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1 Introduction

That spacetimes with horizons show a remarkable resemblance to thermodynamic systems

has been a subject of study since seminal papers of Bekenstein, Hawking, Bardeen, and

Carter [1–4]. In fact, there is a strong belief that the Einstein field equations, describing

the dynamics of gravity, can be interpreted as a thermodynamic equation of state and

have a deep connection with the first law of thermodynamics, e.g. [5–8]. In particular,

it was explicitly shown that Einstein equations on the horizon of a spherically symmetric

spacetime can be interpreted as a thermodynamic identity. This was the origin of horizon

thermodynamics [9].

The original observation for spherically symmetric black holes in Einstein’s gravity [9]

has since been extended to a number of other interesting cases, many of which have been

highlighted in recent reviews [10, 11]. For example, horizon thermodynamics has been

extended to spherically symmetric black holes in Lovelock and Quasi-topological gravi-

ties [12–15], f(R) gravity [16], and Horava-Lifshitz gravity [17], to time evolving and ax-

isymmetric stationary black hole horizons [18, 19], to horizons in FRW spacetime [20–22]

and braneworld scenarios [23, 24]. More recently the general thermodynamic properties of

null surfaces have been investigated e.g. in [25].
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In our paper we concentrate on horizon thermodynamics of black holes. The basic idea

is as follows. Consider a spherically symmetric black hole spacetime, written in standard

coordinates, and identify the total pressure P with the T rr component of the energy-

momentum tensor of all the matter fields, including the cosmological constant, if present.

The Einstein equations on the black hole horizon can then be regarded as an Horizon

Equation of State (HES)

P = P (V, T ) , (1.1)

where T is the temperature of the horizon, identified for example through the Euclidean

approach. By considering an infinitesimal virtual displacement of the horizon, one can

demonstrate the Horizon First Law (HFL)

δE = TδS − PδV (1.2)

from the radial Einstein equation, where S is the entropy associated with a given black hole

horizon. The quantities E and V above are respectively interpreted as an energy and a

volume associated with the black hole. We shall consider the nature of these interpretations

and their underlying assumptions in what follows.

Interestingly, the idea of pressure and volume as well as that of the equation of

state (1.1) have in recent years been the subject of much attention in the extended phase

space thermodynamics of asymptotically AdS black holes, see e.g. [26, 27] for recent short

reviews. In this framework one identifies the cosmological constant as a thermodynamic

variable analogous to pressure [28–31]. Its conjugate thermodynamic volume can be ob-

tained via geometric means by generalizing the first law of black hole mechanics in space-

times that have a cosmological constant [29, 32]. This in turn implies that the mass of

an AdS black hole is the enthalpy of spacetime. This approach emerged from geometric

derivations of the Smarr formula for AdS black holes [29] and led to a reverse isoperi-

metric inequality conjecture [31], which states that for fixed thermodynamic volume, the

entropy of an AdS black hole is maximized for Schwarzchild AdS. This inequality holds

for all known black holes of spherical topology; exceptions exist if this condition is re-

laxed [33]. A very rich and interesting array of thermodynamic behaviour for both AdS

and dS black holes then emerges. Examples of the so-called P−V criticality include a com-

plete analogy between 4-dimensional Reissner-Nördstrom AdS black holes and the Van der

Waals liquid-gas system [34], the existence of reentrant phase transitions in rotating [35]

and Born-Infeld [36] black holes, tricritical points in rotating black holes analogous to the

triple point of water [37], and isolated critical points in Lovelock gravities [38, 39]. These

phenomena continue to be subject to intensive study in a broad variety of contexts [40–60].

The goal of this paper is to understand the relationship between these two approaches

to gravitational thermodynamics. Although both have wider applications, for concreteness

we focus in this paper on spherically symmetric black holes in Lovelock gravity. After briefly

reviewing horizon thermodynamics in this setting [12–14, 61] we i) formulate the horizon

equation of state for general K-th order Lovelock black holes ii) re-derive the corresponding

horizon first law iii) obtain the corresponding Horizon Smarr Formula (HSF) and Gibbs

free energy and study the associated P − V criticality, and iv) compare this procedure
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and obtained results with the recent advances on extended phase space thermodynamics.

We discuss the interpretation of the energy E (sometimes referred as horizon internal

energy [12]) that appears in both the horizon first law and the HSF we derive, and relate

it to the gravitational enthalpy.

Our paper is organized as follows. In the next section we derive the horizon equation

of state for a generic Lovelock spherically symmetric black hole. This equation of state

is then ‘upgraded’ to the horizon first law in section 3, where also the associated Gibbs

free energy and Smarr relation are studied. P − V criticality is investigated for various

Lovelock gravities in section 4. Section 5 discusses the relationship with extended phase

space thermodynamics. Section 6 is devoted to conclusions. Appendix A provides an

alternative derivation of the cohomogeneity-one HFL in Lovelock gravity.

2 Lovelock gravity and horizon equation of state

Lovelock gravity [62] is a geometric higher curvature theory of gravity that can be con-

sidered as a natural generalization of Einstein’s theory to higher dimensions — it is the

unique higher-derivative theory that gives rise to second-order field equations for all metric

components. In d spacetime dimensions, the Lagrangian reads

L =
1

16πGN

K∑
k=0

αkL(k) + Lm . (2.1)

Here, K = bd−1
2 c is the largest integer less than or equal to d−1

2 , L(k) are the 2k-dimensional

Euler densities, given by

L(k) =
1

2k
δa1b1...akbk
c1d1...ckdk

R c1d1
a1b1

. . . R ckdk
akbk

, (2.2)

with the ‘generalized Kronecker delta function’ δa1b1...akbk
c1d1...ckdk

totally antisymmetric in both

sets of indices, R ckdk
akbk

is the Riemann tensor, and the α(k) are the Lovelock coupling

constants. In what follows we identify the (negative) cosmological constant Λ = −α0/2,

and set α1 = 1 to remain consistent with general relativity. We also assume minimal

coupling to matter, described by the matter Lagrangian Lm. The Lovelock equations of

motion that follow from the variation of (2.1) are

K∑
k=0

αkG
(k)
µν = 8πTµν , (2.3)

where G
(k)
µν are the kth-order Einstein-Lovelock tensors [62, 63].

We shall restrict our attention to spherically symmetric AdS Lovelock black holes,

employing the ansatz [63]

ds2 = gµνdx
µdxν = γab(r)dx

adxb + r2hijdx
idxj , (2.4)

where the non-trivial part of the metric is described by a 2-dimensional metric γab (a, b =

0, 1), while hij (i, j = 2, . . . , d − 1) stands for the line element of a (d− 2)-dimensional

– 3 –
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space of constant curvature σ(d − 2)(d − 3), with σ = +1, 0,−1 for spherical, flat, and

hyperbolic geometries respectively of finite volume Σd−2, the latter two cases being compact

via identification [64–66]. The (a, b)-components of the kth order Lovelock-Einstein tensor

then are [63]

G
(k)
ab =

k(d− 2)!

(d− 2k − 1)!

(D2r)γab −DaDbr

r

(
σ − (Dr)2

r2

)k−1

−(d− 2)!(d− 2k − 1)

2(d− 2k − 1)!
γab

(
σ − (Dr)2

r2

)k
, (2.5)

where (Dr)2 = γab(Dar)(Dbr) and D2r = DaDar. The remaining (i, j) components can

be found in [63]. As long as at least one αk 6= 0 for k > 1 all possible values of σ yield

solutions, even if Λ ∝ α0 = 0.

Consider a black hole for which

γ = γab(r)dx
adxb = −f(r)dt2 +

dr2

g(r)
, (2.6)

with the outer black hole horizon located at r = r+, determined from f(r+) = 0. Employ-

ing (2.6), we have

D2r =
1

2

(fg)′

f
, (Dr)2 = g ,

DtDtr =
1

2

gf ′

f
, DrDrr =

1

2
g′ . (2.7)

The Einstein-Lovelock equations (2.5) then read

8πT tt =
g′

2r

K∑
k=1

αk
k(d−2)!

(d−2k−1)!

(
σ−g
r2

)k−1

−
K∑
k=0

αk
(d−2)!(d−2k−1)

2(d−2k−1)!

(
σ−g
r2

)k
, (2.8)

8πT rr =
f ′g

2rf

K∑
k=1

αk
k(d−2)!

(d−2k−1)!

(
σ−g
r2

)k−1

−
K∑
k=0

αk
(d−2)!(d−2k−1)

2(d−2k−1)!

(
σ−g
r2

)k
. (2.9)

Note that g(r+) = f(r+) = 0 is required in order that the surface r = r+ be a regular

horizon null surface without curvature singularity. However it is not true, as incorrectly

stated in [18], that the regularity also requires f ′(r+) = g′(r+). In what follows we simply

concentrate on the the case where f(r) = g(r). The radial Einstein equation then reads

8πT rr =
f ′

2r

K∑
k=1

αk
k(d−2)!

(d−2k−1)!

(
σ−f
r2

)k−1

−
K∑
k=0

αk
(d−2)!(d−2k−1)

2(d−2k−1)!

(
σ−f
r2

)k
, (2.10)

and the identification of temperature with surface gravity yields

T =
κ

2π
=
f ′(r+)

4π
. (2.11)

Horizon thermodynamics is based on the proposal that the energy-momentum tensor

on the horizon is interpreted as

Pm ≡ T rr|r=r+ . (2.12)
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with the assumption that

V =
Σd−2r

d−1
+

d− 1
(2.13)

is the conjugate black hole volume. On the horizon, equation (2.10) thus reduces to

8πPm =
2πT

r+

K∑
k=1

αk
k(d−2)!

(d−2k−1)!

(
σ

r2
+

)k−1

−
K∑
k=0

αk
(d−2)!(d−2k−1)

2(d−2k−1)!

(
σ

r2
+

)k
, (2.14)

upon using (2.12) and the definition (2.11) of temperature T .

Let us further identify

PΛ = − Λ

8π
=

α0

16π
(2.15)

as the pressure associated with the the cosmological constant, and

P = Pm + PΛ (2.16)

as the total pressure of all the matter fields. Note that such P is determined from the

matter content and is not necessarily positive. We therefore arrive at

P =

K∑
k=1

αk
4r+

(d− 2)!

(d− 2k − 1)!

(
σ

r2
+

)k−1 [
kT − σ(d− 2k − 1)

4πr+

]
, (2.17)

which, together with the identification (2.13), gives the HES for Lovelock gravity, P =

P (V, T ). Note that to write down this equation of state one does not need to know

the explicit form of f . Furthermore, equation (2.13) is an ansatz in this approach that

has to be justified (similar to the prescription for temperature T ) by some other means,

e.g. [31, 67–69].

3 Horizon first law & Gibbs free energy

To obtain the HFL, we use the fact that the entropy of Lovelock black holes is independent

of the matter content and given by [70, 71]1

S =
Σd−2

4

K∑
k=1

αk
(d− 2)!

(d− 2k − 1)!

kσk−1

d− 2k
rd−2k

+ . (3.1)

Upon multiplying both sides of the equation of state (2.17) by δV = Σd−2r
d−2
+ δr+ ,

and using

δS =
Σd−2

4

K∑
k=1

αk
kσk−1(d− 2)!

(d− 2k − 1)!
rd−2k−1

+ δr+ , (3.2)

the equation of state can be re-written as the HFL for Lovelock black holes

δE = TδS − PδV , (3.3)

1See [72] for what happens with the HFL if one instead identifies S with the black hole area, S = A/4.
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where

E =
Σd−2

16π

K∑
k=1

αk
σk(d− 2)!

(d− 2k − 1)!
rd−2k−1

+ (3.4)

is regarded as an energy associated with the black hole, whose interpretation we discuss

below. This first law is equivalent to the equation of motion (2.10) evaluated on the horizon.

Having identified the horizon internal energy, we can now define the horizon enthalpy

H, and the horizon Gibbs free energy G according to standard thermodynamic prescription,

G = E − TS + PV , H = G+ TS , (3.5)

and these satisfy

δG = −SδT + V δP δH = TδS + V δP , (3.6)

using the HFL (3.3).

One of the limitations of this derivation is that the resultant first law (3.3) is of

cohomogeneity-one, since S, V and E are all functions only of r+ and so are degenerate

with one another. There is consequently an ambiguity between ‘heat’ and ‘work’ terms

in (3.3) that seems not to have been previously recognized in the literature. Fortunately it

is a limitation of the method and not of horizon thermodynamics itself. By varying instead

the equation of state (2.17) it is possible to obtain directly the manifestly cohomogeneity-

two first law (3.6) for the Gibbs Free Energy, and likewise for the enthalpy via the Legendre

transformation in (3.5) [73]. The Legendre transformation between G and E in (3.5) is

degenerate, and from this (3.3) can be derived.

It is furthermore possible to extend this approach to allow variations of the Lovelock

coupling constants, yielding [73]

δG = −SδT + V δP +
K∑
k=2

Ψkδαk , (3.7)

Ψ(k) =
Σd−2(d− 2)!σk−1

16π(d− 2k − 1)!
rd−2k

+

[
σ(1− δd,2k+1)

r+
− 4πkT

d− 2k

]
, (3.8)

from which the following Horizon Smarr Formula (HSF):

(d− 3)G = (d− 2)TS − 2PV +
K∑
k=2

2(k − 1)αkΨ
(k) (3.9)

can be obtained. The ‘potentials’ Ψ(k) are the thermodynamic conjugates to the αk quan-

tities. Their presence (relevant for K > 1) is required for (3.9) to hold, which can also be

derived by an Euler scaling argument [74]. Note that insertion of (3.5) into (3.10) yields

(d− 3)H = (d− 2)TS − 2PV +

K∑
k=2

2(k − 1)αkΨ
(k) , (3.10)

(d− 3)E = (d− 2)TS − (d− 1)PV +
K∑
k=2

2(k − 1)αkΨ
(k) , (3.11)
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via the similar (degenerate) Legendre transformations. One also gets

δH = TδS + V δP +
K∑
k=2

Ψkδαk (3.12)

for the horizon enthalpy and similarly for the energy. Similar to the HFL (3.3), (3.7),

and (3.12), all the HSF (3.9)–(3.11) are valid irrespective of the matter content.

Criticality and possible phase transitions depend on the behaviour of

G = G(P, T ) , (3.13)

which can be (parametrically) obtained by inverting the equation of state, yielding

T = T (r+, P ) =
4r+

Kσ

(
P + Pσ) ,

G = G(r+, P ) =
Σd−2

d− 1
Prd−1

+ + Σd−2

K∑
k=1

αk(d− 2)!

(d− 2k − 1)!
×

× rd−2k+1
+ σk−1

(
σ

16πr2
+

− k

d− 2k

P + Pσ
Kσ

)
, (3.14)

where

Pσ ≡
K∑
k=1

αk
16π

(d− 2)!(d− 2k − 1)

(d− 2k − 1)!

( σ
r2

+

)k
, Kσ ≡

K∑
k=1

kαk(d− 2)!

(d− 2k − 1)!

( σ
r2

+

)k−1
. (3.15)

In this way one can study the behaviour of the Gibbs free energy and the potential

criticality regardless of the actual knowledge of the matter content of the theory. We stress

that P is not necessarily positive (for example in the vacuum dS case P has to be negative)

and to map all the possible scenarios it makes sense to study all three cases of positive,

zero, or negative pressure. It is the actual matter content of a given theory that imposes

associated restrictions on the possible pressure interval and gives the phase diagram a

concrete physical interpretation, as we shall demonstrate in the sequel.

4 P − V criticality: some examples

Before proceeding to a general comparison between horizon thermodynamics and the ex-

tended phase space approach, we shall consider some examples. Specifically, we illustrate

the possible behaviour of the horizon Gibbs free energy and the associated variety of inter-

esting phase transitions that occur in the horizon thermodynamics of spherically symmetric

black holes in first few lower-order Lovelock gravities (small values of K), generalizing re-

cent results for the Gauss-Bonnet case [61].

4.1 Einstein gravity

We start with an example from Einstein gravity (K = 1) in d = 4 dimensions (similar results

hold in higher d). Irrespective of the matter content, the equation of state (2.17) reads

P =
T

2r+
− σ

8πr2
+

, V =
Σ2r

3
+

3
, (4.1)

– 7 –
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Figure 1. Horizon thermodynamics: d = 4 spherical Einstein black holes. The G − T diagram is

displayed for P = 0.03 (red curve), P = 0 (black curve) and P = −0.2 (blue curve). For positive

pressures we observe a characteristic shape reminiscent of the Hawking-Page behavior.

while the other thermodynamic quantities take the following explicit form:

S =
Σ2r

2
+

4
, E =

Σ2σr+

8π
, G =

Σ2r+

6

(
3σ

8π
− r2

+P

)
, (4.2)

and satisfy the horizon first laws (3.3) and (3.6).

The behaviour of the horizon Gibbs free energy is for σ = 1 displayed in figure 1.

Whereas for P > 0 we observe a shape characteristic for the Hawking-Page transition of

Schwarzschild-AdS black holes [75] (illustrated in figure 4), for P = 0 and P < 0 we see that

G is relatively simple and respectively reminiscent of what happens for asymptotically dS

and asymptotically flat (uncharged) black holes [40, 41]. However, this similarity is only

superficial and the actual physical interpretation depends on the matter content of the

theory, as we shall demonstrate below. No other interesting phase behaviour is possible

for σ = 1.

4.2 Gauss-Bonnet gravity

Carrying out the same analysis in Gauss-Bonnet gravity (K = 2) in d = 5 dimensions, the

equation of state reads

P =
3T

4r+
− 3σ

8πr2
+

+
3α2σT

r3
+

, V =
Σ3r

4
+

4
, (4.3)

while the other quantities are

S =
Σ3r

3
+

4

(
1 +

12σα2

r2
+

)
, E =

3Σ3σr
2
+

16π

(
1 +

2α2σ

r2
+

)
,

G =
Σ3

[
72α2

2σ − 18σr2
+(σ + 8πr2

+P )α2 + 3σr4
+ − 4πPr6

+

]
48π(r2

+ + 4σα2)
, (4.4)

and satisfy the horizon first laws (3.3) and (3.6).
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Figure 2. Horizon thermodynamics: d = 5 spherical Gauss-Bonnet black holes. The G−T diagram

is displayed for P = 0.01 (red dash curve), P = 0.0025 (red solid curve), P = 0 (black curve), and

P = −0.05 (blue curve) and α2 = 1. For small positive pressures we observe a characteristic swallow

tail reminiscent of the Van der Waals-like phase transition.

The corresponding G − T diagram for spherical (σ = 1) black holes is displayed in

figure 2. In contrast to the K = 1 case, we now see that the additional gravitational non-

linearity can yield more interesting phase behaviour. Namely, for sufficiently small positive

pressures [38, 61]

0 < P < Pc =
1

96πα2
, (4.5)

we observe a characteristic swallowtail reminiscent of the Van der Waals-like phase tran-

sition for d = 4 charged black holes in extended phase space [34], illustrated in figure 5.

For P > Pc the swallowtail disappears and the Gibbs free energy becomes smooth. On

the other hand for P = 0 and P < 0 we observe a cusp (corresponding to a divergent

specific heat) and the shape of G = G(T ) reminds that of the charged asymptotically dS

and asymptotically flat black holes, cf. [40, 41].

4.3 Higher-order Lovelock gravity

For K > 2 we find further interesting phase behaviour. At each additional order in the

Lovelock expansion, we gain an additional degree of freedom corresponding to the ad-

ditional Lovelock coupling αK , allowing for more complex structures to arise. We find

phenomena similar to those seen previously in extended phase space thermodynamics for

K = 1, such as reentrant phase transitions [35], double swallowtails and a corresponding

triple point [37], and even (for K > 2) isolated critical points [38, 39, 55]. However in con-

trast to the extended phase space approach, such behaviour in horizon thermodynamics is

entirely due to the non-linearity of gravity (the larger values of K), fully independent of

the matter distribution. We depict a triple point in 4-th order Lovelock gravity in figure 3.

– 9 –
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Figure 3. Horizon thermodynamics: triple point. The G− T diagram is displayed for a spherical

black hole in 4-th order Lovelock gravity for the following choice of parameters: α2 = 0.2, α3 =

2.8, α4 = 1, P = 0.000425. We observe two swallowtails merging together, characterizing an exis-

tence of a triple point..

It remains an interesting open question whether the horizon thermodynamics of higher-

order Lovelock theories can bring some additional qualitatively new phase transitions to

those described in this section. In particular, can one find ‘n-tuple swallowtails’ and the

corresponding n-tuple critical points? We leave this question for future work.

5 Comparison to extended thermodynamics with variable Λ

5.1 Extended phase space thermodynamics

In this section we shall compare horizon thermodynamics to the recently studied (canonical

ensemble) extended phase space thermodynamics of asymptotically AdS black holes. The

latter, sometimes referred to as black hole chemistry [26], is essentially ‘standard black hole

thermodynamics’ with the additional feature that the (negative) cosmological constant is

treated as an additional thermodynamic variable, which is interpreted as a thermodynamic

pressure PΛ according to eq. (2.15) and allowed to vary in the corresponding first law. The

first law for spherically symmetric Lovelock black holes then takes the following form [74]:

δM = TδS +
∑
i

ΦiδQi + VTDδPΛ +
∑
k=2

Ψ(k)δαk , (5.1)

and implies the associated Smarr formula

(d− 3)M = (d− 2)TS + (d− 3)
∑
i

ΦiQi − 2VTDPΛ +
∑
k=2

2(k − 1)Ψ(k)αk (5.2)

through the Euler scaling argument. Here M stands for the black hole mass, now inter-

preted as a gravitational enthalpy, distinct from the enthalpy defined in (3.5). We have also
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included the possibility that the black holes are multiply-charged with several U(1) charges

Qi and corresponding electric potentials Φi. The horizon temperature T and associated

entropy S are the same as in the horizon thermodynamics approach.

5.2 General differences

Let us now study some differences between the HFL (3.12) and the extended first law (5.1).

The most obvious distinction is the appearance of extra work terms,
∑

i ΦiδQi, in (5.1).

These terms in the horizon case (3.12) are instead interpreted as contributions to the

pressure, which is associated with all matter fields. In the extended case (5.1) one only has

a completely isotropic pressure due to the cosmological constant.

A more important difference between (3.12) and (5.1) is the nature of the black hole

volume. In the horizon approach V is assumed to be given by (2.13); it is associated

with the ‘Euclidean geometric volume’ of the black hole and is independent of the matter

content, c.f. [31, 67–69]. In contrast to this the volume in extended thermodynamics

VTD =
( ∂M
∂PΛ

)
S,Q1,...

(5.3)

is a thermodynamic volume [31], a quantity conjugate to the pressure PΛ. Hence VTD is not

an independent input but directly follows from the identification of the black hole mass.

It can also depend on the matter content of the theory; for example the thermodynamic

volumes of supergravity black holes have this feature [31].

Another important difference is the nature and distinction between the quantities E,

H, and M . Whereas the latter is the black hole mass and can be calculated by standard

methods, e.g. the method of conformal completion [76, 77], the physical meaning of E is

distinct. It evidently plays the role of energy in (3.3), but this quantity is not the mass of

black hole; indeed its properties are quite different. It vanishes for planar/toroidal black

holes (for which σ = 0) and can be negative for higher-genus topological/hyperbolic black

holes (for which σ = −1). It has been noted that it is associated with the transverse

geometry of the horizon [12].

Since E is a function only of the horizon curvature σ and the horizon radius r+, we

propose that it is the horizon curvature energy : the energy required to warp space time

so that it embeds an horizon. This definition is analogous to that of the spatial curvature

density in cosmology, which depends only on the curvature of spatial slices at constant

time in an FRW cosmology. Likewise, the horizon enthalpy H then can be interpreted as

the energy required to both warp spacetime and displace its matter content so that a black

hole can be created.

This physical interpretation is contingent upon the definition (3.4). The justification

for (3.4) is that it corresponds to the generalized Misner-Sharp mass mMS = mMS(r) [63, 78]

mMS(r+) = PΛV + E (5.4)

evaluated on the black hole horizon [19] and whose properties in Einstein gravity have

been previously elaborated upon [7]. In this sense it is a quasi-local quantity that can be

associated with the horizon itself without referral to asymptotics and can be independently

– 11 –
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defined. This indeed is a primary motivation of horizon thermodynamics. The mass of a

Schwarzschild AdS black hole is the Misner-Sharp mass on the horizon, and for any matter

content it has been shown that mMS(r+) satisfies the generalized first law [7, 19].

In particular, using (3.10) and (5.2), we find the following relation between M and H:

M = H +
∑
i

QiΦi +
2

d− 3

(
V P − VTDPΛ

)
(5.5)

valid for the charged AdS Lovelock black holes. For singly charged Lovelock black holes,

V = VTD [38, 74] yielding

M = H +QΦ +
2

d− 3
V Pm . (5.6)

as the relationship between mass and horizon enthalpy H.

If no matter apart from a cosmological constant is present Pm = 0. H and M then

represent the same quantities, and so

H = M = E + PΛV (5.7)

which is the sum of the energy E needed for warping the spacetime to embed the black hole

horizon plus the energy PΛV needed to place the black hole into a cosmological environment

(‘to displace the vacuum energy’). Note that for planar black holes E vanishes and the

mass is entirely given by the PΛV term.

Criticality and possible phase transitions in the framework of extended phase space

are governed by the associated Gibbs free energy

GΛ = M − TS , (5.8)

in comparison to the horizon Gibbs free energy G (3.5).

In particular, and obvious from the above discussion, in the vacuum with negative

cosmological constant case we have the same expressions

G = GΛ , P = PΛ (5.9)

for the Gibbs free energy and equation of state. Only in this case and for positive P do

the two approaches yield the same kind of thermodynamic behaviour and phase transitions

(Van der Waals behaviour, reentrant transitions, triple points, isolated critical points)

in any Lovelock theory. These phenomena will only take place for sufficiently large K

(sufficient gravitational non-linearity).

The two approaches differ significantly once matter is introduced. Generically they

give rise to very distinct phase diagrams with completely different physical interpretations.

The difference is rooted in the inherent degeneracy in horizon thermodynamics: it is de-

scribed by only two parameters T and P (possibly accompanied with αk which do not play

any role in the following discussion), together with their conjugates. This degeneracy is

removed in extended phase space thermodynamics, with each matter field having its own

contribution to the free-energy, leading to a description in a different (often incompatible)

thermodynamic ensemble. Furthermore, in horizon thermodynamics negative pressures are

possible even if Λ < 0, whereas in the extended case negative pressure requires Λ > 0.

– 12 –
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5.3 Example

We shall now illustrate these distinctions for a spherical (σ = 1) charged-AdS black hole

in d = 4 dimensions (K = 1)

ds2 = −fdt2 +
dr2

f
+ r2dΩ2

2 ,

F = dA , A = −Q
r
dt , (5.10)

where dΩ2 = r2(dθ2 + sin2 θdϕ2),

f = 1− 2M

r
+
Q2

r2
+
r2

l2
, (5.11)

and Λ = − 3
l2

is the cosmological constant. This simple example will allow us to discuss

all important differences without the need for complicated expressions; generalization to

‘arbitrary’ charged Lovelock black holes is straightforward [38].

The HES (2.17) now reads

P =
T

2r+
− 1

8πr2
+

, V =
4

3
πr3

+ , (5.12)

upon setting σ = 1 in (4.1). Interestingly, using the expression for the energy-momentum

tensor,

Pm = T rr = − Q2

8πr4
+

, (5.13)

the HES (5.12) can be rewritten as

PΛ =
T

2r+
− 1

8πr2
+

− Pm =
T

2r+
− 1

8πr2
+

+
Q2

8πr4
+

, (5.14)

which is the extended phase space equation of state in the canonical ensemble [34] upon

setting Q constant and identifying PΛ = −Λ/(8π). Note that VΛ = V and so the thermo-

dynamic and geometric volumes are the same; furthermore

PΛ = P +
Q2

8πr4
+

(5.15)

since P = Pm + PΛ.

Note that in the extended phase space approach there is no need to ‘invoke the Einstein

equations’ to derive this equation of state since we are using a concrete solution. In

fact (5.14) simply follows from the ‘definition’ of the temperature

T =
f ′

4π
, (5.16)

upon using the explicit form of f from (5.11). The horizon enthalpy

H =
r+(1 + 2πTr+)

3
(5.17)
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and mass (gravitational enthalpy)

M =
r2

+l
2 +Q2l2 + r4

+

2l2r+
(5.18)

of the black hole are related via (5.6), M = H + ΦQ + 2V Pm , where Φ = Q/r+, and Pm
and V are given by (5.13) and (5.12). This then implies the following relation:

GΛ = G+ ΦQ+ 2V Pm = G+
2

3

Q2

r+
,

PΛ = P +
Q2

8πr4
+

(5.19)

between the horizon and extended Gibbs free energies.2

These relations imply fundamentally different thermodynamic behaviour in the two

approaches. Even after removing the degeneracy in (5.12) by imposing a constant Q

constraint, the P = const and PΛ = const slices of thermodynamic phase space are in-

compatible, and yield different behaviour of the Gibbs free energies G(T ) and GΛ(T ). We

shall illustrate this point by comparing the positive pressure curve in figure 1 describing

the behaviour of G in horizon thermodynamics to that of GΛ displaying the Hawking-Page

transition for Q = 0 and the Van der Waals like behavior for Q 6= 0 in the extended phase

space thermodynamics, figure 4 and figure 5.

In horizon thermodynamics the description is in terms only of {T, P}, and only

‘Hawking-Page-like behavior’ of the horizon Gibbs free energy G = G(P, T ) can be ob-

served, as shown in figure 1. Furthermore, as T changes, moving along a constant-P curve

entails modifying some combination of Q, r+, and Λ: different points on the curve are com-

paring different black holes in different environments.3 The expected transition at G = 0

to pure radiation (which has Q = 0) can only occur if there is a reservoir of charge, so that

Q can appropriately vanish as this transition takes place.

In other words, the physical interpretation of figure 1 in horizon thermodynamics

depends crucially on the matter content. In contrast to this, the extended phase-space

picture breaks this degeneracy, allowing for imposition of independent constraints on Q

and the pressure PΛ. If Q = 0 (figure 4) the standard Hawking-Page phase transition

is recovered [26], whereas for fixed Q 6= 0 (figure 5), Van der Waals-like behaviour is

observed [34], with the Gibbs free energy GΛ = GΛ(PΛ, T,Q) exhibiting a swallowtail

structure. In either case, each point on the curve in a GΛ vs. T diagram corresponds to

different black holes in the same environment (the same Λ and Q).

We see that the distinction between the two approaches in this example is reminiscent

of the canonical vs. grand-canonical description of charged AdS black holes. For a charged

2Note that the extended phase space equation of state (5.14) was directly derived from the horizon

equation of state (4.1) by splitting P = Pm + PΛ,. This is not true for the Gibbs free energy GΛ.
3Since constant-P is an undetermined condition, its realization can be always achieved by setting Q = 0

and tuning Λ accordingly. For this reason it is not that surprising that the horizon Gibbs free energy mimics

the Q = 0 behavior of the extended phase space Gibbs free energy.
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Figure 4. Hawking-Page transition. The characteristic GΛ − T diagram is displayed for the

uncharged (Q = 0) AdS spherical black hole in d = 4. The black hole Gibbs free energy admits two

branches of black holes: small black holes (displayed by the blue dashed curve) have negative specific

heat and are thermodynamically unstable while large black holes (solid red curve) have positive

specific heat and thermodynamically dominate for large temperatures, T > THP, over the radiation

phase displayed by horizontal magenta line. Note that (being in the framework of extended phase

space thermodynamics) each point on the black hole curve corresponds to different black holes

(of increasing horizon radius r+ from right on the dashed blue curve to bottom left) in the same

environment of fixed Λ and fixed Q = 0.

Figure 5. Van der Waals-like phase transition. The characteristic GΛ − T diagram is displayed

for the charged (Q = 1) AdS spherical black hole in d = 4. For sufficiently small pressures,

P < Pc = 1/[96πQ2], the GΛ − T diagram displays the characteristic swallow tail behaviour

indicating a small to large black hole phase transition ala Van der Waals. As with figure 4 , each

point on the curve corresponds to different black holes (of increasing horizon radius r+ from left to

bottom right) in the same environment of fixed Λ and Q.
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AdS black hole we observe Van der Waals phase transitions only in a canonical (fixed Q) en-

semble (as in the extended phase space approach), whereas in the grand canonical (fixed Φ)

ensemble behaviour similar to figure 1 is observed (as in horizon thermodynamics).

In summary, horizon thermodynamics describes a system from the viewpoint of an

ensemble described by only two variables P and T . The Gibbs free energy therefore only

depends on the type of gravity considered. Such a description is ‘universal’ and ‘formally

independent’ of the matter content. However, the actual interpretation of the thermody-

namic behaviour is matter dependent. In general it is not unique due to the degeneracy

of the description, in contrast to the non-degenerate description in extended phase space

thermodynamics. Consequently in horizon thermodynamics the ensemble is very differ-

ent from traditional ensembles in standard thermodynamics. The distinguishing feature is

that the total pressure P is held fixed. All pressures are summed over to yield this total

pressure, and in general this renders the ensemble different from both the canonical and

grand-canonical ensembles that are usually considered in black hole thermodynamics.

6 Discussion

We have reviewed the horizon thermodynamics approach to the thermodynamics of spher-

ically symmetric black holes in Lovelock gravity and compared it to the extended phase

space approach. The key idea of horizon thermodynamics is to rewrite the Einstein equa-

tions evaluated on the black hole horizon as a thermodynamic identity, obtaining an horizon

equation of state together with a first law of horizon thermodynamics. The explicit form

of this law depends on identifying the pressure and temperature. The standard derivation

entails multiplying the equation of state by a variation of the horizon radius, and then iden-

tifying black hole volume and entropy. This defines a quantity E, which we have proposed

is the horizon curvature energy : the energy required to warp space time so that it embeds

an horizon. Although the resultant first law (3.3) from this derivation is of cohomogeneity-

one, this is an artifact of the method; by varying the equation of state directly it is possible

to obtain a first law of cohomogeneity-two [73] for the horizon enthalpy H and Gibbs free

energy G. The latter allows one to study P − V criticality in horizon thermodynamics.

Comparing this to the recently studied P − V criticality in the context of asymptoti-

cally AdS black holes (so-called black hole chemistry [26]), we find that the two approaches

are quite different, in general leading to incompatible thermodynamic descriptions of the

same system. Horizon thermodynamics intrinsically contains a degeneracy amongst ther-

modynamic variables that are distinct in the extended phase space approach. Only in

the vacuum with negative cosmological constant do the two approaches lead to identical

thermodynamics.

We have also shown that increasing non-linearity in the gravitational sector yields

more interesting thermodynamic behaviour, and in this sense it is possible in horizon

thermodynamics to recover phenomena previously observed in black hole chemistry. While

this description might appear to be ‘universal’ and ‘formally independent’ of the matter

content, in fact the interpretation of these phenomena in horizon thermodynamics will

depend on the matter content of the theory.
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We stress that horizon thermodynamics applies to general matter content and does

not require AdS asymptotics. For this reason, it is not a-priori clear whether any CFT

interpretation can be given in this general case. However by restricting to the AdS case

it might be possible to consider holographic interpretations of horizon thermodynamics,

analogous to similar considerations in extended phase space for black hole chemistry [53].

Our study opens the possibility for studying P−V criticality and associated phase tran-

sitions of black holes in various theories in the horizon thermodynamics context. Whereas

in this paper we have concentrated on spherically symmetric black holes in Lovelock gravity,

an interesting future study would be to consider a similar investigations for black holes in

Lifshitz, f(R), quasi-topological, and other theories of gravity. Another interesting future

direction would be to go beyond the realm of black hole thermodynamics and consider for

example the criticality of horizon thermodynamics for acceleration and cosmological hori-

zons. If horizon thermodynamics indeed elicits universal features of ‘any horizon’, P − V
criticality should be a universal feature of all gravitational theories.
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A An alternate derivation of the HFL in Lovelock gravity

In this appendix we provide an alternate derivation of the cohomogeneity-one HFL (3.3),

extending the procedure developed in appendix of [79] to the case of Lovelock gravity. The

idea is as follows. One starts with the vacuum solution and the corresponding standard

first law of black hole thermodynamics. Then a black hole with an arbitrary matter content

is considered; the associated Einstein-Lovelock equations are re-cast as an HES and used

to rewrite the vacuum first law from a point of view of an observer who measures the true

Hawking temperature of the black hole with matter.

Namely, we start with the vacuum Lovelock black holes, given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2hijdx

idxj . (A.1)

The vacuum (with zero cosmological constant α0 = 0) Einstein-Lovelock equations, (2.3),

then reduce to the requirement that f (r) solves the following polynomial equation of degree

K [80]:

P (f) =

K∑
k=0

αk(d− 3)!

(d− 2k − 1)!

(
σ − f
r2

)k
=

16πE

(d− 2)Σd−2rd−1
, (A.2)
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where E stands for the ADM mass of the black hole. The corresponding thermodynamic

quantities are

E =
Σd−2

16π

K∑
k=1

αk
σk(d− 2)!

(d− 2k − 1)!
rd−2k−1

+ ,

S =
Σd−2

4

K∑
k=1

αk
(d− 2)!

(d− 2k − 1)!

kσk−1

d− 2k
rd−2k

+ ,

T0 =
r+

4πD

K∑
k=0

αk(d− 2)!(d− 2k − 1)

(d− 2k − 1)!

(
σ

r2
+

)k
, (A.3)

where

D ≡
K∑
k=1

kαk(d− 2)!

(d− 2k − 1)!

(
σ

r2
+

)k−1

, (A.4)

and obey the standard vacuum first law:

δE = T0δS . (A.5)

In the presence of matter, we consider the metric element (A.1) again but with general

f now. Repeating the steps in the main text, we define the true Hawking temperature

as T = f ′(r+)
4π , and employ the (with matter) Einstein-Lovelock equations, to get the

HES (2.17), which can now be written as

P =
D

4r+
(T − T0) ⇔ T0 = T − 4r+P

D
. (A.6)

To get the HFL (3.3) we promote the vacuum first law (A.5) to be understood from a point

of view of an observer who measures the true temperature T with matter, and enforce that

the energy remains that of vacuum black hole. This gives

δE = T0δS = TδS − 4r+P

D
δS = TδS − PδV , (A.7)

upon realizing that

δV =
4r+

D
δS = Σd−2r

d−2
+ dr+ ⇔ V =

Σd−2r
d−1
+

d− 1
, (A.8)

as required by (2.13). So we have recovered the HFL (3.3).
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[79] D. Hansen, D. Kubizňák and R.B. Mann, Criticality and Surface Tension in Rotating

Horizon Thermodynamics, Class. Quant. Grav. 33 (2016) 165005 [arXiv:1604.06312]

[INSPIRE].

[80] D.G. Boulware and S. Deser, String Generated Gravity Models, Phys. Rev. Lett. 55 (1985)

2656 [INSPIRE].

– 23 –

http://dx.doi.org/10.1088/1126-6708/2000/08/033
https://arxiv.org/abs/hep-th/0008028
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008028
http://dx.doi.org/10.1103/PhysRevD.77.064031
https://arxiv.org/abs/0709.1199
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1199
http://dx.doi.org/10.1088/0264-9381/33/16/165005
https://arxiv.org/abs/1604.06312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06312
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://dx.doi.org/10.1103/PhysRevLett.55.2656
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,55,2656%22

	Introduction
	Lovelock gravity and horizon equation of state
	Horizon first law & Gibbs free energy
	P - V criticality: some examples
	Einstein gravity
	Gauss-Bonnet gravity
	Higher-order Lovelock gravity

	Comparison to extended thermodynamics with variable Lambda
	Extended phase space thermodynamics
	General differences
	Example

	Discussion
	An alternate derivation of the HFL in Lovelock gravity

