La(old) and Ka
(old), for a = 1, 2 and using the ηab in (2.2), for

which we find

La(old) =
1

2

ηabKb + La

2 +K3 + 2V
, Ka

(old) =
1

2λ

(
Ka − 2 (V + 1)

Ka + ηabL
b

2 +K3 + 2V

)
. (A.2)

The final two functions in the Floating JMaRT system are identified as

K3
(old) =

1

4λ

(
M + L3 − 1

2

V

1 + V V
(KaL

a +K1K2) +
V − 1

1 + V V

(K1 + L2) (K2 + L1)

2 +K3 + 2V

)
,

L3(old) = − 1

λ2

(
V + 1

2
M − 1

4
KIL

I +
1

8

V

1 + V V
K1K2K3 −

1

2

V − 1

1 + V V
(KaL

a +K1K2)

+
(V − 1) (V + 1)

1 + V V

(K1 + L2) (K2 + L1)

2 +K3 + 2V

)
, (A.3)

where we caution that we use both a sum over indices a = 1, 2 and I = 1, 2, 3 for

convenience.

Besides these identifications, we further applied a gauge transformation on the gauge

field A3 → A3 − 2 dt + 2λ dψ and we rescaled all fields appropriately in order to remove

the explicit dependence on the parameter λ. The latter is enforced by a rescaling of the

coordinates

t→ 16λ t , y → 8λ y , ψ → 8λ2 ψ , (A.4)

while also imposing that the six-dimensional metric and the two-form potentials Ca rescale

by a factor of 32λ2, and the dilaton is invariant. We display the redefinitions used explicitly

in this paper:

W → 64λ4W , µ→ 128λ3 µ , {H1, H2, H3} → 16λ2 {2H1, 2H2, H3} ,
ω → 16λω , {w0, w1, w2, w3} → 4λ2 {2w0, w1, w2, 2w3} , (A.5)

while the rest are fixed uniquely by imposing consistency. Finally, we flipped the overall

sign of the two gauge fields A1 and A2.
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B Vector fields

In this appendix we list the explicit expressions for the various vector fields used in the

main text. Since we deal exclusively with axisymmetric solutions, all vector fields only have

a single component, along ϕ in the 3D base (2.28), which is displayed explicitly below. We

first define some useful functions

S(r, θ) ≡ sin2 θ

r2 − c2 + a2 sin2 θ
,

W0 ≡ cos θ + aS(r, θ) (r − a cos θ +m−) ,

W± ≡ cos θ ∓ aS(r, θ) (r ± a cos θ) ,

V± ≡
r cos θ ∓ c
r ∓ c cos θ

, (B.1)

which we use for brevity. Additionally, we use the shorthand cθ ≡ cos θ for the remainder

of this appendix.

Starting from the electric vector fields, using the general solution (2.32)–(2.35) we find

from (2.18) the ϕ-components

(vI)ϕ =
a2 − c2

m−
qIW0 + hI

(
a2 − c2

m−
(W− −W0)−m−W+

)
+ 2

∑
A

nA
I

(RA − a) ΣA

[
c2 −R2

A +m−(r −RAcθ)

+
(
(a2 − c2) cθ + (r + a cθ) (RA − a)

)
W0

]
. (B.2)

Similarly, from (2.9) we find the following expression for the ϕ-components of the magnetic

vector fields wI , w0

(wI)ϕ = −1

2
CIJKqJ vK +

a2 − c2

2m−
CIJKqJ qK

(
W0 −

1

2
W−

)
− 1

4
m−C

IJKhJ(hK + 2 qK)W+ − pI+ V+ − pI− V−

+m−
∑
A

CIJK(qJ+hJ)nA
K

(RA − a) ΣA

(
r−a cθ−(RA−a)W++

a2−c2

2 a
(2 cθ−W+−W−)

)
+
∑
A

CIJKnA
J (pAK − qK)

RA − r cθ
ΣA

+m−
∑
A,B

nA
I+1n

B
I+2

(RA − a) (RB − a)

1

ΣAΣB

[(
(RA −RB)2 − Σ2

A − Σ2
B

)
W+

+S(r, θ) (r2 − c2)
(
2 (r + a cθ) (RA +RB − 2 a) + 4 (a2 − c2)cθ

)]
, (B.3)

(w0)ϕ = −1

8
CIJKqI qJ vK −

1

2
qIw

I + q0W+ +
a2 − c2

m−

(
l0 − 1

2
(hI + qI)l

I

)
(W0 −W−)

+
a2−c2

4m−
((k1k2k3+2q1q2q3)W0−(k1k2k3+q1q2q3)W−)+

m−
4

(q1q2q3−k1k2k3)W+

−
∑
A

q0
A

ΣA

[(
RA + a− a (a2 − c2)S(r, θ)

)
(RA − r cθ) + (a2 − c2) (r2 − c2)S(r, θ)

]
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+
∑
A

JA

ΣA

[
RA−rcθ+

(r2−c2)(r+acθ)

Σ2
A

S(r, θ)
(
(r − acθ)(RA + a) + (a2 − c2)cθ

)]
+
∑
ε=±1

Jε

[
1

a
(W+ −W−)− (a+ ε c)

S(r, θ)

r − ε c cθ
((2 r + (a− ε c) cθ)Vε + r cθ + a)

]

−m−
∑

A,ε=±1

nA
I p

I
ε

(RA − a) ΣA

(
RA − r cθ
a+ εc

+ 2S(r, θ) (r2 − c2)
r + a cθ
r − ε c cθ

)
−m−

(
lI− 1

4
CIJKkJkK

)∑
A

nA
I

(RA−a)ΣA

(
r−acθ−(RA−a)W++a(a2−c2)S(r, θ)cθ

)
−m−

∑
A,B

CIJKnA
I n

B
J (pBK − qK)

(RA − a) ΣA ΣB

[
S(r, θ) (r2 − c2) (r + a cθ)

−1

2
W+

(
RA −RB −

(ΣA − ΣB)2

RA −RB

)]
− 4m2

−
∑
A,B,C

nA
1n

B
2 n

C
3

(RA − a) (RB − a) (RC − a)
S(r, θ)

(r2 − c2) (r2 − c2c2
θ)

ΣA ΣB ΣC

. (B.4)

Finally, the vector field ω is also determined from (2.9) as

ωϕ =
1

2
(hI + qI)w

I +
1

8
CIJK(qI qJ − hI hJ) vK +

1

2
lIvI

− l0W0 −
1

2
hI l

IW+ +
q0

m−
(W0 +W+)

− 1

2
(q1 + h1) (q2 + h2) (q3 + h3)

(
W− +

3

2
W0

)
+

1

2
CIJKhIqJ(hK + qK)W+

+
∑
A

q0
A

ΣA

[
a2 − c2

m−

(
r + a cθ +m−(1− cθW+) +

a2 − c2

m−
cθ (W− −W0)

)
+(RA + a)

(
RA − r cθ −

a2 − c2

m−
W0

)]
−
∑
A

JA

ΣA

[
RA − r cθ +

(r2 − c2) Σ+

Σ2
A

S(r, θ)
(
(r − a cθ)(RA + a) + (a2 − c2) cθ

)]
+

1

am−
(J+ + J−)

(
a2 − c2

m−
(W− −W0)−m−(W+ −W−)

)
+
∑
ε=±1

Jε(a+ ε c)
S(r, θ)

r − ε c cθ

[
(a− ε c) cθ Vε − r cθ + a+

(
2 r − a2 − c2

m−

)
(cθ + Vε)

]

+
∑

A,ε=±1

nA
I

(RA − a) ΣA

pIε
r − ε c cθ

[
c2 sin2 θ − r(RAcθ − r)

+2S(r, θ)
(
m−(r2 − c2) (r + a cθ)− a2(r2 − c2c2

θ)
)]

+
∑

A,ε=±1

nA
I p

I
ε

ΣA

RA − r cθ
RA − a

(
m−
a+ εc

+ ε
c

r − ε c cθ

)

+
1

4
m−

∑
A

CIJKkIkJn
A
K

(RA − a) ΣA

(
r − a cθ − (RA − a)W+ + a (a2 − c2)S(r, θ) cθ

)
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+
∑
A,B

CIJKnA
I n

B
J (pBK − qK)

2 (RA − a) ΣA ΣB

[
2m−S(r, θ) (r2 − c2) Σ+

−
(
m−W+ −

a2 − c2

m−
(W− −W0) +RA − a

) (
RA −RB −

(ΣA − ΣB)2

RA −RB

)]
+ 2m−

∑
A,B,C

nA
1n

B
2 n

C
3

(RA−a) (RB−a) (RC−a)

(
WABC − 2m−S(r, θ)

(r2−c2) (r2−c2c2
θ)

ΣA ΣB ΣC

)
,

(B.5)

where WABC is given by

WABC ≡
1

ΣA ΣB ΣC

[
RARBRCW+ + c2 sin2 θ cθ (RA +RB +RC − a)− r (r2 − c2)

+ (a2 − c2) sin2 θ
(
r − aS(r, θ) (a r − c2 cθ)

)
−
(
r − aS(r, θ) (a r + c2 cθ)

)
×(

RARB +RARC +RBRC − (a sin2 θ + r cθ) (RA +RB +RC) + c2
)]
. (B.6)
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