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1 Introduction

N = 4 Super Yang Mills is a special theory in which the integrability of the planar regime

allows us to compute observables at any value of the coupling. Two such observables are

the expectation value of null polygonal Wilson loops and scattering amplitudes, which are

dual to each other [1–6].

These observables are what the Pentagon Operator Product Expansion (POPE) [7]

program studies. This is an expansion around the collinear limit in which the Wilson loop

expectation value is given as an infinite sum over flux tube excitations created at the bottom

and absorbed at the top of the polygon. The building blocks have been bootstrapped at

any value of the coupling and matched against data [8–16] and in [17], the complete POPE

series for the hexagon was unveiled.

A natural question to ask is if this expansion can be resummed to reproduce the full

kinematical dependence of the amplitude. In general this is not a simple problem since

already at tree level we need to sum over an infinite set of excitations. The resummation

of the POPE was considered before both at weak and strong coupling. At weak coupling,

in [18, 19] a procedure for the resummation of the single particle gluon bound states or

double scaling limit was presented whereas at strong coupling in [20, 21] the contribution

of gluons and mesons were studied.

However, the POPE weak coupling resummation where the full set of flux tube exci-

tations is taken into account is still pending. This might seem a rather difficult task since

we need to sum over the contributions of all possible combinations of gluons, scalars and

fermions. The way out is that we can reorganize the excitations into effective particles. As
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was put forward in [16] the number of effective particles needed to reproduce an amplitude

grows very slowly with loop order. In fact, to compute the six point amplitude at tree level

and one loop only states with one effective particle are needed.

The one effective particle states are formed by one fundamental excitation — could

be a gluon bound state, a scalar or a large fermion — and an arbitrary number of small

fermions (antifermions) which are then integrated out. As we shall see, the fundamental

excitation and the small fermions are organized in Bethe strings which allows us to perform

the integrations straightforwardly. Since the string patterns are derived from the matrix

part of the POPE integrand which is coupling independent, we use these results to compute

the one effective particle measures at finite coupling. We later evaluate these measures at

tree level and sum over all one effective particle states to get a rational function which

reproduces the 6 point tree level amplitude for general kinematics. In the end, the tree

level resummation turns out to be very simple.

The paper is organized as follows. In section 2 we first review the hexagon POPE

building blocks and consider the one effective particle states, presenting their measures

at finite coupling. In section 3 we evaluate these measures at tree level and perform the

resummation. In the same section we explain how this result reproduces the NMHV 6

point amplitude at tree level. We conclude with some final remarks.

2 Hexagon POPE and one effective particle states

Let us first recall the results spelled out in [17] that provide the building blocks for our

derivation. The hexagon Wilson loop we want to compute is given as a sum over all possible

flux tube excitations parametrized by rapidities ui

W6 = =
∑
m

1

Sm

∫
du1 . . . dum

(2π)m
Πdyn ×ΠFF ×Πmat , (2.1)

where Sm is a symmetry factor. The integrand is nicely factored out into a dynamical and

form factor parts which carry the coupling dependence and a matrix factor which takes

care of the R-symmetry structure of the theory. The first factor is universal and reads

Πdyn =
∏
i

µ(ui)e
−E(ui)τ+ip(ui)σ+imiφ ×

∏
i<j

1

|P (ui|uj)|2
, (2.2)

where {τ, σ, φ} are respectively the flux tube time, space and angle (related to the three

conformal cross ratios of the hexagon); E(ui), p(ui) and mi are the energy, momentum

and angular momentum of the excitation; P (ui|uj) are the pentagon transitions between

different excitations and µ(ui) the corresponding measures. We will often use the notation

µ̂(u) = µ(u)e−E(u)τ+ip(u)σ+imφ. The fundamental flux tube excitations are gluon bound

states, fermion, antifermion and scalar: {Fb, ψ, ψ̄, φ}. They are represented in the bold

squares of figure 1.
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Figure 1. Table of effective weak coupling excitations presented in [9, 16]. The fundamental

excitations are in the bold squares. The effective particles can be formed by adding small fermions

or antifermions.

The next factor in the POPE integrand is non trivial only for Next to Maximally

Helicity Violating (NMHV) hexagons (i.e. charged pentagons) and is given by

ΠFF = g
1
8
r1(r1−4)+ 1

8
r2(r2−4) ×

∏
i

h(ui)
r2−r1 , (2.3)

where ri is the R-charge in the i-th pentagon and h(ui) are the so called form factors

derived in [16]. The last factor is the matrix part which takes into account the contraction

of the SU(4) R-symmetry indices of each pentagon. It has the following form [14]

Πmat =
1

K1!K2!K3!

∫ K1∏
i=1

dw1
i

2π

K2∏
i=1

dw2
i

2π

K3∏
i=1

dw3
i

2π

× g(w1)g(w2)g(w3)

f(w1,w2)f(w2,w3)f(w1,v)f(w2, s)f(w3, v̄)
, (2.4)

where wi are auxiliary roots of three different types and {vi, si, v̄i} are rapidities for

fermions, scalars and antifermions, respectively; the functions g(w) =
∏
i<j(wi−wj)2[(wi−

wj)
2 + 1], f(w,v) =

∏
i,j [(wi− vj)2 + 1

4 ] and the number of auxiliary rapidities Kj are the

solution to the equations

Nψ − 2K1 +K2 = δr1,3 ,

Nφ +K1 − 2K2 +K3 = δr1,2 , (2.5)

Nψ̄ +K2 − 2K3 = δr1,1 ,

where Nψ, Nφ and Nψ̄ are respectively the number of fermions, scalars and antifermions.

Together with the pentagon transitions, form factors and energies presented in [8, 16],

these expressions are all the necessary ingredients to compute the hexagon Wilson loop as
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Figure 2. The fermion contour of integration in terms of the rapidity u involves a Riemann surface

with two sheets — one in which the momenta is large and another one in which it is small —

connected by a branch cut between u = −2g and u = 2g. The original contour in [9] can be

split into two different contours Clarge and Csmall, each one on a different sheet. The small fermion

contour Csmall might enclose poles coming from interactions with other excitations.

a series in the collinear limit. From them we shall derive the one effective particle measures

that we later resum at tree level.

As we shall be working mostly with NHMV amplitudes, let us review some useful

notation. The hexagon super Wilson loop can be decomposed into POPE components

P [r1]P [r2], where ri is the total R-charge in the i-th pentagon and it takes values 0 ≤ ri ≤
4. For NkMHV components we have that

∑
i ri = 4k. Therefore the hexagon NMHV

(r1 + r2 = 4) has five different POPE components. Depending on which POPE component

we are considering, there is a subset of allowed excitations determined by the representation

of the SU(4) R-symmetry in which the state transforms. For instance, for the NMHV

component P [2]P [2] we could have the excitations: φ, ψ̄ψ̄, ψψFa, etc.

The fermionic excitations have the important feature that they can be separated into

large and small fermions. This is because in terms of the Bethe rapidity the fermion

integration contour involves two different Riemann sheets, one in which the fermions have

large momenta and another one in which their momenta is small [9]. The integration

contour can be split into two so that each new contour lives only in one of the two Riemann

sheets, as figure 2 shows.

In the small sheet there are potential poles enclosed by the contour Csmall. These would

come from the interaction of the small fermions with other excitations. When attached to

another particle, the small fermions ψs act as supersymmetry generators [22] and create

a sea of effective excitations, some of which are shown in figure 1. We can also add an

arbitrary number of pairs of small fermion-antifermion ψsψ̄s (or derivatives D+), creating

the so called descendants depicted in figure 3. The name is because, as explained in [23–25],

at weak coupling there is an enhancement of symmetry from SU(4) to SL(2—4) and the

flux tube excitations can be packed in SL(2) conformal blocks. The primaries correspond to

the excitations in the plane presented in figure 1, obtained by the action of small fermions

or antifermions. On the other hand, the descendants correspond to the excitations in the
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Figure 3. Table of effective weak coupling excitations including the first n descendants of the

particles transforming in the vector representation of SU(4). The plane in the bottom contains the

primary excitations depicted in figure 1. A descendant is formed by acting with a pair ψsψ̄s (or

derivative D+) on one of these excitations. Moving away from this plane in the vertical direction

corresponds to adding more descendants. An effective excitation is characterized by its helicity a,

the SU(4) R-symmetry representation labelled by r̂ and its number of descendants n.

vertical direction in figure 3 obtained by the action of pairs of small fermion-antifermion

ψsψ̄s. Although this symmetry is exact only up to one loop, we will keep the terminology

for the finite coupling discussion.

In sum, we can distinguish an effective excitation by its position on the three dimen-

sional space shown in figure 3. The three parameters are: the helicity of the excitation a, its

number of descendants n and the SU(4) R-symmetry representation in which it transforms

r̂ (distinguishing between the two sets of singlet excitations shown in the first and last row

of figure 1). As we explain in the following sections, to perform the tree level resummation

we fix the SU(4) representation and sum the measures of the effective particles over a (from

−∞ to ∞) and over n (from 0 to ∞).

One effective particle states. A one effective particle Φ is formed by one fundamental

excitation — referred to in the following as Φ0 — and an arbitrary number Nψs (Nψ̄s) of

small fermions (antifermions) that are integrated out. Higher number of effective particles

include more than one fundamental excitation. In terms of effective excitations, a POPE

hexagon component reads

P [r1]P [r2] =
∑

Φ

∫
du

2π
e−EΦ(u)τ+ipΦ(u)σ+imΦφµ

[r1,r2]
Φ (u) + . . . , (2.6)

where the dots account for higher effective particles and we have adopted the notation

µ
[r1,r2]
Φ (u) ≡

[
g

1
8
r1(r1−4)+ 1

8
r2(r2−4)hΦ(u)r2−r1

]
µΦ(u). The effective measures µΦ will be
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given by an expression of the sort

µΦ =

∫
Csmall

dv1dv̄1 . . .

(2π)Nψs+Nψ̄s
Πdyn

(
Φ0ψ

Nψs
s ψ̄

Nψ̄s
s

)
ΠFF

(
Φ0ψ

Nψs
s ψ̄

Nψ̄s
s

)
Πmat

(
Φ0ψ

Nψs
s ψ̄

Nψ̄s
s

)
,

(2.7)

where vi (v̄i) are the rapidities of the small fermions (antifermions) and Csmall is the small

fermion contour shown in figure 2.

One advantage of this approach is that the amount of effective particles needed to fully

reproduce a scattering amplitude at a given perturbative order grows very slowly with the

loop order. For instance, one effective particle states are sufficient to reproduce amplitudes

at tree level and one loop, states with two effective particles are enough up to five (four)

loops for MHV (NMHV) amplitudes, etc [16]. Moreover, having a compact formula for

effective particles with arbitrary number Nψs (Nψ̄s) of small fermions represents a huge

simplification for the starting point of the resummation. In the following we describe the

combinatorics involved in the small fermion integrations, the reader might want to skip

this discussion and jump to the next section.

The small fermion integrations in (2.7) can be carried out straightforwardly by residues.

The relevant poles between different rapidities arise from the matrix part.1 Since this part

of the integrand is coupling independent, the structure of poles will be the same at any

value of the coupling. Although taking residues might be trivial, we need to do so for an

arbitrary number of integration variables (remember we can add infinite pairs ψsψ̄s). As

we explain in the following, instead of taking all the possible residues we can find a pattern

in which the small fermions attach to the fundamental excitation forming a Bethe string.

Then we would only need to multiply by an appropriate combinatoric factor. Computing

the integrals in this way is much more efficient and in practice it is the only way to account

for a very large number of small fermions and auxiliary rapidities.

Let us explain how the structure of these strings arises with a simple example. Consider

a scalar excitation and its descendants φ(ψsψ̄s)
n which contribute to the POPE component

P [2]P [2]. These are the excitations in the tower at the center of figure 3. We want to find

the pattern in which the small fermions and antifermions attach to the scalar.

For n = 0 the matrix part is trivial so that we have only the scalar measure µφ(u). For

n = 1, the effective measure (multiplied by the corresponding square propagation factor)

is given by

µ̂φψsψ̄s(u) =

∫
Csmall

dv1 dv̄1

(2π)2

µ̂φ(u)µ̂ψs(v1)µ̂ψ̄s(v̄1)

|Pφ|ψs(u|v1)|2 |Pφ|ψ̄s(u|v̄1)|2 |Pψs|ψ̄s(v1|v̄1)|2
× 1

g
×Πmat(φψsψ̄s) ,

(2.8)

where 1/g is the form factor contribution. Since the matrix part is what determines the

poles, let us write it explicitly. According to (2.5), we have one auxiliary root of each type

1Here we redefine the pentagon transition between small fermion and gluon bound state in the following

way PFb|ψs(u|v)here = (u − v + ia/2)−1PFb|ψs(u|v)[16] so that the factor (u − v + ia/2)−1 is part of the

matrix part and the statement is indeed true for all flux tube excitations.
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which leads to

Πmat(φψsψ̄s) =

∫
R

dw1
1dw

2
1dw

3
1

(2π)3

1

f(w1
1, w

2
1)f(w2

1, w
3
1)f(w1

1, v1)f(w2
1, u)f(w3

1, v̄1)
, (2.9)

=
6v2

1 + 4u2 + 6v̄2
1 − 4uv̄1 − 4uv1 − 8v1v̄1 + 45(

(u− v1) 2 + 9
4

) (
(u− v̄1) 2 + 9

4

)
((v1 − v̄1) 2 + 4)

, (2.10)

where f(u, v) = (u − v)2 + 1/4 as before. Next we would replace this factor in (2.8) and

integrate over v1, v̄1. The integration contour Csmall is the half moon in the lower half of

the complex plane shown in figure 2. This means that the poles that we are going to pick

are v1 = u − 3/2i and v̄1 = u − 3/2i. In other words, we find that the Bethe string is

formed by a scalar with rapidity u and a small fermion and antifermion both attached at

a distance 3/2i below it. As we shall see, it is convenient to think of the small fermions as

auxiliary roots and obtain the same string skipping the intermediate step (2.10). In this

way we can perform all the integrations in (2.8) (over small fermions and auxiliary roots)

by studying the structure of the poles in the matrix part (2.9) and finding a pattern in

which we take the residues.

Let us see how we find the same string in this manner. Each function f(v, u) in (2.9)

gives two poles: one at v = u − i/2 and another one at v = u + i/2. Since we know that

the small fermion rapidities should be evaluated in the lower half of the complex plane,

we shall take the residues at the poles with negative imaginary part. Starting with the

auxiliary root w2
1 we take the residue at w2

1 = u− i/2. After that, the denominator in (2.9)

becomes f(w1
1, u − i/2)f(u − i/2, w3

1)f(w1
1, v1)f(w3

1, v̄1) so next we take the residues at

w1
1 = u − i and w3

1 = u − i (here the order does not matter). That leaves us with the

product f(u− i, v1)f(u− i, v̄1) and the residues at v1 = u− i3/2, v̄1 = u− i3/2 which give

us the same string as before. This pattern in which we take the residues can be represented

by the following picture

where the top node in gray corresponds to the scalar with rapidity u, the square node in the

left (right) represents the small fermion (antifermion) and the circular nodes the auxiliary

roots.2 We start by integrating out the node closer to the fundamental excitation, in this

case w2
1. The residues are taken at positions u − i#/2, where # is the number of line

segments between the fundamental node and the one we are integrating out.

Now we pass to the next descendant n = 2. If we compute the matrix part as in (2.10)

we would find the problem that simplifying the sum over residues is not trivial and that

the result has a numerator with a one page long polynomial which we omit here. We can

2Note that in the previous pattern we can identify the line with the blue nodes with the Dynkin diagram

of SL(2—4).
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avoid this intermediate complication by finding a pattern in which we can take the residues

as we did for n = 1. The integrand of the matrix part is proportional to

Π
(int)
mat [φ(ψsψ̄s)

2] ∝ g(w1)g(w2)g(w3)

f(w1,w2)f(w2,w3)f(w1,v)f(w2, u)f(w3, v̄)
, (2.11)

where now each set of small fermions and auxiliary rapidities has two elements. Note

that (2.11) includes the matrix part integrand for n = 1. If we start integrating out the

first half of the rapidities {w2
1, w

1
1, w

3
1, v1, v̄1} following the pattern derived for n = 1 we

find that the pattern for n = 2 is

where the rows in blue and green are separated by i. This means that the residues for the

second half of the rapidities are evaluated at {w2
2 = u− i3/2, w1

2 = u− i2, w3
2 = u− i2, v2 =

u − i5/2, v̄2 = u − i5/2}. The Bethe string is then formed by the scalar with rapidity

u, one small fermion and antifermion at u − i3/2 and another pair of small fermion and

antifermion at u− i5/2. This string is depicted in the third column of figure 4.

However, this time we could have used different rapidities provided that they belong

to the same set (e.g. take first the residue in w2
2 instead of w2

1). In other words, we can

make a permutation of nodes in a given set without altering the outcome. Therefore we

need to multiply the result by a combinatoric factor, which in this case is (2!)5 (we have

five sets with two rapidities each).

The generalization of these patterns to higher descendants is straightforward.

From (2.5) we see that for each new pair of (ψsψ̄s) we have one more auxiliary root of

each type. Then all we need to do is to add another row of nodes separated by i to the

previous one. From this pattern we can easily see the structure of the Bethe string: the

first pair (n = 1) of small fermion-antifermion attaches to the scalar 3/2i below it, for the

next pair the separation is 5/2i and for the following pairs we keep adding i.

For other fundamental excitations we can derive similar patterns. In appendix A we

explore other examples and give more details on the general structure of these patterns. A

general feature is that the separation between small fermions is always i, so to know the

Bethe strings the only piece of information we need is the separation between the funda-

mental excitation and the first small fermion and antifermion. That is, if the fundamental

excitation has a rapidity u, the first small fermion (antifermion) that is attached will be

evaluated at a rapidity u − iξ1(2), where ξ1(2) varies depending on the fundamental exci-

tation. For instance, for a scalar we have ξ1 = ξ2 = 3/2, for a fermion we would find
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vector

Fb ψ φ ψ̄ F−b

u
b
2 i

i

i

i

i

i

i

3
2 i

i

i

i

i

b
2 i

i

i

i

Figure 4. String patterns in which the small fermions attach for excitations in the vector repre-

sentation of SU(4). These are the excitations appearing in the POPE component P [2]P [2]. The box

at the top of each column labels the fundamental excitation to which the small fermions attach.

In black, the fundamental excitation with rapidity u; in gray, the small fermions (antifermions)

needed to have an excitation transforming in this representation. In blue (green) the first (second)

pair of n descendants (ψsψ̄s). The arrows show the separation between the different excitations

in the rapidity plane. As we can see, the patterns are symmetric between positive and negative

helicity states.

ξ1 = 1, ξ2 = 2, for a positive helicity b gluon bound state ξ1 = |b|/2, ξ2 = |b|/2 + 2 and

similarly for the conjugate excitations. The strings for excitations in a given representa-

tion of the R-symmetry group are presented in figures 4–6. Notice that the only difference

between the different representations is that the small fermions (or antifermions) close to

the top can be either part of the primary excitation (gray) or a descendant (blue/green).

Now that we know how the strings of small fermions form we can compute the energy,

momentum and angular momentum of the effective excitation. They are simply given by

the sum of the individual pieces evaluated at the corresponding rapidities in the Bethe

string. For instance, for the state φψsψ̄s studied above we obtain Eφψsψ̄s(u) = Eφ(u) +

Eψs(u− 3/2i) + Eψ̄s(u− 3/2i).

Similarly (although the calculation is a bit more involved), we can compute the one

effective particle measure µ
[r1,r2]
Φ (u). It has the same universal structure as the one for a

fundamental particle and reads

µ
[r1,r2]
Φ (u) =

[
g

1
8
r1(r1−4)+ 1

8
r2(r2−4) hΦ(u)r2−r1

] MΦ(u)

fΦ0(u)fΦ0(−u)
expΦ(u) , (2.12)
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fundamental/antifundamental

Fb/F−b ψ/ψ̄ φ ψ̄/ψ F−b/Fb

u
b
2 i

i

i

i

i

i

i

3
2 i

i

i

i

i

i

i

b
2 i

i

i

i

i

Figure 5. String patterns in which the small fermions attach to form an effective excitation

transforming in the fundamental representation of SU(4). These are the patterns needed for the

POPE component P [3]P [1]/P [1]P [3]. The notation is the same as in figure 4. In this case the fermion

and antifermion forming a descendant do not attach at the same distance from the fundamental

excitation, but are shifted by i.

where the functions fX(u) are given in appendix A of [16].3 The exponential part is given by

expΦ(u) = exp
[
−2κΦ(u)t · M · κΦ(u) + 2κ̃Φ(u)t · M · κ̃Φ(u)

]
, (2.13)

with

κΦ(u) = κΦ0(u) +

Nψs∑
k=1

κψs(u− i(ξ1 + k − 1)) +

Nψ̄s∑
k=1

κψ̄s(u− i(ξ2 + k − 1)) , (2.14)

and similarly for κ̃Φ(u), where ξ1(2) label the position at which the first small fermion

(antifermion) attaches to the fundamental excitation as above. The vectors κX and matrix

M are given in appendix C of [9]. The form of this vector is reminiscent of the one for

gluons after fusion [10].

3For small fermions we have fψs(ψ̄s)(u) = 1, hence only fΦ0 appears in (2.12).
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singlet

Fb/F−b ψ/ψ̄ φ ψ̄/ψ F−b/Fb

u
b
2 i

i

i

i

i

i

i

i

3
2 i

i

i

i

i

i

i

i

i

b
2 i

i

i

i

i

i

Figure 6. String patterns for excitations transforming in the singlet representation of SU(4).

The notation is the same as in figure 4. The first (second) excitation in each box refers to the

pattern appearing at tree level for the POPE component P [4]P [0] (P [0]P [4]). For the MHV (MHV)

case P [0]P [0](P [4]P [4]) all excitations appear first at one loop.

The factor in square brackets in (2.12) is present only for NMHV amplitudes. The

form factor hΦ(u) can be computed straightforwardly and reads

hΦ(u) = hΦ0(u)

Nψs∏
k=1

hψs(u− i(ξ1 + k − 1))

Nψ̄s∏
k=1

hψ̄s(u− i(ξ2 + k − 1))

 . (2.15)

Because the form factors satisfy hΦ̄(u)hΦ(u) = 1, in general there will be many cancel-

lations. For instance, for the component P [2]P [2] all the individual form factors exactly

cancel. For other components only some of the first and last small fermions/antifermions

contribute to the form factor (this can be seen straightforwardly in figures 4–6 since there

are pairs of fermion-antifermion with the same rapidity).
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The prefactor MΦ(u) is obtained from the product of different prefactors FX|Y (u, v)

contained in the pentagon transitions between the various components of the effective

particle. The explicit formulas for MΦ(u) are presented in appendix B. These are the

relevant functions at weak coupling that we shall use in the next section to resum the full

series and reproduce the six point tree level amplitude.

3 Tree level resummation

In the previous section we found that the small fermions attach to a fundamental excitation

in simple patterns that are easy to generalize for any number of pairs (ψsψ̄s)
n (see figures 4–

6). With this information we computed the one effective particle measures and form factors.

As the counting in [16] shows, the effective one particle states are sufficient to reproduce

the full amplitude up to one loop. Here we will focus on the tree level NMHV amplitude,

so from now on we will assume that the POPE component P [r1]P [r2] has r1 + r2 = 4.

As one might expect, several simplifications occur at tree level. Let us look first at the

square propagation factor in (2.6). The total angular momentum is given by the helicity

of the effective particle on the plane. The individual energies can be set to one, so that

the total tree level energy is the twist of the effective excitation. Finally, since the small

fermion momentum starts at one loop, the total momentum is given by the large excitation

which has p = 2u+O(g2). To be clear, let us write explicitly these factors for the POPE

component P [2]P [2]. The relevant excitations transform in the vector representation of

SU(4) and are shown in figure 3. The POPE component reads

P [2]P [2] =

∞∑
n=0

∫
du

2π
ei2uσ

[
e−(1+2n)τµ

[2,2]

φ(ψsψ̄s)n
(u)+e−(2+2n)τ+iφµ

[2,2]

ψψs(ψsψ̄s)n
(u)+. . .

]
+O(g2) ,

(3.1)

where the measures are evaluated at tree level and the dots represent the contribution of

the remaining one effective particle states in the vector representation.

The effective measures — combined with the corresponding form factors — are also

simplified at tree level. In fact we can easily pack all of them into a single formula where,

given the R-charge of the pentagons, we vary the helicity and number of descendants. Here

we see explicitly that to describe the possible effective excitations we need to move in the

three dimensional space shown in figure 3. The NMHV measures read

µ[r1,r2]
a,n (u) =

(−1)a−r̂/2Γ
(
|a|
2 −iu−

r̂
4

)
Γ
(
|a|
2 +iu+ 3r̂

4

)
Γ (n+1) Γ

(
|a|+ r̂

2 +n
) (−1)n (iu+α+)n (iu+α−)n +O(g2) ,

(3.2)

where r̂ = r1(r2) if the excitation has negative (positive) helicity (e.g. for [r1, r2] = [3, 1]

we would have r̂ = 1 for the excitation ψ and r̂ = 3 for φψ̄s), α± = 1 + |a|
2 + r̂

4 ±
|r1−r2|

4

and (x)n is the Pochhammer symbol.

Finally, to obtain the tree level NMHV component P [r1]P [r2] we simply sum over all

possible values of a and n. The result is quite simple and reads

P [r1]P [r2] = δ|r1−r2|,4 +
∑
a, n

∫
du

2π
e−(|a|+r̂/2+2n)τ+2iuσ+iaφ µ[r1,r2]

a,n +O(g2) , (3.3)
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where δ|r1−r2|,4 accounts for the vacuum contribution if the excitations allowed are in the

singlet representation of SU(4). The sum in a is over the integers or half integers depending

on the component we are considering.

From (3.2) and (3.3) we can see explicitly how parity symmetry works. Given our

definition of r̂, the transformation rj → 4− rj is equivalent to the replacement φ→ −φ up

to an overall sign.4 This is nothing but the equivalence between NMHV and NMHV for

the six point amplitude.

To reproduce the POPE component we now need to perform the sums over a and n

and the momentum integral, which is what we turn to next.

Sum over descendants and momentum integral. The sum over descendants in (3.3)

can be carried out trivially, giving a hypergeometric function

P [r1]P [r2] = δ|r1−r2|,4 (3.4)

+
∑
a

∫
du

2π
e−(|a|+r̂/2)τ+2iuσ+iaφ

(−1)a−r̂/2Γ
(
|a|
2 −iu−

r̂
4

)
Γ
(
|a|
2 +iu+ 3r̂

4

)
Γ(|a|+ r̂

2)

× 2F1

(
|a|
2

+iu+
r̂

4
+1− r12

4
,
|a|
2

+iu+
r̂

4
+1+

r12

4
; |a|+ r̂

2
;−e−2τ

)
+O(g2) .

This is indeed to be expected since at this perturbative order the SL(2) conformal symmetry

is unbroken.5 The trick to perform the momentum integral is to trade the sum over

descendants n for an integral in a parameter t:
∑

n →
∫ 1

0 dt, or in other words, use an

integral representation for the hypergeometric function. With this replacement all other

operations (remaining integrations and sum over helicity) become trivial. The integral

representation we shall use is

2F1(a,b;c;z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c-b−1(1− tz)−a . (3.5)

Let us explain how the full procedure works for the component P [2]P [2]. After making the

replacement (3.5), we find that the integrand of (3.4) (with r̂ = 2 and r12 = 0) takes the

simple form
1∫

0

dt eif(t)u g[2,2](t)
[
e−τ−σ(t− 1)

]|a|
eiaφ , (3.6)

where f(t) = 2σ− ln[(1− t)(1+e−2τ t)/t] and g[2,2](t) = −t1/2e−τ (1− t)−3/2(1+ te−2τ )−3/2.

Note that u appears only in the exponent. When the integrand is written in this form, it

is apparent that the integration over u trivially gives a delta function δ(f(t)) which in turn

localizes t to the value — between zero and one — where f(t) = 0. We call this value t?

4The cases where there is a minus sign can be understood from the exchange on the Grassmann variables

χA in the expansion of the superpentagon P (see [15]). For instance, comparing P [3]P [1] = P123 ◦ P4 with

the parity conjugate of P [1]P [3] = P1 ◦ P234 given by P234 ◦ P1 we get a minus sign.
5In fact, in [24] similar expressions were obtained when computing the hexagon remainder function.
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and it is given by

t? =
1

2
e2τ

(√
(e2σ − e−2τ + 1)2 + 4e−2τ − e2σ + e−2τ − 1

)
. (3.7)

That leaves us with the simple expression

1∫
0

dt

∞∫
−∞

du

2π
eif(t)u g[2,2](t)

[
e−τ−σ(t− 1)

]|a|
eiaφ =

g[r1,r2](t?)

|f ′(t?)|
[
e−τ−σ(t? − 1)

]|a|
eiaφ ,

(3.8)

where the prime denotes the derivative of the function with respect to t. We might be

tempted to sum (3.8) over a and equate the result to P [2]P [2], however we need to be a

bit more careful. This is because the replacement (3.5) is valid when <(c) > <(b) > 0,

which implies that for some values of the helicity a this replacement is not correct. For the

component P [2]P [2] the replacement is strictly valid for |a| > 1, so we need to perform an

analytic continuation.

If we analytically continue the result (3.8) (i.e. integral in u) as in figure 7 we see that

in deforming the contour of integration we pick an extra term coming from the pole at

u = i/2 for a = 0. However, what we want is the analytic continuation of the integrand in

P [2]P [2] and then integrate over the real axis. The difference between the two is precisely

the residue at u = i/2 for a = 0. Since in the analytic continuation of the integral the

contour has clockwise direction the residue comes with a minus sign. That means that in

order to get the final result we need to cancel the pole contribution by adding the residue

r[2,2] = Res
u= i

2

[
e−τ+2iuσΓ

(
−iu− 1

2

)
Γ

(
iu+

3

2

)
2F1

(
iu+

3

2
, iu+

3

2
; 1;−e−2τ

)]
= − e−σ

2coshτ
.

Although the terms with |a| = 1 corresponding to ψψs(ψ̄ψ̄s) and their descendants have a

pole at u = 0 we can simply integrate slightly over the real axis R + iε. This is precisely

the correct prescription for the integration of the large fermion (see Clarge in figure 2).

In the end, the POPE component P [2]P [2] reads

P [2]P [2] =
g[2,2](t?)

|f ′(t?)|

∞∑
a=−∞

[
e−τ−σ(t? − 1)

]|a|
eiaφ + r[2,2] +O(g2) . (3.9)

For the remaining components the same procedure applies. In general, we have

P [r1]P [r2] = δ|r1−r2|,4 +
g[r1,r2](t?)

|f ′(t?)|
∑
a

[
e−τ−σ(t? − 1)

]|a|
eiaφ + r[r1,r2] +O(g2) , (3.10)

where the relevant functions g[r1,r2](t) and r[r1,r2] are shown in appendix C.

Let us emphasize that the key step in this simplification came from the replacement

of the sum over descendants to an integral, which at tree level is straightforward, since

it amounts to use one of the integral representations for the hypergeometric function. It
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1
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1
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1

2

Figure 7. Integrand of component P [2]P [2] in the u complex plane for different values of the

helicity a (the parameters τ , σ and φ are set to zero); larger values of the integrand are shown

in darker colours. In red the contour of integration that gets deformed in performing the analytic

continuation of (3.8). To the left, the integrand with a = 2 for which the integral representation

is still valid so that the integration contour is over the real line. The first problematic case occurs

at a = 1 (center), where we have a pole at u = 0; however, we can integrate slightly over the real

axis at that point so that effectively the integration contour is unchanged. For a = 0 (right) we can

deform the contour such that we end with the original contour over the real axis minus (clockwise

orientation) the residue at u = i/2. To get the final result we need to cancel this residue.

remains a question if the same procedure can be easily applied at higher loops.6 In this

way all we are left to do is the last sum over the helicity a which is what we present in the

next section.

Sum over helicity. Finally we can perform the sum over the helicity of the effective

excitations. As we see in (3.10), the dependence in a is the same for all components and

is given by eiaφ[e−τ−σ(t? − 1)]|a|, so the sum over a is a geometric series. We can perform

this sum in the regime where it converges and then analytically continue the result. In

particular, the sum converges in the collinear limit (large τ),7 so we can do the sum close

to this region and then analytically continue the result for any value of τ . For example, for

P [2]P [2] we do not need to separate the sum and a runs over the integers, so that we find

P [2]P [2] =
g[2,2](t?)

|f ′(t∗)|
∑
a∈Z

eiaφ
[
e−τ−σ(t? − 1)

]|a|
+ r[2,2]

=
e−τ (eσ + 2e−τ cos(φ))

(e−2τ + 1) (2eσ−τ cos(φ) + e2σ + e−2τ + 1)
+O(g2) , (3.11)

which nicely matches the data as explained in the next section. Notice that for P [2]P [2]

there is a symmetry between positive and negative helicity. In general this is not the

case, so when r1 6= r2 we need to separate the sum for negative and positive values of a.

Following the same procedure with the other components we complete the resummation of

the hexagon POPE series at tree level.

6In [26] the one loop MHV case has been worked out.
7We can see in the definition of t? that when taking this limit the dangerous terms outside and inside

the square root cancel.
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Comparison with tree NMHV amplitude. To compare against data we use the map

between amplitude and POPE components that was put forward in [15]. Recall that from

supersymmetry [27] we need only five NMHV components to express any other hexagon

NMHV component. The map between the linear independent components and the POPE

basis we have been using is very simple for the hexagon. It is given by

P [4]P [0] = ((1)1)4 W(1111) ,

P [3]P [1] = ((1)1)3 (4)2 W(1114) ,

P [2]P [2] = ((1)1)2((4)2)2W(1144) , (3.12)

P [1]P [3] = (1)1 ((4)2)3W(1444) ,

P [0]P [4] = ((4)2)4W(4444) ,

where W is the renormalized Wilson loop introduced in [7], (i)j denotes the weight of the

i-th twistor in pentagon j as in [15] and we have used cyclic labelling for the edges. The

hexagon twistors are given in appendix D. In this case the weights evaluate to −1 for the

first, third and last line and +1 for the other two.

At tree level we can compare directly the renormalized Wilson loop WNMHV with the

NMHV ratio function of colour-ordered amplitudes RNMHV = ANMHV/AMHV.8 As can be

derived from the recursion relations [28, 29], the six point NMHV ratio function RNMHV
6

at tree level is given by the sum of R-invariants [30, 31]

RNMHV
6, tree = R135+R136+R146 , where (3.13)

Rijk =
δ(4) (〈j−1, j, k−1, k〉ηi+cyclic)

〈i, j−1, j, k−1〉〈j−1, j, k−1, k〉〈j, k−1, k, i〉〈k−1, k, i, j−1〉〈k, i, j−1, j〉
,

and we have expressed the R-invariants in terms of momentum twistors reviewed in ap-

pendix D. The delta function ensures that we have a polynomial of degree four in the dual

Grassmann variables ηi. In practice we work with the specific set of η’s which correspond

to a specific component of (3.13).9 For example, the component R(1144) reads

P [2]P [2] = −R(1144)
6, tree = − 〈2345〉〈5123〉

〈1234〉〈3451〉〈4512〉
− 〈3456〉〈5613〉
〈1345〉〈4561〉〈6134〉

. (3.14)

Finally, in order to compare against the POPE resummed expressions we only need to plug

in the twistors in the relevant tree level ratio functions. Doing so for the ratio function

component (3.14) we find precisely the tree level term for P [2]P [2] shown in (3.11). Pro-

ceeding in a similar fashion for the rest of the components we find perfect agreement for

all of them.

8We can also write this ratio as RNMHV =WNMHV/WMHV. At loop level one would also need to consider

the contribution from WMHV in the denominator.
9Alternatively, we could extract these ratio function components from the package [32] which computes

also one loop ratio functions.
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4 Conclusions

In this paper we presented the tree level resummation of the hexagon POPE reproducing

the six point NMHV amplitude. We did so by summing over all possible one effective

particle states.

First, we found a way to perform all the small fermion integrals by examining the ma-

trix part of the POPE integrand. We discovered that the small fermions attach to a funda-

mental excitation following simple patterns creating the strings shown in figures 4–6. This

allowed us to compute the one effective particle measures and form factors at finite coupling.

The one effective particle states are characterized by their helicity a, number of de-

scendants n and SU(4) R-symmetry representation. We found that the NMHV tree level

measures µ
[r1,r2]
a,n (u) can be written in the compact formula (3.2) in terms of these pa-

rameters. Given a POPE component, we converted the sum over all possible one effective

particle states into a sum over the helicity a and number of descendants n, so that a general

POPE component has the form

P [r1]P [r2] = δ|r1−r2|,4 +
∑
a,n

∫
du

2π
µ̂[r1,r2]
a,n (u) +O(g2) .

The tree level resummation turned out to be very simple. Once we performed the sums

and rapidity integral in the following order∑
n

→
∫
du

2π
→
∑
a

and used some identities for special functions, we recovered the simple rational functions

of the tree level six point NMHV amplitudes.

Of course, the ideal case would be to perform the finite coupling resummation. This

would make manifest some of the symmetries of the amplitudes — like cyclicity — obscured

in the POPE series. A natural step in that direction is to repeat the procedure described

here at higher loops or with larger polygons. In fact, in [26] it is shown that the one

loop MHV hexagon can be resummed using the techniques discussed here. Starting from

the heptagon Wilson loop, the pentagon transitions between effective excitations will be

necessary. Finding methods like [18, 19] to systematically resum all contributions at a

given perturbative order would prove most useful. It would also be interesting to find

connections between the different looking weak and strong coupling resummations.

The simple patterns found at finite coupling and the almost straightforward resum-

mation of the hexagon at tree level shed an optimistic light on the POPE program as

an efficient method for computing the full kinematical regime of scattering amplitudes for

larger number of particles and higher loop orders where less is known about them.
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A More on matrix part and formation of Bethe strings

In this appendix we give more details on the evaluation of the matrix part of the POPE

integrand and the formation of the Bethe strings. Let us start by explaining the overall

symmetry factors. For one effective particle states, the symmetry factor Sn in (2.1) is

given by Sn = 1/(Nψs !Nψ̄s !).
10 From the matrix part we also have an overall factor of

1/(K1!K2!K3!). As mentioned in the main text, when choosing an order in which we take

the residues for the auxiliary and small fermion rapidities {w,v, v̄}, we need to multiply

by a combinatoric factor that takes into account all other possible orderings. This factor

is simply given by the possible permutations between the different sets of rapidities over

which we are integrating: Nψs !Nψ̄s !×K1!K2!K3!. As we can see, this factor exactly cancels

the overall factors previously mentioned. Therefore the effective measure will be given by

µΦ(u) = Res
{w,v,v̄}={w∗,v∗,v̄∗}

[
Πdyn ×ΠFF ×Π

(int)
mat

]
(A.1)

where Π
(int)
mat is the integrand in (2.4) and {w∗,v∗, v̄∗} are the positions of the rapidities in

the patterns for integration discussed below.

Now let us see how we can determine the order in which we need to take the residues

with two examples. The first one we shall study is the effective measure of the state

F3ψs(ψsψ̄s)
n. Recall that the relevant poles are contained only in the matrix part of the

POPE integrand. Since we are redefining the pentagon transitions between gluon bound

states and small fermions, we need to include a new function hb(u,v) =
∏
j [(u−vj)2 +( b2)2]

in the matrix part integrand, which in this case reads

Π
(int)
mat =

g(w1)g(w2)g(w3)

f(w1,w2)f(w2,w3)f(w1,v)f(w3, v̄)h3(u,v)
. (A.2)

For n = 0 the integrand (A.2) reduces to 1/h3(u, v) so that we only need to take the residue

at v1 = u− i3/2. This is shown in gray in figure 8 with three line segments separating the

u and v nodes (for a gluon of positive helicity b there will be b line segments separating

the nodes).

For n = 1 there is one auxiliary root of each type and only the functions f and h are

present in the integrand. Some of the rapidities appear only once in the denominator so that

we know immediately which residue we should take. For example, the small antifermion

with rapidity v̄1 appears only in the function f(w3
1, v̄1) so we know that we should take the

residue at v̄1 = w3
1 − i/2, afterwhich we are in the same situation for w3

1 and so on until

we arrive at the structure in gray and blue in figure 8. Of course, this is equivalent to take

the following sequence of residues: {v1 = u − i3/2, w1
1 = u − i4/2, v2 = u − i5/2, w2

1 =

u− i5/2, w3
1 = u− i6/2, v̄1 = u− i6/2}.

For n = 2 it is not as straightforward since each variable appears in more than one

function so there are several options for which residues to take. The idea is to repeat the

10This is trivial to see when the fundamental excitation is a gluon bound state or a scalar. When the

fundamental excitation is a large fermion we have that Sn = Nψ/(Nψ!Nψ̄s
!), where the numerator counts

the possible cases in which fermion is large; since Nψ = Nψs + 1 we have that indeed Sn = 1/(Nψs !Nψ̄s
!).
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Figure 8. Patterns for matrix part integration for the flux tube states F3ψs(ψsψ̄s)
2 (left) and

ψ̄ψ̄sψ̄s(ψsψ̄s)
2 (right). The top node corresponds to the fundamental excitation with rapidity u.

The rest of the nodes are integrated out by taking residues at the positions u − i#/2, where # is

the number of line segments between the node we are integrating out and the fundamental one.

The nodes forming the primary excitation are coloured in gray and in blue (green) the nodes that

are added when we consider the first (second) descendant.

pattern found for n = 1 for each new set of rapidities and unite each row with an effective

link. If we integrate all the rapidities but w1
1, w

1
2 in each row we get an effective pole

1/((w1
1 −w1

2)2 + 1) so that — although at the beginning it was prohibited by the function

g(w1
1, w

1
2) — in the end we can take the residue at w1

2 = w1
1 − i. The same effective link

between different rows is found for higher n and all other excitations. The pattern is

summarized in the structure in the left of figure 8. The order in which we take the poles

is important. A simple way to get to right answer is to start from the top of the pattern

and take the residues of the nodes closer to the fundamental excitation. This pattern gives

rise to the first Bethe string in figure 5.

Considering other states, the number of auxiliary roots of each type might be different

(in (2.5) we see that it depends exclusively on the representation and excitations of the

flux tube state), so each level might not be “complete” as in the previous example. Rather,

when we add a descendant we fill the node closer to the fundamental excitation. This is

what is depicted the second pattern of integration in figure 8 for the state ψ̄ψ̄sψ̄s(ψsψ̄s)
2.

In figure 5 it corresponds to the fourth Bethe string.
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As we can see in these examples, the complexity of the patterns of integration increases

with the number of excitations in the primary state. However, the maximum number of

fermions we can have in a primary state is four, so the most complicated pattern is a slight

modification of the example on the right in figure 8.

Finally, since we are taking all residues in the lower half of the complex plane and the

integrations over the auxliary rapidities wi are over the real line, one has to multiply by

an overall factor of (−1)Nw , where Nw is the total number of auxiliary rapidities.

In practice, the residues were computed for the first few descendants of all the primary

excitations in figure 1. From them we guessed the pattern for any n resulting in the

proposals in the next section.

B Measure prefactors at finite coupling

In this appendix we present the factors MΦ(u) in (2.12) which are the most important

functions at leading order in perturbation theory. Since we are dealing with somewhat

lengthy equations, let us introduce the notation [D] = x(u− iD) with the usual Zhukowsky

variable x(u) = 1
2(u+

√
u2 − 4g2). The prefactor MΦ(u) can be conveniently factorized into

two pieces, one which contains the contribution from the primary excitations in figure 1

and another one that takes into account its descendants. We identify an excitation by the

parameter r̂ which tells us in which SU(4) representation it transforms11 and the helicity a.

The prefactors for the effective measures read

MΦ(u) = MΦplane
(u)

1

Γ (n+ 1) Γ
(
|a|+ n+ r̂

2

) (B.1)

×
n∏
l=1

[l+]2−b[l−]b
√

[l−]2 − g2√
[l+]2 − g2

(
[l+][a]− g2

) (
[l−][1− a]− g2

) (
[l−][l− + 1]− g2

)
([l−][a]− g2) ([l+][1− a]− g2) ([l+][l− + 1]− g2)

.

where l± = l + |a|
2 + r̂

4 ±
|r12|

4 , a = a
2 + r̂

4 and

b =


0 singlet,
1
2 fundamental/antifundamental,

1 vector.

The constants coming from the matrix part as well as the dynamical part, nicely combine

into the two gamma functions shown in the first line of (B.1).

Next we present the prefactors for the primary excitations. For excitations transform-

ing in the vector SU(4) representation we have

Mφ(u) =
πg

cosh(πu)
, (B.2)

Mψψs(u) = − πgu

sinh(πu)

[1]

[0]

1√
[0]2 − g2

√
[1]2 − g2

([0][1]− g2) , (B.3)

11Note that we are keeping r̂ as for the tree level NMHV measures, but in general it does not necessarily

correspond to the R-charge of one of the pentagons. For instance, the measures for the MHV component

include excitations in the two singlet lines (first and last row in figure 1) but we keep using r̂ = 4, 0 or

(r̂ = 4, 0) to differentiate between the two.
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MFbψsψs(u) = −g(−1)b
Γ
(
iu+ |b|

2 + 1
)

Γ
(
−iu+ |b|

2 + 1
)

Γ (|b|)
(B.4)

×

[
|b|
2 + 1

]
[
− |b|2

] 1√[
− |b|2

]2
− g2

√[
|b|
2 + 1

]2
− g2

([
−|b|

2

] [
|b|
2

+ 1

]
− g2

)
.

For particles in the fundamental SU(4) representation

MFbψs(u) = ig5/4(−1)b
Γ
(
iu+ |b|

2 + 1
)

Γ
(
−iu+ |b|

2 + 1
)

Γ (|b|)

× 1[
− |b|2

]1/2
√[
− |b|2

2]
− g2

, (B.5)

Mψ(u) = i
g5/4πu

sinh(πu)

1

[0]1/2
1√

[0]2 − g2
, (B.6)

Mφψ̄s(u) = −i g5/4π

cosh(πu)

[
3

2

]3/2 1√[
3
2

]2 − g2

, (B.7)

Mψ̄ψ̄sψ̄s(u) = i
g5/4πu

sinh(πu)

[1]3/2[2]3/2

[0]3/2
1√

[0]2 − g2
√

[1]2 − g2
√

[2]2 − g2

× ([0][1]− g2)([0][2]− g2)

([1][2]− g2)
, (B.8)

MF−bψ̄sψ̄sψ̄s
(u) = ig5/4(−1)b

Γ
(
iu+ |b|

2 + 1
)

Γ
(
iu+ |b|

2 + 1
)

Γ (|b|)

[
|b|
2 + 1

]3/2 [ |b|
2 + 2

]3/2

[
− |b|2

]3/2

× 1√[
− |b|2

]2
− g2

√[
|b|
2 + 1

]2
− g2

√[
|b|
2 + 2

]2
− g2

(B.9)

×

([
− |b|2

] [
|b|
2 + 1

]
− g2

)([
− |b|2

] [
|b|
2 + 2

]
− g2

)
([
|b|
2 + 1

] [
|b|
2 + 2

]
− g2

) .

The measures for the conjugate excitations in the antifundamental representation are given

by the same expressions multiplied by (−1).

Finally, for excitations transforming in the singlet SU(4) representation we have

MFb(u) = g2(−1)b
Γ
(
iu+ |b|2 +1

)
Γ
(
−iu+ |b|2 +1

)
Γ (|b|)

1√[
− |b|2

]2
−g2

√[
|b|
2

]2
−g2

× 1([
− |b|2

] [
|b|
2

]
−g2

) , (B.10)

Mψψ̄s(u) =
g2πu

sinh(πu)
[2]2

1√
[0]2 − g2

√
[2]2 − g2

1

([0][2]− g2)
, (B.11)
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Mφψ̄sψ̄s(u) = − g2π

cosh(πu)

[
3

2

]2 [5

2

]2 1√[
3
2

]2 − g2

√[
5
2

]2 − g2

1([
3
2

] [
5
2

]
− g2

) , (B.12)

Mψ̄ψ̄sψ̄sψ̄s(u) =
g2πu

sinh(πu)

[1]2[2]2[3]2

[0]2
1√

[0]2 − g2
√

[1]2 − g2
√

[2]2 − g2
√

[2]2 − g2

× ([0][1]− g2)([0][2]− g2)([0][3]− g2)

([1][2]− g2)([2][3]− g2)([3][1]− g2)
, (B.13)

MF−bψ̄sψ̄sψ̄sψ̄s
(u) = g2(−1)b

Γ
(
iu+ |b|2 +1

)
Γ
(
iu+ |b|2 +1

)
Γ (|b|)

[
|b|
2 +1

]2 [ |b|
2 +2

]2 [ |b|
2 +3

]2

[
− |b|2

]2

× 1√[
− |b|2

]2
− g2

√[
|b|
2 +1

]2
−g2

√[
|b|
2 +2

]2
−g2

√[
|b|
2 +3

]2
−g2

(B.14)

×

([
− |b|2

][
|b|
2 +1

]
−g2

)([
− |b|2

][
|b|
2 +2

]
−g2

)([
− |b|2

][
|b|
2 +3

]
−g2

)
([
|b|
2 +1

][
|b|
2 +2

]
−g2

)([
|b|
2 +2

][
|b|
2 +3

]
−g2

)([
|b|
2 +3

][
|b|
2 +1

]
−g2

) ,
and the same for the conjugate excitations.

C Details on momentum integration

In this section we present the relevant functions for the resummation of general POPE

components. For clarity, let us rewrite (3.10)

P [r1]P [r2] = δ|r1−r2|,4 +
g[r1,r2](t?)

|f ′(t?)|
∑
a

[
e−τ−σ(t− 1)

]|a|
eiaφ + r[r1,r2] +O(g2) , (C.1)

where f(t) = 2σ − ln[(1 − t)(1 + e−2τ t)/t] and the other functions depend on the POPE

component we are considering.

Although for the case studied in the main text there was a symmetry between positive

and negative helicity states, this is in general not the case. This can be seen from (3.4)

where the integrand depends explicitly on r̂. This means that for each component we have

two different functions depending on the value of r̂

g[4,0]([0,4]) =


t2e−2τ

(1− t)2(1 + te−2τ )
, r̂ = 4,

1

t(1− t)(1 + te−2τ )2
, r̂ = 0 .

g[3,1]([1,3]) =


t5/4e−3τ/2

(1− t)7/4(1 + te−2τ )5/4
, r̂ = 3,

− e−τ/2

t1/4(1− t)5/4(1 + te−2τ )7/4
, r̂ = 1 .

(C.2)

g[2,2] = − t1/2e−τ

(1− t)3/2(1 + te−2τ )3/2
, r̂ = 2,

– 22 –



J
H
E
P
0
1
(
2
0
1
7
)
0
5
1

The other relevant functions r[r1,r2] arise when performing the analytical continuation in

a. For the component P [4]P [0](P [0]P [4]) the function comes from taking the residue of the

integrand in (3.4) at u = i with a = 0 and at u = i/2 with a = −1(+1)

r[4,0](σ, τ) = e−2(σ+τ)

(
−1 +

eσ+τ−iφ

e2τ + 1

)
, (C.3)

r[0,4](σ, τ) = e−2(σ+τ)

(
−1 +

eσ+τ+iφ

e2τ + 1

)
. (C.4)

For P [3]P [1](P [1]P [3]) the residues are taken at u = i with a = −1
2(+1

2) and at u = i with

a = 1
2(−1

2) and the functions read

r[3,1](σ, τ) = e−2σ−τ− iφ
2

(
− eσ−τ

e−2τ + 1
+ eiφ

)
, (C.5)

r[1,3](σ, τ) = −e−2σ−τ+ iφ
2

(
− eσ−τ

e−2τ + 1
+ e−iφ

)
. (C.6)

Note that these functions are the same (up to a sign) after we make the replacement

φ→ −φ. For completeness we rewrite r[2,2] which is found by taking the residue at u = i/2

with a = 0

r[2,2](σ, τ) =
1

2
e−σsech(τ) . (C.7)

D Hexagon twistors

In this appendix we review how the kinematical data enters in the POPE approach. We

shall use momentum twistors which are very useful variables since they trivialize momentum

conservation and on-shellness. They are four components vectors (spinors of R2,4) defined

up to rescaling Z ' tZ. Each twistor Zi is associated to an edge i of the polygon. For

example, for the hexagon we have

1
6

5

2

4
3 

Z1

Z2

Z3

Z4

Z5

Z6


=



eσ−
iφ
2 0 eτ+ iφ

2 e
iφ
2
−τ

eσ−
iφ
2 0 0 0

−1 0 0 1

0 1 −1 1

0 1 0 0

0 e−σ−
iφ
2 eτ+ iφ

2 0


(D.1)

The hexagon twistors are constructed by acting with the symmetries of the middle

square on the bottom of the polygon as explained in appendix A of [8]. The variables τ , σ

and φ parametrize the three conformal symmetries that the middle square preserves [33]

and play the role of flux tube time, space and angle coordinates. They can be related to

the three cross ratios {u1, u2, u3} of the hexagon (see again [8] for the explicit relations).
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As mentioned in the main text, the tree level and one loop NMHV components can be

extracted from the package [32]. For instance, to extract the component P [2]P [2] at tree

level and evaluate with the above twistors, we simply write

evaluate@superComponent[{1,2},{},{},{3,4},{},{}]@treeAmp[6,1]

and multiply the result by the appropriate weights defined in [15] which in this case combine

to ±1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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