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ABSTRACT: The measurement of Rp (Rp+), the ratio of the branching fraction of
B — D7i.(B — D*7;) to that of B — DIy(B — D*ly;), shows 1.90 (3.30) deviation
from its Standard Model (SM) prediction. The combined deviation is at the level of 4o
according to the Heavy Flavour Averaging Group (HFAG). In this paper, we perform an
effective field theory analysis (at the dimension 6 level) of these potential New Physics
(NP) signals assuming SU(3)c x SU(2), x U(1)y gauge invariance. We first show that, in
general, Rp and Rp~ are theoretically independent observables and hence, their theoretical
predictions are not correlated. We identify the operators that can explain the experimen-
tal measurements of Rp and Rp~ individually and also together. Motivated by the recent
measurement of the 7 polarisation in B — D*7i; decay, P.(D*) by the Belle collabora-
tion, we study the impact of a more precise measurement of Pr(D*) (and a measurement of
P.(D)) on the various possible NP explanations. Furthermore, we show that the measure-
ment of Rp~ in bins of ¢2, the square of the invariant mass of the lepton-neutrino system,
along with the information on 7 polarisation and the forward-backward asymmetry of the
7 lepton, can completely distinguish the various operator structures. We also provide the
full expressions of the double differential decay widths for the individual 7 helicities in the
presence of all the 10 dimension-6 operators that can contribute to these decays.
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1 Introduction

In recent years, a number of experimental measurements involving B meson decays have
shown interesting deviations from their Standard Model (SM) expectations. Deviations
have been seen both in the neutral current b — s decays [1, 2]' as well as the charged
current b — ¢ processes. The most statistically significant deviation, at the 4o level [17],
is seen in the combination of Rp and Rp+ which are defined as,

B (E — D(*)TDT) (11)
B(B — DWly) '

where [ = e or p. In table 1, we collect all the relevant experimental results related to the

Ry =

B — D™{y, decay processes.

IFor theoretical implications, see for example [3-16] and the references therein.



List of Observables
Experimental Results L
Observable - SM Prediction
Experiment Measured value
Belle 0.375 + 0.064 + 0.026  [18] 0.299 + 0.011 [19]
" BaBar 0.440 + 0.058 + 0.042  [20, 21] 0.300 + 0.008 [22]
’ HFAG 0.397 & 0.040 + 0.028 [17 0.299 2 0.003 [25]
average | o ' ' [17] 0.300 + 0.011
Belle 0.293 + 0.038 + 0.015  [18]
Belle 0.302 + 0.030 + 0.011  [25]
Rp- BaBar 0.332 + 0.024 + 0.018  [20, 21]
LHCb 0.336 + 0.027 + 0.030  [26] 0.252 + 0.003 [24]
HFAG average | 0.316 + 0.016 + 0.010 [17] 0.254 + 0.004
Belle 0.276 + 0.034 70023 [27]
Our average 0.310 £0.017
B(B — Dri;) | BaBar 1.02 4+ 013+ 011 %  [20] 0.633 +0.014 %
B (B — D*ri.) | BaBar 1.76 £ 0.13 £ 0.12 % [20] 1.28 £0.09 %
B (B — Din,) HFAG average | 2.13 + 0.03 £ 0.09 % [17] 2111072 %
B(B — D*ly;) | HFAG average | 4.93 £0.01 £0.11 % [17] 5.047045%
P (Bob 0.325 + 0.009 [28]
- (B = D) 0.325 + 0.012
_ —0.497 4 0.013 [27, 29)
P. (B — D*ri7;) | Bell —0.44 + 0.47 1920 27 ’
(B = D7) | Belle 044+ 047 Zoir 27 ~0.497 + 0.008
APy ~0.36015501
AR 0.064 £ 0.014

Table 1. The relevant observables, their experimental measurements and the SM predictions are
While computing the branching ratios, we have used V., = 0.04. As HFAG has not yet
included the latest Belle measurement of Rp- in their global average, we have taken a naive weighted
average of the latest Belle result and the average given by HFAG. However, since the recent Belle
result has a large uncertainty, it does not affect the previous world average in any significant way.
The values given in boldface are our results for the SM predictions. Note that, for the B — D*{,

shown.

SM predictions, the uncertainties correspond to 20 uncertainties in the form factor parameters, see
section 5 for more details.

Note that, we have used the notation ¢ to denote any lepton (e, p or 7) and [ to denote
only the light leptons, e and p.

The large statistical significance of the anomaly in Rp and Rp- has spurred a lot of
interest in this decay modes in the last few years [24, 29-63] and various possible theoretical
explanations have been proposed.

The main purpose of this work is to identify observables which can help distinguish
the different NP Lorentz structures that can potentially solve the Rp and Rp~ anomalies.
We first perform an operator analysis of these potential NP signals by considering all the
dimension-6 operators that are consistent with SM gauge invariance. We compute the val-



ues of the relevant Wilson coefficients (WCs) that explain the experimental measurements
within their 1o ranges. It is important to note that we consider the presence of NP only in
the tau-channel and not for the electron or the muon channels. Thus, in our calculations
of Rp and Rp«, we use the SM values of the WCs in the denominator. For these values
of the WCs, we compute the predictions for a few observables that have the potential to
distinguish between the various NP operators. Although we provide numerical results only
for the operators that are consistent with SM gauge invariance, we provide the analytical
expressions for the double differential decay rates for the individual 7 helicities for all the
10 independent dimension-6 operators contributing to these decays. To our knowledge, we
are the first in the literature to provide the full expressions.

As we show later, Rp and Rp+ are in general theoretically independent observables
and the anomalies can exist independently. A future measurement might reveal a greater
anomaly in one of them without affecting the other. Hence, in this paper, we attempt to
explain each without worrying about the other initially, but then also point out how both
can be explained together.

Very recently, the Belle collaboration reported the first measurement of the
T-polarisation in the decay B — D*7, [27]. While the uncertainty in this measurement is
rather large now, motivated by the possibility of more precise measurements in the future,
we investigate how such a measurement can distinguish the various NP explanations of
Rp and Rp-. Furthermore, we show that measurements of Rp- in bins of ¢? can provide
important information about the nature of short distance physics. In fact, a combination
of binwise Rp~ and more precise measurements (that can be done in Belle II, for example)
of 7 polarisation in both the B — D7, and B — D*7; decays can completely distinguish
all the different NP operators. Moreover, we show that the forward-backward asymmetry
of the 7 lepton (in the 7-v, rest frame) also has the potential to differentiate the various
NP Lorentz structures.

The paper is organised as follows: in section 2 we write down all the operators relevant
for this study and define the notations for the corresponding WCs. The various observables
of our interest are defined in section 3. The sections 4 and 5 discuss the form factors
required for the calculation of the decay amplitudes. The analytic expressions for the
double differential decay widths for the individual lepton helicities are shown in sections 6
and 7. In the following section (section 8), we present all our numerical results. Finally,
we summarise our findings in section 9.

The full expressions for the double differential decay widths are shown in the appen-
dices A and B, and the contribution of the tensor operator Oy, is discussed in appendix C.
In appendix D, we show how our operators are related to the dimension-6 operators of [64].
The renormalisation group equations for the WCs are computed in appendix E.

2 Operator basis

The effective Lagrangian for the b — ¢ £ process at the dimension 6 level is given by,

2G V ’ / ! / ! li
b—clv FVeb cbl ;rcbl cbl cbl cbl ;cbl cbl cbl cbl ;rcbl cbl cbl
Lhgety = (Cs o + c o' + Cittos + Ciif off + CMoP 4 C 0

V2
+ OOt 1 Ci ot + oot + ot o) (2.1)



where (’)Z‘?M constitute a complete basis of 6-dimensional operators and C’icbe are the cor-
responding Wilson coefficients defined at the renormalization scale p = my. In the SM,
C’gbg = —C‘fl’g =1 and all the other WCs vanish. The full set of operators is given by:

05" = [ev* PL ][l y, V] O = [ey" Prb)[l, V]

05t = [e7* Pr bl vuvs V] OC”Z 7" PR O], V]

0P = [ePr)[tv] O’ = [cPR ][] (2.2)
O =[P ][[ 5] O = [¢P R b][[Tv5 V]

O = e T Ot = [eo™ B[l 0,015 ]

The other possible tensor structures are related to O%’Z and (’)55’55 in the following way,

uvaplca™ ][l o™ v] = —2i0%% (2.3)
60" y5 ][ 05 V] = OFF
[Eo"y5b] [0, v] = OF.

Note that the above basis of operators is different from the one used in some earlier
literature [31, 36]. For example, the reference [31] uses the following set of operators,

O, = [e7" b][f~, Prv] Ok = [e* ][0y, PrV]
O = [e7" 45 b][£y, Pr V] OLh = 64" 75 b][f vu Pr ]
0§y’ = [eb][l PLv] OSk = [eb][f Prv] (2.6)
Oft = s bHV Prv] Ok = [e7s b]W Pr ]
OH = [ea™ ][l o, Pr V] Ok = [eo™ b][l 0, PrV]

The Wilson coefficients of these two basis of operators are related through the following

equations,

cet — % (Cgcbe_clcge ekt e’ ) ct — % (Cgbf L ooty C;bé’)
ot = 1 ( bty et 4 bt Cf{l;f’) cet — 1 (_chZ_chZ Loty che'>

2 2 S p s p

2.7)

ct — % (C;:bz_ngz n Cgbf’_cgb£’> cet — % (chz e T Cf8€'>

1 / / 1 !
ot = 5 (_C;:bf +che LoD O;bz ) Ot = = ( Ottt ot ot )
ot = (chz che> Ot = (che ch) (2.8)



We now assume the neutrino in the final state to be left handed. This implies that the
WCs in eq. (2.1) satisfy the following relations,

ché ch@ (2 9)
ché’ ché’ (2 10)
ché ché (2 11)
ché’ chﬂ’ (2 12)
CPt = 5’!’;. (2.13)

Consequently, all the WCs in the right hand column of eq. (2.8) vanish. Note that, the
operators on the left hand column of eq. (2.8) are the only ones that are consistent with
the full gauge invariance of the SM. In appendix D, we show how these WCs are related
to the 6-dimensional operators listed in [64]. Moreover, since many microscopic models do
not generate the tensor operator, we neglect them in the main text and study its effect
only in the appendix (see appendix C).

Although, we do not study the effects of the operators with a right handed neutrino
(the ones in the right hand column of eq. (2.8)), we compute the full analytic expressions
considering all the 10 operators for the first time in the literature. The results are presented
in appendices A and B.

3 Observables

The double differential branching fractions for the decays B — D¢, and B — D*{iy can
be written as

2 12D (*)

D) D) D) 2
W N|pD( )| ( +b COSQ+CZ COS 6) . (31)

The normalisation factor, N and the absolute value of the D*)-meson momentum, Ppe |
are given by,

78 G5 | Va2 ¢? mj 2
N= ey U7 (3:2)
A(MZ, M2, q%)
D(*>’
lppe| = I ; (3.3)

where A(a,b,c) = a? + b*> + ¢ — 2(ab + bc + ca). The angle 0 is defined as the angle
between the lepton and D®)-meson in the lepton-neutrino centre-of-mass frame, and ¢ is
the invariant mass squared of the lepton-neutrino system.

The total branching fraction is given by,

* 2 *
BPY /N|pD(*>\ (2a,?( 4 50?( ’) dq? (3.4)



The observables Rp and Rp~ have already been defined in eq. (1.1). We now define
binned Rp.) in the following way,
Rpiolg? bin] — 2= 12 D] (35)
B;”"[q? bin]
For the decays with 7 lepton in the final state, the polarisation of the 7 also constitutes
an useful observable and can potentially be used to distinguish the NP Lorentz structures.
The 7 polarisation fraction is defined in the following way,

PP () -T2 ()
PP (+) + TP (-)

P(DY) = (3.6)
where, FE(*)(+) and I'P (*)(—) are the decay widths for positive and negative helicity 7
leptons respectively.

Gy .
The 7 forward-backward asymmetry, .AII;) B) is defined as

/2 dFD( ) aro™ )
0 do — f7r/2 @

/2 dFD( ) Jdrb™ )
o g 40 + f7r/2 T

S (gP)dg?
- FD(*)

AR =

(3.7)

where TP is the total decay width of D™*) and the angle 6 has already been defined
above. Note that, while the branching fractions depend on the functions a?’ “) and cé) ) , the
forward-backward asymmetry depends only on bD *) . Hence, they provide complementary
information on the nature of the short distance physics.

4 B — D form factors

The hadronic matrix elements for B — D transition are parametrised by?

_ M?% — M?
(D(pp, Mp)|ey"b|B(ps, Mp)) = Fi(¢*) |(ps + pp)" — %qu
M?% — M?
+F0(q2)%q“ (4.1)
(D(pp, Mp)|ey"~sb| B(pp, Mp)) = 0 (4.2)
B M2 _M2
(D(pp, Mp)|cb|B(pp, Mp)) = FO(QQ)W (4.3)
(D(pp, Mp)|evysb|B(ps, Mp)) =0 (4.4)
_ - . 2Fr(q?)
D(pp, Mp)|co™b| B(pg, Mg)) = —i(p"p% — plph )~ 4 ) 45
(D(pp, Mp)lca"”b|B(pp, Mp)) = —i(psph poD)MB+MD (4.5)
_ - 2Fp(q?)

D M HY ~eb| B M = ghvrPo g ————— 4.6
(D(p, Mp)le"y5b B(pp, Mp)) = " ppybpo 51 (4.6)

0123

2We use the convention ¢ = 1. This implies €p123 = —1.



Note that eq. (4.3) and eq. (4.6) are not independent equations and follow from eq. (4.1)
and eq. (4.5) respectively. Multiplying the left hand side of eq. (4.1) by g, one gets

4.({D(pp, mp)|ey*b|B(pp, Mp)) = Inverse Fourier transform of (D|id,,(cy"b)|B)
= Inverse Fourier transform of (D|(i0,cy"b+¢y"i0,b)|B)
= (my —me)(D(pp, Mp)|eb| B(pg, Mp)) (4.7)

Similarly, the term proportional to F in the right hand side of eq. (4.1) vanishes upon
multiplication by ¢, and gives

rhs. = Fo(¢®) (M3 — M3). (4.8)

Thus, eq. (4.7) and eq. (4.8) taken together give us eq. (4.3).
In order to get eq. (4.6) from eq. (4.5) one has to use the identity,

o ys = %6“”0‘50(15. (4.9)

Substituting the above identity into the left hand side of eq. (4.6) one gets,

_ i _
<D(pD,MD)‘EO'MV’)/5Z)|B(])B,MB)> = §€“Va”8<D(pD,MD)’EUQfBb’B(pB,MB» (4.10)

2
_ L wap [, _ 2Pr(@) g
5¢ i(PBaPDB—PBBPD) Ny 4 i (4.11)

2F(q?
= a“”“ﬁpgangMBi( M)D (4.12)

The form factors Fy(¢?) and F, (¢?) have been calculated using lattice QCD techniques
in [19].3 They are given by the following expressions,

_ 1 S o o

F+(Z)_ ¢+(Z) prd k 5 (413)
_ 1 CLO Zk

Folz) = %(z)kzo A (4.14)

where

V(Mg + Mp)? — ¢> — /AMpMp
V(Mp + Mp)? — 2+ /AMpMp

c=2() =

3There has been another Lattice calculation of these form factors with similar results [22].
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Figure 1. The ¢ dependence of the form factors Fy, Fy and Fr. The uncertainty bands
for Fy and F, correspond to a x? < 1.646 where the x? is computed using the expression
Y2(x) = (x — x0)" V7! (x — x¢) where x = (ag,af,af,af, ab,a?,a9,a) and xq consists of the
central values given in table 2. The covariance matrix V is computed from the correlation matrix
pij given in table 3 using the formula V;; = 0;(x)p;;0,(x) where o(x) is the vector of uncertainties
given in tables 2. The uncertainty band for Fr is obtained by simply taking a +10% uncertainty
on the central value.

The functions ¢4 (z) and ¢g(z) are given by,

(L+2)2(1— )12

) = L et AT (415)
B (1+2)(1 —2)3/2
do(2) = 05299, Fr)(1—2) + 21+ 2 (4.16)

where, r = Mp/Mp.
The central values, uncertainties, and correlation matrix for the parameters a% and a,j

are shown in tables 2 and 3.

As the tensor form factor Frr has not been computed from lattice QCD, we have taken
them from [65]. Following [65], we write Frr(q?) as,

Fr(¢?) = 0.69 . (4.17)

(1= atiery) (1 - 056 ticry)

In figure 1, we show the ¢? dependences of Fyy, F, and Fr following the above expressions.



+ + + + 0 0 0 0
Qg ap ay as Qg aj ag as

Values 0.01261 —0.0963 0.37 —0.05 | 0.01140 —0.0590 0.19 —-0.03
Uncertainties | 0.00010  0.0033  0.11  0.90 | 0.00009 0.0028 0.10 0.87

Table 2. The central values and uncertainties for the parameters af and a; from ref. [19] (table
XI of their arXiv version 1).

ag af ag ag ad al ay ad
ag | 1.00000 0.24419 —0.08658  0.01207 0.00000  0.23370  0.03838 —0.05639
at 1.00000 —0.57339  0.25749 0.00000  0.80558 —0.25493 —0.15014
ag 1.00000 —0.64492 0.00000 —0.44966  0.66213  0.05120
a3 1.00000 0.00000  0.11311 —0.20100  0.23714
al 1.00000  0.00000  0.00000  0.00000
al 1.00000 —0.44352  0.02485
a9 1.00000 —0.46248
al 1.00000

Table 3. The correlation matrix for the parameters af) and a; from ref. [19] (table XI of their
arXiv version 1).

5 B — D* form factors
The hadronic matrix elements for B — D* transition are parametrised by

* = D, - 13 2V(q2)
(D*(pp+, Mp+)|cv.b|B(pB, MB)) = i€uwpoe” DgphHe Myt Mo

X _ — €".q . €.
(D(pp~Mp+)|evuvsb| B(pp, Mp)) = QMD*ngqu(q2)+(MB+MD*)[€M— . qu}‘h(ff)

6*.(] M%_M%* 2
__t4q L) BT D | g
(5.2
(D*(pp+, Mp~)|eb| B(pp, Mp)) = 0 (5.3)
_ _ 2Mp~ 9
D* «, M p« B M =—¢"g———— A i
(D*(pp=, Mp+)|eysb| B(pg, Mp)) = —¢ L 0(q) (5.4)
(D*(pp+, Mp+)|couwb|B(ps, MB)) = —€ 003 { — ¢ (pp+ +pB)°T1(4%)
M2 - MZ* *Q
+ %f ¢’ (T1(¢*) — To(q?)) (5.5)
* 2
€49 o B 2 2 q 2
2—— T T e
+2- 5 PEPD ( 1(¢7)—T2(q%) ME -1, 3(q )ﬂ
(D*(pp+Mp+)|e0,q"b| B(pp,Mp)) = —2€,mp0™ DypDT1(q%) (5.6)



None of the form factors V, Ag, A1, A2, 11,15, T35 has been calculated in Lattice QCD.
We used the heavy quark effective theory (HQET) form factors based on [66]. These form
factors can be written in terms of the HQET form factors in the following way [36, 66],

Viet) = 5 Pl ().

() = et MOS U )
Aala®) = 3 PSP (@) + sl
o) = 5 [MEEDE )

- MM ety - M ()|
Ti(q?) = 2M;W [(Mp + Mp+)h, (w(¢?)) — (Mg — Mp=)hz, (w(q?))] 7
1) = 5 | e ML = )
M= M) = )
Ta) = e | (M = Moy () = (M + Moo ()
Mo =M ).
where,
v (a) = By (), ()
) = 2T ()
SR ES I
) = S gy [ e (= o 1) ) (5.2
e (P = ()]
) = o e (3 A M) i 1 )]
i () = 4-17”%)* —2rpew) {21\;7;—_;41,3 ro(w+1) hay(w)
St (e = 2rpw) (hay(w) — oy () (5.9)
my + me

——(1 )% h
T (L o )

~10 -
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Figure 2. The ¢? dependence of the B — D* form factors. The bands correspond to two times

the uncertainties given in eq. (5.11).

ha,(w) = ha, (1)[1 — 8p%h.z + (53phH. — 15)2% — (231p%. — 91)2°]
Ri(w) = R1(1) — 0.12(w — 1) + 0.05(w — 1)2 (5.10)
Ro(w) = Ry(1) + 0.11(w — 1) — 0.06(w — 1)

R3(w) = 1.22 — 0.052(w — 1) + 0.026(w — 1)?

Here, rp« = Mp+/Mpg, w(¢?) = (M% + M3. — ¢*)/2MpMp+ and z(w) =
V2)/(Vw+1+2).

The numerical values of the relevant parameters of the form factors along with their

(VoI -

respective 1o errors are given by
R;1(1) = 1.406 £+ 0.033, R2(1) = 0.853 + 0.020, pQD* = 1.207 £ 0.026[17]

ha, (1) = 0.906 + 0.013 [67]. (5.11)

In figure 2 we show the ¢ dependence of the form factors using these numerical values. As
there have been no lattice calculations of these form factors, in order to be conservative,

we use two times larger uncertainties than those quoted above.

6 Expressions for a?, bP and c? for B — Dt

The quantities a,P , bZD and c,? for positive helicity lepton are given by:

_2(Mp - Mp)”

ap (+) = Cswl*F3

(mp —me)?
4(M% — M127)2 4 Ux 2
+ m( [MR <CVLCSL) FO
2
2 (Mp — Mp)
q4

2

+my |CYLI’F3

- 11 -



8|pp|Mp (M3 — M3)
q2 (mb - mc)

s = R (ChuCle) For,

8lpp|Mp (M} — M3

—mj [ (q4 b= Mp) |CYLIFoF (6.2)

8|pp|° M}
cf (+) =mj [Byc L?F2 (6.3)

Their expressions for the negative helicity lepton are,
8M?3
P (o) = el o j2p2 (6.0
WP(—)=0 (6.5)
8MEpp|®

o (=)= 27!0 LI *F% (6.6)

Note that, the WCs Cf‘ 7, and Cf) ;, do not contribute to this decay. This is because the
corresponding QCD matrix elements vanish, as can be seen from egs. (4.2) and (4.4).

The lepton mass dependence of the various terms can also be understood easily. As
the vector operators do not change the chirality of the fermion line, because of the left
chiral nature of the neutrino, the outgoing (negatively charged) lepton also has negative
chirality (and hence negative helicity in the massless limit). Thus the production of a
left-handed lepton through the vector operator does not need a mass insertion. By a
similar argument, one can see that the production of a right-handed lepton through the
scalar operator does not need any mass insertion. The amplitude for the production of a
right-handed lepton through a vector operator, on the other hand, clearly requires a mass
insertion in order to flip the lepton helicity. This explains why the terms proportional to
|C{ 12 in egs. (6.1)-(6.3) have m? and the interference terms proportional to R (C§ C41)
have my in front, while there is no such dependence in egs. (6.4)—(6.6).

The full expressions for a? , bgD and ceD including all the operators in eq. (2.6) are shown
in appendix A.

7 Expressions for a?”, bP" and ¢P" for B — D*¢i,

The quantities ae bD and ch " for positive and negative helicitiy leptons are given by,

8M3 |pp- |
(Mp + Mp-~)?
8Mf§|pD* 4
M2, (Mg + Mp-)? ¢2
~ Alpp- [ M (MR — Mp. — ¢°)
M3.q?

(Mp + Mp-)* (8M3.q%> + \)
2M3.q?

* 2 2
al” (—) = ‘C%L‘ V24 ‘CQL‘ AZ

_|_

2
4 Q_Z
‘CAL‘ 2

G| (A1A2) (7.1)
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*

bP" (=) = —16lpp- MR (CYLChL) (VA1) (7.2)

* 8‘pD*|2M2 2 (MB+MD*)2>\ 2
Py S 3 O M2
(Mp + Mp+) D+q
SIPD*|4M§ Y4 2
(Mp + Mp+)" Mj.q
4pD* M2 (M2 — M%. — ¢
oI ](\42 L )‘CAL‘ (A1A2) (7.3)
D*
o (4) = Sloo M ‘c | A3
(mb—&—mC
16\pD*| MB Vi ¢ 2
— 77€<C cl )A
(mp + me) ¢? ALTPL 770
. 2 8 |pp«|? M2 2
2 8|pD ‘c ‘ AZ+ 125 s 2‘C€/L‘ v?2
(Mp + Mp+)“q
M M * 2
2(Mp + Mp (C L] A2 (7.4)
¢
* 4lpp+|Mp (Mp + Mp-) (M3 — M3. — ¢°) 0 i
by (+) =my Mo (5 + 1100) R(CALCPL) AoAq
16 lpp-|> M3, ¢ 0
_ R(C ch )A A
(mp +me) (Mp + Mp+) Mp+g? AL™PL j S20522
4p *M M +M * 2
+m2 [— Ipp-| Z(in D) (M3 — Mp. — ¢%) ‘CQL‘ AoAy
16|pp-[3 M3, ) L }
C ) AoA 7.5
(Mp + Mp-) Mp-gd | ~AL| 052 (7.5)
. 8 |pp+|* M? 2 (Mp + Mp)* A 2
D 2 B Y4 2 l 2
P4y =m2 |- }c }V ]c ’A
4 ( ) E[ (MB+MD*)2q2 VL 2M%*q4 AL 1
8’pD*|4Mé ? A2
M2, (Mg + Mp:)? 41 A8 72
D*( B+ D*) q
4’19D*\ M,
M2 B (Mg — M. — ¢ ’CAL’ (A1A2) (7.6)

The WC C’é 1, does not contribute to this decay because the corresponding QCD matrix
element vanishes as can be seen from eq. (5.3). The lepton mass dependence of the various
terms can be understood in the same way as the B — D/, decay. Note also the absence
of interference terms proportional to R (Cé LCf;*L) in the above expressions.

We provide the completely general result taking into account all the operators in
eq. (2.6) in appendix B.
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Figure 3. The dependence of Rp with respect to the variation of the WCs CY,; (left) and
C% (right).

8 Results

8.1 Explaining Rp alone

As mentioned in section 6, the B — D77, amplitude depends only on the WCs Cy; and
C%;- In figure 3, we show Rp as function of Cf,; and Cg;. In the right plot, we set
CY . to its SM value CY,;|sm = 1 and vary C§;, while in the left plot, we hold C%; fixed
at its SM value C%;|sm = 0 and change C7,;. The red and brown shades correspond to
the experimentally allowed 1o and 20 ranges (see table 1), for which we have added the
statistical and systematic uncertainties in quadrature.

The ranges of CY,; and Cg; that are consistent with Rp at 1o are shown in the second
row of table 4. The ranges for Cg; are slightly asymmetric about zero because of its
interference with CY,;. In the rows 3, 4 and 5-8, we also show the predictions for P-(D),
.A?B and Rp in four different bins for the allowed ranges of C7{,; and Cg;. Note that,
AL and the polarisation fraction P;(D) are independent of C7.; if CT; is set to zero.
This is because, in this case the differential decay rate is proportional to |CY, L|2 and hence,
the dependence on C7,; drops out in P-(D) and AEg. This is why the ranges for P, (D)
and AIQ p in the third and fourth columns are identical. The binwise Rp values are also
graphically represented in figure 4. The left and the right panels correspond to the WCs
(Y, and CF; respectively. The SM predictions are shown in red. One can conclude from
figure 4 that the binwise Rp does not help distinguish the two WCs C7,; and CF; .

The predictions for Pr(D), A? p are pictorially presented in the left and middle panel
of figure 5. As mentioned earlier, in the absence of C§;, P-(D) and AIQ p are completely
independent of CY,;. Hence, neither measurement can distinguish between Cj,; = 1 and
other values of CY,;. However, the predictions are very different for C'g;. Therefore, a
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C C
SM VL SL
(CsL =0) (CvL=1)
[~0.656, —0.342]
1o range of the WC [1.073, 1.222]
[0.296, 0.596]
P, (D) [0.313, 0.336] [0.313, 0.336] [0.408, 0.556]
[-0.168, —0.022]
AR [—0.361, —0.358] | [—0.361, —0.358]
[—0.450, —0.428]
[m2 — 5] GeV? [0.154, 0.158] [0.178, 0.236] [0.161, 0.181]
Rp [bin] [5— 7] GeV? [0.578, 0.593] [0.665, 0.888] [0.626, 0.752]
D 11
[7 — 9] GeV? [0.980, 1.003] [1.127, 1.505] [1.125, 1.502]
[9— (Mg — Mp)?] GeV? | [1.776, 1.823] [2.049, 2.741] [2.294, 3.669)

Table 4. The values of the WCs consistent with the 1o experimental range for Rp are shown in
the second row. The subsequent rows show the predictions for P, (D), AZQ 5 and Rp in four ¢? bins
for the WC ranges shown in the second row.

4t ‘ 4l
3r 3r
Q |, N e
o 2f o 2+ 1
—— ————y
1k L 1 —
0 ___\ - 1 1 1 07 ___\ - 1 1 1
4 6 8 10 4 6 8 10
q? (GeV) q? (GeV)

Figure 4. The binwise Rp for four ¢* bins. On the left, C7,; is varied, while on the right, CZ; is
varied within their 1o allowed ranges.

measurement of P(D) will tell us whether NP in the form of scalar operator (’)gbg exists or

not. Moreover, the two separate ranges of C'g; which satisfy the experimental bounds give
very different values of AP, indicated by the subscripts “+” and “-” in the middle figure.

In the right panel of figure 5, we also show the normalised differential decay width as a
function of ¢?. As for the case of P, (D) and AIQ - the normalised differential decay width is
independent of C7,; for C; = 0. The blue solid line is the SM prediction, and the black and
red dashed lines are the predictions for two representative values of C'g;, C5; = —0.650 and
0.310 respectively. While producing these plots, we have used the central values of the form
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Figure 5. Predictions for the polarisation fraction P, (D) (left), AR5 (middle) and the differential
decay width (right). The subscripts “+” and “-” in the middle figure correspond to the two ranges
of C%; that satisfy the experimental bounds of Rp. In the right graph showing the normalised
differential decay width, the solid blue line is the SM prediction. The dashed black and red lines
correspond to Cg

0.650 and 0.310 respectively. The data points shown on the right plot are
due to the BaBar collaboration and are taken from [21].
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Figure 6. The dependence of Rp+ with respect to the variation of the WCs C7,, (left), C%
(middle) and C%, (right). A thin vertical line shows the SM values of the WCs.

factors. The blue data points are from the BaBar measurement reported in [21]. It is clear
that the differential decay width is not a good discriminant of the various NP operators.

8.2 Explaining Rp~ alone

The B — D*r, decay amplitude depends on three WCs, Cyp,C%p and Cp . In figure 6,
we show Rp-+ as function of these WCs. In each of the plots, the WCs that are not varied
are all set to their SM values. The red and brown shades correspond to the experimentally
allowed lo and 20 ranges respectively (see table 1).

The ranges of C{,;,C%; and C%; that are consistent with the experimental value of

Rp-+ at 1o are shown in the second row of table 5. We only show the ranges that are closest

to the SM values of the WCs. In the rows 3, 4 and 5-8, we also show the predictions for

P.(D*), AR5 and Rp- in four different bins for these allowed ranges of C7,;,C%; and Cp;.
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SM CvL CaL CrL

CarLprL=-1,0 | CyrprL=10 | CypaL=1,-1

Range in WC [1.856, 2.560] | [~1.149, —1.073] | [0.890, 1.583]
P.(D¥) [—0.505, —0.490] | [~0.530, —0.509] | [~0.505, —0.488] | [~0.322, —0.144]
AP [0.050, 0.078] [0.191, 0.297] [0.028, 0.062] | [~0.078, —0.007]

[m2 — 5] GeV? [0.103, 0.105] [0.120, 0.140] [0.116, 0.132] [0.124, 0.148]

[5 — 7] GeV?2 [0.331, 0.336] [0.387, 0.457] [0.373, 0.425] [0.390, 0.465]

ﬁﬁf} [7 — 9] GeV? [0.475, 0.479] [0.535, 0.613] [0.535, 0.613] [0.534, 0.610]

[0~ (Mg — Mp-)2]GeV? | [0.554, 0.556] [0.577, 0.619] [0.621, 0.710] [0.571, 0.611]

Table 5. The values of the WCs consistent with the 1o experimental range for R}, are shown
in the second row. We only show the ranges that are closest to the SM values of the WCs. The
subsequent rows show the predictions for P.(D*), .AIQ*B and Rp- in four ¢? bins for the WC ranges
shown in the second row.

0.8f 0.8f 0.8F
0.7} 4, 07
0.6F FeiseiTIiiiiI o6f Tt ] 06} ERE
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Jost | 1 osf | 1oosp ] [ ]
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o 04f oo o 04 [T R
—— — ——
03} 0.3} 03
02 0.2} 02
0.1F====== ] 0.1F=====5 ] 0.4 [F—==="=
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
q° (GeV?) q° (GeV?) q* (GeV?)

Figure 7. The binwise R}, for four ¢* bins. On the left, C7,; is varied, in the middle C7; is
varied, annd on the right, C%; is varied within their 1o allowed ranges. The SM predictions are
shown in red.

The binwise Rp~ values are also plotted in figure 7. The left, middle and the right
panels correspond to the variation of WCs CY,;,C7%; and C%; respectively. The 1o and 20
experimental values are shown in red and brown respectively. It can be seen that Rp+ in
the last bin can be used to distinguish between C7{,; (or Cp;) and C7; .

The predictions for P.(D*) are pictorially presented in the left panel of figure 8. We do
not show the recent Belle measurements in this figure because the uncertainties are rather
large. Instead, we show a projection for Belle IT 20 ab=! (which is expected to be collected
by the end of 2021 [68]) assuming that the systematic uncertainty will go down by a factor
of two compared to that in the recent Belle measurement. It is then possible to distinguish
Cp; from the other WCs. The middle panel of figure 8 shows the predictions of .AIQ*B
pictorially. It can be seen that a measurement of AZQ*B can also potentially differentiate the
various operators. In the right panel of figure 8, we show the normalised differential decay
width as a function of ¢ for some representative values of the WCs from table 5. It can
be seen that the shape of the distribution does not change dramatically across the various
NP explanations of Rp«.

17 -



0.30F {'cal}
SM - ::::‘
i
C
SMm - 025 1OV
— \,77;\
Belle Il ] OPL
i —_— [
(20 ab™") 3 020 (v) 9= s
Cu —_— Q L N
Ny 0150 7/ R
C ot ° po N
VL 2 \“
CaL — 5 o10f ¥ )
C /
CaL - = o0.0sf
ChL — ]
0.00
cn - |
. . . . . -0.05
06 05 —04 03 02 ~01 0 01 02 03 4 5 6 7 8 9 10 1

P(D) AP a'(Gev
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1/20/0.71 ii) assuming the systematic uncertainty to go down by a factor of two, and adding them
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blue line is the SM prediction. The dashed black, red and brown lines correspond to C7; = —1.12,
Cy . =19 and Cp; = 1.5 respectively, where in each case every other WC is set to their SM values.
Note that the black dashed curve is indistinguishable from the SM curve. The data is due to a
BaBar measurement reported in [21].
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Figure 9. The predictions for P,(D*), Rp- in the last bin and AR, are shown in three different
planes for the ranges of the three WCs CY,;, C%; and C%; given in table 5. We remind the readers
that, we have inflated the uncertainties in the form factor parameters in eq. (5.11) by a factor of
two. Hence, the ranges of Pr(D*) and Rp+ shown here are rather conservative.

In figure 9, we show the predictions for P;(D*), Rp~ in the last bin and AP% in three
different planes for the three WCs CY,;, C7; and Cp; when their values are restricted to
the ranges shown in table 5. Interestingly, we find that each of the three pairs of observables
can potentially distinguish between the WCs unambiguously. Hence, the measurements of
these observables by the experimental collaborations ought to be very much on the cards
in their future runs.
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8.3 Explaining Rp and Rp+ together

We have seen from section 8.1 and 8.2 that while Rp gets contributions from Cf,; and
C3;, Rp+ is affected by CY,;, C7%; and Cp;. Therefore, in general, these two observables
are theoretically independent. In the basis of WCs defined by {CY{,;,C%,,C%;,Cph}, the
CY,, direction is the only direction that affects both. However, as can be seen from tables 4
and 5, the range of CY,; (i.e., [1.073, 1.222] ) that explains Rp within 1o is different from
the range ( i.e., [1.849, 2.648] ) that explains Rp- successfully within 1o. Thus Rp and
Rp« can not be explained simultaneously by invoking NP only of type CY,;. Figure 10
shows the allowed region in the Cj,; — C7; plane by the Rp and Rp+~ measurements. As
C7; does not contribute to the B — D7, decay, the allowed region for CY,; from Rp (the
red region) is independent of the value of C7;. On the other hand, both the WCs C7,; and
C7; contribute to the B — D*ri; decay and hence the values of these WCs allowed by
Rp+~ measurement are correlated. The overlap of the red and the green regions correspond
to Cf,; € [1.073,1.222] and C7; € [-1.144, —1.062].

Hence, a minimum value of C{,; = —C7; =~ 1.07 which translates to A(Cy—C19)~0.15
(i.e, 15% shift from the SM values) can explain both Rp and R}, successfully. This corre-
spond to the operator [¢v* Py, b][{v,Prv] with a coefficient g3;5/A? where A is given by
A= gy 2.25TeV.

The predictions for P,(D*), AP, and binwise Rp+ for the above ranges of Cyp, and
(7 are given in table 6.
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&% Pr (D) Rp- [bin]
€ [1.073, 1.222] | € [-0.507, -0.489] | [m2 —5]GeV2 | [5—7]GeV2 | [7—9]GeV2 | [9 — (Mp — Mp-)?] GeV?
ChL APy

€ [-1.144, -1.067] | € [0.055, 0.092]

[0.116, 0.131] | [0.373, 0.426] | [0.535, 0.609] [0.616, 0.706]

Table 6. Predictions for P.(D*), AIQ; and binwise Rp« for the values of WCs satisfying both the
observations simultaneously. The 1o range of the WCs is given in the first column.

9 Summary

In this paper we have performed a model independent analysis of the Rp and Rp~ anomalies
using dimension-6 operators that arise in a gauge invariant way. Among the four WCs CY,;,
Ch;, C%p and C%;, only Cf,; and Cg; contribute to Rp. On the other hand, Rp- gets
contributions from C7,;, C%; and Cp;. Thus, Cf,; is the only WC that affects both
(barring tensor operator that is discussed in appendix C) and hence, these two observables
are in general theoretically independent. In view of this, initially we studied the solutions
of Rp and Rp+ anomalies independent of each other. We obtained the ranges of the WCs
that are allowed by the Rp and R}, measurements at 1o. We also discussed the possibility
of simultaneous solutions of these two anomalies.

For the allowed ranges of the WCs, we computed the predictions for both Rp and
Rp- in four different ¢? bins, the forward-backward asymmetry, Ag? and the polarisation
fraction of the final state 7 lepton. We show that measuring the 7 polarisation in B —
D*77,. decays along with the value of Rp~ in the last ¢? bin can distinguish between the
three WCs which contribute to this process. This is graphically presented in figure 9.
Similarly, as seen in figure 5, the measurement of the 7 polarisation in B — D7, decay
can in principle be used to distinguish the two WCs CY,; and Cg;. Furthermore, we find
that the forward-backward asymmetry of the 7 lepton is also a powerful discriminant of
the various WCs (see figures 5 and 9). Unlike P-(D), it can even distinguish the sign of the
scalar operator for the B — D7, decay. We hope that the experimental collaborations
will take a note of this and make these measurements in near future.

Additionally, in the appendix we also provide the analytic expressions for the double
differential decay widths for individual 7 helicities taking into account all the 10 dimension-
6 operators listed out in section 2. To our knowledge, we are the first to provide the full
expressions in the literature.

Although we have not considered the tensor operator Opr, in the main text, we have
explored its effects on the Rp and R}, anomalies in appendix C. We have shown that there
exists a small range of Cpp, that is consistent with both the anomalies.

Acknowledgments

We thank Abhishek M. Iyer for collaboration in the very first stage of this work.

—90 —



A Full expressions for a, b} and ¢,

For the negative helicity of the lepton:
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CrL
€ [0.240, 0.796]
Crr

€ [-3.500, -3.052]

€ [~0.451, —0.404]

P.(D) Rp [bin]
€ 0.125, 0.254] | [m2 —5]GeV? | [5—7]GeV? | [T—9]GeV? | [9— (Mp — Mp)?] GeV?
APp
[0.178, 0.233] | [0.673, 0.907] | [1.135, 1.533] [1.989, 2.508]

Table 7. Predictions for P-(D), AR5 and binwise values of Rp for a range of C7., for which
Rp is experimentally satisfied within 1o. The range of the WCs is given in the first column. The
values in the subsequent columns are only for the range of C7; closest to the SM value of 0, viz.
the positive range.
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Figure 11. The left panel shows the dependence of Rp with respect to the variation of the WCs
CZ.; and the right panel shows the prediction for Rp in four different bins of ¢* from table 7.

C Contribution of the Tensor operator (’)i_zrb]f

C.1 B — DT,

In this section we investigate the effect of the tensor operator O%”f on the B — Dri,; decay.
In the first column of table 7, we show the range of C7; that explains Rp within 1o. In
the subsequent columns, we show the predictions of P, (D), AIQ g and binwise Rp for the
T, € [0.240, 0.796]). A comparison

with the left plot of figure 6 reveals that Pr(D) in this case is quite different from the

allowed range of C7; that is closest to zero (i.e.,

other cases and thus, can completely distinguish the tensor operator from the vector or
scalar operators. Similarly, AIQ p can also be used to distinguish the tensor from the vector
operator, however, there exists some degeneracy with the scalar operator.

The variation of Rp as a function of CF; is also shown in the left plot of figure 11.
The predictions for binwise Rp for the tensor operators are graphically presented in the
right plot of figure 11.
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Crr Pr(D7) Rp- [bin]
€ [[0.120, -0.058] | € [-0.481,-0.441] | [m2 —5]GeV? | [5—7]GeV2 | [T —9]GeV?2 | [9 — (Mp — Mp-)?] GeV?

T D*
CTL ‘AFB

€ [0.709, 0.834] | € [~0.016, 0.034]

[0.113, 0.129] | [0.368, 0.423] | [0.531, 0.610] [0.620, 0.715]

Table 8. Predictions for P,(D*), ARy and binwise values of Rp- for a range of CF.; for which
Rp-« is experimentally satisfied within 1o. The corresponding range of the WCs is given in the first
column. The values in the subsequent columns are only for the range of C'7; closest to the SM

value of 0, viz. the negative range.
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Figure 12. The left panel shows the dependence of Rp« with respect to the variation of the WCs
C7., and the right panel shows the prediction for Rp« in four different bins of ¢* from table 8.

C.2 B — D*rti,

The range of CF; that explains R}, within 1o is shown in the first column of table 8. The
resulting values for P.(D*), AZL and binwise R}, are shown in the subsequent columns.
In the left plot of figure 12 we also show the dependence of R}, as a function of C7;. The

right plot shows the binwise R}, graphically.
A quick look at the allowed ranges for Cry, in the B — D (table 7) and the B — D*
(table 8) cases shows that there is a region of overlap, around 0.7-0.8, which allows one to

explain both the anomalies simultaneously.

D SU(3)c X SU(2)r, x U(1)y gauge invariance

In table 9 we show how the WCs of the operators in this paper are related to the WCs of
the gauge invariant dimension 6 operators of [64]. We use the following set of notations:

o Greek letters u,v,--- are used to denote Lorentz indices.

e SU(2) fundamental indices are denoted by a,b,--- and I, J --- will be used to denote

adjoint indices.
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WCs in this work WCs in [64] Operator structure
it £ o, | PO 00
ACP™ = —ACTT | = (61D o] [ 5m 2]
- CEPI) 42007 Vil | [@2rra)] [Butd)
V2 ot o= ot [ =] VTGSV | 69Dl
o= g = é[VL‘”JaCéiQZf PVl (€3e3) (afu))
A I N/ 4 e (Bhes) (40}
ot = ot =] VORIV | (Bowes) e (20 u)

Table 9. Correspondence of our operators with those in reference [64]. The mixing of different
lepton flavours are ignored.

e To represent quark (lepton) flavors, we use 4, j,k--- (m,n---).

A tilde (e.g. C~) is used to denote high energy Wilson coefficients.

The notation for the operators is as given in [64].

definition of the quark mixing matrices (f and m denote flavour and mass bases)

ul = viup (D.1)
uly = ViU (D.2)
df = vidp (D.3)
df, = VEdp (D.4)

E RG running of Wilson coefficients

In this section, we note the renormalisation group (RG) running of the couplings and the

Wilson coefficients. The QCD coupling above the my, scale is given by ag5) and that above

the my; scale is given by ozg ). These are given by

5) _ s (my) a(G)( ) = s (my)
1 g ey () 14 g7 2o (&)

where B(()nf) =11 — %Tf
In order to calculate the running of the Wilson Coefficients to a high scale M, we need
to calculate the beta functions for the different operators - the scalar, vector and tensor

operators. The calculation is sketched below (for a good review on the subject, see [69]).

af (E.1)
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Figure 13. Vertex Correction and self energy diagrams.

Firstly, we need to consider the self-energy correction for the b or ¢ quarks (left diagram
in figure 13). This is given by

S) = [ gy PRI (i ) it

()" b+ k)2 —m2, k2
4 g asMp/e | 1 .

dropped

where p is the momentum of the incoming (or outgoing) quark.
From Feynman diagram on the right of figure 13, we find that the vertex correction in d
dimensions (d = 4 — 2¢) is given by

, ) dk /. a ] ) ) . ) 1

['Haa(p, p') :Z/(27r)d (zgwAT >p+J€Z— mefp’Jr%@—mc <ngv T”) (=0ab9ro) 15
o, Ak (p+ K+ me) F (Y + K+ me)

= 200) | ez (o + B+ 1) (7 + B2 + m2)

(E.3)

where C5(3) = % and F = 1,7, 0, for scalar, vector and tensor operators and p (p’) is the
on-shell momentum of the b (¢) quark. A few things are noteworthy and enlisted below:

e As the denominator has mass dimension 6, divergence will appear only when the
numerator is a function of loop momentum with mass dimension greater than and

equals to two.

e The general form of the numerator is

N = (Ff + K4 mp) F (p+ K +me) 7
= VWKFKy> + finite (E.4)

— For scalar
N = 4k* (E.5)
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— For vector

N = pEy i = =k + 2kundy = 2k, — 4k K
Using
1
/d4kk“k”f(k2) = 4g“”/d4kk2f(k:2)
we get,
N = k*y, (E.6)
— For tensor 1
N = 1powky =k 0wy =0 (E.7)

where we used the previous integral formula in the second step.

Putting this back and using Feynman parameterisation and neglecting quark masses,
we have the following formula

ddk 1
Fan £ [ [ 2 Mewsm?+0-0w+ 87

d
—zma/\/}"/ dg/dﬁ 1
(2 + A)?

where L=k +p+ (1 - ) —p) and A =((1 - —p)?
1
_zmas/\/}'/ ! 5 (i—i—ﬁnite)

= 2?8?3\[}' + finite (E.8)

where N' = 4,1,0 for F = 1,7*, 0" respectively. The bare effective Lagrangian to the

lowest power in derivatives is
L = ihodbo + CeoFboloF v (E.9)

where g is any bare quark or lepton field, C is the Wilson coefficient to the six-dimensional
operator and F, F' are Dirac operators.
We redefine the quantities in the bare Lagrangian as

o =\/Zy;  Co=p*ZC (E.10)
where 1 represents any quark field. The QCD contributions to the different quark fields
will be equal to each other. Then eq. (E.9) can then be written as

of = lZ¢¢ﬁ’l/J +C ZC 72 26 cFb Z./—",I/g
= iy + i(Zy — 1)¢ﬁw + Cu eFb LF v+ C (Ze 2] — 1) 1i*° eFb £F'vyy

Absorbing the divergences in eq. (E.2) and eq. (E.8) in the counter terms, we find that

4asl 8 ag 1
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Figure 14. Plot of the running of the Scalar (left) and Tensor (right) Wilson Coefficients. The
range of the running is from my to 2.5 TeV. As a demonstration, the range of the initial values used
are the ones mentioned in the text for B — D decay.

Using the RG equations, the S-function turns out to be

Be = —2¢C — Zﬂc ddic
1 das 1
=3 - eg T e
= —2%;(/\/_ 1)C (E.12)
Thus,
BS = —sj—;c, BY =0, and A = g %;c (E.13)

where the superscripts S, V and T on the 8 denote scalar, vector and tensor couplings.
The running of the Wilson Coefficients can be found by solving the S-function equation

given in eq. (E.13). Solving, we get,

: as(mo]wb [QSW)]?B?G) .
¢ == |5 " ¢ E.14
(mb) [as(mb) as(mt) ( ) ( )
Thus, the scalar and tensor WCs are given by:
[Nas(me) |57 [on(M) 555
A Qs(My) | 25 Qg 28 ~
Cs(M) = ’ ° C E.15
S( ) _|:Oé5(mb):| |:as(mt):| S(mb) ( )
B T yp 9 —1
s as(mt)]w@ [aS(M)}w@ .
Cr(M) = ’ 0 C E.16
T( ) _|:O‘s(mb) Oés(mt) T(mb) ( )
where .
Vs =8 =g (E.17)

. This is plotted in figure 14.

~—

which are simply the boldfaced coefficients in eq. (E.13
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