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Abstract: The measurement of RD (RD∗), the ratio of the branching fraction of

B → Dτν̄τ (B → D∗τ ν̄τ ) to that of B → Dlν̄l(B → D∗lν̄l), shows 1.9σ (3.3σ) deviation

from its Standard Model (SM) prediction. The combined deviation is at the level of 4σ

according to the Heavy Flavour Averaging Group (HFAG). In this paper, we perform an

effective field theory analysis (at the dimension 6 level) of these potential New Physics

(NP) signals assuming SU(3)C × SU(2)L ×U(1)Y gauge invariance. We first show that, in

general, RD and RD∗ are theoretically independent observables and hence, their theoretical

predictions are not correlated. We identify the operators that can explain the experimen-

tal measurements of RD and RD∗ individually and also together. Motivated by the recent

measurement of the τ polarisation in B → D∗τ ν̄τ decay, Pτ (D∗) by the Belle collabora-

tion, we study the impact of a more precise measurement of Pτ (D∗) (and a measurement of

Pτ (D)) on the various possible NP explanations. Furthermore, we show that the measure-

ment of RD∗ in bins of q2, the square of the invariant mass of the lepton-neutrino system,

along with the information on τ polarisation and the forward-backward asymmetry of the

τ lepton, can completely distinguish the various operator structures. We also provide the

full expressions of the double differential decay widths for the individual τ helicities in the

presence of all the 10 dimension-6 operators that can contribute to these decays.
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1 Introduction

In recent years, a number of experimental measurements involving B meson decays have

shown interesting deviations from their Standard Model (SM) expectations. Deviations

have been seen both in the neutral current b → s decays [1, 2]1 as well as the charged

current b → c processes. The most statistically significant deviation, at the 4σ level [17],

is seen in the combination of RD and RD∗ which are defined as,

RD(∗) =
B
(
B → D(∗)τ ν̄τ

)
B
(
B → D(∗)lν̄l

) , (1.1)

where l = e or µ. In table 1, we collect all the relevant experimental results related to the

B → D(∗)`ν` decay processes.

1For theoretical implications, see for example [3–16] and the references therein.
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List of Observables

Observable
Experimental Results

SM Prediction
Experiment Measured value

RD

Belle 0.375 ± 0.064 ± 0.026 [18] 0.299 ± 0.011 [19]

BaBar 0.440 ± 0.058 ± 0.042 [20, 21] 0.300 ± 0.008 [22]

HFAG average 0.397 ± 0.040 ± 0.028 [17]
0.299± 0.003 [23]

0.300± 0.011

RD∗

Belle 0.293 ± 0.038 ± 0.015 [18]

0.252 ± 0.003 [24]

Belle 0.302 ± 0.030 ± 0.011 [25]

BaBar 0.332 ± 0.024 ± 0.018 [20, 21]

LHCb 0.336 ± 0.027 ± 0.030 [26]

HFAG average 0.316 ± 0.016 ± 0.010 [17] 0.254± 0.004

Belle 0.276 ± 0.034 +0.029
−0.026 [27]

Our average 0.310± 0.017

B
(
B → Dτν̄τ

)
BaBar 1.02 ± 0.13 ± 0.11 % [20] 0.633± 0.014 %

B
(
B → D∗τ ν̄τ

)
BaBar 1.76 ± 0.13 ± 0.12 % [20] 1.28± 0.09 %

B
(
B → Dlν̄l

)
HFAG average 2.13 ± 0.03 ± 0.09 % [17] 2.11+0.12

−0.10 %

B
(
B → D∗lν̄l

)
HFAG average 4.93 ± 0.01 ± 0.11 % [17] 5.04+0.44

−0.42%

Pτ
(
B → Dτν̄τ

) 0.325± 0.009 [28]

0.325± 0.012

Pτ
(
B → D∗τ ν̄τ

)
Belle −0.44 ± 0.47 +0.20

−0.17 [27]
−0.497± 0.013 [27, 29]

−0.497± 0.008

ADFB −0.360+0.002
−0.001

AD∗FB 0.064± 0.014

Table 1. The relevant observables, their experimental measurements and the SM predictions are

shown. While computing the branching ratios, we have used Vcb = 0.04. As HFAG has not yet

included the latest Belle measurement of RD∗ in their global average, we have taken a naive weighted

average of the latest Belle result and the average given by HFAG. However, since the recent Belle

result has a large uncertainty, it does not affect the previous world average in any significant way.

The values given in boldface are our results for the SM predictions. Note that, for the B → D∗`ν̄`
SM predictions, the uncertainties correspond to 2σ uncertainties in the form factor parameters, see

section 5 for more details.

Note that, we have used the notation ` to denote any lepton (e, µ or τ) and l to denote

only the light leptons, e and µ.

The large statistical significance of the anomaly in RD and RD∗ has spurred a lot of

interest in this decay modes in the last few years [24, 29–63] and various possible theoretical

explanations have been proposed.

The main purpose of this work is to identify observables which can help distinguish

the different NP Lorentz structures that can potentially solve the RD and RD∗ anomalies.

We first perform an operator analysis of these potential NP signals by considering all the

dimension-6 operators that are consistent with SM gauge invariance. We compute the val-
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ues of the relevant Wilson coefficients (WCs) that explain the experimental measurements

within their 1σ ranges. It is important to note that we consider the presence of NP only in

the tau-channel and not for the electron or the muon channels. Thus, in our calculations

of RD and RD∗ , we use the SM values of the WCs in the denominator. For these values

of the WCs, we compute the predictions for a few observables that have the potential to

distinguish between the various NP operators. Although we provide numerical results only

for the operators that are consistent with SM gauge invariance, we provide the analytical

expressions for the double differential decay rates for the individual τ helicities for all the

10 independent dimension-6 operators contributing to these decays. To our knowledge, we

are the first in the literature to provide the full expressions.

As we show later, RD and RD∗ are in general theoretically independent observables

and the anomalies can exist independently. A future measurement might reveal a greater

anomaly in one of them without affecting the other. Hence, in this paper, we attempt to

explain each without worrying about the other initially, but then also point out how both

can be explained together.

Very recently, the Belle collaboration reported the first measurement of the

τ -polarisation in the decay B → D∗τ ν̄τ [27]. While the uncertainty in this measurement is

rather large now, motivated by the possibility of more precise measurements in the future,

we investigate how such a measurement can distinguish the various NP explanations of

RD and RD∗ . Furthermore, we show that measurements of RD∗ in bins of q2 can provide

important information about the nature of short distance physics. In fact, a combination

of binwise RD∗ and more precise measurements (that can be done in Belle II, for example)

of τ polarisation in both the B → Dτν̄τ and B → D∗τ ν̄τ decays can completely distinguish

all the different NP operators. Moreover, we show that the forward-backward asymmetry

of the τ lepton (in the τ -ντ rest frame) also has the potential to differentiate the various

NP Lorentz structures.

The paper is organised as follows: in section 2 we write down all the operators relevant

for this study and define the notations for the corresponding WCs. The various observables

of our interest are defined in section 3. The sections 4 and 5 discuss the form factors

required for the calculation of the decay amplitudes. The analytic expressions for the

double differential decay widths for the individual lepton helicities are shown in sections 6

and 7. In the following section (section 8), we present all our numerical results. Finally,

we summarise our findings in section 9.

The full expressions for the double differential decay widths are shown in the appen-

dices A and B, and the contribution of the tensor operator OTL is discussed in appendix C.

In appendix D, we show how our operators are related to the dimension-6 operators of [64].

The renormalisation group equations for the WCs are computed in appendix E.

2 Operator basis

The effective Lagrangian for the b→ c ` ν̄ process at the dimension 6 level is given by,

Lb→c ` νeff =
2GFVcb√

2

(
Ccb`9 Ocb`9 + Ccb`

′
9 Ocb` ′9 + Ccb`10 Ocb`10 + Ccb`

′
10 Ocb`

′
10 + Ccb`s Ocb`s + Ccb`

′
s Ocb` ′s

+ Ccb`p Ocb`p + Ccb`
′

p Ocb` ′p + Ccb`T Ocb`T + Ccb`T5 Ocb`T5

)
(2.1)
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where Ocb`i constitute a complete basis of 6-dimensional operators and Ccb`i are the cor-

responding Wilson coefficients defined at the renormalization scale µ = mb. In the SM,

Ccb`9 = −Ccb`10 = 1 and all the other WCs vanish. The full set of operators is given by:

Ocb`9 = [c̄ γµ PL b][¯̀γµ ν]

Ocb`10 = [c̄ γµ PL b][¯̀γµγ5 ν]

Ocb`s = [c̄PL b][¯̀ν]

Ocb`p = [c̄PL b][[¯̀γ5 ν]

Ocb`T = [c̄ σµν b][¯̀σµν ν]

Ocb` ′9 = [c̄ γµ PR b][¯̀γµ ν]

Ocb` ′10 = [c̄ γµ PR b][¯̀γµγ5 ν]

Ocb` ′s = [c̄PR b][¯̀ν] (2.2)

Ocb` ′p = [c̄PR b][[¯̀γ5 ν]

Ocb`T5 = [c̄ σµν b][¯̀σµνγ5 ν]

The other possible tensor structures are related to Ocb`T and Ocb`T5 in the following way,

εµναβ [c̄ σµν b][¯̀σαβ ν] = −2iOcb`T5 (2.3)

[c̄ σµνγ5 b][¯̀σµνγ5 ν] = Ocb`T (2.4)

[c̄ σµνγ5 b][¯̀σµν ν] = Ocb`T5 . (2.5)

Note that the above basis of operators is different from the one used in some earlier

literature [31, 36]. For example, the reference [31] uses the following set of operators,

Ocb`VL = [c̄ γµ b][¯̀γµ PL ν]

Ocb`AL = [c̄ γµ γ5 b][¯̀γµ PL ν]

Ocb`SL = [c̄ b][¯̀PL ν]

Ocb`PL = [c̄ γ5 b][[¯̀PL ν]

Ocb`TL = [c̄ σµν b][¯̀σµν PL ν]

Ocb`VR = [c̄ γµ b][¯̀γµ PR ν]

Ocb`AR = [c̄ γµ γ5 b][¯̀γµ PR ν]

Ocb`SR = [c̄ b][¯̀PR ν] (2.6)

Ocb`PR = [c̄ γ5 b][[¯̀PR ν]

Ocb`TR = [c̄ σµν b][¯̀σµν PR ν]

The Wilson coefficients of these two basis of operators are related through the following

equations,

Ccb`VL =
1

2

(
Ccb`9 −Ccb`10 +Ccb`

′
9 −Ccb` ′10

)
Ccb`AL =

1

2

(
−Ccb`9 +Ccb`10 +Ccb`

′
9 −Ccb` ′10

) Ccb`SR =
1

2

(
Ccb`s +Ccb`p +Ccb`

′
s +Ccb`

′
p

)
Ccb`PR =

1

2

(
−Ccb`s −Ccb`p +Ccb`

′
s +Ccb`

′
p

)
(2.7)

Ccb`SL =
1

2

(
Ccb`s −Ccb`p +Ccb`

′
s −Ccb` ′p

)
Ccb`PL =

1

2

(
−Ccb`s +Ccb`p +Ccb`

′
s −Ccb` ′p

)
Ccb`TL =

(
Ccb`T − Ccb`T5

)
Ccb`VR =

1

2

(
Ccb`9 +Ccb`10 +Ccb`

′
9 +Ccb`

′
10

)
Ccb`AR =

1

2

(
−Ccb`9 −Ccb`10 +Ccb`

′
9 +Ccb`

′
10

)
Ccb`TR =

(
Ccb`T + Ccb`T5

)
(2.8)
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We now assume the neutrino in the final state to be left handed. This implies that the

WCs in eq. (2.1) satisfy the following relations,

Ccb`9 = −Ccb`10 (2.9)

Ccb`
′

9 = −Ccb` ′10 (2.10)

Ccb`s = −Ccb`p (2.11)

Ccb`
′

s = −Ccb` ′p (2.12)

Ccb`T = −Ccb`T5 . (2.13)

Consequently, all the WCs in the right hand column of eq. (2.8) vanish. Note that, the

operators on the left hand column of eq. (2.8) are the only ones that are consistent with

the full gauge invariance of the SM. In appendix D, we show how these WCs are related

to the 6-dimensional operators listed in [64]. Moreover, since many microscopic models do

not generate the tensor operator, we neglect them in the main text and study its effect

only in the appendix (see appendix C).

Although, we do not study the effects of the operators with a right handed neutrino

(the ones in the right hand column of eq. (2.8)), we compute the full analytic expressions

considering all the 10 operators for the first time in the literature. The results are presented

in appendices A and B.

3 Observables

The double differential branching fractions for the decays B → D`ν̄` and B → D∗`ν̄` can

be written as

d2BD(∗)
`

dq2 d(cos θ)
= N |pD(∗) |

(
aD

(∗)
` + bD

(∗)
` cos θ + cD

(∗)
` cos2 θ

)
. (3.1)

The normalisation factor, N and the absolute value of the D(∗)-meson momentum, |pD(∗) |
are given by,

N =
τB G

2
F |Vcb|2q2

256π3M2
B

(
1−

m2
`

q2

)2

(3.2)

|pD(∗) | =

√
λ(M2

B,M
2
D(∗) , q

2)

2MB
, (3.3)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca). The angle θ is defined as the angle

between the lepton and D(∗)-meson in the lepton-neutrino centre-of-mass frame, and q2 is

the invariant mass squared of the lepton-neutrino system.

The total branching fraction is given by,

BD(∗)
` =

∫
N |pD(∗) |

(
2aD

(∗)
` +

2

3
cD

(∗)
`

)
dq2 (3.4)

– 5 –
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The observables RD and RD∗ have already been defined in eq. (1.1). We now define

binned RD(∗) in the following way,

RD(∗) [q2 bin] =
BD(∗)
τ [q2 bin]

BD(∗)
l [q2 bin]

(3.5)

For the decays with τ lepton in the final state, the polarisation of the τ also constitutes

an useful observable and can potentially be used to distinguish the NP Lorentz structures.

The τ polarisation fraction is defined in the following way,

Pτ (D(∗)) =
ΓD

(∗)
τ (+)− ΓD

(∗)
τ (−)

ΓD
(∗)

τ (+) + ΓD
(∗)

τ (−)
(3.6)

where, ΓD
(∗)

τ (+) and ΓD
(∗)

τ (−) are the decay widths for positive and negative helicity τ

leptons respectively.

The τ forward-backward asymmetry, AD
(∗)

FB is defined as

AD(∗)
FB =

∫ π/2
0

dΓD
(∗)

dθ dθ −
∫ π
π/2

dΓD
(∗)

dθ dθ∫ π/2
0

dΓD
(∗)

dθ dθ +
∫ π
π/2

dΓD
(∗)

dθ dθ

=

∫
bD

(∗)
τ (q2)dq2

ΓD
(∗) (3.7)

where ΓD
(∗)

is the total decay width of D(∗) and the angle θ has already been defined

above. Note that, while the branching fractions depend on the functions aD
(∗)

` and cD
(∗)

` , the

forward-backward asymmetry depends only on bD
(∗)

` . Hence, they provide complementary

information on the nature of the short distance physics.

4 B̄ → D form factors

The hadronic matrix elements for B̄ → D transition are parametrised by2

〈D(pD,MD)|c̄γµb|B̄(pB,MB)〉 = F+(q2)

[
(pB + pD)µ −

M2
B −M2

D

q2
qµ
]

+ F0(q2)
M2
B −M2

D

q2
qµ (4.1)

〈D(pD,MD)|c̄γµγ5b|B̄(pB,MB)〉 = 0 (4.2)

〈D(pD,MD)|c̄b|B̄(pB,MB)〉 = F0(q2)
M2
B −M2

D

mb −mc
(4.3)

〈D(pD,MD)|c̄γ5b|B̄(pB,MB)〉 = 0 (4.4)

〈D(pD,MD)|c̄σµνb|B̄(pB,MB)〉 = −i(pµBp
ν
D − pνBp

µ
D)

2FT (q2)

MB +MD
(4.5)

〈D(pD,MD)|c̄σµνγ5b|B̄(pB,MB)〉 = εµνρσpBρpDσ
2FT (q2)

MB +MD
(4.6)

2We use the convention ε0123 = 1. This implies ε0123 = −1.
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Note that eq. (4.3) and eq. (4.6) are not independent equations and follow from eq. (4.1)

and eq. (4.5) respectively. Multiplying the left hand side of eq. (4.1) by qµ one gets

qµ〈D(pD,mD)|c̄γµb|B̄(pB,MB)〉 = Inverse Fourier transform of 〈D|i∂µ(c̄γµb)|B〉
= Inverse Fourier transform of 〈D|(i∂µc̄γµb+c̄γµi∂µb)|B〉
= (mb −mc)〈D(pD,MD)|c̄b|B̄(pB,MB)〉 (4.7)

Similarly, the term proportional to F+ in the right hand side of eq. (4.1) vanishes upon

multiplication by qµ and gives

r.h.s. = F0(q2)(M2
B −M2

D). (4.8)

Thus, eq. (4.7) and eq. (4.8) taken together give us eq. (4.3).

In order to get eq. (4.6) from eq. (4.5) one has to use the identity,

σµνγ5 =
i

2
εµναβσαβ . (4.9)

Substituting the above identity into the left hand side of eq. (4.6) one gets,

〈D(pD,MD)|c̄σµνγ5b|B̄(pB,MB)〉 =
i

2
εµναβ〈D(pD,MD)|c̄σαβb|B̄(pB,MB)〉 (4.10)

=
i

2
εµναβ

(
−i(pBαpDβ−pBβpDα)

2FT (q2)

MB +MD

)
(4.11)

= εµναβpBαpDβ
2FT (q2)

MB +MD
(4.12)

The form factors F0(q2) and F+(q2) have been calculated using lattice QCD techniques

in [19].3 They are given by the following expressions,

F+(z) =
1

φ+(z)

3∑
k=0

a+
k z

k , (4.13)

F0(z) =
1

φ0(z)

3∑
k=0

a0
k z

k , (4.14)

where

z ≡ z(q2) =

√
(MB +MD)2 − q2 −

√
4MBMD√

(MB +MD)2 − q2 +
√

4MBMD

.

3There has been another Lattice calculation of these form factors with similar results [22].
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Figure 1. The q2 dependence of the form factors F0, F+ and FT . The uncertainty bands

for F0 and F+ correspond to a χ2 ≤ 1.646 where the χ2 is computed using the expression

χ2(x) = (x− x0)
T

V−1 (x− x0) where x = (a+0 , a
+
1 , a

+
2 , a

+
3 , a

0
0, a

0
1, a

0
2, a

0
3) and x0 consists of the

central values given in table 2. The covariance matrix V is computed from the correlation matrix

ρij given in table 3 using the formula Vij = σi(x)ρijσj(x) where σ(x) is the vector of uncertainties

given in tables 2. The uncertainty band for FT is obtained by simply taking a ±10% uncertainty

on the central value.

The functions φ+(z) and φ0(z) are given by,

φ+(z) = 1.1213
(1 + z)2(1− z)1/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

5 , (4.15)

φ0(z) = 0.5299
(1 + z)(1− z)3/2

[(1 + r)(1− z) + 2
√
r(1 + z)]

4 , (4.16)

where, r = MD/MB.

The central values, uncertainties, and correlation matrix for the parameters a0
k and a+

k

are shown in tables 2 and 3.

As the tensor form factor FT has not been computed from lattice QCD, we have taken

them from [65]. Following [65], we write FT (q2) as,

FT (q2) =
0.69(

1− q2

(6.4GeV)2

)(
1− 0.56 q2

(6.4GeV)2

) . (4.17)

In figure 1, we show the q2 dependences of F0, F+ and FT following the above expressions.
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a+
0 a+

1 a+
2 a+

3 a0
0 a0

1 a0
2 a0

3

Values 0.01261 −0.0963 0.37 −0.05 0.01140 −0.0590 0.19 −0.03

Uncertainties 0.00010 0.0033 0.11 0.90 0.00009 0.0028 0.10 0.87

Table 2. The central values and uncertainties for the parameters a0k and a+k from ref. [19] (table

XI of their arXiv version 1).

a+
0 a+

1 a+
2 a+

3 a0
0 a0

1 a0
2 a0

3

a+
0 1.00000 0.24419 −0.08658 0.01207 0.00000 0.23370 0.03838 −0.05639

a+
1 1.00000 −0.57339 0.25749 0.00000 0.80558 −0.25493 −0.15014

a+
2 1.00000 −0.64492 0.00000 −0.44966 0.66213 0.05120

a+
3 1.00000 0.00000 0.11311 −0.20100 0.23714

a0
0 1.00000 0.00000 0.00000 0.00000

a0
1 1.00000 −0.44352 0.02485

a0
2 1.00000 −0.46248

a0
3 1.00000

Table 3. The correlation matrix for the parameters a0k and a+k from ref. [19] (table XI of their

arXiv version 1).

5 B̄ → D∗ form factors

The hadronic matrix elements for B̄ → D∗ transition are parametrised by

〈D∗(pD∗ ,MD∗)|c̄γµb|B̄(pB,MB)〉 = iεµνρσε
ν∗pρBp

σ
D∗

2V (q2)

MB +MD∗
(5.1)

〈D∗(pD∗,MD∗)|c̄γµγ5b|B̄(pB,MB)〉 = 2MD∗
ε∗.q

q2
qµA0(q2)+(MB+MD∗)

[
ε∗µ−

ε∗.q

q2
qµ

]
A1(q2)

− ε∗.q

MB+MD∗

[
(pB+pD∗)µ−

M2
B−M2

D∗

q2
qµ

]
A2(q2)

(5.2)

〈D∗(pD∗ ,MD∗)|c̄b|B̄(pB,MB)〉 = 0 (5.3)

〈D∗(pD∗ ,MD∗)|c̄γ5b|B̄(pB,MB)〉 = −ε∗.q 2MD∗

mb +mc
A0(q2) (5.4)

〈D∗(pD∗ ,MD∗)|c̄σµνb|B̄(pB,MB)〉 = −εµναβ
[
− εα∗(pD∗ + pB)βT1(q2)

+
M2
B −M2

D∗

q2
ε∗αqβ

(
T1(q2)− T2(q2)

)
(5.5)

+ 2
ε∗.q

q2
pαBp

β
D∗

(
T1(q2)−T2(q2)− q2

M2
B−M2

D∗
T3(q2)

)]
〈D∗(pD∗,MD∗)|c̄σµνqνb|B̄(pB,MB)〉 = −2εµνρσε

∗νpρBp
σ
D∗T1(q2) (5.6)
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None of the form factors V,A0, A1, A2, T1, T2, T3 has been calculated in Lattice QCD.

We used the heavy quark effective theory (HQET) form factors based on [66]. These form

factors can be written in terms of the HQET form factors in the following way [36, 66],

V (q2) =
MB +MD∗

2
√
MBMD∗

hV (w(q2)) ,

A1(q2) =
(MB +MD∗)

2 − q2

2
√
MBMD∗(MB +MD∗)

hA1(w(q2))

A2(q2) =
MB +MD∗

2
√
MBMD∗

[
hA3(w(q2)) +

MD∗

MB
hA2(w(q2))

]
A0(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

2MD∗
hA1(w(q2))

−
M2
B −M2

D∗ + q2

2MB
hA2(w(q2))−

M2
B −M2

D∗ − q2

2MD∗
hA3(w(q2))

]
T1(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)hT1(w(q2))− (MB −MD∗)hT2(w(q2))

]
T2(q2) =

1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

MB +MD∗
hT1(w(q2))

−(MB −MD∗)
2 − q2

MB −MD∗
hT2(w(q2))

]
T3(q2) =

1

2
√
MBMD∗

[
(MB −MD∗)hT1(w(q2))− (MB +MD∗)hT2(w(q2))

−2
M2
B −M2

D∗

MB
hT3(w(q2))

]
,

(5.7)

where,

hV (w) = R1(w)hA1(w)

hA2(w) =
R2(w)−R3(w)

2 rD∗
hA1(w)

hA3(w) =
R2(w) +R3(w)

2
hA1(w)

hT1(w) =
1

2(1 + r2
D∗ − 2rD∗w)

[
mb −mc

MB −MD∗
(1− rD∗)2(w + 1)hA1(w)

− mb +mc

MB +MD∗
(1 + rD∗)

2(w − 1)hV (w)

]
hT2(w) =

(1− r2
D∗)(w + 1)

2(1 + r2
D∗ − 2rD∗w)

[
mb −mc

MB −MD∗
hA1(w)− mb +mc

MB +MD∗
hV (w)

]

(5.8)

hT3(w) = − 1

2(1 + rD∗)(1 + r2
D∗ − 2rD∗w)

[
2
mb −mc

MB −MD∗
rD∗(w + 1)hA1(w)

− mb −mc

MB −MD∗
(1 + r2

D∗ − 2rD∗w)(hA3(w)− rD∗hA2(w))

− mb +mc

MB +MD∗
(1 + rD∗)

2 hV (w)

] (5.9)
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J
H
E
P
0
1
(
2
0
1
7
)
1
2
5

0 2 4 6 8 10 12

0.4

0.6

0.8

1.0

1.2

1.4

1.6

q2(GeV2)

F
o
rm

F
a
c
to
rs

V

A0

A1

A2

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

1.0

1.2

q2(GeV2)

F
o
rm

F
a
c
to
rs

T1

T2

T3

Figure 2. The q2 dependence of the B → D∗ form factors. The bands correspond to two times

the uncertainties given in eq. (5.11).

hA1(w) = hA1(1)[1− 8ρ2
D∗z + (53ρ2

D∗ − 15)z2 − (231ρ2
D∗ − 91)z3]

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2

R3(w) = 1.22− 0.052(w − 1) + 0.026(w − 1)2

(5.10)

Here, rD∗ = MD∗/MB, w(q2) = (M2
B + M2

D∗ − q2)/2MBMD∗ and z(w) = (
√
w + 1 −√

2)/(
√
w + 1 +

√
2).

The numerical values of the relevant parameters of the form factors along with their

respective 1σ errors are given by

R1(1) = 1.406± 0.033, R2(1) = 0.853± 0.020, ρ2
D∗ = 1.207± 0.026[17]

hA1(1) = 0.906± 0.013 [67] . (5.11)

In figure 2 we show the q2 dependence of the form factors using these numerical values. As

there have been no lattice calculations of these form factors, in order to be conservative,

we use two times larger uncertainties than those quoted above.

6 Expressions for aD` , bD` and cD` for B → D`ν̄`

The quantities aD` , bD` and cD` for positive helicity lepton are given by:

aD` (+) =
2
(
M2
B −M2

D

)2
(mb −mc) 2

|C`
SL|2F2

0

+m`

[
4(M2

B −M2
D)2

q2 (mb −mc)
R
(
C`

VLC`∗
SL

)
F2
0

]
+m2

`

[
2
(
M2
B −M2

D

)2
q4

|C`
VL|2F2

0

]
(6.1)
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bD` (+) = −m`

[
8|pD|MB

(
M2
B −M2

D

)
q2 (mb −mc)

R
(
C`

SLC`∗
VL

)
F0F+

]

−m2
`

[
8|pD|MB

(
M2
B −M2

D

)
q4

|C`
VL|2F0F+

]
(6.2)

cD` (+) = m2
`

[
8|pD|2M2

B

q4
|C`

VL|2F2
+

]
(6.3)

Their expressions for the negative helicity lepton are,

aD` (−) =
8M2

B|pD|2

q2
|C`

VL|2F2
+ (6.4)

bD` (−) = 0 (6.5)

cD` (−) = −
8M2

B|pD|
2

q2
|C`

VL|2F2
+ (6.6)

Note that, the WCs C`AL and C`PL do not contribute to this decay. This is because the

corresponding QCD matrix elements vanish, as can be seen from eqs. (4.2) and (4.4).

The lepton mass dependence of the various terms can also be understood easily. As

the vector operators do not change the chirality of the fermion line, because of the left

chiral nature of the neutrino, the outgoing (negatively charged) lepton also has negative

chirality (and hence negative helicity in the massless limit). Thus the production of a

left-handed lepton through the vector operator does not need a mass insertion. By a

similar argument, one can see that the production of a right-handed lepton through the

scalar operator does not need any mass insertion. The amplitude for the production of a

right-handed lepton through a vector operator, on the other hand, clearly requires a mass

insertion in order to flip the lepton helicity. This explains why the terms proportional to

|C`V L|2 in eqs. (6.1)–(6.3) have m2
` and the interference terms proportional to R

(
C`SLC

`∗
VL

)
have m` in front, while there is no such dependence in eqs. (6.4)–(6.6).

The full expressions for aD` , bD` and cD` including all the operators in eq. (2.6) are shown

in appendix A.

7 Expressions for aD
∗

` , bD
∗

` and cD
∗

` for B → D∗`ν̄`

The quantities aD
∗

` , bD
∗

` and cD
∗

` for positive and negative helicitiy leptons are given by,

aD
∗

` (−) =
8M2

B |pD∗ |
2

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 +
(MB +MD∗)

2 (8M2
D∗q

2 + λ)

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

+
8M4

B|pD∗ |4

M2
D∗ (MB +MD∗)

2 q2

∣∣∣C`
AL

∣∣∣2 A2
2

−
4 |pD∗ |2M2

B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 (A1A2) (7.1)
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bD
∗

` (−) = −16|pD∗ |MBR
(
C`

VLC`∗
AL

)
(VA1) (7.2)

cD
∗

` (−) =
8 |pD∗ |2M2

B

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 − (MB +MD∗)
2 λ

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

−
8|pD∗ |4M4

B

(MB +MD∗)
2M2

D∗q
2

∣∣∣C`
AL

∣∣∣2 A2
2

+
4 |pD∗ |2M2

B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 (A1A2) (7.3)

aD
∗

` (+) =
8 |pD∗ |2M2

B

(mb +mc)
2

∣∣∣C`
PL

∣∣∣2 A2
0

−m`

[
16 |pD∗ |2M2

B

(mb +mc) q2
R
(
C`

ALC`∗
PL

)
A2

0

]

+m2
`

[
8 |pD∗ |2M2

B

q4

∣∣∣C`
AL

∣∣∣2 A2
0 +

8 |pD∗ |2M2
B

(MB +MD∗)
2 q2

∣∣∣C`
VL

∣∣∣2 V2

+
2 (MB +MD∗)

2

q2

∣∣∣C`
AL

∣∣∣2 A2
1

]
(7.4)

bD
∗

` (+) = m`

[
4|pD∗ |MB (MB +MD∗)

(
M2
B −M2

D∗ − q2
)

MD∗ (mb +mc) q2
R
(
C`

ALC`∗
PL

)
A0A1

− 16

(mb +mc)

|pD∗ |3M3
B

(MB +MD∗)MD∗q2
R
(
C`

ALC`∗
PL

)
A0A2

]

+m2
`

[
−4|pD∗ |MB (MB +MD∗)

MD∗q4

(
M2
B −M2

D∗ − q2
) ∣∣∣C`

AL

∣∣∣2 A0A1

+
16|pD∗ |3M3

B

(MB +MD∗)MD∗q4

∣∣∣C`
AL

∣∣∣2 A0A2

]
(7.5)

cD
∗

` (+) = m2
`

[
−

8 |pD∗ |2M2
B

(MB +MD∗)
2 q2

∣∣∣C`
VL

∣∣∣2 V2 +
(MB +MD∗)

2 λ

2M2
D∗q

4

∣∣∣C`
AL

∣∣∣2 A2
1

+
8|pD∗ |4M4

B

M2
D∗ (MB +MD∗)

2 q4

∣∣∣C`
AL

∣∣∣2 A2
2

−
4 |pD∗ |2M2

B

M2
D∗q

4

(
M2
B −M2

D∗ − q2
) ∣∣∣C`

AL

∣∣∣2 (A1A2)

]
(7.6)

The WC C`SL does not contribute to this decay because the corresponding QCD matrix

element vanishes as can be seen from eq. (5.3). The lepton mass dependence of the various

terms can be understood in the same way as the B → D`ν̄` decay. Note also the absence

of interference terms proportional to R
(
C`V LC

`∗
PL

)
in the above expressions.

We provide the completely general result taking into account all the operators in

eq. (2.6) in appendix B.
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Figure 3. The dependence of RD with respect to the variation of the WCs CτV L (left) and

CτSL (right).

8 Results

8.1 Explaining RD alone

As mentioned in section 6, the B → Dτν̄τ amplitude depends only on the WCs CτV L and

CτSL. In figure 3, we show RD as function of CτV L and CτSL. In the right plot, we set

CτV L to its SM value CτV L|SM = 1 and vary CτSL, while in the left plot, we hold CτSL fixed

at its SM value CτSL|SM = 0 and change CτV L. The red and brown shades correspond to

the experimentally allowed 1σ and 2σ ranges (see table 1), for which we have added the

statistical and systematic uncertainties in quadrature.

The ranges of CτV L and CτSL that are consistent with RD at 1σ are shown in the second

row of table 4. The ranges for CτSL are slightly asymmetric about zero because of its

interference with CτV L. In the rows 3, 4 and 5-8, we also show the predictions for Pτ (D),

ADFB and RD in four different bins for the allowed ranges of CτV L and CτSL. Note that,

ADFB and the polarisation fraction Pτ (D) are independent of CτV L if CτSL is set to zero.

This is because, in this case the differential decay rate is proportional to |CτV L|2 and hence,

the dependence on CτV L drops out in Pτ (D) and ADFB. This is why the ranges for Pτ (D)

and ADFB in the third and fourth columns are identical. The binwise RD values are also

graphically represented in figure 4. The left and the right panels correspond to the WCs

CτV L and CτSL respectively. The SM predictions are shown in red. One can conclude from

figure 4 that the binwise RD does not help distinguish the two WCs CτV L and CτSL.

The predictions for Pτ (D), ADFB are pictorially presented in the left and middle panel

of figure 5. As mentioned earlier, in the absence of CτSL, Pτ (D) and ADFB are completely

independent of CτV L. Hence, neither measurement can distinguish between CτV L = 1 and

other values of CτV L. However, the predictions are very different for CτSL. Therefore, a
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SM
CVL CSL

(CSL = 0) (CVL = 1)

1σ range of the WC [1.073, 1.222]
[−0.656, −0.342]

[0.296, 0.596]

Pτ (D) [0.313, 0.336] [0.313, 0.336] [0.408, 0.556]

ADFB [−0.361, −0.358] [−0.361, −0.358]
[−0.168, −0.022]

[−0.450, −0.428]

RD [bin]

[m2
τ − 5] GeV2 [0.154, 0.158] [0.178, 0.236] [0.161, 0.181]

[5− 7] GeV2 [0.578, 0.593] [0.665, 0.888] [0.626, 0.752]

[7− 9] GeV2 [0.980, 1.003] [1.127, 1.505] [1.125, 1.502]

[9− (MB −MD)2] GeV2 [1.776, 1.823] [2.049, 2.741] [2.294, 3.669]

Table 4. The values of the WCs consistent with the 1σ experimental range for RD are shown in

the second row. The subsequent rows show the predictions for Pτ (D), ADFB and RD in four q2 bins

for the WC ranges shown in the second row.
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Figure 4. The binwise RD for four q2 bins. On the left, CτV L is varied, while on the right, CτSL is

varied within their 1σ allowed ranges.

measurement of Pτ (D) will tell us whether NP in the form of scalar operator OcbτSL exists or

not. Moreover, the two separate ranges of CτSL which satisfy the experimental bounds give

very different values of ADFB, indicated by the subscripts “+” and “-” in the middle figure.

In the right panel of figure 5, we also show the normalised differential decay width as a

function of q2. As for the case of Pτ (D) and ADFB, the normalised differential decay width is

independent of CτV L for CτSL = 0. The blue solid line is the SM prediction, and the black and

red dashed lines are the predictions for two representative values of CτSL, CτSL = −0.650 and

0.310 respectively. While producing these plots, we have used the central values of the form
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Figure 5. Predictions for the polarisation fraction Pτ (D) (left), ADFB (middle) and the differential

decay width (right). The subscripts “+” and “-” in the middle figure correspond to the two ranges

of CτSL that satisfy the experimental bounds of RD. In the right graph showing the normalised

differential decay width, the solid blue line is the SM prediction. The dashed black and red lines

correspond to CτSL = −0.650 and 0.310 respectively. The data points shown on the right plot are

due to the BaBar collaboration and are taken from [21].
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Figure 6. The dependence of RD∗ with respect to the variation of the WCs CτV L (left), CτAL
(middle) and CτPL (right). A thin vertical line shows the SM values of the WCs.

factors. The blue data points are from the BaBar measurement reported in [21]. It is clear

that the differential decay width is not a good discriminant of the various NP operators.

8.2 Explaining RD∗ alone

The B → D∗τ ν̄τ decay amplitude depends on three WCs, CτV L, C
τ
AL and CτPL. In figure 6,

we show RD∗ as function of these WCs. In each of the plots, the WCs that are not varied

are all set to their SM values. The red and brown shades correspond to the experimentally

allowed 1σ and 2σ ranges respectively (see table 1).

The ranges of CτV L, C
τ
AL and CτPL that are consistent with the experimental value of

RD∗ at 1σ are shown in the second row of table 5. We only show the ranges that are closest

to the SM values of the WCs. In the rows 3, 4 and 5-8, we also show the predictions for

Pτ (D∗), AD∗FB and RD∗ in four different bins for these allowed ranges of CτV L, C
τ
AL and CτPL.
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SM
CVL CAL CPL

CAL,PL = −1, 0 CVL,PL = 1, 0 CVL,AL = 1,−1

Range in WC [1.856, 2.569] [−1.149, −1.073] [0.890, 1.583]

Pτ (D∗) [−0.505, −0.490] [−0.530, −0.509] [−0.505, −0.488] [−0.322, −0.144]

AD∗FB [0.050, 0.078] [0.191, 0.297] [0.028, 0.062] [−0.078, −0.007]

RD∗

[m2
τ − 5] GeV2 [0.103, 0.105] [0.120, 0.140] [0.116, 0.132] [0.124, 0.148]

[5− 7] GeV2 [0.331, 0.336] [0.387, 0.457] [0.373, 0.425] [0.390, 0.465]

[bin] [7− 9] GeV2 [0.475, 0.479] [0.535, 0.613] [0.535, 0.613] [0.534, 0.610]

[9− (MB −MD∗)
2] GeV2 [0.554, 0.556] [0.577, 0.619] [0.621, 0.710] [0.571, 0.611]

Table 5. The values of the WCs consistent with the 1σ experimental range for R∗D are shown

in the second row. We only show the ranges that are closest to the SM values of the WCs. The

subsequent rows show the predictions for Pτ (D∗), AD∗

FB and RD∗ in four q2 bins for the WC ranges

shown in the second row.
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Figure 7. The binwise R∗D for four q2 bins. On the left, CτV L is varied, in the middle CτAL is

varied, annd on the right, CτPL is varied within their 1σ allowed ranges. The SM predictions are

shown in red.

The binwise RD∗ values are also plotted in figure 7. The left, middle and the right

panels correspond to the variation of WCs CτV L, C
τ
AL and CτSL respectively. The 1σ and 2σ

experimental values are shown in red and brown respectively. It can be seen that RD∗ in

the last bin can be used to distinguish between CτV L(or CτPL) and CτAL.

The predictions for Pτ (D∗) are pictorially presented in the left panel of figure 8. We do

not show the recent Belle measurements in this figure because the uncertainties are rather

large. Instead, we show a projection for Belle II 20 ab−1 (which is expected to be collected

by the end of 2021 [68]) assuming that the systematic uncertainty will go down by a factor

of two compared to that in the recent Belle measurement. It is then possible to distinguish

CτPL from the other WCs. The middle panel of figure 8 shows the predictions of AD∗FB
pictorially. It can be seen that a measurement of AD∗FB can also potentially differentiate the

various operators. In the right panel of figure 8, we show the normalised differential decay

width as a function of q2 for some representative values of the WCs from table 5. It can

be seen that the shape of the distribution does not change dramatically across the various

NP explanations of RD∗ .
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Figure 8. Predictions for the polarisation fraction Pτ (D∗) (left), AD∗

FB (middle) and the differential

decay width (right). In the left plot, the Belle II 20 ab−1 projection is obtained by i) scaling down

the statistical uncertainty of the recent Belle measurement by the ratio of the luminosities i.e.,√
20/0.71 ii) assuming the systematic uncertainty to go down by a factor of two, and adding them

in quadrature. The central value is assumed to remain unchanged. On the right plot, The solid

blue line is the SM prediction. The dashed black, red and brown lines correspond to CτAL = −1.12,

CτV L = 1.9 and CτPL = 1.5 respectively, where in each case every other WC is set to their SM values.

Note that the black dashed curve is indistinguishable from the SM curve. The data is due to a

BaBar measurement reported in [21].
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Figure 9. The predictions for Pτ (D∗), RD∗ in the last bin and AD∗

FB are shown in three different

planes for the ranges of the three WCs CτV L, CτAL and CτPL given in table 5. We remind the readers

that, we have inflated the uncertainties in the form factor parameters in eq. (5.11) by a factor of

two. Hence, the ranges of Pτ (D∗) and RD∗ shown here are rather conservative.

In figure 9, we show the predictions for Pτ (D∗), RD∗ in the last bin and AD∗FB in three

different planes for the three WCs CτV L, CτAL and CτPL when their values are restricted to

the ranges shown in table 5. Interestingly, we find that each of the three pairs of observables

can potentially distinguish between the WCs unambiguously. Hence, the measurements of

these observables by the experimental collaborations ought to be very much on the cards

in their future runs.
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Figure 10. Allowed region in the CτV L − CτAL plane by RD and RD∗ measurements .

8.3 Explaining RD and RD∗ together

We have seen from section 8.1 and 8.2 that while RD gets contributions from CτV L and

CτSL, RD∗ is affected by CτV L, CτAL and CτPL. Therefore, in general, these two observables

are theoretically independent. In the basis of WCs defined by {CτV L, CτAL, CτSL, CτPL}, the

CτV L direction is the only direction that affects both. However, as can be seen from tables 4

and 5, the range of CτV L ( i.e., [1.073, 1.222] ) that explains RD within 1σ is different from

the range ( i.e., [1.849, 2.648] ) that explains RD∗ successfully within 1σ. Thus RD and

RD∗ can not be explained simultaneously by invoking NP only of type CτV L. Figure 10

shows the allowed region in the CτV L − CτAL plane by the RD and RD∗ measurements. As

CτAL does not contribute to the B → Dτν̄τ decay, the allowed region for CτV L from RD (the

red region) is independent of the value of CτAL. On the other hand, both the WCs CτV L and

CτAL contribute to the B → D∗τ ν̄τ decay and hence the values of these WCs allowed by

RD∗ measurement are correlated. The overlap of the red and the green regions correspond

to CτV L ∈ [1.073, 1.222] and CτAL ∈ [−1.144,−1.062].

Hence, a minimum value of CτV L ≈ −CτAL ≈ 1.07 which translates to ∆(C9−C10)≈0.15

(i.e, 15% shift from the SM values) can explain both RD and R∗D successfully. This corre-

spond to the operator [c̄ γµ PL b][¯̀γµPL ν] with a coefficient g2
NP /Λ

2 where Λ is given by

Λ ≈ gNP 2.25 TeV.

The predictions for Pτ (D∗), AD∗FB and binwise RD∗ for the above ranges of CτV L and

CτAL are given in table 6.
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CτV L Pτ (D∗) RD∗ [bin]

∈ [1.073, 1.222] ∈ [-0.507, -0.489] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD∗)

2] GeV2

CτAL AD∗FB
[0.116, 0.131] [0.373, 0.426] [0.535, 0.609] [0.616, 0.706]

∈ [-1.144, -1.067] ∈ [0.055, 0.092]

Table 6. Predictions for Pτ (D∗), AD∗

FB and binwise RD∗ for the values of WCs satisfying both the

observations simultaneously. The 1σ range of the WCs is given in the first column.

9 Summary

In this paper we have performed a model independent analysis of the RD and RD∗ anomalies

using dimension-6 operators that arise in a gauge invariant way. Among the four WCs CτV L,

CτAL, CτSL and CτPL, only CτV L and CτSL contribute to RD. On the other hand, RD∗ gets

contributions from CτV L, CτAL and CτPL. Thus, CτV L is the only WC that affects both

(barring tensor operator that is discussed in appendix C) and hence, these two observables

are in general theoretically independent. In view of this, initially we studied the solutions

of RD and RD∗ anomalies independent of each other. We obtained the ranges of the WCs

that are allowed by the RD and R∗D measurements at 1σ. We also discussed the possibility

of simultaneous solutions of these two anomalies.

For the allowed ranges of the WCs, we computed the predictions for both RD and

RD∗ in four different q2 bins, the forward-backward asymmetry, AD(∗)
FB and the polarisation

fraction of the final state τ lepton. We show that measuring the τ polarisation in B →
D∗τ ν̄τ decays along with the value of RD∗ in the last q2 bin can distinguish between the

three WCs which contribute to this process. This is graphically presented in figure 9.

Similarly, as seen in figure 5, the measurement of the τ polarisation in B → Dτν̄τ decay

can in principle be used to distinguish the two WCs CτV L and CτSL. Furthermore, we find

that the forward-backward asymmetry of the τ lepton is also a powerful discriminant of

the various WCs (see figures 5 and 9). Unlike Pτ (D), it can even distinguish the sign of the

scalar operator for the B → Dτν̄τ decay. We hope that the experimental collaborations

will take a note of this and make these measurements in near future.

Additionally, in the appendix we also provide the analytic expressions for the double

differential decay widths for individual τ helicities taking into account all the 10 dimension-

6 operators listed out in section 2. To our knowledge, we are the first to provide the full

expressions in the literature.

Although we have not considered the tensor operator OTL in the main text, we have

explored its effects on the RD and R∗D anomalies in appendix C. We have shown that there

exists a small range of CTL that is consistent with both the anomalies.

Acknowledgments

We thank Abhishek M. Iyer for collaboration in the very first stage of this work.

– 20 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
5

A Full expressions for aD` , bD` and cD`

For the negative helicity of the lepton:

1

8
aD` (−) =

M2
B|pD|2

q2
|C`

VL|2F2
+ +

(
M2
B −M2

D

)2
4 (mb −mc)

2 |C
`
SR|2F2

0

+m`

[(
M2
B −M2

D

)2
2q2(mb−mc)

R
(
C`

SRC`∗
VR

)
F2
0+

4M2
B|pD|2

q2 (MB +MD)
R
(
C`

TLC`∗
VL

)
F+FT

]

+m2
`

[(
M2
B −M2

D

)2
4q4

|C`
VR|2F2

0 +
4|pD|2M2

B

q2 (MB +MD)2 |C
`
TL|2F2

T

]
(A.1)

1

8
bD` (−) =

[
−2|pD|MB

MB −MD

mb −mc
R
(
C`

SRC`∗
TR

)
F0FT

]
−m`

[
2|pD|MB (MB −MD)

q2
R
(
C`

VRC`∗
TR

)
F0FT

+
|pD|MB

(
M2
B −M2

D

)
q2 (mb −mc)

R
(
C`

SRC`∗
VR

)
F0F+

]

−m2
`

[
|pD|MB

(
M2
B −M2

D

)
q4

|C`
VR|2F0F+

]
(A.2)

1

8
cD` (−) =

[
4M2

B|pD|
2

(MB +MD)2
|C`

TR|2F2
T −

M2
B|pD|

2

q2
|C`

VL|2F2
+

]

−m`

[
4|pD|2M2

B

q2 (MB +MD)

(
R
(
C`

VLC`
TL

)
F+FT −R

(
C`

VRC`∗
TR

)
F+FT

)]

+m2
`

[
|pD|2M2

B

q4
|C`

VR|2F2
+ −

4|pD|2M2
B

(MB +MD)2 q2
|C`

TL|2F2
T

]
. (A.3)

For the positive helicity of the lepton:

1

8
aD` (+) =

M2
B|pD|

2

q2
|C`

VR|2F2
+ +

(
M2
B −M2

D

)2
4 (mb −mc) 2

|C`
SL|2F2

0

+m`

[(
M2
B−M2

D

)2
2q2(mb−mc)

R
(
C`

SLC`∗
VL

)
F2
0 +

4M2
B|pD|2

q2(MB +MD)
R
(
C`

VRC`∗
TR

)
F+FT

]

+m2
`

[(
M2
B −M2

D

)2
4q4

|C`
VL|2F2

0 +
4M2

B|pD|2

q2(MB +MD)2
|C`

TR|2F2
T

]
(A.4)

1

8
bD` (+) =

[
−2MB|pD|

MB −MD

mb −mc
R
(
C`

SLC`∗
TL

)
F0FT

]
−m`

[
2|pD| (MB −MD)MB

q2
R
(
C`

VLC`∗
TL

)
F0FT

+
|pD|MB

(
M2
B −M2

D

)
q2 (mb −mc)

R
(
C`

SLC`∗
VL

)
F0F+

]

−m2
`

[
|pD|MB

(
M2
B −M2

D

)
q4

|C`
VL|2F0F+

]
(A.5)

– 21 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
5

1

8
cD` (+) =

[
4|pD|2M2

B

(MB +MD)2 |C
`
TL|2F2

T −
|pD|2M2

B

q2
|C`

VR|2F2
+

]

−m`

[
4|pD|2M2

B

(MB+MD)q2
R
(
C`

VRC`∗
TR

)
F+FT−

4M2
B|pD|2

(MB+MD)q2
R
(
C`

VLC`∗
TL

)
F+FT

]

+m2
`

[
|pD|2M2

B

q4
|C`

VL|2F2
+ −

4|pD|2M2
B

(MB +MD)2 q2
|C`

TR|2F2
T

]
(A.6)

B Full expressions for aD
∗

` , bD
∗

` and cD
∗

`

aD
∗

` (−)

=
8M2

B |pD∗ |
2

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 +
(MB +MD∗)

2 (8M2
D∗q

2 + λ)

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

+
8M4

B|pD∗ |4

M2
D∗ (MB +MD∗)

2 q2

∣∣∣C`
AL

∣∣∣2 A2
2

−
4 |pD∗ |2M2

B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A1A2

+
32M2

B|pD∗ |
2

q2

∣∣∣C`
TR

∣∣∣2T2
1 +

8
(
M2
B −M2

D∗
)2

q2

∣∣∣C`
TR

∣∣∣2T2
2

+m`

[
32M2

B |pD∗ |
2

q2 (MB +MD∗)
R
(
C`

VLC`∗
TL

)
VT1

+
8 (MB +MD∗)

(
2M2

D∗
(
M2
B −M2

D∗
)

+M2
B |pD∗ |

2
)

q2M2
D∗

R
(
C`

ALC`∗
TL

)
A1T2

−
8M2

B

(
M2
B −M2

D∗ − q2
)
|pD∗ |2

q2 (MB −MD∗)M2
D∗

R
(
C`

ALC`∗
TL

)
A1T3

−
8M2

B

(
M2
B + 3M2

D∗ − q2
)
|pD∗ |2

q2 (MB +MD∗)M2
D∗

R
(
C`

ALC`∗
TL

)
A2T2

+
32M4

B|pD∗ |4

q2M2
D∗ (MB +MD∗)

(
M2
B −M2

D∗
)R(C`

ALC`∗
TL

)
A2T3

+
32M2

B|pD∗ |
2

(MB +MD∗)q2
R
(
C`

VRC`∗
TR

)
VT1

− 8(MB −MD∗)(MB +MD∗)
2

q2
R
(
C`

ARC`∗
TR

)
A1T2

]

+m2
`

[
32M2

B |pD∗ |
2

q4

∣∣∣C`
TL

∣∣∣2 T2
1

+
2
(
8M2

D∗
(
2
(
M2
B +M2

D∗
)
− q2

)
q2 +

(
4M2

D∗ + q2
)
λ
)

q4M2
D∗

∣∣∣C`
TL

∣∣∣2 T2
2

+
32M4

B|pD∗ |4

q2M2
D∗
(
M2
B −M2

D∗
)2 ∣∣∣C`

TL

∣∣∣2 T2
3−

16M2
B |pD∗ |

2 (M2
B + 3M2

D∗ − q2
)

q2M2
D∗
(
M2
B −M2

D∗
) ∣∣∣C`

TL

∣∣∣2 T2T3

]
(B.1)

– 22 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
5

bD
∗

` (−) = −16|pD∗ |MBR
(
C`

VLC`∗
AL

)
VA1

+
32M3

B|pD∗ |
3

(mb +mc)
(
M2
B −M2

D∗
)
MD∗

R
(
C`

PRC`∗
TR

)
A0T3

−
8MB|pD∗ |

(
M2
B + 3M2

D∗ − q2
)

(mb +mc)MD∗
R
(
C`

PRC`∗
TR

)
A0T2

−m`

[
32MB (MB −MD∗) |pD∗ |

q2
R
(
C`

VLC`∗
TL

)
VT2

+
32MB (MB +MD∗) |pD∗ |

q2
R
(
C`

ALC`∗
TL

)
A1T1

+
8MB|pD∗ |

(
M2
B + 3M2

D∗ − q2
)

MD∗q2
R
(
C`

ARC`∗
TR

)
A0T2

−
32M3

B|pD∗ |3

(MB −MD∗)MD∗(MB +MD∗)q2
R
(
C`

ARC`∗
TR

)
A0T3

]

−m2
`

[
64MB

(
M2
B −M2

D∗
)
|pD∗ |

q4

∣∣∣C`
TL

∣∣∣2 T1T2

]
(B.2)

cD
∗

` (−) =
8 |pD∗ |2M2

B

(MB +MD∗)
2

∣∣∣C`
VL

∣∣∣2 V2 − (MB +MD∗)
2 λ

2M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A2
1

−
8|pD∗ |4M4

B

(MB +MD∗)
2M2

D∗q
2

∣∣∣C`
AL

∣∣∣2 A2
2

+
4 |pD∗ |2M2

B

(
M2
B −M2

D∗ − q2
)

M2
D∗q

2

∣∣∣C`
AL

∣∣∣2 A1A2

−
32M2

BM
2
D∗
(
M2
B −M2

D∗
)2 |pD∗ |2(

−M2
BMD∗ +M3

D∗
)2
q2

∣∣∣C`
TR

∣∣∣2T2
1

2
(
M2
B −M2

D∗
)2

M2
D∗

∣∣∣C`
TR

∣∣∣2T2
2

−
4
(
−M2

B +M2
D∗
) (
−M4

B +M4
D∗ + 4M2

B|pD∗ |2
)

M2
D∗q

2

∣∣∣C`
TR

∣∣∣2T2
2

+
32M4

B|pD∗ |
4(

−M2
BMD∗ +M3

D∗
)2 ∣∣∣C`

TR

∣∣∣2T2
3

+
16M2

B|pD∗ |
2 (M2

B + 3M2
D∗ − q2

)
−M2

BM
2
D∗ +M4

D∗

∣∣∣C`
TR

∣∣∣2T2T3

+m`

[
32M2

B |pD∗ |
2

q2 (MB +MD∗)
R
(
C`

VLC`∗
TL

)
VT1

−
8M2

B (MB +MD∗) |pD∗ |2

q2M2
D∗

R
(
C`

ALC`∗
TL

)
A1T2

– 23 –



J
H
E
P
0
1
(
2
0
1
7
)
1
2
5

+
8M2

B

(
M2
B −M2

D∗ − q2
)
|pD∗ |2

q2M2
D∗ (MB −MD∗)

R
(
C`

ALC`∗
TL

)
A1T3

+
8M2

B

(
M2
B + 3M2

D∗ − q2
)
|pD∗ |2

q2M2
D∗ (MB +MD∗)

R
(
C`

ALC`∗
TL

)
A2T2

−
32M4

B|pD∗ |4

q2M2
D∗ (MB +MD∗)

(
M2
B −M2

D∗
)R(C`

ALC`∗
TL

)
A2T3

−
32M2

B|pD∗ |
2

(MB +MD∗)q2
R
(
C`

VRC`∗
TR

)
VT1

+
8M2

B(MB +MD∗)|pD∗ |2

M2
D∗q

2
R
(
C`

ARC`∗
TR

)
A1T2

−
8M2

B|pD∗ |
2 (−M2

B +M2
D∗ + q2

)
(MB −MD∗)M2

D∗q
2

R
(
C`

VRC`∗
TR

)
A1T3

+
8M2

B|pD∗ |
2 (M2

B + 3M2
D∗ − q2

)
M2
D∗(MB +MD∗)q2

R
(
C`

VRC`∗
TR

)
A2T2

−
32M4

B|pD∗ |
4

(MB −MD∗)M2
D∗(MB +MD∗)2q2

R
(
C`

VRC`∗
TR

)
A2T3

]

+m2
`

[
32M2

B |pD∗ |
2

q4

∣∣∣C`
TL

∣∣∣2 T2
1 +

2
(
4M2

D∗ − q2
)
λ

M2
D∗q

4

∣∣∣C`
TL

∣∣∣2 T2
2

−
32M4

B|pD∗ |4

q2M2
D∗
(
M2
B −M2

D∗
)2 ∣∣∣C`

TL

∣∣∣2 T2
3

+
16M2

B |pD∗ |
2 (M2

B + 3M2
D∗ − q2

)
q2M2

D∗
(
M2
B −M2

D∗
) ∣∣∣C`

TL

∣∣∣2 T2T3

]
(B.3)

aD
∗

` (+) =
8 |pD∗ |2M2

B

(mb +mc)
2

∣∣∣C`
PL

∣∣∣2 A2
0+

32M2
B |pD∗ |

2

q2

∣∣∣C`
TL

∣∣∣2 T2
1+

8
(
M2
B −M2

D∗
)2

q2

∣∣∣C`
TL

∣∣∣2 T2
2

−m`

[
16 |pD∗ |2M2

B

(mb +mc) q2
R
(
C`

ALC`∗
PL

)
A2

0

−
32M2

B |pD∗ |
2

q2 (MB +MD∗)
R
(
C`

VLC`∗
TL

)
VT1

−
8(MB +MD∗)

(
M2
B −M2

D∗
)

q2
R
(
C`

ALC`∗
TL

)
A1T2

−
32M2

B|pD∗ |2

(MB +MD∗)q2
R
(
C`

VRC`∗
TR

)
VT1

+
8(MB +MD∗)

(
−2M4

D∗ +M2
B

(
2M2

D∗ + |pD∗ |2
))

M2
D∗q

2
R
(
C`

ARC`∗
TR

)
A1T2

+
8M2

B|pD∗ |
2 (−M2

B +M2
D∗ + q2
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)
A1T3
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B + 3M2

D∗ − q2
)
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D∗(MB +MD∗)q2

R
(
C`

ARC`∗
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)
A2T2

+
32M4

B|pD∗ |4

(MB −MD∗)M2
D∗(MB +MD∗)2q2

R
(
C`

ARC`∗
TR

)
A2T3

]
+m2

`

[
8 |pD∗ |2M2

B

q4

∣∣∣C`
AL

∣∣∣2 A2
0 +

8 |pD∗ |2M2
B

(MB +MD∗)
2 q2

∣∣∣C`
VL

∣∣∣2 V2

+
2 (MB +MD∗)

2

q2

∣∣∣C`
AL

∣∣∣2 A2
1

+
32M2

B|pD∗ |
2

q4

∣∣∣C`
TR

∣∣∣2T2
1 + 8

M2
B|pD∗ |2

M2
D∗q

2

∣∣∣C`
TR

∣∣∣2T2
2

+
16
(
M4
B +M4

D∗ − 2M2
B

(
M2
D∗ + |pD∗ |2

))
q4

∣∣∣C`
TR

∣∣∣2T2
2

+
32M4

B|pD∗ |4(
−M2

BMD∗ +M3
D∗
)2
q2

∣∣∣C`
TR

∣∣∣2T2
3

+
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)
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(
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TR
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]
(B.4)
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D∗ − q2
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R
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PLC`∗
TL
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−
32M3

B|pD∗ |3
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D∗
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PLC`∗
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B −M2

D∗ − q2
)
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R
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TR

)
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(
−M2

B +M2
D∗ + q2
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)
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CτTL Pτ (D) RD [bin]

∈ [0.240, 0.796] ∈ [0.125, 0.254] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD)2] GeV2

CτTL ADFB
[0.178, 0.233] [0.673, 0.907] [1.135, 1.533] [1.989, 2.508]

∈ [-3.500, -3.052] ∈ [−0.451, −0.404]

Table 7. Predictions for Pτ (D), ADFB and binwise values of RD for a range of CτTL for which

RD is experimentally satisfied within 1σ. The range of the WCs is given in the first column. The

values in the subsequent columns are only for the range of CτTL closest to the SM value of 0, viz.

the positive range.
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Figure 11. The left panel shows the dependence of RD with respect to the variation of the WCs

CτTL and the right panel shows the prediction for RD in four different bins of q2 from table 7.

C Contribution of the Tensor operator Ocb`TL

C.1 B → Dτν̄τ

In this section we investigate the effect of the tensor operator Ocb`TL on the B → Dτν̄τ decay.

In the first column of table 7, we show the range of CτTL that explains RD within 1σ. In

the subsequent columns, we show the predictions of Pτ (D), ADFB and binwise RD for the

allowed range of CτTL that is closest to zero (i.e., CτTL ∈ [0.240, 0.796]). A comparison

with the left plot of figure 6 reveals that Pτ (D) in this case is quite different from the

other cases and thus, can completely distinguish the tensor operator from the vector or

scalar operators. Similarly, ADFB can also be used to distinguish the tensor from the vector

operator, however, there exists some degeneracy with the scalar operator.

The variation of RD as a function of CτTL is also shown in the left plot of figure 11.

The predictions for binwise RD for the tensor operators are graphically presented in the

right plot of figure 11.
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CτTL Pτ (D∗) RD∗ [bin]

∈ [-0.120, -0.058] ∈ [-0.481, -0.441] [m2
τ − 5] GeV2 [5− 7] GeV2 [7− 9] GeV2 [9− (MB −MD∗)

2] GeV2

CτTL AD∗FB
[0.113, 0.129] [0.368, 0.423] [0.531, 0.610] [0.620, 0.715]

∈ [0.709, 0.834] ∈ [−0.016, 0.034]

Table 8. Predictions for Pτ (D∗), AD∗

FB and binwise values of RD∗ for a range of CτTL for which

RD∗ is experimentally satisfied within 1σ. The corresponding range of the WCs is given in the first

column. The values in the subsequent columns are only for the range of CτTL closest to the SM

value of 0, viz. the negative range.
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Figure 12. The left panel shows the dependence of RD∗ with respect to the variation of the WCs

CτTL and the right panel shows the prediction for RD∗ in four different bins of q2 from table 8.

C.2 B → D∗τ ν̄τ

The range of CτTL that explains R∗D within 1σ is shown in the first column of table 8. The

resulting values for Pτ (D∗), AD∗FB and binwise R∗D are shown in the subsequent columns.

In the left plot of figure 12 we also show the dependence of R∗D as a function of CτTL. The

right plot shows the binwise R∗D graphically.

A quick look at the allowed ranges for CTL in the B → D (table 7) and the B → D∗

(table 8) cases shows that there is a region of overlap, around 0.7-0.8, which allows one to

explain both the anomalies simultaneously.

D SU(3)C × SU(2)L ×U(1)Y gauge invariance

In table 9 we show how the WCs of the operators in this paper are related to the WCs of

the gauge invariant dimension 6 operators of [64]. We use the following set of notations:

• Greek letters µ, ν, · · · are used to denote Lorentz indices.

• SU(2) fundamental indices are denoted by a, b, · · · and I, J · · · will be used to denote

adjoint indices.
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WCs in this work WCs in [64] Operator structure

2GFVcb√
2
×



∆Ccbτ∗9 = −∆Ccbτ∗10



=

1

2
[V d †
L ]3i

[
− g2v2

2M2
W

(
C̃

(3)ij,33 †
φq +

[
φ†i
←→
D I

µφ
] [
q̄2
i
σI

2 γ
µ q1

j

]
[
φ†i
←→
D I

µφ
] [

¯̀1
i
σI

2 γ
µ `2j

]
C̃

(3)33,ij
φ`

)
+ 2C̃

(3)ij 33
`q

]
[V u
L ]j2

[
q̄2
i γ

µq1
j

] [
¯̀1
3γµ`

2
3

]
Ccbτ

′∗
9 = −Ccbτ ′∗10 = −1

2
[V u †
R ]2i

g2v2

2M2
W
C̃ij 33 †
φud [V d

R]j3 [iφ̃†Dµφ] [ūpγ
µdr]

Ccbτs
∗

= −Ccbτp
∗

=
1

2
[V d †
L ]3i C̃

(1)ij,33
`equ [V u

R ]j2
(
¯̀1
3e3

) (
q̄2
i uj
)

Ccbτ
′

s
∗

= −Ccbτ ′p
∗

=
1

2
[V d †
R ]3i C̃

ij,33
`edq [V u

L ]j2
(
¯̀1
3e3

) (
d̄iq

1
j

)
CcbτT

∗
= −CcbτT5

∗
=

1

2
[V d †
L ]3i C̃

(3)ij,33
`equ [V u

R ]j2

(
`
1
3σµνe3

)
ε12

(
q2
iσ

µνuj
)

Table 9. Correspondence of our operators with those in reference [64]. The mixing of different

lepton flavours are ignored.

• To represent quark (lepton) flavors, we use i, j, k · · · (m,n · · · ).

• A tilde (e.g. C̃) is used to denote high energy Wilson coefficients.

• The notation for the operators is as given in [64].

• definition of the quark mixing matrices (f and m denote flavour and mass bases)

ufL = V u
L u

m
L (D.1)

ufR = V u
Ru

m
R (D.2)

dfL = V d
Ld

m
L (D.3)

dfR = V d
Rd

m
R (D.4)

E RG running of Wilson coefficients

In this section, we note the renormalisation group (RG) running of the couplings and the

Wilson coefficients. The QCD coupling above the mb scale is given by α
(5)
s and that above

the mt scale is given by α
(6)
s . These are given by

α(5)
s (µ) =

αs(mb)

1 + β
(5)
0

αs(mb)
2π ln

(
µ
mb

) α(6)
s (µ) =

αs(mt)

1 + β
(6)
0

αs(mt)
2π ln

(
µ
mt

) (E.1)

where β
(nf )
0 = 11− 2nf

3 .

In order to calculate the running of the Wilson Coefficients to a high scale M , we need

to calculate the beta functions for the different operators - the scalar, vector and tensor

operators. The calculation is sketched below (for a good review on the subject, see [69]).
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Figure 13. Vertex Correction and self energy diagrams.

Firstly, we need to consider the self-energy correction for the b or c quarks (left diagram

in figure 13). This is given by

Σ(p) = i

∫
d4k

(2π)4
(igsγ

µT a)
i(�p+�k +mb/c)

(p+ k)2 −m2
b/c

(
igsγ

νT b
) (−igµνδab)

k2

=
4

3

−αs4π �p+
αsmb/c

π︸ ︷︷ ︸
dropped

 1

ε
+ finite (E.2)

where p is the momentum of the incoming (or outgoing) quark.

From Feynman diagram on the right of figure 13, we find that the vertex correction in d

dimensions (d = 4− 2ε) is given by

ΓHad(p, p′) = i

∫
ddk

(2π)d

(
igsγ

λT a
) i

�p+�k −mb
iF i

�p
′ +�k −mc

(
igsγ

σT b
)

(−iδabgλσ)
1

k2

= ig2
sC2(3)

∫
ddk

(2π)d
γλ (�p+�k +mb)F (�p

′ +�k +mc) γ
λ

k2
(
(p+ k)2 +m2

b

)
((p′ + k)2 +m2

c)
(E.3)

where C2(3) = 4
3 and F = 1, γµ, σµν for scalar, vector and tensor operators and p (p′) is the

on-shell momentum of the b (c) quark. A few things are noteworthy and enlisted below:

• As the denominator has mass dimension 6, divergence will appear only when the

numerator is a function of loop momentum with mass dimension greater than and

equals to two.

• The general form of the numerator is

N = γλ
(
��p
′ +�k +mb

)
F (�p+�k +mc) γ

λ

= γλ�kF�kγλ + finite (E.4)

– For scalar

N = 4k2 (E.5)
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– For vector

N = γλ�kγµ�kγ
λ = −k2γλγµγ

λ + 2kµγλ�kγ
λ = 2k2γµ − 4kµ�k

Using ∫
d4kkµkνf(k2) =

1

4
gµν

∫
d4kk2f(k2)

we get

N = k2γµ (E.6)

– For tensor

N = γλ�kσµν�kγ
λ�k2 1

4
γλγρσµνγ

ργλ = 0 (E.7)

where we used the previous integral formula in the second step.

Putting this back and using Feynman parameterisation and neglecting quark masses,

we have the following formula

ΓHad = ig2
sC2(3)NF

∫ 1

0
dζ

∫
ddk

(2π)d
1[

ζ (p+ k)2 + (1− ζ) (p′ + k)2
]2

= i
16π

3
αsNF

∫ 1

0
dζ

∫
dd`

(2π)d
1

(`2 + ∆)2

where ` = k + p+ (1− ζ)(p′ − p) and ∆ = ζ(1− ζ)(p′ − p)2

= i
16π

3
αsNF

∫ 1

0
dζ

i

(4π)2

(
2

ε
+ finite

)
= −αs

4π

8N
3
F 1

ε
+ finite (E.8)

where N = 4, 1, 0 for F = 1, γµ, σµν respectively. The bare effective Lagrangian to the

lowest power in derivatives is

Lbare
eff = iψ̄0�∂ψ0 + Cc̄0Fb0 ¯̀

0F ′ν`0 (E.9)

where ψ0 is any bare quark or lepton field, C is the Wilson coefficient to the six-dimensional

operator and F , F ′ are Dirac operators.

We redefine the quantities in the bare Lagrangian as

ψ0 =
√
Zψψ; C0 = µ2εZCC (E.10)

where ψ represents any quark field. The QCD contributions to the different quark fields

will be equal to each other. Then eq. (E.9) can then be written as

Lren
eff = iZψψ̄�∂ψ + C ZCZ2

ψµ
2ε c̄Fb ¯̀F ′ν`

= iψ̄�∂ψ + i(Zψ − 1)ψ̄�∂ψ + Cµ2ε c̄Fb ¯̀F ′ν` + C (ZCZ
2
ψ − 1) µ2ε c̄Fb ¯̀F ′ν`

Absorbing the divergences in eq. (E.2) and eq. (E.8) in the counter terms, we find that

Zψ = 1− 4

3

αs
4π

1

ε
and ZC = 1− 8

3

αs
4π

(N − 1)
1

ε
(E.11)
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Figure 14. Plot of the running of the Scalar (left) and Tensor (right) Wilson Coefficients. The

range of the running is from mb to 2.5 TeV. As a demonstration, the range of the initial values used

are the ones mentioned in the text for B → D decay.

Using the RG equations, the β-function turns out to be

βC = −2εC − µ

ZC
C dZC
dµ

=
8

3

1

4π
(N − 1)C µ

ZC

dαs
dµ

1

ε

= −8

3

αs
4π

(N − 1)C (E.12)

Thus,

βSC = −8
αs
4π
C, βVC = 0, and βTC =

8

3

αs
4π
C (E.13)

where the superscripts S, V and T on the β denote scalar, vector and tensor couplings.

The running of the Wilson Coefficients can be found by solving the β-function equation

given in eq. (E.13). Solving, we get,

C̃(mb) =

[
αs(mt)

αs(mb)

] γ

2β
(5)
0

[
αs(M)

αs(mt)

] γ

2β
(6)
0 C̃(M) (E.14)

Thus, the scalar and tensor WCs are given by:

C̃S(M) =

[[
αs(mt)

αs(mb)

] γS

2β
(5)
0

[
αs(M)

αs(mt)

] γS

2β
(6)
0

]−1

C̃S(mb) (E.15)

C̃T (M) =

[[
αs(mt)

αs(mb)

] γT

2β
(5)
0

[
αs(M)

αs(mt)

] γT

2β
(6)
0

]−1

C̃T (mb) (E.16)

where

γS = −8 γT =
8

3
(E.17)

which are simply the boldfaced coefficients in eq. (E.13). This is plotted in figure 14.
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