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1 Introduction

High-precision determinations of Standard Model (SM) parameters are crucially important

for precise predictions for the observables measured in collider physics experiments, such

as currently performed at the LHC, or possibly at a future linear collider. A thorough

comparison of these predictions with experimental results allows to scrutinize the details

of the hugely successful SM, and might shed light on possible physics beyond the SM.

In order to pin down the theory’s fundamental parameters, such as coupling constants

and masses, with sufficient precision, the knowledge of higher order perturbative corrections

is required. This encompasses the evaluation of multi-loop Feynman diagrams and Feynman

integrals, for which significant progress has been made in recent years, mainly with respect

to the formulation of advanced algorithms that allow to treat the complexity level met in

those higher-loop integrals.

We focus here on the strong interactions, which are embedded into the SM via Quan-

tum Chromodynamics (QCD). The relevant parameters are then the (strong) gauge cou-

pling and the quark masses, both of which run with the energy scale according to the

renormalization group (RG) equations. In order to evolve e.g. the low-energy value of the

coupling constant (measured with high precision from tau lepton decay) to high energies,

the anomalous dimension of the gauge coupling (the so-called Beta function) is needed, as

a coefficient in the corresponding RG equation. Likewise, a high-order evaluation of the

quark mass anomalous dimension gives access to precise values for e.g. charm and bot-

tom quark masses, which are measured at low energies (typically a few GeV) but whose

uncertainty at the high-energy scale of the Higgs mass mH = 125GeV is important in

Higgs decay rates into such quark pairs. In particular, to match the precision of the known

five-loop inclusive decay width of H → qq̄ [1], one should evolve the parameters (which are
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αs(µ) and the running quark mass mq(µ) with µ being the renormalization scale) from low

energies to µ = mH at the same perturbative order, for full consistency and to avoid large

logarithms ln(µ2/m2
H).

Given this clear phenomenological motivation, we will present new results for the quark

mass anomalous dimension here, applying a number of the above-mentioned algorithmic

advances. While this renormalization constant has been studied previously up to five loops

in perturbation theory [2–7], we generalize it from the gauge group SU(3) to a semi-simple

Lie group. At the same time, we provide a truly independent check on the available SU(3)

result, since we utilize largely independent methods, as described below. We will also give

results for a related quantity needed to renormalize the quark sector at five loops, namely

the quark field anomalous dimension in Feynman gauge, again generalizing known SU(3)

results to a semi-simple Lie group.

The paper is organized as follows. We start by explaining our computational setup in

section 2. Using some notation defined in section 3, we then present and discuss results in

sections 4 and 5, before concluding in section 6. For convenience, an appendix reproduces

large-Nf results from the literature, which we use for consistency checks.

2 Setup

Let us start by explaining our computational setup, which closely follows the one em-

ployed and tested in [8]. We base our highly automated setup on the diagram gener-

ator qgraf [9, 10] and various in-house FORM [11–13] codes. After generating the re-

quired fermionic 2-point functions, we apply projectors and perform the group algebra

with color [14]. To extract the ultraviolet (UV) divergences, we then use the freedom to

change the low-momentum behavior and make all propagators massive, which regulates

the infrared at the cost of introducing a new counterterm for the unphysical regulator

mass. Expanding to sufficient depth in the external momentum [15–17] and keeping all

potentially UV divergent structures results in nullifying the external momentum. The

coefficients of this expansion can then be mapped onto a family of fully massive vacuum

integrals, which are labelled by 15 indices (corresponding to maximally 12 propagators plus

3 scalar products) at five loops [18]. As a next and fairly time-consuming step, we reduce

those integrals to a small set of master integrals, powered by our own codes crusher [19]

and TIDE [18], which are based on integration-by-parts (IBP) identities [20] and use a

Laporta-type algorithm [21] for a systematic integral reduction.

At five loops, we end up with a set of 110 master integrals. These have been evaluated

in an ε-expansion around d = 4 − 2ε dimensions in previous works [18, 22], using an

approach based on IBP reductions and difference equations [21] that has been realized in

C++ and uses Fermat [23] to perform the polynomial algebra that arises in solving systems

of linear equations with large rational coefficients. The resulting high-precision numerical

results for the coefficients of the ε-expansions finally allow us to utilize the integer-relation

finding algorithm PSLQ [24] to discover the analytic content of some of these numbers, and

to find relations between others. As a consequence, we are able to provide all our results

given below in analytic form.
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I31740 I31740.1.3 I30527 I30527.1.2 I30527.1.3 I30527.1.4 I30527.6.3

Figure 1. 5-loop master integrals with 12 lines that contribute to eqs. (2.1)–(2.3). Each line denotes

a massive propagator 1/(k2 + m2), and each dot stands for an extra power of the corresponding

propagator.

As has already been mentioned elsewhere [8], our high-precision evaluation of all 5-loop

master integrals has not yet produced results for the 12-line families, see figure 1. These do

not contain divergences in four dimensions, and could therefore be avoided in evaluations

of anomalous dimensions. It turns out, however, that with our integral reduction criteria

and lexicographic ordering prescription, we do get contributions from these integral classes

since they are multiplied by prefactors with spurious poles as d → 4. To fix the values of

the 12-line master integrals that we need, we first note that in all our results, only three

independent linear combinations appear:

ℓ0 = 689 I30527.1.1,5 − 3934 I30527.1.2,5 + 5464 I30527.1.3,5 + 1152 I30527.1.4,5 − 5228 I30527.6.3,5 ,

(2.1)

ℓ1 = 689 I30527.1.1,6 − 3934 I30527.1.2,6 + 5464 I30527.1.3,6 + 1152 I30527.1.4,6 − 5228 I30527.6.3,6

+1968 I30527.1.1,5 + 3890I30527.1.2,5 + 3844 I30527.1.3,5 − 6912 I30527.1.4,5 − 70I30527.6.3,5 ,

(2.2)

ℓ2 = 11 I31740.1.1,5 − 72 I31740.1.3,5 . (2.3)

Here, each integral I#,n corresponds to the εn-coefficient of the respective fully massive

master integral of figure 1, divided by the fifth power of the 1-loop tadpole J for normal-

ization reasons.1 While it is conceivable that there exists a suitable basis transformation

that eliminates these linear combinations altogether from the final results, we have not yet

performed a systematic search of such transformations in our integral reduction tables, but

opted for other criteria to fix the numerical values of the three linear combinations, with

high precision, as we will explain now.

As a crude order-of-magnitude estimate, we have evaluated the set of 12-line integrals

via Feynman parametric representations (see e.g. [25]) and subsequent (primary) sector

decomposition, using the strategy explained in [26, 27] and as implemented in FIESTA [28] as

well as own code (see [29]). Due to the large prefactors and cancellations in eqs. (2.1)–(2.3),

a 6-digit evaluation results in the estimates

ℓ0 ≈ −7.47(1) , ℓ1 ≈ −50.6(1) , ℓ2 ≈ −0.673(1) , (2.4)

with 3-digit accuracy.

1J=
∫
ddk/(k2+m2) ∼ Γ(1−d/2) has a simple pole as d → 4; hence, finite 5-loop terms correspond to ε5.
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Turning now to high-precision evaluations, we first recall that the higher-order ε-poles

of renormalization constants are completely determined by lower-order coefficients. Check-

ing these, we obtain one consistency condition that allows to fix ℓ0. Second, we observe

the occurrence of some rank-12 group invariants in another renormalization constant that

we have evaluated using the same setup, namely for the ghost-gluon vertex [30]. Using

eq. (2.4), to determine their coefficients, we find that they vanish at least to this low ac-

curacy. Taking this zero for granted, we turn the argument around and require e.g. the

structure d 444
FAANf (where the group invariant is in the notation of [14]) to be absent from

the final result; this gives us another condition, fixing ℓ2. Third, for fixing the remaining

linear combination, we choose to compare our results in the SU(3) limit to the previously

known 5-loop results. To be concrete, out of the many possible coefficients we choose the

nf term of γm as given in [7], giving us one constraint which fixes ℓ1. Along these lines,

we obtain numerical values for all three linear combinations with 260 digits, the first 50 of

which read

ℓ0 = −7.4750787021276651819913288152084850401974826928834 . . . , (2.5)

ℓ1 = −50.563714841071996428539372592222326105092965639946 . . . , (2.6)

ℓ2 = −0.67332086607447050046759024439428336720209195028580 . . . , (2.7)

and which can be seen to be consistent with our low-precision estimates of eq. (2.4) that

had been obtained by direct integration.

3 Notation

Let us fix our notation here: we work with a semi-simple Lie algebra with hermitian

generators T a, whose real and antisymmetric structure constants fabc are fixed by the

commutation relation [T a, T b] = ifabcT c. As usual, the quadratic Casimir operators of the

fundamental (adjoint) representation (of dimensions NF and NA, respectively) are defined

as T aT a = CF11 (facdf bcd = CAδ
ab). Furthermore, traces are normalized as Tr(T aT b) =

TFδ
ab, we denote the number of quark flavors with Nf , and find it convenient to define the

following normalized combinations:

cf =
CF

CA
, nf =

Nf TF

CA
. (3.1)

In our multi-loop diagrams, we will encounter traces of more than two group generators,

giving rise to higher-order group invariants. It is useful to define traces over combinations

of symmetric tensors [14], of which we need the following (writing [F a]bc = −ifabc for the

generators of the adjoint representation):

d1=
[sTr(T aT bT cT d)]2

NAT 2
FC

2
A

, d2=
sTr(T aT bT cT d) sTr(F aF bF cF d)

NATFC3
A

, d3=
[sTr(F aF bF cF d)]2

NAC4
A

.

(3.2)

Here, sTr stands for a fully symmetrized trace (such that sTr(ABC) = 1
2Tr(ABC +ACB)

etc.). While dealing with the quark sector, it might seem more natural to normalize these
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traces with respect to the dimension of the fundamental representation; to this end, we

note the relation NATF = NFCF which holds in general [14, 31]. For the gauge group

SU(N) (where TF = 1
2 and CA = N), the normalized group invariants introduced above

read [14]

nf =
Nf

2N
, cf =

N2− 1

2N2
, d1 =

N4− 6N2 + 18

24N4
, d2 =

N2+ 6

24N2
, d3 =

N2+ 36

24N2
. (3.3)

The corresponding SU(3) values, relevant for physical QCD, hence read

SU(3) : nf =
Nf

6
, cf =

4

9
, d1 =

5

216
, d2 =

5

72
, d3 =

5

24
. (3.4)

4 Quark mass renormalization

The renormalization constant for the quark mass mbare = Zmmren, or equivalently its

anomalous dimension γm = −∂lnµ2 lnZm, has been known at two [2] and three loops [3, 4]

for a long time. At four loops, γm is known for SU(N) and QED [6] as well as for a general

Lie group [5]. Presently, at five loops only the SU(3) value is publicly available [7]. We

present our corresponding result for a general Lie group below.

The structure of the quark mass anomalous dimension is

∂lnµ2 lnmq(µ) ≡ γm(a) = −cf a
{

3 + γm1 a+ γm2 a
2 + γm3 a

3 + γm4 a
4 + . . .

}

, (4.1)

a ≡ CA g2(µ)

16π2
, (4.2)

with g(µ) being the renormalized QCD gauge coupling constant that depends on the renor-

malization scale µ (we prefer to use the expansion parameter a which is nothing but a

rescaled version of the renormalized strong coupling constant αs = g2(µ)
4π ). We work in

d = 4 − 2ε dimensions and employ the MS scheme. The coefficients γmn are polynomials

in nf and can be written in terms of our normalized group factors. Up to four loops,

they read [5]

31 γm1 = nf

[

− 10
]

+
[

(9cf + 97)/2
]

, (4.3)

33 γm2 = n2
f

[

−140
]

+nf

[

54(24ζ3−23)cf−4(139+324ζ3)
]

+
[

(6966c2f−3483cf+11413)/4
]

,

(4.4)

34 γm3 = n3
f

[

− 8(83− 144ζ3)
]

+ n2
f

[

48(19−270ζ3 + 162ζ4)cf + 2(671+6480ζ3−3888ζ4)
]

+nf

[

− 216(35− 207ζ3 + 180ζ5)c
2
f − 3(8819− 9936ζ3 + 7128ζ4 − 2160ζ5)cf

−(65459/2 + 72468ζ3 − 21384ζ4 − 32400ζ5) + 2592(2− 15ζ3)d1

]

+
9

8

[

− 9(1261+2688ζ3)c
3
f + 6(15349+3792ζ3)c

2
f − 2(34045+5472ζ3−15840ζ5)cf

+(70055 + 11344ζ3 − 31680ζ5)− 1152(2− 15ζ3)d2

]

, (4.5)

where we have denoted values of the Riemann Zeta function as ζs = ζ(s) =
∑

n>0 n
−s.
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At five loops, from appendix A, we have LO and NLO large-Nf terms to all orders,

coinciding with the leading terms above, and predicting the first two terms of the 5-loop

contributions as

65 γm4 = γm44

[

4nf

]4
+ γm43

[

4nf

]3
+ γm42

[

4nf

]2
+ γm41

[

4nf

]

+ γm40 , (4.6)

γm44 =−6(65 + 80ζ3 − 144ζ4) , (4.7)

γm43 = 3(4483+4752ζ3−12960ζ4+6912ζ5)cf + (18667/2+32208ζ3+29376ζ4−55296ζ5) .

(4.8)

We have evaluated the remaining coefficients, mapping all diagrams onto fully massive

vacuum tadpoles; IBP-reducing them to master integrals; using high-precision numerical

evaluations thereof plus some additional consistency conditions to fix linear combinations of

12-line master integrals as explained in section 2; and finally employing PSLQ at 200 digits

for discovery, and at 250 digits for confirmation, we confirm the two large-Nf expressions in

eqs. (4.7) and (4.8), and obtain the three missing coefficients of eq. (4.6) in analytic form,

containing only Zeta values:2

γm42 =
{

c2f , cf , d1, 1
}

.
{

9(45253− 230496ζ3 + 48384ζ2
3
+ 70416ζ4 + 144000ζ5 − 86400ζ6),

375373 + 323784ζ3 − 1130112ζ2
3
+ 905904ζ4 − 672192ζ5 + 129600ζ6,

−864(431− 1371ζ3 + 432ζ4 + 420ζ5),

4(13709 + 394749ζ3 + 173664ζ2
3
− 379242ζ4 − 119232ζ5 + 162000ζ6)

}

, (4.9)

γm41 =
{

c3f , c
2

f , cfd1, cf , d1, d2, 1
}

.
{

− 54(48797− 247968ζ3 + 24192ζ4 + 444000ζ5 − 241920ζ7),

−18(406861 + 216156ζ3 − 190080ζ2
3
+ 254880ζ4 − 606960ζ5 − 475200ζ6 + 362880ζ7),

−62208(11 + 154ζ3 − 370ζ5),

753557 + 15593904ζ3 − 3535488ζ2
3
− 6271344ζ4 − 17596224ζ5 + 1425600ζ6 + 1088640ζ7,

1728(3173− 6270ζ3 + 1584ζ2
3
+ 2970ζ4 − 13380ζ5),

1728(380− 5595ζ3 − 1584ζ2
3
− 162ζ4 + 1320ζ5), (4.10)

−2(4994047+11517108ζ3− 57024ζ2
3
− 5931900ζ4− 15037272ζ5+ 4989600ζ6 + 3810240ζ7)

}

,

γm40 =
{

c4f , c
3

f , c
2

f , cfd2, cf , d2, d3, 1
}

.
{

972(50995 + 6784ζ3 + 16640ζ5),

−54(2565029 + 1880640ζ3 − 266112ζ4 − 1420800ζ5),

108(2625197 + 1740528ζ3 − 125136ζ4 − 2379360ζ5 − 665280ζ7),

373248(141 + 80ζ3 − 530ζ5),

−8(25256617+16408008ζ3+ 627264ζ2
3
− 812592ζ4− 40411440ζ5 + 3920400ζ6−5987520ζ7),

−6912(9598 + 453ζ3 + 4356ζ2
3
+ 1485ζ4 − 26100ζ5 − 1386ζ7),

5184(537 + 2494ζ3 + 5808ζ2
3
+ 396ζ4 − 7820ζ5 − 1848ζ7), (4.11)

4(22663417+10054464ζ3+1254528ζ2
3
−1695276ζ4−41734440ζ5+7840800ζ6+5987520ζ7)

}

.

2To make the group structure more visible, we resort to a vector notation here and below, where a dot

between two curly brackets denotes a scalar product as e.g. in {cf , 1}.{a, b} = cfa+ b.
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Let us now discuss some checks on this new result. The authors of [7] have published

the full 5-loop result for the case of SU(3). To compare, we recall the definition of our

expansion parameter in eq. (4.2) and put all group invariants to their SU(3) values as

given in eq. (3.4); the γm1...4 as listed above then coincide with the expressions given in [7].

Furthermore, the same group has very recently generalized their work to a general Lie

group as well [32]. We have cross-checked their preliminary result with our γm4 as given

above, and found full agreement. Since both five-loop results have been obtained with

completely different methods (with the exception of also relying on qgraf for diagram

generation, in [32] the 5-loop renormalization constants are mapped onto massless 4-loop

two-point functions [33–35], and integral reduction is done via 1/d expansions [36, 37]),

this agreement constitutes an extremely strong check.

5 Quark field renormalization

For completeness, let us also present our new five-loop result for the quark field anoma-

lous dimension γ2 = −∂lnµ2 lnZ2, where the renormalization constant Z2 relates bare and

renormalized quark fields as ψbare =
√
Z2ψren. As opposed to the quark mass, this quantity

is not physical and hence gauge dependent. Lower-loop results can be found for SU(N) and

covariant gauge in [38], and for a general Lie group with ξ0, ξ1 terms (which corresponds

to a NLO expansion around Feynman gauge) in [39]. At five loops, γ2 is known for SU(3)

in Feynman gauge [7], and we will below once more present the generalization to a general

Lie group.

Up to four loops, we obtain (ξ being the covariant gauge parameter, such that the

values ξ = 0/1 correspond to Feynman/Landau gauge)

γ2 = −cf a
{

(1− ξ) + γ21 a+ γ22 a
2 + γ23 a

3 + γ24 a
4 + . . .

}

, (5.1)

22 γ21 = nf

[

− 8
]

+
[

− 6cf + 34− 10ξ + ξ2
]

, (5.2)

2532 γ22 = n2

f

[

640
]

+ nf

[

8(108cf − 1301 + 153ξ)
]

(5.3)

+
[

432c2f −72(143−48ζ3)cf+2(10559−1080ζ3)−9ξ(371+48ζ3)+27ξ2(23 +4ζ3)−90ξ3
]

,

2435 γ23 = n3

f

[

13440
]

+ n2

f

[

6912(19− 18ζ3)cf + 16(6835 + 9072ζ3) + 64ξ(269− 324ζ3)
]

+nf

[

5184(19− 48ζ3)c
2

f +
(

− 108(2407− 1584ζ3 − 1296ζ4 − 5760ζ5)

+324ξ(767−528ζ3−144ζ4)
)

cf + 497664d1 − (1365691+154224ζ3 + 97200ζ4+311040ζ5)

+ξ(48865 + 152928ζ3 + 29160ζ4)− 54ξ2(109 + 84ζ3 − 18ζ4)
]

+
[

− 486(1027 + 3200ζ3 − 5120ζ5)c
3

f + 324(5131 + 10176ζ3 − 17280ζ5)c
2

f

+
(

− 108(23777 + 7704ζ3 + 2376ζ4 − 28440ζ5)− 1944ξ(6− 7ζ3 + 10ζ5)
)

cf

+486
(

16(−33 + 95ζ3 − 85ζ5)− 8ξ(1 + 48ζ3 − 70ζ5)− 8ξ2(7ζ3 + 5ζ5) + 20ξ3(2ζ3 − ζ5)

−ξ4(7ζ3 − 5ζ5)
)

d2 + (10059589/4− 241218ζ3 + 168156ζ4 − 604260ζ5)

−ξ(2127929/8 + 164106ζ3 − 21141ζ4 − 107730ζ5) + 27ξ2(13883 + 9108ζ3 − 1548ζ4

−1920ζ5)/8− 81ξ3(263 + 65ζ3 − 9ζ4 + 20ζ5)/2 + 81ξ4(57 + ζ3 + 10ζ5)/4
]

. (5.4)
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We have presented the full gauge parameter dependence above. Note that this fills a gap in

the literature and constitutes new information at four loops: in [39] only the terms linear

in ξ have been evaluated for a general Lie group, while with full gauge dependence only the

SU(N) result is available [38]. However, due to the degeneracies 2d1 = 6c2f−5cf+13/12 and

2d2 = 7/12−cf in the SU(N) limit, one cannot uniquely extract the Lie group structure from

the latter reference. Needless to say that our result for γ23 given in eq. (5.4) reproduces the

ξ0 and ξ1 terms given in [39], and in the SU(N) limit reduces to the respective expressions

of [38], for all powers of ξ.

Expanding the all-order large-Nf Landau gauge result of eq. (A.3) in the coupling af
allows to confirm eqs. (5.2)–(5.4) to NLO in nf , and to predict the first two terms of γ24
in that gauge as

243 γ24|ξ=1 =
83− 144ζ3

72

[

16nf

]4
+ γ ξ=1

243

[

16nf

]3
+ . . . , (5.5)

γ ξ=1
243 =

{

cf , 1
}

.
{

− 659/18 + 312ζ3 − 216ζ4,−1783/36− 248ζ3 + 216ζ4

}

. (5.6)

At five loops, along the same steps as explained in section 4, we have obtained the new

Feynman gauge result3

243 γ24 =
83− 144ζ3

72

[

16nf

]4
+ γ243

[

16nf

]3
+ γ242

[

16nf

]2
+ γ241

[

16nf

]

+ γ240 +O(ξ) ,

(5.7)

where the coefficients again contain only Zeta values up to weight 7,

γ243 =
{

cf , 1
}

.
{

− 659/18 + 312ζ3 − 216ζ4,−3443/48− 255ζ3 + 252ζ4

}

, (5.8)

γ242 =
{

c2f , cf , d1, 1
}

.
{

− 2(2497− 1200ζ3 + 3456ζ4 − 8640ζ5),

477433/12− 45636ζ3 + 4608ζ2
3
+ 11448ζ4 − 65088ζ5 + 28800ζ6,−384(115− 33ζ3 − 90ζ5),

3015955/72 + 69509ζ3 − 2304ζ2
3
− 12861ζ4 + 16662ζ5 − 14400ζ6 − 11907ζ7

}

, (5.9)

γ241 =
{

c3f , c
2

f , cfd1, cf , d1, d2, 1
}

.
{

24(29209 + 89984ζ3 + 12288ζ2
3
− 28800ζ4−187520ζ5+76800ζ6),

−4(296177 + 517020ζ3 + 26784ζ2
3
− 469908ζ4 − 4104720ζ5 + 1069200ζ6 + 3011904ζ7),

−2304(748 + 4536ζ3 − 1368ζ2
3
− 6780ζ5 + 3255ζ7),

8(115334− 37764ζ3 − 123012ζ2
3
− 49923ζ4 − 1124556ζ5 + 133650ζ6 + 1519308ζ7),

192(16732 + 39912ζ3 − 10944ζ2
3
− 72960ζ5 + 36771ζ7),

96(6158− 13952ζ3 − 372ζ2
3
+ 2880ζ4 − 39475ζ5 − 3900ζ6 + 45696ζ7), (5.10)

−34919359/9− 753797ζ3 + 548148ζ2
3
− 135063ζ4 + 1759474ζ5 + 265350ζ6 − 2647806ζ7

}

,

3The restriction to ξ = 0 is for practical reasons only. To evaluate the ξ-dependent coefficients, one

would need to enlarge the integral reduction tables as produced by crusher and TIDE to integrals with

higher propagator powers (or dots), roughly one more dot per power of the gauge parameter. Since the

present calculation is at the limit of what the computing resources available to us are able to handle, we

defer this to future work.
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γ240 =
{

c4f , c
3

f , c
2

f , cfd2, cf , d2, d3, 1
}

.
{

1728(4977 + 128000ζ3 + 19968ζ2
3
+ 180800ζ5 − 381024ζ7),

−96(835739 + 8494144ζ3 + 1182336ζ2
3
− 316800ζ4 + 3983360ζ5 + 844800ζ6 − 17852688ζ7),

192(825361 + 5472068ζ3 + 651816ζ2
3
− 335808ζ4 − 1140420ζ5 + 950400ζ6 − 8056377ζ7),

4608(10 + 53226ζ3 − 15264ζ2
3
+ 2145ζ5 − 45885ζ7), −16(84040774/9

+33396648ζ3 + 2804616ζ2
3
− 838782ζ4 − 18160944ζ5 + 6252300ζ6 − 41015331ζ7),

−384(43066 + 628802ζ3 − 160998ζ2
3
+ 36540ζ4 − 201125ζ5 − 53475ζ6 − 403263ζ7),

−72(20566− 218812ζ3−79080ζ2
3
−13212ζ4+760220ζ5+20100ζ6 − 660667ζ7), 804023630/9

+101490400ζ3 + 3143352ζ2
3
+ 7356024ζ4− 86186276ζ5+ 18372900ζ6−115799439ζ7

}

. (5.11)

As a speculation, comparing the Landau gauge prediction eq. (5.5) with the Feynman gauge

result eq. (5.8), the full result for γ243 could be simply adding δγ243 = ξ(3197/144 + 7ζ3 −
36ζ4); more generally however, consistency only requires that δγ243 = cf u1(ξ)+u2(ξ) with

u1(0) = 0 = u1(1) as well as u2(0) = 0 and u2(1) = 3197/144 + 7ζ3 − 36ζ4, the simplest

choice being the one speculated above.

As a check, replacing the group invariants with the values of eq. (3.4) in our Feynman

gauge result for γ24, we find perfect agreement with the known SU(3) result of [7] (see also

eq. (46) of [40]).

6 Conclusions

We have provided new results for two fundamental renormalization coefficients, at five loops

and for a semi-simple Lie group. In particular, our expression for the gauge-invariant quark

mass anomalous dimension γm coincides in various limits (large Nf as well as SU(3)) with

previously known results, and coincides exactly with recent results of another group [32].

We have also provided the Feynman gauge result for the quark field anomalous dimension

γ2, which again could be checked against known expressions in the abovementioned limits.

From these two quantities, one can reconstruct the two renormalization constants Zm and

Z2 of the quark sector, an electronic version of which is available by downloading the source

of this article from http://arXiv.org/abs/1612.05512.

As had already been observed in [5], looking at e.g. the 4-loop result for the quark

mass anomalous dimension eq. (4.5), all Zeta terms (and also the higher group invariants

dn) vanish at {cf = 1, nf = 1
2 , d1 = d2}, which corresponds to N = 1 supersymmetry.

The same had happened for the 4-loop Beta function (generalizing the last condition to

d1 = d2 = d3). For these parameters values, from section 4 we have

γm =−a

{

3 +16 a+
310

3
a2 +

2228

3
a3 +

(

671075

108
−194 d1 +

(

1483

2
−2028 d1

)

ζ3

−20
(

55 +354 d1
)

ζ5

)

a4 . . .

}

,
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where we observe that the cancellation pattern does not hold through five loops — al-

though the structure becomes much simpler, due to cancellation of all terms containing

{ζ23 , ζ4, ζ6, ζ7}.
To conclude the renormalization program at five loops, one needs to determine three

more renormalization constants, which can be chosen to be those of the gluon and ghost

fields, Z3 and Zc
3, respectively, and of the ghost-gluon vertex Zccg

1 . From these, due to gauge

invariance, one can then construct the renormalization constant for the gauge coupling (aka

the Beta function, whose five-loop coefficient is so far known for SU(3) only [41]) as well

as those for the remaining vertices. While the same methods that we have used here are

sufficient to calculate those missing coefficients (which indeed already led to the NLO terms

at large Nf [8]), due to the complexity of the determination of Z3 we leave the evaluation

of the full coefficients for future work.

Acknowledgments

We are indebted to K. Chetyrkin for sending us their new five-loop results for γm prior to

publication [32], to enable the important check discussed at the end of section 4. The work

of T.L. has been supported in part by DFG grants GRK 881 and SCHR 993/2. A.M. is

supported by a European Union COFUND/Durham Junior Research Fellowship under EU

grant agreement number 267209. P.M. was supported in part by the EU Network HIG-

GSTOOLS PITN-GA-2012-316704. Y.S. acknowledges support from FONDECYT project

1151281 and UBB project GI-152609/VC. All diagrams were drawn with Axodraw [42, 43].

A Summary of large-Nf results

Some coefficients of QCD anomalous dimensions are known to all loop orders, from a large

Nf expansion. Taking nf and cf as above and defining

af ≡ NfTFg
2(µ)

12π2
=

4nf a

3
, η(ε) ≡ (2ε− 3)Γ(4− 2ε)

16Γ2(2− ε)Γ(3− ε)Γ(ε)
, (A.1)

the all-order leading-Nf [44] and next-to-leading-Nf [45, 46] expressions that we need

here read

γm =
4cf
nf

{

η(af ) +
η3(af )

8nf

+O
(

1

n2
f

)}

, (A.2)

γ2|ξ=1 = −2afcf
nf

{

η(af ) +
1

nf

η4(af )

4af
+O

(

1

n2
f

)}

, (A.3)

where the fact that the asymptotic expansions have been performed in Landau gauge only

does not affect the physical and gauge invariant quark mass anomalous dimension γm. To

define the coefficient functions η3 and η4, it is convenient to define the linear combinations

Ψ(ε) = ψ0(1− 2ε) + ψ0(1 + ε)− ψ0(1− ε)− ψ0(1) , (A.4)

Φ(ε) = ψ1(1− 2ε)− ψ1(1 + ε)− ψ1(1− ε) + ψ1(1) , (A.5)

Θ(ε) = ψ1(1− ε)− ψ1(1) , (A.6)
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where ψn(x) = ∂n+1
x ln Γ(x) is the PolyGamma function. Then [45, 46]

η3(ε) ≡
(

− 11

4
+
∑

n>0

fnε
n

n

)

8ε∂εη(ε)−
16η2(ε)

(3−2ε)(1−ε)

{

3(2−ε)2(1−ε)2Θ(ε)− (5+5ε−11ε2+4ε3),

(88−372ε+551ε2−380ε3+160ε4−64ε5+16ε6)−4ε(3−2ε)(1−2ε)(2−ε)(1−ε)2
(

Ψ2(ε)+Φ(ε)
)

+2(1− ε)(24− 144ε+ 249ε2 − 146ε3 + 12ε4 + 8ε5)Ψ(ε)
}

.

{

2

2− ε
cf ,

1

4ε(3− 2ε)(1− 2ε)

}

,

(A.7)

η4(ε) =
εη3(ε)

2
+

(

− 11

4
+
∑

n>0

fnε
n

n

)

4εη(ε) +
2η2(ε)

3− 2ε

{

− 8(1−4ε+ 2ε2),
(2− 5ε+ 2ε2)2

1−ε

}

.
{

cf , 1
}

,

(A.8)

with
∑

j>0

fj ε
j ≡ −η(ε)

{

4(1 + ε)(1− 2ε)cf +
4ε4 − 14ε3 + 32ε2 − 43ε+ 20

(1− ε)(3− 2ε)

}

. (A.9)

The coefficients af , η(ε) and fj are the same as we had defined in [8].
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