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1 Introduction

Via the AdS/CFT correspondence String or M-theory on a supersymmetric background

containing an AdS5 factor in the metric is expected to be dual to a four-dimensional

superconformal field theory [1]. As such, there has been much interest in classifying super-

symmetric AdS5 solutions of IIA and IIB supergravity and M-theory. In [2] AdS5 solutions

of IIB with non-vanishing F5 Ramond-Ramomd (R-R) flux were classified. Whilst in [3]

supersymmetric AdS5 solutions of massive IIA were classified and new analytic solutions

found. An analogous classification for M-theory was carried out in [4] and many new so-

lutions were found.1 In this work we plug a remaining gap in the classification of the IIB

case. An alternative method for classifying supersymmetric supergravity solutions with

an AdS factor in the metric, to that used in the above references and in this paper, was

carried out in [8–10].

1A later refinement of this work was carried out in [5] in which the additional conditions for N = 2

supersymmetry were considered. It was later shown in [6] that the classification of [5] was the most general

consistent with N = 2 supersymmetry and an AdS5 factor in M-theory. A later refinement of [2] was carried

out in [7] to impose the additional condition of N = 2 supersymmetry.
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The case of vanishing self-dual five form, F5, was not considered in [2] and was implicitly

assumed to be non-vanishing throughout. Attempts to set F5 = 0 in the final equations

of [2] run into inconsistencies as it involves dividing by zero. This case of vanishing F5

corresponds to having no D3 branes in the theory and there is a close analogy between

this and the no M2 branes case of AdS4 in eleven-dimensional supergravity which was first

classified in [11] and later extended in [12].

Completing this classification was motivated in part by the recent solutions found

in [13]. Two new supersymmetric solutions of IIB supergravity were found with F5 = 0

and are the first of their type. To obtain these solutions the authors begin with two well

known AdS5 Sasaki-Einstein solutions and perform a Non-Abelian T-duality (NATD) on

an SU(2) isometry to IIA followed by a T-duality along a remaining U(1) to return to

IIB. The supersymmetric solutions that are obtained have seed solutions AdS5×T (1,1) and

AdS5 × Y p,q. Unfortunately these new solutions are singular and it was hoped that by

completing this classification we would be able to find new non-singular solutions of this

form. Finding non-singular AdS5 solutions with vanishing F5 remains an open problem.

In this paper we consider the most general bosonic supersymmetric solutions of type IIB

supergravity with a warped metric of the form AdS5×M5, where M5 is an internal manifold

that admits a Riemannian metric. We set the self-dual five-form field strength, F5, to be

vanishing but allow all other Neveu-Schwarz Neveu-Schwarz (NS-NS) and R-R fluxes to

be non-vanishing and consistent with preserving the SO(4, 2) symmetry of AdS5. We use

the well known method of analysing the G-structure determined by the Killing spinors as

was employed, for example, in [2] (and references therein) from which some of this work is

derived. We find that the internal manifold admits an identity structure which allows us to

determine the metric in full generality. The geometry includes a hypersurface-orthogonal

Killing vector which is a symmetry of the full solution and corresponds to the U(1) R-

symmetry in the putative dual superconformal field theory. Furthermore, analogous to the

conclusion in [2], we find that supersymmetry implies that all the equations of motion and

Bianchi identities are satisfied, though this does not follow immediately from their work.

The plan for the paper is as follows. In section 2 we present the conditions for pre-

serving supersymmetry. In section 3 we present the torsion conditions and show that

supersymmetry implies all the equations of motion and Bianchi identities. In section 4

we further the analysis by introducing local coordinates and reduce to a minimal set of

necessary and sufficient conditions for a supersymmetric solution. In section 5 we con-

sider a simple ansatz and find a singular solution, in section 6 we present a less simplified

ansatz and reduce the solution to a single ODE to solve. In section 7 we show that the

NATD-T-dual of AdS5 × T (1,1) solution found in [13] satisfies our equations. We conclude

in section 8. We relegate some definitions and technical details to three appendices. The

first contains the definitions of the bilinears and the calculation of the orthonormal frame

used in the paper, the second contains algebraic analysis for the existence of non-singular

solutions to the ansatz of section 5, whilst the third contains technical material used in

section 7.
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2 The conditions for supersymmetry in d = 5

We shall follow the conventions and notation of [2] for the type IIB supergravity field

content, equations of motion, and supersymmetry variations. In addition to the ten-

dimensional metric gMN , the bosonic fields comprise the axion-dilaton τ = C(0) + ie−Φ, a

complex three-form flux

G = ieΦ/2(τ dB − dC(2)) , (2.1)

where B and C(2), are the NS-NS and R-R two-form potentials, respectively, and a self-dual

five-form F5 = ∗10F5. Moreover, the axion and dilaton enter the equations of motion and

supersymmetry variations through the following one-forms

P =
i

2
eΦ dC(0) +

1

2
dΦ , (2.2)

Q = −1

2
eΦ dC(0) . (2.3)

The covariant derivative DM with respect to both local Lorentz transformations and local

U(1) gauge transformations, is defined as

DM = ∇M − iqQM , (2.4)

where q is the charge of the field under the local U(1): P has charge 2, G has charge 1 and

the Killing spinor ε has charge 1/2. We refer the reader to [2] for the equations of motion,

Bianchi identities, and the supersymmetry variations for the gravitino ψM and dilatino λ.

We wish to characterise the most general class of bosonic supersymmetric solutions of

type IIB supergravity with SO(4, 2) symmetry and vanishing five-form flux. Namely we

require that

F5 = 0 , (2.5)

which means that the solutions we study correspond to configurations without D3 branes.

This is a slight difference to the analysis performed in [2], where it was (implicitly) assumed

throughout that F5 6= 0. As pointed out in the introduction it is not possible to simply

set F5 = 0 in the final equations presented in [2]. Nevertheless much of the initial analysis

conducted in their paper can be utilised and we shall indicate when this is possible and

when it is not.

The d = 10 metric, in Einstein frame, takes the form of a warped product

ds2
10 = e2∆

(
ds2

AdS5
+ ds2

M5

)
, (2.6)

where ds2
AdS5

is the metric on AdS5 with Ricci tensor given by Rµν = −4m2(gAdS5)µν
and ds2

M5
is the metric on a five-dimensional Riemannian internal space M5. In order

to preserve the SO(4, 2) symmetry of the metric we require the fields to take values in;

∆ ∈ Ω0(M5,R), P ∈ Ω1(M5,C), Q ∈ Ω1(M5,R) and G ∈ Ω3(M5,C). Notice that with this

ansatz the Bianchi identity for F5 is trivially satisfied and it is therefore consistent to set

F5 = 0 without imposing any further conditions.
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We will use the most general ansatz for the Killing spinor consistent with preserving

minimal supersymmetry in AdS5. This takes the form

ε = e∆/2(ψ ⊗ ξ1 ⊗ θ + ψc ⊗ ξc2 ⊗ θ) , (2.7)

where we have rescaled the spinor by the factor e∆/2 for later convenience. Here ψ is

a Killing spinor on AdS5 and ξi are two independent Spin(5) spinors on M5. Further

discussion about the spinor ansatz and conventions can be found in appendix A of [2].

Requiring supersymmetry to be preserved yields the following conditions

Dmξ1 +
1

8
e−2∆γm1m2Gmm1m2ξ2 −

i

2
mγmξ1 = 0 , (2.8)

D̄mξ2 +
1

8
e−2∆γm1m2G∗mm1m2

ξ1 −
i

2
mγmξ2 = 0 , (2.9)

γm∂m∆ξ1 + imξ1 −
1

48
e−2∆Gm1...m3γ

m1...m3ξ2 = 0 , (2.10)

γm∂m∆ξ2 + imξ2 −
1

48
e−2∆G∗m1...m3

γm1...m3ξ1 = 0 , (2.11)

Pmγ
mξ2 +

1

24
e−2∆γm1...m3Gm1...m3ξ1 = 0 , (2.12)

P ∗mγ
mξ1 +

1

24
e−2∆γm1...m3G∗m1...m3

ξ2 = 0 . (2.13)

These can be obtained straightforwardly from the equations (3.3)–(3.8) in [2], by set-

ting f = 0.2

Special cases. The possible stabilizer groups of the Spin(5) spinors ξi are the iden-

tity group or SU(2). Consequently M5 may admit either an identity structure or an

SU(2) structure.

Let us first consider the case of an SU(2) structure. This corresponds to setting one

of the spinors to zero, without loss of generality, let us assume ξ2 = 0. Then equa-

tion (2.10) reads

γm∂m∆ξ1 = −imξ1 . (2.14)

Following the use of Clifford algebra identities one can show easily that ∂n∆ = 0, and

inserting this back into (2.14) we reach the contradiction mξ1 = 0. Whilst the F5 6= 0 case

allowed for an SU(2) structure on M5, comprising the well known Sasaki-Einstein solutions,

we conclude that there are no supersymmetric AdS5 ×M5 solutions with F5 = 0 in type

IIB supergravity with M5 admitting an SU(2) structure.3

Another interesting case to consider is G = 0. Such putative solutions would arise

purely from D7 branes, and would be motivated by F-theory constructions. Setting G = 0

in equation (2.10) and (2.11) once again gives (2.14) and an analogous equation for ξ2 which

implies ξ1 = 0 = ξ2 and hence no supersymmetry is preserved. We therefore conclude

that supersymmetric AdS5 solutions of type IIB supergravity with vanishing five-form and

three-form fluxes do not exist.

In the remainder of the paper we will assume that G is non-vanishing, and that both

spinors ξi are not identically zero, thus giving a (local) identity structure on M5.

2f is the constant defined in [2] as F5 = f(VolAdS5 + Vol5).
3In [3] it has also been shown that in type IIA supergravity there are no solutions of the form AdS5×M5

with M5 having an SU(2) structure either.
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3 Bilinear equations

The identity structure is characterised by a set of one-forms, constructed as spinor bilinears,

that can be used to define a canonical orthonormal frame on M5. In the analysis of the

algebraic and differential conditions equivalent to the supersymmetry equations it is useful

to consider also a number of scalar and two-form bilinears. We define these following the

notation in [2] and we list them in appendix A. From the algebraic condition (3.25) in [2]

we see that F5 = 0 implies that sin ζ = 0;4 we can therefore import the bilinear equations

from [2] where we set sin ζ ≡ 0 and f ≡ 0. The resulting differential conditions are5

e−4∆ d(e4∆S) = 3imK , (3.1)

e−6∆D(e6∆K3) = P ∧K∗3 − 4imW − e−2∆ ∗G , (3.2)

e−4∆ d(e4∆K4) = −2mV , (3.3)

e−8∆ d(e8∆K5) = −6mU , (3.4)

while the algebraic conditions are

Z = 0 = sin ζ, A = 1 , (3.5)

2iK3 d∆ = iK∗
3
P , (3.6)

iK5 d∆ = 0 = iK5P , (3.7)

(1− |S|2)e−2∆ ∗G = 2P ∧K∗3 − (4 d∆ + 4imK4) ∧K3

+2 ∗ (P ∧K∗3 ∧K5 − 2 d∆ ∧K3 ∧K5) . (3.8)

Note that in [2] the differential condition on K4 was implied by the remaining ones,

because this one-form could be expressed as a linear combination of the other bilinears,

as can be seen from (A.4), however this is no longer the case. Indeed, more generally,

the orthonormal frame that we will use here, differs from the analogous one introduced

in [2]. Using this orthonormal frame, presented in appendix A, we find that the metric

takes the form

ds2
M5

=
K2

5

|S|2
+

K2
4

1− |S|2
+
K3 ⊗K∗3
1− |S|2

+
|S|2

1− |S|2
(Im[S−1K])2 . (3.9)

This should be contrasted with the metric written in equation (3.53) of [2].

It is immediate from the analysis of [2] that K5 defines a Killing vector. Moreover,

here we will find that additionally K5 is in fact a hypersurface-orthogonal Killing vector.

This is most easily seen after we introduce local coordinates in the following section.

Analogously to [2], one can show K5 is in fact a symmetry of the full solution, namely

LK5∆ = LK5Φ = LK5C
(0) = 0 ,

LK5G = 0 . (3.10)

4Following the argument in appendix C of [2], and imposing sin ζ = 0, we find that it is not possible to

have the spinors ξi non-vanishing and linearly dependent. We therefore restrict to the case of them being

independent and admitting an identity structure.
5Here and in the rest of the paper ∗ denotes the Hodge star operator with respect to the five-dimensional

metric ds2M5
.

– 5 –



J
H
E
P
0
1
(
2
0
1
7
)
0
4
1

In a putative dual d = 4 superconformal field theory this corresponds to having U(1)

R-symmetry and hence N = 1 supersymmetry.

Let us now show that supersymmetry implies that all the equations of motion and

Bianchi identities are satisfied. Most of the arguments presented in [2] to show that all

the equations of motion and the P Bianchi identity are implied by supersymmetry can be

used in our case, however, as alluded to in the introduction the argument showing that the

Bianchi identity for G is satisfied is not valid if F5 = 0. Below we present an argument

that applies to both cases. Using the supersymmetry equations, we find

D(e6∆X) = e6∆(3im ∗X − e−2∆SG+ P ∧ Y ) , (3.11)

e−6∆D̄(e6∆Y ) = 3im ∗ Y + e−2∆SG∗ + P ∗ ∧X , (3.12)

e−6∆D(e6∆ ∗X) = −e−2∆G ∧K + P ∧ ∗Y . (3.13)

These equations are true even including a non-zero F5, as this drops out of the expressions.

To recover the Bianchi identity for G one should take D of (3.11) and use (3.1), (3.12)

and (3.13). As in [2], we conclude:

For the class of solutions with metric of the form (2.6), vanishing five-form

flux and fluxes respecting SO(4, 2) symmetry, all the equations of motion and

Bianchi identities are implied by supersymmetry.

4 Introducing local coordinates

In this section we shall introduce local coordinates in which the set of BPS equations become

more explicit. We begin by reducing on the Killing direction defined by K5, resulting in a

4-1 splitting of the metric. The transverse four-dimensional metric to the Killing direction

admits an integrable almost product structure giving a further 3-1 splitting. The resulting

BPS equations take a similar form to those presented in [2] in the F5 6= 0 case, but they

are different. We shall conclude this section by introducing explicit coordinates on the

remaining three-dimensional part of the metric, and obtaining expressions for the NS-NS

and R-R two-form potentials.

We begin by choosing a local coordinate adapted to the Killing direction defined by

K5. As a vector we have

K#
5 = 3m

∂

∂ψ
, (4.1)

and as a one-form

K5 =
|S|2

3m
(dψ + ρ) , (4.2)

where ρ is a one-form with no dψ term. The factor of 3m is chosen for later convenience.

The Lie derivative of S with respect to K#
5 is

L
K#

5
S = −3imS , (4.3)

– 6 –
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from which we find

S = −|S|e−iψ . (4.4)

It is convenient to make the redefinitions

µ = e−4∆ , η = e4∆|S| . (4.5)

Then from (3.1) we have

K =
µ e−iψ

3m
(η dψ + i dη) , (4.6)

and using the expression for K in appendix A we deduce that

K5 =
η2µ2

3m
dψ , (4.7)

and is therefore a hypersurface-orthogonal Killing vector. Notice that the Killing vector is

not fibered, ρ = 0, and this differs from [2]. Making the additional redefinitions

K3 =
µ3/2

3m
σ , K4 =

µ

3m
β , (4.8)

the metric becomes

9m2 ds2 =
1

1− η2µ2

(
µ3σ ⊗ σ∗ + µ2β2 + µ2 dη2

)
+ η2µ2 dψ2 . (4.9)

Here β is a real one-form and σ is a complex one-form, and both have no leg along

the Killing direction. We should now re-express the differential and algebraic conditions

in terms of these redefined quantities. We find that (3.4) is automatically satisfied, whilst

equation (3.3) becomes

dβ =
µ2

3(1− η2µ2)
[iσ∗ ∧ σ − 2η dη ∧ β] . (4.10)

Equation (3.2) becomes

Dσ =
1

η2µ2 − 1

[
(1 + η2µ2)P ∧ σ∗ +

4µ2η

3
dη ∧ σ + d lnµ ∧ σ

+
η2µ2

3m
∗ (2P ∧ σ∗ ∧ dψ + d lnµ ∧ σ ∧ dψ)

]
, (4.11)

where we have used the expression for ∗G given in (3.2). The remaining algebraic equa-

tions read

2iσ∗P = −iσ d lnµ , (4.12)

L ∂
∂ψ
µ = L ∂

∂ψ
Φ = L ∂

∂ψ
C0 = 0 . (4.13)

These constitute the set of necessary and sufficient conditions that one needs to satisfy for

supersymmetry.

– 7 –
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To make these equations completely explicit, we can introduce the four remaining

coordinates. It is a standard calculation (for example starting with (4.6)) to check that the

four-dimensional metric transverse to the Killing direction has an integrable almost product

structure. This allows one to introduce “splitting coordinates”, and gives a 3-1 splitting of

the metric. In these coordinates the metric still takes the form presented in (4.9) however

now the one-forms β and σ have no dη term, though they are still in general functions of

η. We may then split the five-dimensional exterior derivative as

d = d3 + dη
∂

∂η
+ dψ

∂

∂ψ
, (4.14)

where d3 is the exterior derivative on the three-dimensional metric defined by the integrable

almost product structure. Equation (4.10) now reads

d3β =
iµ2

3(1− η2µ2)
σ∗ ∧ σ , (4.15)

∂ηβ = − 2ηµ2

3(1− η2µ2)
β , (4.16)

whilst (4.11) reads6

d3σ − iQ3 ∧ σ =
1

η2µ2 − 1

[
(1 + η2µ2)P3 ∧ σ∗ + d3 lnµ ∧ σ

−3mη
√

1− η2µ2 ∗3 (2Pησ
∗ + ∂η lnµσ)

]
, (4.17)

∂ησ − iQησ =
1

η2µ2 − 1

[
(1 + η2µ2)Pησ

∗ +
4µ2η

3
σ + ∂η lnµ σ

− µ2η

3m
√

1− η2µ2
∗3 (2P3 ∧ σ∗ + d3 lnµ ∧ σ)

]
, (4.18)

where we have used (4.13).

Thus for the most general, minimally supersymmetric AdS5 solutions with vanishing

five-form flux we need to solve the four differential equations (4.15)–(4.18) subject to the

algebraic equation (4.12). We note that the integrability equation for (4.15) and (4.16) is

automatically satisfied upon using (4.12), (4.17) and (4.18).

We may now introduce the three remaining coordinates along β and σ, which we will

denote as x and yi, with i = 1, 2. In particular, we write the three independent real

one-forms as

β = γx dx+ γy1 dy1 + γy2 dy2 ,

Re [σ] = ρx dx+ ρy1 dy1 + ρy2 dy2 , (4.19)

Im [σ] = κx dx+ κy1 dy1 + κy2 dy2 .

6Here ∗3 is the hodge star on the three-dimensional metric defined by the integrable almost product

structure.
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Notice that generically we cannot simplify further these expressions, and the equa-

tions (4.15)–(4.18) take the form of a very complicated set of coupled PDE’s. An explicit

example of a rather generic solution will be presented later in section 7.

To obtain the explicit form of the NS-NS two-form B and the R-R two-form C(2) we

can combine equations (3.11) and (3.12), to obtain

D(e6∆(Y ∗ −X)) = −3ime6∆ ∗ (Y ∗ +X) + e4∆(S + S∗)G+ e6∆P ∧ (X∗ − Y ) . (4.20)

It is then simple, but tedious, to extract the two two-forms B and C(2) from the real

and imaginary parts of this equation, by using (3.1)–(3.4) and the results of appendix A.

We find

B − ωB =
eΦ/2µ

9m2
Re [σ] ∧ dψ , (4.21)

C(2) − ωC = C(0) eΦ/2µ

9m2
Re [σ] ∧ dψ +

e−Φ/2µ

9m2
Im [σ] ∧ dψ , (4.22)

where ωB and ωC are undetermined closed two-forms. Analogous expressions relevant for

the F5 6= 0 case were given in [14].

5 Complex M4 and P = 0

Motivated by finding explicit solutions we set P = 0 in this section.7 Notice that setting

P = 0 implies that µ is a function of η only.8 Setting P = 0 and µ = µ(η) reduces the

necessary and sufficient differential equations to

d3β =
2µ2

3(1− η2µ2)
Im [σ] ∧ Re [σ] , (5.3)

d3Re [σ] =
µη

η2µ2 − 1
∂η lnµ β ∧ Im [σ] , (5.4)

d3Im [σ] = − µη

η2µ2 − 1
∂η lnµ β ∧ Re [σ] , (5.5)

7This condition imposes that the distinguished transverse four-dimensional foliation defined by the

Killing vector ∂ψ, which we call M4, has an integrable almost complex structure. Consider a holomor-

phic two-form constructed from the orthonormal frame of appendix A as

Ω ≡ (e2 + ie5) ∧ (e4 − ie3)

=
1

2(ηµ− 1)
(eiψX + e−iψY ∗ + 2W ) . (5.1)

This then defines an almost complex structure on M4. In the second line we have expressed Ω in terms of

the two-form bilinears. Imposing that this is integrable implies

P = g(e4 + ie3) + f(e2 + ie5) + h(e4 − ie3) , (5.2)

where f, g, h are arbitrary complex functions (subject to satisfying the P equation of motion and Bianchi

identity). Setting P = 0 solves this constraint therefore M4 is complex in this case. It would have been

more interesting to impose this more general form of P , however it is still a fairly complicated system of

equations to solve and we were unable to do so.
8To see this use (4.12) to note that d lnµ = fK4K4+fη dη for some real functions fK4 and fη. Requiring

that this is closed then implies that fK4 = 0.

– 9 –
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and

∂ηβ = − 2ηµ2

3(1− η2µ2)
β , (5.6)

∂ηRe [σ] =
1

η2µ2 − 1

(
4µ2η

3
+ ∂η lnµ

)
Re [σ] , (5.7)

∂ηIm [σ] =
1

η2µ2 − 1

(
4µ2η

3
+ ∂η lnµ

)
Im [σ] . (5.8)

We see immediately that we may solve (5.6)–(5.8) as

β = exp

[∫
2µ2η

3(η2µ2 − 1)
dη

]
β̂ , (5.9)

Re [σ] = exp

[∫
1

η2µ2 − 1

(
4µ2η

3
+ ∂η lnµ

)
dη

]
R̂ , (5.10)

Im [σ] = exp

[∫
1

η2µ2 − 1

(
4µ2η

3
+ ∂η lnµ

)
dη

]
Î , (5.11)

where the hatted objects are η independent one-forms. We note that the above integrations

may include arbitrary integration constants which we absorb into the η independent one-

forms. Upon substituting these expressions into (5.3)–(5.5) one sees that the η dependence

in (5.3) cancels automatically as it should. However the η dependence in (5.4) and (5.5)

does not, we should have been suspicious if it cancelled as it would imply that µ could

be any function of η, requiring that this expression is η independent gives us the defining

differential equation for µ

∂τ

(
µη

η2µ2 − 1
∂η lnµ exp

[∫
2µ2η

3(η2µ2 − 1)
dη

])
= 0 . (5.12)

We find a solution to the system of differential equations if we satisfy the second order

non-linear differential equation

(3 + η2µ2)µ̇+ 6η3µµ̇2 + 3η(1− η2µ2)µ̈ = 0 , (5.13)

and the three differential equations

d3β̂ =
2

3
Î ∧ R̂ , (5.14)

dR̂ = cβ̂ ∧ Î , (5.15)

dÎ = −cβ̂ ∧ R̂ . (5.16)

Where c is a constant satisfying

c =
µη

η2µ2 − 1
∂η lnµ exp

[∫
2µ2η

3(η2µ2 − 1)
dη

]
. (5.17)

Notice that c is non-zero if µ is non-constant and we shall distinguish between these two

cases. For the c = 0 case we can write the solution in closed form and we will discuss it

in the remainder of this section. However we are unable to write the c 6= 0 case in closed

form and instead present algebraic analysis for the existence of non-singular solutions in

appendix B.
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A singular solution. We look at the c = 0 solution of (5.13) which is equivalent to

constant µ. For simplicity we set µ = 1. We are now able to integrate (5.9)–(5.11); we find

β = (1− η2)1/3β̂ , ∂ηβ̂ = 0 , (5.18)

Re [σ] = (1− η2)2/3R̂ , ∂ηR̂ = 0 , (5.19)

Im [σ] = (1− η2)2/3Î , ∂η Î = 0 . (5.20)

We then need to solve

d3R̂ = 0 = d3Î , (5.21)

d3β̂ =
2

3
Î ∧ R̂ . (5.22)

As R̂ and Î are closed we may define coordinates y1 and y2 such that

R̂ = dy2 , Î = dy1 . (5.23)

A solution to (5.22) is

β̂ =
2

3
(dx+ y1dy2) . (5.24)

The metric is

9m2 ds2 = η2 dψ2 + (1− η2)1/3( dy2
1 + dy2

2)

+
4

9(1− η2)1/3
(y1 dy2 + dx)2 +

1

1− η2
dη2 , (5.25)

and we have

B =
(1− η2)2/3

9m2
dy2 ∧ dψ , (5.26)

C(2) =
(1− η2)2/3

9m2
dy1 ∧ dψ . (5.27)

Note that the range of η should be either η ∈ [0, 1] or η ∈ [−1, 0]. We find that the Ricci

Scalar is given by R = 28m2, whilst RµνR
µν = 336m4 however we find that Rµ1...µ4R

µ1...µ4

exhibits a singularity as η → ±1 and therefore the solution is singular.

We note that for F5 6= 0 an analogous solution of the equations of [2] exists, which was

missed previously, by setting φ,C(0) and the warp factor to be constants. This solution is

once again singular and the singularity appears first in the Ricci scalar, it has non-zero G

and hence is also not Sasaki-Einstein. These solutions are unusual in the sense that the

only other known solutions with constant warp factor are the Sasaki-Einstein solutions.

6 An ansatz with P 6= 0

The structure of the BPS equations suggests an ansatz in which the η coordinate plays a

distinguished role, therefore we make an ansatz where everything depends non-trivially on
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this coordinate only. This ansatz is also motivated by the existence of analogous solutions

of other BPS systems. More concretely, we can attempt an ansatz precisely analogous

to the one used in section 5 of [2] which led to an ODE for one function with a solution

corresponding to the Pilch-Warner solution [15], however the analysis of section 5 suggests

that we should relax the assumption P = 0.

In fact we take a more general ansatz than that considered in [2] by adding an SO(2)

rotation of σ by a η dependent phase θ. Namely, we consider

β = A(η)τ3 , (6.1)

σ =
1√
µ(η)

eiθ(η)(C(τ)τ2 − iB(τ)τ1) . (6.2)

Where τa are the SU(2) left-invariant one-forms satisfying dτ1 = τ2 ∧ τ3 and cyclic permu-

tations. Here the η dependent functions A,B,C are all real valued functions of η only.

The part of the BPS system decoupled from the dilaton with respect to the case

θ = 0, is

∂η logB = −1 + η2µ2

2µη

B

AC
− 4µ2η

3(1− η2µ2)
(6.3)

∂η logC = −1 + η2µ2

2µη

C

AB
− 4µ2η

3(1− η2µ2)
(6.4)

∂η logA = − 2ηµ2

3(1− η2µ2)
(6.5)

A = − 2µBC

3(1− η2µ2)
(6.6)

∂ηµ =
1− η2µ2

2ηA

(
C

B
+
B

C

)
. (6.7)

These are four differential equations plus one algebraic, for the four functions A,B,C, µ.

However (6.5) is redundant and implied by the others, so it can be eliminated to give four

equations for four functions, which is encouraging for the existence of solutions. This is

a complicated system of ODEs. A possible strategy to solve it is to obtain an ODE of

higher degree for one single function; as µ appears “most often” in the system the simplest

equation to derive is one for µ. To this end we take two further derivatives of (6.7)

µ̇ =
1− η2µ2

2ABCη
(C2 +B2) = −3(1− η2µ2)2

4µηB2C2
(C2 +B2) , (6.8)

µ̈ = − 3 + η2µ2

3η(1− η2µ2)
µ̇− 1 + 3η2µ2

µ(1− η2µ2)
(µ̇)2 − 3(1− η2µ2)(1 + η2µ2)

µ2η(B2 + C2)
µ̇ , (6.9)

and using the other equations we eventually arrive at the following third order equation9

...
µ = − 1

9µη2(1− η2µ2)2(1 + η2µ2)

[
3η(9 + 47η2µ2 + 31η4µ4 + 9η6µ6)µ̇2

+36η4µ(2 + 3η2µ2 + 3η4µ4)µ̇3 + 9ηµ(3− 3η2µ2 + η4µ4 − η6µ6)µ̈

+µ(9 + 15η2µ2 + 35η4µ4 + 5η6µ6)µ̇+ 9η2(3 + 5η2µ2 + η4µ4 − 9η6µ6)µ̈µ̇ ] . (6.10)

9Note that
√

3/η is a solution to this equation however it gives a metric with incorrect signature and so

is discarded.
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One can check that (5.13) actually implies this equation as it should, being the general

equation for P = 0. (6.10) is clearly a necessary condition for a solution however it is

not sufficient, notice that constant µ solves (6.10) however it does not solve (6.7) as B

and C are necessarily non-zero. Once a solution is obtained we should be able to extract

A,B,C from this data. In fact, we are able to integrate one combination of the equations.

Dividing (6.3) by B2 and (6.4) by C2 and subtracting them we obtain

A4

(
1

B2
− 1

C2

)
= k̃ (6.11)

where k̃ is an integration constant. Further using (6.6) we obtain

B2C2(C2 −B2) = k
(1− η2µ2)4

µ4
(6.12)

where k = (3
2)4k̃. It would have been nice to use this to find an equation of second order

instead of third order, but we have not managed to do so. In any case, this constraint should

be useful when doing regularity and numerical analysis as it gives some exact analytic

control on the analysis. In particular, let us return to showing that once a solution for the

third order equation is found, the complete solution can be reconstructed.

A solution µ of the third order equation depends generically on three integration con-

stants. Given this, A can be integrated from (6.5), and contains another integration con-

stant. We can then determine B and C by combining (6.7) with (6.11), where we regard

A, µ and µ̇ as known functions and solve for B and C. We have

B2 = −2k

9

(1− η2µ2)2

µ2

1

A2
− 3

2

ηµ̇

µ
A2 ,

C2 =
2k

9

(1− η2µ2)2

µ2

1

A2
− 3

2

ηµ̇

µ
A2 . (6.13)

Notice these are algebraic equations, so no new integration constants are introduced, and

we correctly have four integration constants, one for each function.

The remaining θ dependent part of the system leads to the following equations

cos 2θ ∂ηΦ + sin 2θ eΦ∂ηC
(0) =

1− η2µ2

2µηA

(
C

B
− B

C

)
, (6.14)

cos 2θ eΦ∂ηC
(0) − sin 2θ ∂ηΦ = 0 , (6.15)

∂ηθ = −1

2
eΦ∂ηC

(0) . (6.16)

Interestingly, this decoupled set of equations can be completely integrated (assuming θ 6=
0), namely we have

∂η log cot 2θ =
1− η2µ2

2µηA

(
C

B
− B

C

)
, (6.17)

e−(Φ−Φ0) = sin 2θ , (6.18)

C(0) = −eΦ0 cos 2θ + C
(0)
0 , (6.19)

where Φ0 and C
(0)
0 are two integration constants.
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We have the third order equation, or equivalently a coupled system of first order

equations. Once a solution is found, the phase θ can be determined by integrating (6.17),

and finally the dilaton and axion are determined algebraically in terms of θ.

Note that, for the purposes of studying (numerically) a system of first order equations,

it may be convenient to consider the functions µ, A, and then to pick one, say B. C is

then determined algebraically, and the ∂ηC equation is then implied. This system reads

Ȧ = − 2ηµ2

3(1− η2µ2)
A , (6.20)

Ḃ =

(
1 + η2µ2

3η(1− η2µ2)

B2

A2
− 4µ2η

3(1− η2µ2)

)
B , (6.21)

µ̇ =
1

3η

(
B2

A2
+

9

4

(1− η2µ2)2

µ2B2

)
µ . (6.22)

Finding solutions to this ansatz is dependent on solving the third order non-linear differen-

tial equation (6.10). Our preliminary studies were inconclusive and we leave the numerical

study of (6.10) as an open problem.

7 The solution of [13]

Part of the motivation for completing this work was to clarify the geometry underlying the

two supersymmetric solutions in [13] which circumvented the classification of [2]. In this

final section we show that the supersymmetric NATD-T dual of the AdS5× T(1,1) solution

in [13] satisfies our classification. We were unable to directly solve the equations of the

classification to recover the solution (due to the complexity of the equations), as was done

in [2] for the Pilch-Warner solution. We instead bypassed this problem by finding the

Killing spinors from which we constructed the geometry by way of the spinor bilinears. We

first begin this section by writing down the solution found in [13].

We use the coordinates x1 = ρ sinχ , x2 = ρ cosχ and for simplicity set α′ = 1. The

d=10 metric in string frame10 is

ds2 = ds2(AdS5) + L2λ2
1 dθ2

1 +
1

L2PQ

(
(L4λ2λ2

1 + x2
1) dx1 + x1x2 dx2

)2
+
L2λ2

1

P
dx2

2 +
1

L2WQ
(Q dφ1 − λ2x1x2 cos θ1 dx1 − λ2(L4λ4

1 + x2
2) cos θ1 dx2)2

+
L2λ2λ4

1x
2
1 sin2 θ1

W
dξ2 , (7.1)

where

Q = L4λ2λ4
1 + λ2

1x
2
1 + λ2x2

2 , W = λ2
1Q sin2 θ1 + λ2λ2

1x
2
1 cos2 θ1 , P = L4λ2λ2

1 + x2
1 .

The constants λ and λ1 take the values 1/3 and 1/
√

6 respectively and L is the radius of

AdS5. The dilaton is

e−2Φ = L4W , (7.2)

10Recall that the classification is in Einstein frame.
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whilst the NS-NS two-form is given by11

B = −λ
2
1x1

W

(
λ2x1 cos θ1 dφ1 + λ2x2 sin2 θ1 dx1 − x1(λ2 cos2 θ1 + λ2

1 sin2 θ1) dx2

)
∧ dξ .

(7.3)

The non-zero RR-fluxes12 are

F1 = 4L4λλ4
1 sin θ1 dθ1 , (7.4)

F3 =
4L4λλ6

1x1 sin θ1

W
dθ1 ∧ dξ

∧
[
λ2x2 sin2 θ1 dx1 − x1(λ2 cos2 θ1 + λ2

1 sin2 θ1) dx2 + λ2x1 cos θ1 dφ1

]
, (7.5)

and of course their hodge duals. In the notation of this classification the corresponding

elements are

m =
1

L
, (7.6)

η = L2λ2
1x1 sin θ1 , (7.7)

µ =
1

L2
√
W

= eΦ , (7.8)

dψ = − dξ , (7.9)

β = (−x1 cos θ1 dx1 − x2 cos θ1 dx2 + L4λ4
1 sin θ1 dθ1 + x2 dφ1) , (7.10)

σ =
Lλ2

1

W 1/4
[x1x2 sin2 θ1 dx1 + (L4λ4

1 + x2
2) sin2 θ1 dx2 + x2

1 cos θ1 dφ1

+iL2
√
W (cos θ1 dx2 + x2 sin θ1 dθ1 − dφ1)] . (7.11)

Further details on the derivation of this dictionary is presented in appendix C. One may

check that (7.1) takes the form of (3.9) with these identifications. For the explicit form of

the NS-NS two form we find

B =
eΦ/2µ

9m2
Re [σ] ∧ dψ − dx2 ∧ dψ , (7.12)

whilst C(2) is not given in [13] for us to compare with, however it is trivial to show that

F3 agrees with that derived from the general expressions (4.21) and (4.22).

We have checked that this solution satisfies all the conditions of the classification,

as an illustrative example we present the solution of (4.10). First define the function

E = (L4λ4
1 + x2

2) sin2 θ1 + x2
1 cos2 θ1. A short calculation gives

iσ∗ ∧ σ − 2η dη ∧ β = 2L16λ4
1E[ dx2 ∧ dφ1 + x1 sin θ1 dθ1 ∧ dx1 + x2 sin θ1 dθ1 ∧ dx2] ,

(7.13)

11We correct a minor typographical error here by adding the cos θ1 term in front of dφ1.
12These are the ones that appear in the equations of motion, Fn = dCn−1 − Cn−3 ∧ dB.
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whilst

3(1− η2µ2)

µ2
dβ = L16λλ2

1E[ dx2 ∧ dφ1 + x1 sin θ1 dθ1 ∧ dx1 + x2 sin θ1 dθ1 ∧ dx2] .

(7.14)

Upon substituting the values of the constants, λ and λ1 we find that they are equal. The

equation for σ follows similarly but is vastly more complicated than the one illustrated

above and for this reason we do not present it.

In section 4 we saw that the integrable almost product structure implied that the one-

forms β and σ had no dτ term, we would like to verify this. To do so we must write the

one-forms in the form (4.19). To this end, we make the change of coordinates

x = φ1 , (7.15)

y1 =
1

2
(x2

1 + x2
2) + L4λ4

1 ln(cos θ1) , (7.16)

y2 = ln

(
x2

cos θ1

)
, (7.17)

η = L2λ2
1x1 sin θ1 . (7.18)

In these coordinates the coefficients for the one-forms, in the notation of (4.19), are

γx = x2 , γy1 = − cos θ1 , γy2 = 0 , (7.19)

ρx =
Lλ2

1x
2
1 cos θ1

W 1/4
, ρy1 =

Lλ2
1x2 sin2 θ1

W 1/4
, ρy2 =

L5λ6
1x2 sin2 θ1

W 1/4
, (7.20)

κx = − L3λ2
1W

1/4 , κy1 = 0 , κy2 = L3λ2
1x2 cos θ1W

1/4 . (7.21)

It is clear that this satisfies the integrable almost product structure. We have again checked

that with these new coordinates the equations of the classification are satisfied and once

again the equations to solve are very complicated. We had hoped this solution would have

motivated further ansatz, unfortunately this was not the case. Interestingly this solution

has an additional Killing vector, ∂x, to what the classification implies. Imposing this extra

Killing direction does not give much in the way of simplification of the equations and so

this ansatz was swiftly dropped in favour of the ones we have presented.

We note that this solution, like our one, is singular [13]. The Ricci tensor blows up

as θ1 → 0 or π whilst x1 → 0. Furthermore the dilaton also blows up at these points.

Computing the invariants RµνR
µν and Rµ1...µ4R

µ1...µ4 we also find that these are singular

at these points but only these points. This solution therefore exhibits two singular points.

Though the solution is singular it would still be interesting to interpret this solution’s

field theory dual and also its brane realisation. A method was proposed in [16] where they

considered the type IIA non-Abelian T dual of AdS5 × S5 and propose a a D4/NS5 brane

set-up and a linear quiver to describe its dual SCFT.

In [13] they also present another supersymmetric type IIB solution with F5 = 0,

namely the NATD-T dual of the AdS5 × Y p,q solution. This solution will also satisfy the

classification presented here however we have not checked the details.
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8 Conclusions

This work has plugged the remaining gap in the classification of all AdS5 supersymmetric

solutions of type IIB supergravity. Together with [2–4] our work concludes the classification

of all supersymmetric AdS5 solutions of d = 10 and d = 11 supergravity. We find that the

geometry of M5 is different to that of the F5 6= 0 case. It should be possible to interpret

these results in terms of the “Exceptional Sasaki-Einstein (ESE) geometry” of [17].13 It

would be interesting to see how the ESE structure is interpreted in terms of the bilinears.

A similar analysis was carried out in [17] for the case of F5 6= 0.

One of the motivations for doing this work was to find new non-singular supersym-

metric solutions relevant for AdS/CFT. From [13] we knew that singular supersymmetric

solutions did exist, however the only solution we found was once again singular. In particu-

lar from the analysis performed in section 5 and appendix B we conclude that there are no

non-singular solutions with P = 0. Contrast this with the F5 6= 0 case [2] where one finds

the infinitely many Sasaki-Einstein solutions and the Pilch-Warner solution (which has

P = 0), whilst in type IIA [3] one finds infinitely many massive IIA solutions and recovers

previously known massless solutions such as the Maldacena-Núñez solution. Moreover in

eleven dimensions many new solutions were found [4]. It is therefore disappointing that we

have been unable to find new non-singular solutions.

However there are solution generating techniques one may use to find new solutions

with F5 = 0 (and also F5 6= 0). As pointed out in [13] if one begins with a Sasaki-Einstein

solution with at least SU(2)×U(1)×U(1) and follows their procedure for applying the Non-

Abelian T-duality followed by the T-duality one obtains solutions with F5 = 0, whether

they are supersymmetric and non-singular is case dependent. Moreover one may obtain

solutions with F5 = 0 by T-dualising a IIA solution whose F4 flux has a leg over the

direction that is being dualised over for all components, once again supersymmetry and

regularity is case dependent.

An interesting class of solutions are those which can be represented in both IIA, IIB

and possibly also in eleven-dimensional supergravity. It may be fruitful to compare the

supersymmetry conditions of this classification with the different cases, [4] and [3]. More

concretely if we assume ∂x is a Killing vector we may T-dualise over it to type IIA where we

are then able to compare this classification with [3]. Uplifting to 11d allows us to compare

with [4].
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A Bilinear definitions and the orthonormal frame

We define all the bilinears appearing in the paper. The scalar bilinears are

A ≡ 1

2
(ξ̄1ξ1 + ξ̄2ξ2) ,

A sin ζ ≡ 1

2
(ξ̄1ξ1 − ξ̄2ξ2) ,

S ≡ ξ̄c2ξ1 ,

Z ≡ ξ̄2ξ1 . (A.1)

The vector bilinears are

Km ≡ ξ̄c1γ
mξ2 ,

Km
3 ≡ ξ̄2γ

mξ1 ,

Km
4 ≡

1

2
(ξ̄1γ

mξ1 − ξ̄2γ
mξ2) ,

Km
5 ≡

1

2
(ξ̄1γ

mξ1 + ξ̄2γ
mξ2) . (A.2)

The two-form bilinears are

Wmn ≡ −ξ̄2γmnξ1 ,

Vmn ≡ −
i

2
(ξ̄1γmnξ1 − ξ̄2γmnξ2) ,

Umn ≡ −
i

2
(ξ̄1γmnξ1 + ξ̄2γmnξ2) , (A.3)

Xmn ≡ ξ̄c1γmnξ1 ,

Ymn ≡ ξ̄c2γmnξ2 ,

One finds that they satisfy the following algebraic relations

K5 = sin ζ K4 + Re [Z∗K3]− Re [S∗K] , (A.4)

0 = sin ζV − U − i

2
K∗ ∧K + Re [iZ∗W ] , (A.5)

S∗X = (1 + sin ζ)W − (K4 +K5) ∧K3 , (A.6)

S∗Y = (1− sin ζ)W ∗ − (K4 −K5) ∧K∗3 . (A.7)

These relations may be computed by making use of Fierz identities, however we find it

simpler to compute these by using an orthonormal frame which we shall construct below.

– 18 –



J
H
E
P
0
1
(
2
0
1
7
)
0
4
1

Following [2] we take the basis of gamma matrices of Cliff(5) to be

γ1 =

(
1 0

0 −1

)
⊗ I

γ2 =

(
0 1

1 0

)
⊗ I

γa =

(
0 −1

1 0

)
⊗ τa (A.8)

where τa = −iσa and σa are the Pauli matrices. In this basis the charge conjugation

intertwiner is given by C = I ⊗ τ2. we label the corresponding basis by ei. We decompose

the spinors ξi as si ⊗ θi where si are spinors of Cliff(3) and θi spinors of Cliff(2). At the

moment the basis is completely arbitrary which allows us to impose that the two vectors

K4 and K5 lie in the (e1 − e2) plane and in particular K5 to be parallel with e1. We find

s1 =
√

2

(
cos θ cosφ

− sin θ sinφ

)
, s2 =

√
2

(
sin θ cosφ

cos θ sinφ

)
(A.9)

where we have set θ̄iθi = 1 and added suitable normalization to enforce A = 1. We can

now write the scalar and vector bilinears as functions of θ, φ, θi. Requiring sin ζ = 0 implies

that cos 2θ = 0 otherwise cos 2φ = 0 which then implies K5 = 0. Choosing K3 to lie in the

(e3-e4) plane one can choose:

θ1 =

(
eiα

0

)
, θ2 =

(
0

eiα

)
(A.10)

from which we obtain the final form of the vector bilinears

K5 = cos 2φe1 , K4 = − sin 2φe2 , K3 = sin 2φ(e4 − ie3) ,

K = e2iαe1 − i sin 2φe2iαe5 , (A.11)

and the one non-trivial scalar bilinear

S = −e2iα cos 2φ . (A.12)

The two-forms in terms of this orthonormal basis are

U = − sin 2φe15 , V = e34 − cos 2φe25 , W = (i cos 2φe5 − e2) ∧ (e4 − ie3) ,

X = e2iα(sin 2φe1 + cos 2φe2 − ie5) ∧ (e4 − ie3) ,

Y = e2iα(− sin 2φe1 + cos 2φe2 + ie5) ∧ (e4 + ie3) . (A.13)
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B Algebraic analysis of (5.13) for c 6= 0

For c 6= 0 equations (5.14)–(5.16) have solution:

β̂ =
1

c
τ3 , (B.1)

R̂ =

√
3

2|c|
τ2 , (B.2)

Î =

√
3

2|c|
τ1 , (B.3)

where τi are the SU(2) left invariant one-forms if c > 0 and the SL(2,R) left invariant

one-forms if c < 0.14 The metric becomes

9m2 ds2 = η2µ2 dψ2 +
µ2

1− η2µ2
dη2 + µ2(1− η2µ2)

(
1

η2µ̇2
τ2

3 +
3

2|ηµ̇|µ
(τ2

1 + τ2
2 )

)
(B.4)

We have managed to find a solution to the differential equation (5.13) when c 6= 0, namely

µ =
√

3/η. Unfortunately this is not an admissible solution as it gives a metric with the

wrong signature which can be clearly seen from the above.

We now present some algebraic analysis on the existence of regular solutions to (5.13),

considering first the case c > 0 and then the case c < 0. We must find the range of the

coordinate η and show that the metric is regular for all values of η in this range. To

do so we find values of η for which the metric shrinks, equivalently some function of the

metric becomes zero, yet the metric remains non-singular. Upon using (5.13) and its first

derivative in η, we find that the Ricci scalar is given in the two cases by

Rc>0 =
m2

2µ4
(56µ4 + 240µ̇ηµ3 + µ̇2(9 + 171η2µ2)) , (B.5)

Rc<0 = Rc>0 +
24m2ηµ̇

µ(1− η2µ2)
. (B.6)

c > 0 analysis. We first consider the case where the function 1− η2µ2 vanishes, let this

point be η0. Near to η0 we may write

1− η2µ2 ' γ(η − η0)2α (B.7)

for some constants α and γ. Making the change of coordinate,15

r =
(η − η0)1−α

γ(1/2)(1− α)
(B.8)

we have

dη2

1− η2µ2
= dr2 , (B.9)

14The left invariant SU(2) one-forms satisfy dτ1 = τ2 ∧ τ3 and cyclic permutations, whilst the SL(2,R)

one-forms satisfy dτ1 = τ2 ∧ τ3, dτ2 = τ3 ∧ τ1, dτ3 = τ2 ∧ τ1.
15Note that we have implicitly assumed α 6= 1 here. However for α = 1 one finds that the Ricci-scalar

has a singularity as η → η0.
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and

1− (ηµ)2 = γ
1

1−α ((1− α)r)
2α
1−α . (B.10)

Requiring that the latter expression is proportional to r2, as it should be for a regular

solution, we find α = 1/2. Near to η0 the metric takes the form

9m2 ds2 = µ2

[
η2 dψ2 + dr2 +

r2γ2

4

(
1

η2µ̇2
τ2

3 +
3

2|ηµ̇|µ
(τ2

1 + τ2
2 )

)]
. (B.11)

For regularity we require that the metric looks locally like S1 × R4. For this to occur we

require the factors in front of the left invariant one-forms to be equal and the overall factor

to be r2/4. Using the expression for µ near η0 we find η0 ≤ 0 and γ = − 2
3η0

, we have

implicitly assumed that we are away from η0 = 0 to obtain γ. Notice however that if we

are at η = 0 then the solution will not be regular as µ is then necessarily unbounded in

order to satisfy 1 − η2
0µ

2 = 0. We find that for any η0 strictly negative with µ satisfying

1 − η2µ2 = 0 at η0 this will define an endpoint of the range of η and the metric will be

regular at this point.

We may ask whether it is possible for there to be two such values of η, for which

1 − η2µ2 = 0 away from η = 0. Assume that η1 and η2 are two such values, and that

there is no point η3 ∈ (η1, η2) such that 1 − η2
3µ(η3)2 = 0, otherwise we have not chosen

our range for η correctly. Without loss of generality and with the previous analysis in

mind set η1 < η2 < 0. Near to ηa, a = 1, 2, we have µ̇(η) = −2/(3η2). Therefore for

η = η1 + ε1, with ε1 a small positive number, µ(η1 + ε1) < −1/(η1 + ε1) however near to η2

we have, for ε2 a small positive number, µ(η2 − ε2) > −1/(η2 − ε2). With the additional

and not unreasonable assumption that µ is continuous we must have that at some point

η3 ∈ (η1, η2) that 1− (η3µ(η3))2 = 0 and hence we reach a contradiction as we assumed no

η3 existed. We conclude that no two such points exist.

Assume now that η = 0 is a regular boundary solution. For regularity it is necessary

that µ takes a finite value at η = 0 or that it diverges as O(1/η). A regular solution occurs

if the last bracketed term in (B.4) is finite in the limit as η goes to 0 or it goes to zero

as η2 and has the metric of a three-sphere. If we consider these cases then µ ∝ log η or

µ ∝ η−α, α > 1 as η → 0. However one now finds that the full d = 10 metric has singular

Ricci scalar as η → 0 in both cases. Moreover if we expand (5.13) about τ = 0 we find

that the only solution with this asymptotic behaviour is the true solution that gives the

incorrect signature. This suggests that η = 0 is not a boundary condition that gives a

non-singular metric.

The remaining possibilities are µ(η0) = 0 for some η0, that µ̇(η0) = 0 or that η →
−∞. We first look at the µ̇(η0) = 0 case. Equation (5.13) implies that either η0 = 0,

1−η2
0µ

2(η0) = 0 or µ̈(η0) = 0 at η0. We can rule out both the first and second choices from

our previous analysis, leaving us to conclude that µ̈(η0) = 0. We then find that all the

derivatives of µ vanish at this point by taking further derivatives of (5.13) and evaluating

at η0. Assuming, not unreasonably, that µ is analytic at this point we conclude that µ is

a constant everywhere violating c 6= 0.
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We next consider the possibility that µ(η0) = 0. Then, near to η0, we may write

µ = γ(η − η0)α , (B.12)

with α > 0 and the metric takes the form

9m2 ds2 = µ2

[
η2 dψ2 + dη2 +

1

α2β2η2
0(η − η0)2(α−1)

τ2
3 +

3

2αβ2η0(η − η0)2α−1
(τ2

1 + τ2
2 )

]
.

(B.13)

One can see immediately that this is not regular for any α > 0 and η0 as the Ricci scalar

diverges. For µ diverging at η0 one still requires 1−η2µ2 > 0, for a metric with the correct

signature, and therefore η0 = 0 which was covered in a previous case.

Finally we study the possibility that η → −∞. It is best if we make the change of

coordinate η = −1/r. With this change of coordinate the metric takes the form

9m2 ds2 = µ2

[
1

r2
dψ2 +

r4

1− µ2

r2

dr2 +
r2 − µ2

r2

(
1

r2µ′2
τ2

3 +
3

2rµ′µ
(τ2

1 + τ2
2 )

)]
(B.14)

We still require that 1 − µ2/r2 > 0 and so for small r, µ must take the form

µ = a1r + a2r
2 + . . . , (B.15)

with |a1| < 1. From looking at the last term in (B.4) we see that we need µ = ar. With a

further coordinate transformation s = r4/4 the metric takes the form

9m2 ds2 = a2

(
dψ2 +

ds2

1− a2
+

1− a2

a2

(
τ2

3 +
3

2
(τ2

1 + τ2
2 )

))
. (B.16)

The metric takes the form of S1×R×S3 where the S3 is squashed. Note however as r → 0

we have the form of µ in this limit and inserting this into (5.13) we find that a =
√

3 and

hence the metric has the wrong signature. This suggests that there are no non-singular

solutions for c > 0 and we turn our attention to c < 0 in the following subsection.

c < 0 analysis. We now consider the case of c < 0, recall that now τi are the left invariant

SL(2,R) one-forms. Most of the arguments from the c > 0 case are still applicable and

we shall make use of these when possible. Note that the possibility of 1 − η2µ2 = 0 at η0

will no longer give a non-singular metric as before.This can be seen directly from the Ricci

scalar in equation (B.3).

Assume that η = 0 is a boundary condition. In the previous argument for η = 0 in

the c > 0 case, we did not reference the particular form of the metric until computing the

Ricci scalar of the full d = 10 metric, once again this diverges as η → 0 and this suggests

that η = 0 is not a regular boundary condition. The argument that forbid non-singular

solutions with µ̇(η0) = 0 still applies in the c < 0 case and so this is also not possible.

Moreover we cannot have µ(η0) = 0 for the same reasons as in the c < 0 case as the Ricci

scalar diverges. Note that the final possibility for a boundary value is η → ±∞. As η = 0

gives a singular point for the manifold we cannot have the range to be η ∈ (−∞,∞) and

therefore there are no two points for η to take a value in. If one completes the analysis for

η → ±∞ one again finds that the manifold is singular at these points.

From the analysis of this and the previous subsection we conclude that no non-singular

analytic solutions with P = 0 exist with c > 0 and c < 0.
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C More details on the solution of [13]

In this appendix we present details about the derivation of (7.6)–(7.11). We make no claims

that all the work in this appendix is original, only the final expressions (7.6)–(7.11). As

pointed out in the text we were unable to solve the equations of the classification in order

to recover this solution, in hindsight this was to be expected as it solves very non-trivial

equations compared to the ansatz we have considered. Instead we found the Killing spinor

of the NATD-T solution and from it constructed the spinor bilinears which allowed us to

recover the solution. One may solve the Killing spinor equations directly for the NATD-

T solution however this is very difficult and may be avoided. Instead one can use the

Killing spinors of T (1,1), which are relatively simple to find, and transform them under the

corresponding NATD and T dualities. It is this method that we present below.

The Buscher rules [18] give the transformation of the NS-NS sector under T-duality

whilst [19] first gave the transformation of the RR-fluxes. The transformation of the Killing

spinors was found in [20]. It is also well known how the geometry changes under NATD,

see [21] for the transformation of the NS-NS sector, though we shall follow the conventions

in [22]. The transformation of the RR-fluxes was found in [23] whilst in [24] it was found

how a Killing spinor transforms under NATD. We shall briefly present the transformation

of the Killing spinors under both NATD and T-duality for the ease of the reader.

Under a NATD or T-duality there is some ambiguity with the transformation of the

vielbeins. Left and right movers of the world-sheet have different transformation properties

and therefore define two different frame fields. These two frames must be equivalent as

they define the same geometry and so are related by a Lorentz transformation of the form:

ê+ = Λê− . (C.1)

This Lorentz transformation induces an action on spinors by the matrix Ω which satisfies

Ω−1ΓaΩ = Λabγ
b . (C.2)

Type IIB supersymmetry is parametrised by two d = 10 Majorana-Weyl spinors of the same

chirality whilst type IIA is paramtrised by two d = 10 Majorana-Weyl spinors of opposite

chirality. We shall denote these two spinors generically as χ1 and χ2, their chiralities are

unimportant for the calculation and so we do not distinguish their chiralities. Under a

NATD or T-duality

χ1 → χ1 χ2 → Ω−1χ2 . (C.3)

where for a T-duality along a Killing vector, ∂x, Ω takes the form

Ω−1
U(1) = − 1√

Gxx
Γ11Γx , (C.4)

where x is a curved index on Γx. Under a NATD, with respect to an SU(2) isometry along

the flat directions 1, 2 and 3, Ω takes the form

Ω−1
SU(2) = − Γ(11)√

1 + ζ2
(Γ123 + ζaΓ

a) , (C.5)
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where for our purposes

ζ1 =
x1 cos ξ

L2λ1λ
, ζ2 =

x1 sin ξ

L2λ1λ
, ζ3 =

x2

L2λ2
1

. (C.6)

Note that both Ω’s defined above are unitary in our basis.

To begin we solve the Killing spinor equations of the Klebanov-Witten solution, T (1,1),

in the canonical vielbein basis for performing the NATD

eθ1 = Lλ1 dθ1 , eφ1 = Lλ1 sin θ1 dφ1 ,

e1,2 = Lλ1τ1,2 , e3 = Lλ(τ3 + cos θ1 dφ1) , (C.7)

where τi are the left invaraint SU(2) one-forms. With this basis, the Killing spinors are

χ1 =
1

2


1

0

i

0

 , χ2 =
1

2


i

0

−1

0

 , (C.8)

where the choice of normalization is for later convenience. From these two spinors we may

construct ξ1 and ξ2 as used in the classification

ξ1 = χ1 + iχ2 , ξ2 = χ1 − iχ2 , (C.9)

note that it is the χ’s that transform as (C.3) and not the ξ’s. Under the NATD the Killing

spinors become

χ1 → χ1 , χ2 → Ω−1
SU(2)χ2 , (C.10)

whilst the vielbeins that change are16

ê1 = − λ1

LQ

[
((L4λ2

1λ
2 + x2

1) cos ξ + L2λ2x2 sin ξ) dx1

+x1(x2 cos ξ − L2λ2
1 sin ξ)( dx2 + L2λ2( dξ + cos θ1 dφ1))

]
ê2 = − λ1

LQ

[
((L4λ2λ2

1 + x2
1) sin ξ − L2λ2x2 cos ξ) dx1

+x1(L2λ2
1 cos ξ + x2 sin ξ)( dx2 + L2λ2( dξ + cos θ1 dφ1))

]
ê3 = − λ

LQ
[x1x2 dx1 + (L4λ4

1 + x2
2) dx2 − L2λ2

1x
2
1( dξ + cos θ1 dφ1)]. (C.11)

One now has all the information to perform the T-duality. After both dualities the T (1,1)

spinors become

χ1 −−−−→
NATD

χ1 −−→
T

χ1 , χ2 −−−−→
NATD

Ω−1
SU(2)χ2 −−→

T
Ω−1

U(1)Ω
−1
SU(2)χ2 . (C.12)

16Notice that we have rotated ê1 and ê2 with respect to those presented in appendix 6 of [13]. We have

also added some extra factors of λ and λ1 which we found to be missing.
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One may now compute all the spinor bilinears. One finds for the scalar bilinears

A = 1 , (C.13)

sin ζ = 0 , (C.14)

Z = 0 , (C.15)

S = −λ
2
1x1 sin θeiξ

√
W

. (C.16)

From S one finds

ξ = −ψ , ηµ =
λ2

1x1 sin θ√
W

. (C.17)

Moreover one sees that the warp factor arises from putting the d = 10 metric into Einstein

frame and therefore we have the identification e2∆ = µ−1/2 = e−Φ/2. From this we find

η = L2λ2
1x1 sin θ1 . (C.18)

One is able to find the one-form bilinears K5 and K from this information by using (4.6)

and (4.7) and we may use this as a check for the result defined directly from the Killing

spinors. Computing the one-form bilinears form the Killing spinors one finds

K =
Lλλ2

1e
iξ

√
W

(i(sin θ dx1 + x1 cos θ dθ)− x1 sin θ dξ) , (C.19)

K5 = −Lλλ
4
1x

2
1 sin2 θ

W
dξ , (C.20)

K4 =
λ(−x1 cos θ1 dx1 − x2 cos θ1 dx2 + L4λ4

1 sin θ1 dθ1 + x2 dφ1)

L
√
W

, (C.21)

K3 =
λλ2

1

LW
[x1x2 sin2 θ1 dx1 + (L4λ4

1 + x2
2) sin2 θ1 dx2 + x2

1 cos θ1 dφ1

+iL2
√
W (cos θ1 dx2 + x2 sin θ1 dθ1 − dφ1)]. (C.22)

Finally, using the redefinitions used in the classification (4.7) and (4.8), one recovers (7.7)–

(7.11). The change of coordinates (7.15)–(7.18) follows from noticing that φ can be iden-

tified with x and then observing that certain combinations of dxi and dθ1 appear only.

From these combinations by adding suitable functions and requiring that they are closed

one recovers the change of coordinates presented.
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