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1 Introduction

Lepton flavour is not a conserved quantity in nature, indeed neutrino oscillations have

unveiled that the Standard Model (SM) must be modified to include neutrino masses and

mixing. Processes with charged lepton flavour violation (CLFV) can occur, therefore,

through neutrino mixing in the loops; however, their rates are extremely small because of

the suppression given by neutrino masses. For example the µ→ eγ branching ratio, which

is proportional to (mν/MW )4, is estimated to be at the level of 10−50 or smaller, far beyond

the sensitivity of any foreseeable experiment. For this reason, an experimental observation

of CLFV would be a bright evidence of new physics (NP) beyond the SM.

Muon and tau decays with CLFV have been studied in a model independent way in

the framework of higher dimensional operators [1–3] and in a general effective field theory

description of the weak interactions at low energies [4]. Many scenarios of NP introduce

additional sources of mixing between the lepton families that can easily lead to strong

CLFV contributions. CFLV violation can be realized, for example, in minimal see-saw

type extensions of the SM [5, 6], in the MSSM via flavour non-diagonal SUSY breaking

terms [7–11], or in the context of two-Higgs-doublet models [12–15] and composite Higgs

models [16] with generic flavour structures in the lepton sector.
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Despite the tau lepton has the advantage of a mass greater than the muon one and

thus, from the theoretical point of view, a better sensitivity to NP effects, muons can be

produced in a much larger quantity and can be measured with much better sensitivity. In

the muon sector, the upcoming Mu2e [17], DeeMe [18] and Comet [19] experiments will

search for µ→ e conversion of muons bounded to a nucleus, while Meg [20] and Mu3e [21]

at PSI are dedicated to the SM forbidden decays µ→ eγ and µ→ eee, respectively.

The current limits on the µ → e transitions are very stringent due to the constraints

from Meg and Sindrum collaborations:

B(µ+ → e+γ) < 4.2× 10−13 90% C.L. [20], (1.1)

B(µ− → e−e+e−) < 1.0× 10−12 90% C.L. [22]. (1.2)

These bounds will be further improved in the future: Meg-II is planned to measure the

µ→ eγ branching ratio down to 4 × 10−14 [23] while Mu3e is expected to reach the level

of 10−16 for µ→ eee [21, 24, 25].

Such an unprecedented precision requires an equivalent level in the control and sup-

pression of the background. Radiative muon decay, µ → eγνν̄, constitutes an important

source of background to µ → eγ searches; secondly it provides a tool for calibration, nor-

malization and quality check of the experiment [26]. It was studied at next-to-leading

order (NLO) accuracy in [27, 28]. The background in µ → eee searches originates from

the accidental coincidence of normal muon-decay electrons and positrons, that within the

detector resolution show the characteristics of the decay signal, and from the muon decay

with internal conversion, µ→ e (e+e−) νν̄, which is indistinguishable from the signal except

for the energy carried out by neutrinos. This SM background can be suppressed only via

an excellent momentum resolution and a precise reconstruction of the three-electron total

energy, which must be as close as possible to the muon mass.

While the SM decay rate of µ → e (e+e−) νν̄ was studied at the leading order (LO)

in [29–32], radiative corrections are currently missing in the literature. The precision goal

of Mu3e experiment and the expected momentum resolution, about 0.5 MeV [24, 25], call

for the estimate of the NLO corrections, especially in the narrow region of the phase space

where the missing energy is small and the three-electron momenta have a similar signature

as the µ → eee decay. It is the aim of this paper to present the first calculation of such

NLO corrections.1

We begin our analysis in section 2 reviewing the SM prediction for the differential

decay rate at LO. The technical ingredients employed in our calculation of virtual and real

corrections are presented in section 3. Our NLO predictions for the branching ratios are

reported in section 4, where we discuss also the impact on CLFV searches. Conclusions

are drawn in section 5.

1In the last phase of this work we learnt about an ongoing independent calculation of the NLO corrections

to µ− → e− (e+e−) νµν̄e decay carried out by G. M. Pruna, A. Signer and Y. Ulrich [33].
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Figure 1. Feynman diagrams for µ− → e− (e+e−) νµν̄e in the Fermi V –A effective theory. Two

other diagrams with p1 and p2 interchanged must be considered also.

2 Conventions and LO decay rate

In this section we introduce our conventions and we discuss the tree-level decay rate. In

the SM the decay of a muon into three electrons and two neutrinos proceeds through the

emission of an off-shell photon with subsequent internal conversion into e+e−, as shown in

figure 1. Since we are interested only in the leading contribution in GF , photon radiation

from the W boson and electron-pair production from heavy bosons will not be considered

in the following.

Let us consider specifically the decay of a negative muon:

µ− → e− (e+e−) νµν̄e. (2.1)

In the SM, the tree-level decay rate for an unpolarized muon is, in its rest frame,

d6Γ

dt dm123 dm12 dcos θ∗3 dΩ∗∗1
=

α2G2
F

96π6m2
µ

GLO(t,m123,m12, cos θ∗3,Ω
∗∗
1 ) t |~p123||~p ∗3 | |~p ∗∗1 |,

(2.2)

where GF = 1.166 378 7(6)×10−5 GeV−2 [34] is the Fermi constant, defined from the muon

lifetime, and α = 1/137.035 999 157 (33) is the fine-structure constant [35, 36]. Calling mµ

and me the masses of the muon and the electron (neutrinos are considered to be massless),

we define the ratio r = me/mµ. The four-vectors P , p1, p2 and p3 are the momenta of the

muon, the two electrons and the positron, respectively. We denote with p123 = p1 +p2 +p3

the sum of the electrons and the positron momenta and with m2
123 = p2

123 their invariant

mass squared. Also, we define m2
12 = (p1 + p2)2 and t2 = (t1 + t2)2 = (P − p123)2 the

invariant masses squared of the two electrons and the two neutrinos, respectively — t1
and t2 are the neutrino and anti-neutrino momenta. Note that the dependence on the

(undetected) neutrino momenta has been integrated out analytically in (2.2).

Solid angles and momenta labeled with the superscript ‘∗’ are in the center-of-mass

system (c.m.s.) of the two electrons and the positron, where p∗123 = (m123,~0), while those

with ‘∗∗’ are in the c.m.s. of the two electrons, where p∗∗12 = (m12,~0). The z-direction of the

solid angles dΩ∗3 and dΩ∗∗1 are given by the direction of ~p123 and ~p12 = ~p1 +~p2, respectively.

The dimensionless quantity GLO is a rational function proportional to the Born squared

matrix element — it is thus Lorenz invariant — and it depends on all possible scalar

– 3 –
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products built with the momenta P, p1, p2 and p3. We introduced such a function in

order to factorize out the physical constants α, GF and mµ from the squared matrix

element. Two indistinguishable e− are present in the final state; the symmetry property

of the matrix element assures that GLO and the decay rate (2.2) are symmetric under the

exchange p1 ↔ p2.

The (lengthy) explicit expression of eq. (2.2) is provided as an ancillary file of this

paper. For further details, we refer the reader to our appendix.

3 NLO corrections: details of the calculation

In this section we will consider the SM prediction for the differential decay rate of (2.1) at

NLO in α. Virtual and real corrections are evaluated in the Fermi V –A effective theory of

weak interactions:

L = LQED + LQCD + LFermi. (3.1)

The Fermi Lagrangian is

LFermi = −4GF√
2

(ψ̄νµγ
αPLψµ) · (ψ̄eγαPLψνe) + h.c. , (3.2)

where ψµ, ψe, ψνµ , ψνe denote the fields of the muon, the electron and their associated

neutrinos, respectively; PL = (1 − γ5)/2 denotes the left-hand projector operator. Under

this approximation tiny term of O(αm2
µ/M

2
W ) ∼ 10−8 due to the finite W -boson mass are

neglected — they are even smaller than the NNLO corrections of O(α2).

A Fierz rearrangement of the four-fermion interaction (3.2) allows us to factorize the

amplitudes of virtual and real corrections into the product of spinor chains depending either

on the neutrino momenta or on the muon and electron ones. In this way the neutrino phase

space integral can be carried out analytically, as was done at tree level, so as to decrease

by two units the dimensionality of the integral that must be performed numerically.

3.1 Virtual corrections

The one-loop amplitudes, shown in figure 2, are reduced to tensor integrals and subse-

quently decomposed into their Lorentz-covariant structure by means of the algebra ma-

nipulation program Form [37] and the Mathematica package FeynCalc [38, 39]. For

the numerical evaluation of the tensor-coefficient functions we employed the LooopTools

library [40, 41].

Ultraviolet (UV) divergences are regularized via dimensional regularization; UV-finite

results are obtained by renormalizing the theory (3.1) in the on-shell scheme. Indeed, as

shown long ago by Berman and Sirlin [42], to leading order in GF , but to all orders in α, the

radiative corrections to muon decay in the Fermi V –A theory are finite after fermion mass

and wave function renormalization. A small photon mass λ is introduced to regularize the

infrared (IR) divergences, while the finite electron mass me regularizes the collinear ones.

The contribution to the rate coming from the hadronic vacuum polarization, which is

not calculable at low energy in perturbative QCD, is quite small in the muon case since

the invariant mass of the electron-positron pair never exceeds the pion threshold. However
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µ(P )

e−(p1)

e−(p2)

e+(p3)

e, µ, τ
e, µ, τ

e+

hadrons

Figure 2. One-loop diagrams for µ− → e− (e+e−) νµν̄e decay. The muon and the electrons are

drawn with bold and thin lines, respectively; the dots symbolize the Fermi interaction (for simplicity

the neutrinos are not drawn). For each diagram, a symmetric one with p1 ↔ p2 interchanged must

be considered.

this kind of correction starts to be relevant if one considers, instead of the muon, the tau

decays τ → `(`+`−)νν̄. These effects can be taken into account expressing the hadronic

vaccum polarization, Πhad(q2), in terms of e+e− → hadrons cross section data:

Rhad(s) = σ(e+e− → hadrons)/
4πα(s)2

3s
. (3.3)

The normalization factor 4πα(s)2/(3s) is the tree-level cross section of e+e− → µ+µ− in

the limit s� 4m2
µ — note that σ(e+e− → hadrons) does not include initial state radiation

or vacuum polarization corrections. The optical theorem connects Rhad(s) to the imaginary

part of hadronic vacuum polarization:

Im Πhad(s) =
α(s)

3
Rhad(s). (3.4)

The vacuum polarization can be then obtained by means of the dispersion relation. In this

work, we made use of the package alphaQED [43–46] for the evaluation of the functions

Rhad and Πhad.

3.2 Real photon emission

The rate of the bremsstrahlung process, the decay (2.1) where an additional photon is

produced, blows up when the photon energy becomes small, leading in the phase space

integral to the well-known logarithmic IR singularity. In order to handle the IR singularity

– 5 –
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we adopted a phase-space slicing method: we introduced a small photon energy cut-off ω0

and we divided the real emission contribution into a soft and a hard part.

The soft part, which contains the IR singularity, comes from the phase space region

where the photon energy is below the threshold ω0. As in the case of the virtual diagrams,

the IR singularity is regularized by a small photon mass λ. By taking advantage of the

soft photon approximation for the amplitude of the bremsstrahlung process, it is possible

to perform the integral with respect to the photon momentum analytically; the process-

independent result, which was derived in [47] (see also ref. [48]), depends only on the

charges and momenta of external particles in the corresponding Born process. We checked

that the IR divergence cancels out once the soft part is added to the one-loop diagrams.

Although the addition of the soft photon emission to the virtual corrections is sufficient

to obtain a finite differential width, in general it is not adequate for real experiments since

they cannot provide a photon energy threshold ω0 small enough for the validity of the soft

photon approximation, which neglects terms of order ω0/mµ. Therefore it is necessary to

include the hard part as well, i.e. the contribution to the rate due to photons with energy

greater than ω0. The soft and the hard parts must be properly merged to assure the

ω0-independence of the final physical observables: the numerical integration of hard part

yields a logω0/mµ enhancement that must cancel against the explicit ω0-dependence in the

soft part for sufficiently small values of ω0. The value of ω0 can be fixed once the prediction

for the NLO corrections reaches a sort of “plateau”, i.e. when a further reduction of ω0

cannot be resolved anymore within the numerical error.

4 Results

4.1 Branching fraction

The branching ratio B of the µ− → e− (e+e−) νµν̄e decay can be obtained integrating the

differential decay rate (2.2) over the allowed kinematic ranges,

−1 ≤ cos θ∗3 ≤ 1, 3me ≤ m123 ≤ mµ,

−1 ≤ cos θ∗∗1 ≤ 1, 0 ≤ t ≤ mµ −m123,

0 ≤ ϕ∗∗1 < 2π, 2me ≤ m12 ≤ m123 −me, (4.1)

and multiplying it by the muon lifetime τµ = 2.1969811 (22)× 10−6 s [49]. We recall that

the Particle Data Group (PDG) defines the Fermi constants of weak interactions from the

muon lifetime evaluated in the Fermi V –A theory [49]; its definition is given by

~
τµ

=
G2
Fm

5
µ

192π3
F (r2) (1 + δµ) , (4.2)

where F (x) = 1− 8x+ 8x3− x4− 12x2 lnx is the phase space factor while δµ incorporates

the QED correction evaluated in the Fermi V –A theory: the corrections of virtual and real

photons up to O(α2), as well as the contribution of the decay (2.1) at tree level [50–58].

Note that it is possible to make use of eq. (4.2), instead of the experimental value of τµ,
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/Emax BLO δBNLO BNLO K

no cut 3.6054 (1)n × 10−5 −6.69 (5)n × 10−8 3.5987 (1)n (8)µ × 10−5 0.998

1me 2.8979 (6)n × 10−19 −6.56 (2)n × 10−20 2.242 (2)n (17)µ × 10−19 0.77

5me 4.641 (1)n × 10−15 −7.41 (3)n × 10−16 3.900 (3)n (20)µ × 10−15 0.83

10me 3.0704 (7)n × 10−13 −4.04 (2)n × 10−14 2.666 (2)n (11)µ × 10−13 0.87

20me 2.1186 (5)n × 10−11 −2.17 (1)n × 10−12 1.902 (1)n (6)µ × 10−11 0.90

50me 7.151 (1)n × 10−9 −4.55 (3)n × 10−10 6.696 (3)n (13)µ × 10−9 0.93

100me 2.1214 (4)n × 10−6 −9.47 (6)n × 10−8 2.027 (1)n (3)µ × 10−6 0.96

Table 1. LO and NLO branching ratios of µ− → e− (e+e−) νµν̄e with and without a cut on

the missing energy, the O(α) correction given by the sum of one-loop and real emission diagrams,

δBNLO, and the K-factor, K = BNLO/BLO. The uncertainties are due to numerical error (n) and

renormalization scale variation (µ) (see the text for details).

for the normalization of the width; in such way the dependence on GF and m5
µ is removed

from the branching ratios.

The analytic integration over the kinematic ranges (4.1) of the LO differential rate in

eq. (2.2) yields [31]

BLO =
α2/π2

F (r2)(1 + δµ)

{
− 25361

5184
+

25

9
ζ(2) + ln 2

(
37

216
− 2

3
ζ(2)

)
− 2

9
(1 + ln 2) ln2 2

+
11

3
ζ(3)−

(
25

24
− ζ(2)

)
ln r2 + I(r2)

}
, (4.3)

where

I(x) =
i

2

1− x√
x

∫ 1

0

[
2 + x+ (1− x)v2

]√
1− v2K

(
iv

√
1− x
x

)
dv, (4.4)

with I(r2) = 9.47056, and the kernel function K(u) is given in eq. (11) of ref. [57]. As

discussed in [31], the integral (4.4) behaves like lnn r for non-negative integers n ≤ 3, so

that it is singular in the limit me → 0. It contains also vanishing terms in that limit, but

since the original calculation of K(u) neglected them, the result in eq. (4.3) is correct only

in the terms that do not vanish as me → 0. With the analytic result (4.3) we obtain the

following prediction for LO branching ratio: BLO = 3.40×10−5. This value is in agreement

with the result of our numerical integration in table 1; the difference between these two

values, approximately 5%, is due to the aforementioned terms neglected in the analytic

formula (4.3).

We present in the first row of table 1 the LO and NLO branching ratios, the O(α)

correction coming from virtual and real diagrams, denoted with δBNLO, and the K-factor,

which is the ratio between the NLO and the LO prediction. They are computed taking into

account the full dependence on the mass ratio r. The numerical integrations were performed

with Monte Carlo methods by means of the Cuba library [59]; the results were tested with

different numerical integration methods. In table 1 the uncertainty due to numerical errors

– 7 –
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is labeled with the subscript “n”. Moreover we also estimated the theoretical uncertainty

associated to the renormalization scale variation; they are denoted with the subscript “µ”.

It is quantified by converting the renormalization scheme for α from the on-shell scheme

to the hybrid MS adopted in the NNLO calculation of the muon lifetime [54, 57]. In this

scheme the electron loop in the photon vacuum polarization is renormalized in MS while

all other fermion loops in the on-shell scheme. The quoted uncertainty is the difference

between the NLO prediction evaluated at the renormalization scales µ = me, corresponding

to the on-shell scheme, and µ = mµ.

It is interesting to note that a Born-virtual interference term yields a null contribution

after phase space integration. Indeed, let us consider the one-loop diagrams where the

positron-electron pair is produced by two virtual photons, corresponding to the boxes and

the pentagons in the last two rows of figure 2. If we regard as a cut diagram the intereference

between these one-loop amplitudes and the tree-level ones in figure 1, we recognize that

there is a closed fermion loop attached to three photon lines. The Furry theorem assures

that the contribution after phase space integration is zero. However, such interference

term cannot be neglected in the differential decay rate, in fact the cancellation happens

between couples of phase space points related by an exchange of the p1 and p3 momenta (or

p2 and p3). We explicitly verified that this interference term vanishes within the numerical

error but we neglected it in our Monte Carlo integration in order to speed up the numerical

convergence.

The branching ratio of (2.1) was measured long ago by the Sindrum experiment [60],

BEXP(µ− → e−e+e−νµν̄e) = 3.4 (4)× 10−5. (4.5)

This measurement agrees with our theoretical prediction in table 1; new more precise

results are expected in the future by the Mu3e experiment [21].

4.2 Impact on CLFV searches

The relative magnitude of radiative corrections were also studied in the specific final-state

configuration of the decays (2.1) where the neutrino energies are very small and the total

energy of the three electrons is close to mµ. As already mentioned in the introduction,

this phase-space region is of particular interest to µ → eee searches because the muon

decay (2.1) can mimic the three-body decay mode with CLFV.

The upper panel of figure 4.2 shows dB/dm123, the normalized NLO differential rate as

function of the three-electron invariant mass m123, close to the end point region m123 = mµ.

The local K-factor is drawn in the lower part. The rate, evaluated at fixed value of m123,

is fully inclusive in the bremsstrahlung photon.

Beside that, we calculated also the branching fraction applying a cut on the missing

energy, in analogy to the analysis done in ref. [32] at LO. Let us define B(/Emax) to be the

integral of the differential decay rate over the phase space region satisfying

/E = mµ − E1 − E2 − E3 ≤ /Emax. (4.6)

– 8 –
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Figure 3. The µ− → e− (e+e−) νµν̄e branching ratio at NLO as a function of the three-electron

invariant mass m123 (left) and the invisible energy cut /Emax (right). The ratio between the NLO

and LO predictions is depicted in the lower part of each panel. The error band (magnified 10 times)

represents the assigned theoretical error due to renormalization scale variation.

This constraint is fulfilled at LO applying, under the condition /Emax < mµ/2, the following

integration limits:

0 ≤ t ≤ /Emax, mmin
123 ≤ m123 ≤ mµ − t, (4.7)

where mmin
123 =

√
m2
µ − 2/Emaxmµ + t2; the other limits of integration are left unchanged.

In the calculation of the NLO corrections to B(/Emax) we assumed the maximum missing

energy /Emax to be smaller than the photon detection threshold, and much lower than the

muon mass. In figure 4.2 we show the branching ratio BNLO(/Emax) versus the cut on the

missing energy, in the upper panel, and its relative magnitude with respect to the LO

prediction, in the lower panel. Error bands depicted in figure 3 are the assigned theoretical

error due to renormalization scale variation. They are evaluated as in the case of the

inclusive branching ratio. Errors due to numerical integration are typically smaller than

the first.

In addition, we report in table 1 the branching ratios for different missing energy cuts:

/Emax = 1, 5, 10, 20, 50 and 100me; our LO results are in good agreement with the values

given in ref. [32].2 In ref. [32], where the LO decay is considered, a fit of the branching

ratio in the endpoint region was presented:

B(/Emax) = κ

(
/Emax

me

)6

, with κLO = 2.99× 10−19. (4.8)

2Moreover, the NLO corrections are independently confirmed in [33].
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Figure 4. The branching ratios at NLO, for /Emax = 1, 2, . . . , 10me, fitted with the ansatz (4.10).

We performed a similar fit employing as input data the NLO branching ratios for /Emax =

1, 2, . . . , 10me. Taking into account the numerical error of B(/Emax), we obtained the

following value for the constant κ at NLO accuracy:

κNLO = 2.5117 (6)× 10−19. (4.9)

In (4.8) the exponent of /Emax is fixed; relaxing such constraint and assuming it also to be

a free parameter, i.e.

B(/Emax) = κ′
(
/Emax

me

)γ
, (4.10)

we obtain κ
′NLO = 2.217 (2)× 10−19 and γNLO = 6.0768 (4); our fit is also shown figure 4.

We note that our ansatz (4.10) is equivalent to a linear fit in the double logarithmic scale

of figure 4, lnB = lnκ′ + γ ln( /Emax/me), while (4.8) represents a straight line with fixed

slope: lnB = lnκ+ 6 ln( /Emax/me).

5 Discussion and conclusions

In this work we studied the SM prediction of the differential rates and branching ratios

of the muon decay with internal conversion µ → e(e+e−)νν̄ at NLO. Virtual and real

corrections were computed using the effective four-fermion Fermi Lagrangian plus QED

and QCD, taking into account the full dependence on the mass ratio r = me/mµ.

We employed the library LoopTools for the numerical evaluation of the coefficients

appearing in the Lorenz-covariant decomposition of tensor one-loop integrals. Real correc-

tions were calculated with a phase space slicing method. For photon energies below the ω0

threshold, the photon phase space integral is worked out analytically by taking advantage

of the soft photon approximation for the bremsstrahlung amplitude. Above the IR cut-off,
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we employed the complete amplitude of the real photon emission process. A sufficiently

small ω0 is then chosen in the calculation of the physical observables to assure in the final

results the cancellation of the ω0 dependence between the soft and the hard part. Virtual

and real corrections can be obtained as a Fortran code from the authors.

The branching ratio at NLO accuracy was presented in table 1. Our prediction is in

agreement with the old measurement by the Sindrum experiment. In addition to this, we

studied the decay rate as a function of the three-electron invariant mass, at the end-point

region, and as a function of the cut on the missing energy.

From our results we can observe that while the global K-factor is close to unity —

the shift δBNLO gives a correction of 2× 10−3 — locally, in the configuration where mµ −
E1 − E2 − E3 → 0, the relative size of radiative corrections is as large as 10 − 20% of

the LO. Such an enhancement is given by the smallness of the /Emax cut, which forces the

bremsstrahlung photon to be emitted in the soft-collinear region, where the corrections can

behave as (α/π) ln(me/mµ) ln( /Emax/mµ). Radiative corrections reduce the LO prediction

of the width; the effect can be visualized in figure 3 shifting the curves downward. We

estimated the theoretical uncertainty due to numerical errors in the Monte Carlo integration

and renormalization scale variation.

Our results can be employed also for the evaluation of the tau decays τ → e (e+e−)νν̄

and τ → µ (µ+µ−)νν̄ by properly substituting mµ → mτ and me → m`, with ` = e, µ.
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A Phase space decomposition

In this appendix we discuss the phase space parametrization employed in the Monte Carlo

integration of the LO, virtual and real differential widths.

A.1 Phase space: LO and the virtual corrections

The generic n-body phase space element of a particle with momentum P decaying into n

particles with momenta labeled by p1, . . . , pn is

dΦn(P ; p1, · · · , pn) = δ4

(
P −

n∑
i=1

pi

) n∏
i=1

d3pi
(2π)32Ei

; (A.1)
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it can be decomposed as nested sequence of two-body pseudo-decays applying recursively

the splitting formula

dΦn(P ; p1, · · · , pn) = (2π)3dq2 dΦj(q; p1, · · · , pj) dΦn−j+1(P ; q, pj+1, · · · , pn), (A.2)

where q2 = (
∑j

i=1Ei)
2 − |∑j

i=1 ~pi|2. By means of eq. (A.2), we can express the five-body

phase space shared by the LO and the virtual in the following way:

dΦ5(P ; p1, p2, p3, t1, t2) = dΦ2(t12; t1, t2) (2π)3dt2

× dΦ2(p12; p1, p2) (2π)3dm2
12

× dΦ2(p123; p12, p3) (2π)3dm2
123

× dΦ2(P ; t12, p123), (A.3)

where all momenta and invariant masses in (A.3) have been defined in section 2 (see also

figure 1). The two-body phase space of a generic q → q1 q2 decay is, in the c.m.s.,

dΦ2(q; q1, q2) = δ4(q − q1 − q2)
d3q1

(2π)32E1

d3q2

(2π)32E2
=

1

(2π)64M
|~q1|dΩ1, (A.4)

where q2 = M2. The energy and the momentum of q1 and q2 in their c.m.s. is fixed by the

masses and the invariant mass of the system:

E1 =
M2 +m2

1 −m2
2

2M
, E2 =

M2 +m2
2 −m2

1

2M
, (A.5)

|~q1| = |~q2| =
[(
M2 − (m1 +m2)2

) (
M2 − (m1 −m2)2

)]1/2
2M

. (A.6)

Employing the parametrization (A.4) in order to express each dΦ2 in eq. (A.3) in its own

c.m.s., and performing the trivial integration over the angles dΩ123 and dφ∗3, we get

dΦ5(P ; t1, t2, p1, p2, p3) =
t |~p123| |~p3

∗| |~p1
∗∗|

512π7mµ
dt dm123 dm12 d cos θ∗3 dΩ∗∗1 dΦ2(t12; t1, t2).

(A.7)

Solid angles and momenta labeled with the superscript ‘∗’ are in the c.m.s. of the two

electrons and the positron, where p∗123 = (m123,~0), while those with ‘∗∗’ are in that one of

the two electrons, where p∗∗12 = (m12,~0).

The allowed kinematic ranges in eq. (4.1) follow from energy conservation in each

recursive splitting. Moreover, the condition on the missing energy (4.6) written in terms

of the auxiliary momenta t12 and p123,

t012 =
m2
µ + t2 −m2

123

2mµ
≤ /Emax, (A.8)

leads to the set of restricted integration limits in eq. (4.7).
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A.2 Phase space: real corrections

The six-particle phase space element dΦ6 of the real emission process, µ−→e−(e+e−)νµν̄eγ,

can be analogously decomposed as a series of nested two-body decays:

dΦ6(P ; k, p1, p2, p3, t1, t2) = dΦ2(t12; t1, t2) (2π)3dt2

× dΦ2(p12; p1, p2) (2π)3dm2
12

× dΦ2(p123; p12, p3) (2π)3dm2
123

× dΦ2(qνν̄γ ; k, t12) (2π)3dq2

× dΦ2(P ; qνν̄γ , p123), (A.9)

where k is the momentum of the photon; we have also introduced the auxiliary momentum

qνν̄γ = k + t1 + t2 and its invariant mass squared, q2 = q2
νν̄γ . Let us denote with ‘‡’

momenta and angles in the photon-neutrinos c.m.s., where q‡νν̄γ = (q,~0); substituting the

generic expressions for dΦ2 in eq. (A.9), and performing the trivial integration over the

angles dΩ123 and dφ‡γ , we obtain:

dΦ6 =
t |~k ‡| |~p123| |~p3

∗| |~p1
∗∗|

8(2π)10mµ
dq dt dm123 dm12 d cos θ‡γ dΩ∗3 dΩ∗∗1 dΦ2(t12; t1, t2). (A.10)

The integration limits given by the energy conservation in each recursive splitting are:

−1 ≤ cos θ‡γ ≤ 1, 0 ≤ q ≤ mµ − 3me,

−1 ≤ cos θ∗3 ≤ 1, 0 ≤ t ≤ q,
−1 ≤ cos θ∗∗1 ≤ 1, 3me ≤ m123 ≤ mµ − q,

0 ≤ ϕ∗3 < 2π, 2me ≤ m12 ≤ m123 −m2,

0 ≤ ϕ∗∗1 < 2π. (A.11)

To avoid the well-known IR singularity in the phase space integration, we impose the

photon energy to be greater than a minimum threshold ω0:

ω0 < k0 = γk‡0 − βγ cos θ‡γ |~k ‡|. (A.12)

The Lorentz factors γ and β, which boost the ‘‡’ system back into the muon rest frame,

are β = |~qνν̄γ |/q0
νν̄γ and γ = q0

νν̄γ/q. Solving (A.12) for cos θ‡γ , we obtain the following

restricted integration limits for m123, t and cos θ‡γ :

3me ≤ m123 ≤ min

[
mµ − q,

√
m2
µ − 2ω0mµ + q2

(
1− mµ

2ω0

)]
,

0 ≤ t ≤
√
q2 − 2qω0

γ(1 + β)
, (A.13)

−1 ≤ cos θ‡γ ≤ min

(
1,

1

β
− ω0

k‡0γβ

)
.
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The constraint on the invisible energy in (4.6) — the photon counts also as “invisible” in

the real corrections — can be written, in terms of the auxiliary momenta qνν̄γ and p123, as

q0
νν̄γ =

mµ + q2 −m2
123

2mµ
≤ /Emax, (A.14)

that further reduces the integration limits of q and m123 to

0 ≤ q ≤ /Emax,√
m2
µ − 2mµ /Emax + q2 ≤ m123 ≤ min

[
mµ − q,

√
m2
µ − 2ω0mµ + q2

(
1− mµ

2ω0

) ]
. (A.15)

A.3 Phase space of the neutrinos

The phase space of the neutrinos, dΦ2(t12; t1, t2), is left in an implicit form in eqs. (A.7)

and (A.10). We can employ the factorization property of the matrix element in order

to perform the integration analytically. Thanks to a Fierz rearrangement of the Fermi

interaction (3.2), tree level, virtual and real amplitudes can be written as

M = nα`α, (A.16)

where `α contains the spinor structure involving the muon, the positron and the electrons

(also the photon in the real correction), while nα contains the neutrinos’ one:

nα = ū(t1)γαPLv(t2). (A.17)

The squared amplitude, summed over initial and final spin states, is given by

|M|2 =
∑
spin

nαn†β
∑
spin

`α`
†
β . (A.18)

The neutrino momenta are thus enclosed only in the first factor on the r.h.s. of (A.18),

while the second term depends only on their sum, t1 + t2, which can be determined via

momentum-energy conservation: t1 + t2 = P −p1−p2−p3 (−k). Therefore, the integration

over the neutrino phase space factorizes:∫
dΦ2(t12; t1, t2)|M|2 =

∫
dΦ2(t12; t1, t2)

∑
spin

nαn†β
∑
spin

`α`
†
β = Nαβ

∑
spin

`α`
†
β (A.19)

where the expression of dΦ2 can be recovered from eq. (A.1). By decomposing Nαβ in a

Lorentz covariant way, one can easily verify that the result is

Nαβ =

∫
dΦ2(t12; t1, t2)

∑
spin

nαn†β =
1

192π5

(
tα12t

β
12 − gαβt2

)
. (A.20)
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