
J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

Published for SISSA by Springer

Received: October 30, 2015

Accepted: January 17, 2016

Published: January 29, 2016

On big crunch solutions in Prokushkin-Vasiliev theory

Carlo Iazeollaa,b and Joris Raeymaekersa

aInstitute of Physics of the ASCR,

Na Slovance 2, 182 21 Prague 8, Czech Republic
bNSR Physics Department, G. Marconi University,

Rome, Italy

E-mail: iazeolla@fzu.cz, joris@fzu.cz

Abstract: We construct simple solutions of three-dimensional higher spin gravity inter-

acting with matter in which only the scalar and spin-two fields are excited. They preserve

Lorentz symmetry and are similar to the four-dimensional solutions constructed by Sezgin

and Sundell, with the difference that the additional twisted sectors of the three-dimensional

theory are excited. Furthermore, the three-dimensional system contains an extra parame-

ter λ which allows us to vary the mass of the scalar. Among other reasons, the resulting

solutions are interesting for the holographic study of cosmological singularities: they de-

scribe the growth of a Coleman-De Luccia bubble in anti-de Sitter space, ending in a big

crunch singularity. We initiate the holographic study of these solutions, finding evidence

for their interpretation within a multi-trace deformation which renders the dual field theory

unstable. The limit λ → 0 is particularly interesting as it captures effects of a running

coupling in a large-N interacting fermion model. We also propose a generalization of our

solutions, consisting of a dressing with Lorentz-invariant projectors. This additional sector

remains non-trivial when the scalar field is turned off.

Keywords: Higher Spin Gravity, AdS-CFT Correspondence, Higher Spin Symmetry

ArXiv ePrint: 1510.08835

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2016)177

mailto:iazeolla@fzu.cz
mailto:joris@fzu.cz
http://arxiv.org/abs/1510.08835
http://dx.doi.org/10.1007/JHEP01(2016)177


J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

Contents

1 Introduction and summary 2

2 Elements of D = 3 higher-spin gravity coupled to matter 4

2.1 Master fields and extended oscillator algebra 4

2.2 The Prokushkin-Vasiliev equations and their consistent truncations 6

2.3 Maximally symmetric vacua and higher-spin algebras 7

2.4 Manifest spin-2 Lorentz invariance 11

3 The 3D Sezgin-Sundell solution 13

3.1 Gauge function method 13

3.2 AdS ν-vacua in stereographic coordinates 13

3.3 Sezgin-Sundell-like non-vacuum solutions 14

3.4 The scalar profile 15

3.5 A generalization 16

3.6 Gauge sector for ν = 0 17

4 Spacetime geometry 19

4.1 Asymptotically AdS behaviour 20

4.2 Torsion and field redefinitions 20

4.3 Interpretation as a Coleman-De Luccia bounce-bubble-crunch 22

5 Towards a holographic interpretation 23

5.1 Comparison with 2-derivative scalar-gravity theories 23

5.2 Dual picture as a CFT runaway 25

5.3 The limit λ → 0 and interacting fermion models 29

A Spinor conventions 32

B Coset parametrization and stereographic coordinates 34

C Internal solution and deformed oscillators 35

D Internal solution and ⋆-product lemmas 40

E Characters of SL(2,R) ⊂ HS[λ] 41

F From Fubini to Liouville instantons 42

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

1 Introduction and summary

In recent years, much has been learned about the holographic duality between conformal

field theories (CFTs) containing conserved higher spin currents and higher spin gravity the-

ories in Anti-de-Sitter (AdS) space. In these examples the CFTs are relatively tractable,

leading to the exciting prospect of fully solving quantum higher spin gravity. In three space-

time dimensions, the system of equations describing massless higher spin fields interacting

with matter was presented by Prokushkin and Vasiliev [1] (see also [2, 3]). As we shall

review below, in its simplest version this theory describes a complex scalar field coupled to

massless fields of spin 1, 2, 3, . . .. The dual conformal field theory, as proposed by Gaberdiel

and Gopakumar [4, 5], is a particular limiting case of the unitary WN minimal models.

The Prokushkin-Vasiliev (PV) system allows for a consistent truncation where the

scalar field is switched off; all the gauge fields, that inD = 3 do not contain any propagating

degrees of freedom, are then described by a Chern-Simons gauge field taking values in the

higher spin algebra hs[λ]. So far most of the holographic investigations of the theory

have taken place either within the Chern-Simons subsector or in an approximation where

the scalar field is treated as a small perturbation. To progress beyond this it would be

interesting to explore the space of solutions of the PV system where the scalar field is

nontrivial and fully backreacted. For the four-dimensional Vasiliev system, many such

solutions have by now been constructed [6–13], while in three dimensions examples are

nonexistent to our knowledge.

There are nevertheless several reasons to be interested in three-dimensional solutions.

First of all, due to the topological nature of the higher spin sector, it may prove simpler to

work out the details of the holographic dictionary for the three-dimensional theory than

for higher dimensions. Furthermore, the PV system contains the extra free parameter λ

allowing us to vary the mass of the scalar. We should also mention that a better under-

standing of holography in the scalar sector of the theory may shed light on open issues in

higher spin holography in de Sitter space [15, 16].

In this work, we take a first step towards bridging this gap by constructing some of

the simplest solutions of the PV system with a nontrivial scalar profile, and by initiating

the study of their dual interpretation. We will construct solutions preserving the Lorentz

subgroup of the higher spin symmetry, in which only the scalar field and the spin-two

gravity sector are excited. In the 4D Vasiliev system, similar solutions were constructed

by Sezgin and Sundell [6, 7]. One notable difference with the Sezgin-Sundell solutions is

that the three-dimensional PV system contains additional ‘twisted’ sectors (see [17] for a

detailed discussion), which turn out to be inevitably nontrivial in our class of solutions.

The solutions we obtain are interesting for the holographic study of cosmological singu-

larities. They obey boundary conditions in which the AdS vacuum is unstable and describe

the materialization and growth of a Coleman-De Luccia [19] bubble within AdS. It is well-

known that the continuation of such solutions in the interior of the bubble is an FRW geom-

etry ending in a big crunch singularity.1 Our solutions are therefore examples of crunching

1To be more precise, our solutions appear singular from the point of view of ordinary spin-2 differential

geometry. The final verdict on the regularity of our solutions should come from a fuller understanding of

higher spin geometry.
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solutions in higher spin gravity; similar solutions in other holographic theories have been

studied extensively in the literature following the work of Hertog and Horowitz [20].2

We then go on to argue that our solutions are asymptotically AdS and proceed to study

their near-boundary behaviour. To read off quantities in the holographically dual CFT

from this asymptotic behaviour, such as sources and vacuum expectation values (VEVs)

of various operators, requires the process of holographic renormalization [32], which is

unfortunately not yet available for the PV system when the scalar is excited. In this

work we will therefore limit ourselves to justifying the asymptotic behaviour of the fields

by comparing with standard scalar-gravity theories, and we will propose a dual picture

for our solutions based on some reasonable assumptions for the holographic dictionary.

This picture is again similar to that in the other examples in the literature [20]–[31]: the

solutions obey boundary conditions which correspond to turning on a wrong-sign marginal

multi-trace deformation which renders the theory unstable. The VEV of the operator dual

to the scalar displays a runaway behaviour and becomes infinite in finite global time, at the

instance when the crunch singularity hits the boundary. Evidence for this picture comes

from considering the CFT effective action for the operator dual to the bulk scalar: we

will see that the two-derivative approximation allows for solutions with runaway behaviour

which precisely matches the boundary behaviour of the scalar field. We will devote special

attention to the λ → 0 limit of our solutions where the scalar saturates the Breitenlohner-

Freedman bound. In this case the bulk solution captures the effects of a running coupling in

the boundary theory, which can be understood using the known fermionic description [33,

34] of the dual theory.

Furthermore, we find that it is possible to generalize our solutions by expanding the

twistor-space connection of the PV system on a set of Lorentz-invariant projectors, thereby

realizing a three-dimensional analogue of the solutions first found in [11] for the 4D Vasiliev

equations. This expansion brings in new, discrete parameters that turn on seemingly new,

global degrees of freedom. Indeed, on the PV equations the twistor-space connection can

locally be entirely solved in terms of the matter fields up to monodromies, and here we

find that its component on the projector sector remains non-trivial even when the scalar is

switched off, giving rise to solutions without matter that seem to be globally inequivalent

to the AdS3 background.

This paper is structured as follows. In section 2 we review the Prokushkin-Vasiliev

system, paying special attention to the projection to a bosonic theory containing a single

complex scalar, which plays a role in the holographic duality proposal of [4, 5]. In section 3

we present our solutions, deriving the profile of the scalar field for aribitrary λ and the more

involved splitting of the higher spin sector into Lorentz connection and vielbein fields for

the particular case λ = 1
2 . We also briefly discuss the more general solutions which contain

the star-algebra projectors. Subsequently, in section 4, we discuss the three-dimensional

geometry of the solutions, arguing that they are asymptotically anti-de Sitter and that

they describe the materialization and growth of a Coleman-De Luccia bubble within a

metastable AdS vacuum, ending eventually in a big crunch singularity. In section 5 we

2See e.g. [21]–[31] for an (incomplete) list of further references.
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initiate the holographic study of our solutions, understanding their asymptotic behaviour

by comparing with scalar-gravity theories. We propose a dual picture in a theory deformed

by multi-trace deformations, and study in detail λ → 0 limit where we compare with the

fermionic description of the dual theory.

2 Elements of D = 3 higher-spin gravity coupled to matter

2.1 Master fields and extended oscillator algebra

The fully non-linear field equations of three-dimensional higher-spin gravity with propagat-

ing matter fields are formulated [1–3] in terms of differential forms living on a base manifold

locally given by the direct product of the commuting spacetime manifold X and a non-

commutative twistor space Z, and valued in the associative algebras of functions on a fibre

manifold Y ×A, where Y is another twistor space and A contains possible internal matrix

algebras. The total space, is therefore locally equivalent to the product C = X ×Z×Y×A,

with coordinates (xµ, zα, yα, Ta), where µ = 0, 1, 2, α = 1, 2 and the Ta are generators of

internal symmetry algebras. In the present paper, we shall take the latter to coincide with

a set of four elements {ψ1,2, k, ρ} generating two Clifford algebras.3

In particular, the variables entering the equations are three master fields: a spacetime

one-form Ŵ = dxµŴµ(y, z;ψ1,2, k, ρ|x), which contains the gauge connections for all spins

accompanied by a set of auxiliary connections, a zero-form B̂ = B̂(y, z;ψ1,2, k, ρ|x), contain-
ing the local degrees of freedom of the theory (the matter fields and their on-shell non-trivial

derivatives), and a twistor-space one-form connection Ŝ = dzαŜα(y, z;ψ1,2, k, ρ|x) which

contains no local degrees of freedom (in the sense that, on-shell, it can be entirely solved

in terms of B̂ up to monodromies). Following the convention of [6], we shall henceforth

use hatted variables to distinguish z-dependent twistor-space functions and drop the hats

for purely y-dependent variables. We shall now turn to collecting the relevant properties

of all the arguments of the above master fields, referring the reader to appendix A for our

spinor conventions.

The twistor-spaces Y and Z are equipped with an associative and non-commutative ⋆-

product algebra, with respect to which their coordinates yα and zα satisfy two independent

Heisenberg oscillator algebras,

[yα, yβ ]⋆ = 2iǫαβ , [yα, zβ]⋆ = 0 , [zα, zβ]⋆ = −2iǫαβ , (2.1)

[yα, f̂(z, y)]⋆ = 2i
∂f̂

∂yα
, [zα, f̂(z, y)]⋆ = −2i

∂f̂

∂zα
. (2.2)

In a specific choice of basis (i.e., normal-ordering with respect to the combinations A−
α :=

1
2(yα + zα) and A+

α := 1
2i(yα − zα), [A−

α , A
+β]⋆ = δβα), the ⋆-product among arbitrary

functions on Z × Y is realized as

(f̂ ⋆ ĝ)(z, y) =
1

(2π)2

∫
d2ud2v exp(iuαv

α) f̂(z + u, y + u) ĝ(z − v, y + v) . (2.3)

3In general, it is possible to add a set of generators of non-abelian internal matrix algebras Matn(C) [1].
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Of crucial importance to the formulation of the equations is also the inner kleinian operator

κ̂ := (−1)N̂⋆ , N̂ = A+α ⋆ A−
α = − i

2
yαzα , (2.4)

which, in normal order, reduces to [1, 14]

κ̂ = eiy
αzα , (2.5)

and has the properties

κ̂ ⋆ f̂(z, y) = f̂(−z,−y) ⋆ κ̂ , κ̂ ⋆ κ̂ = 1 . (2.6)

The Prokushkin-Vasiliev equations also make use of two pairs of Clifford elements, (ψ1, ψ2)

and (ρ, k), such that

{ψi, ψj} = 2δij , i = 1, 2 , (2.7)

while commuting with all other variables, and

k2 = ρ2 = 1 , {ρ, k} = 0 , {k, yα} = {k, zα} = 0 , [ρ, yα] = [ρ, zα] = 0 . (2.8)

The Clifford element k induces a doubling of all fields in the model which is related to the

N = 2 supersymmetry subalgebra of the global symmetry algebra of the theory. The pres-

ence of ρ makes it possible to write the equations for the k-dependent Ŝα manifestly as a

deformed oscillator algebra [3]. The Clifford element ψ1 is responsible for the embedding of

AdS translations inside the maximal finite subalgebra of the bosonic global symmetry alge-

bra of the theory, i.e., the semisimple AdS3 isometry algebra so(2, 2) ≃ sp(2,R)⊕ sp(2,R),

with sp(2,R) ≃ so(2, 1) ≃ sl(2,R): identifying the Lorentz subalgebra as the diagonal

so(2, 1), spanned by elements Ja ↔ Mαβ (see appendix A for our spinor conventions and

more details)

Mαβ =
1

4i
{yα, yβ}⋆ ≡ 1

2i
yαyβ , (2.9)

the translations are realized as Pa = Jaψ1 ↔ Mαβψ1, and one can use the projectors Π± :=

(1±ψ1)/2 to single out the two simple components of so(2, 2). Note that, as explained in [1]

and [35] and as we shall briefly review in section 2.3, this is only one of a one-parameter

family of possible oscillator realizations of so(2, 2). Finally, the role of ψ2 is to implement,

via its anticommutation property with ψ1, a twist operation ψ1 → −ψ1 changing the sign of

the translation generators (which corresponds to an involutive automorphism of the AdS3

isometry algebra (A.4)): essentially, its inclusion in the expansion of the master fields

realizes a grading of the commutators with respect to the translations which is crucial in

order to include non-trivial propagating matter fields via the field equation involving B̂.

Furthermore, the master fields obey the following reality conditions,

Ŵ † = −Ŵ , Ŝ†
α = −Ŝα, B̂† = B̂ , (2.10)

where † acts on the variables on C as

[A(z, y;ψ1,2, k, ρ)]
† ≡ Ārev(−z, y;ψ1,2, k, ρ) (2.11)

and rev means reversing the order of the Grassmann elements.
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2.2 The Prokushkin-Vasiliev equations and their consistent truncations

We are now in a position to write down the full Prokushkin-Vasiliev equations,

dŴ + Ŵ ⋆ Ŵ = 0 (2.12)

dB̂ + [Ŵ , B̂]⋆ = 0 (2.13)

dŜα + [Ŵ , Ŝα]⋆ = 0 (2.14)

[Ŝα, B̂]⋆ = 0 (2.15)

[Ŝα, Ŝβ]⋆ = −2iǫαβ(1 + B̂ ⋆ K̂) (2.16)

where the ∧-product of differential forms is always understood and we have defined the

total kleinian operator

K̂ := k κ̂ . (2.17)

The system is manifestly gauge invariant under the transformations

δǫ̂ Ŵ = dǫ̂+ [ Ŵ , ǫ̂ ]⋆ , (2.18)

δǫ̂ B̂ = −[ ǫ̂, B̂ ]⋆ , (2.19)

δǫ̂ Ŝα = −[ ǫ̂, Ŝα]⋆ , (2.20)

where ǫ̂ = ǫ̂(z, y;ψ1,2, k|x). As explained in [1], by virtue of the the involutive automor-

phism ρ → −ρ, Ŝα → −Ŝα, the system (2.12)–(2.16) can be consistently truncated to the

one with fields Ŵ and B̂ independent of ρ, and Ŝα linear in ρ,

Ŵ = Ŵ (z, y;ψ1,2, k|x) , B̂ = B̂(z, y;ψ1,2, k|x) , Ŝα = ρ Ŝα(z, y;ψ1,2, k|x) . (2.21)

Note that such reduced variables satisfy

K̂ ⋆ Ŵ = Ŵ ⋆ K̂ , K̂ ⋆ B̂ = B̂ ⋆ K̂ , K̂ ⋆ Ŝα = −Ŝα ⋆ K̂ . (2.22)

In this paper we shall focus on the bosonic truncation of the Prokushkin-Vasiliev

equations, which amounts to further imposing that Ŵ and B̂ are of even degree in the

total number of (y, z) oscillators and Ŝα is of odd degree. This projection is implemented

via the conditions

κ̂ ⋆ Ŵ = Ŵ ⋆ κ̂ , κ̂ ⋆ B̂ = B̂ ⋆ κ̂ , κ̂ ⋆ Ŝα = −Ŝα ⋆ κ̂ , (2.23)

which, together with (2.22), implies that k is central in the reduced bosonic theory (2.21),

and as a consequence the latter can be projected to two independent subsectors with the

help of the projectors P± := (1±k)/2. Therefore, one can obtain the projected components

of the master-fields from the two independent subsystems

dŴ± + Ŵ± ⋆ Ŵ± = 0 (2.24)

dB̂± + [Ŵ±, B̂±]⋆ = 0 (2.25)

dŜ±
α + [Ŵ±, Ŝ±

α ]⋆ = 0 (2.26)

– 6 –
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[Ŝ±
α , B̂

±]⋆ = 0 (2.27)

[Ŝ±
α , Ŝ

±
β ]⋆ = −2iǫαβ(1± B̂± ⋆ κ̂) . (2.28)

As we shall review below, the P+- and P−-projected sectors each describe a single prop-

agating complex scalar field. In the refined version of the Gaberdiel-Gopakumar duality

proposed in [5], the bulk theory consists of only one projected sector. Our strategy in this

paper will be to construct solutions of the reduced bosonic theory satisfying (2.21), (2.23),

and set to k equal 1 (or -1) at the end in order to obtain a solution in the P+- (P−-) pro-
jected sector. We shall postpone examining another consistent truncation to section 2.3,

where the necessary notions of ν-vacua and deformed oscillators are reviewed.

2.3 Maximally symmetric vacua and higher-spin algebras

As shown in [1], unlike the 4D Vasiliev theory, the 3D theory has a one-parameter family of

inequivalent AdS vacua, labelled by the constant4 identity component ν ∈ R of B̂, around

which the physics is different: in particular, the mass of the scalars5 and the higher-spin

algebras depend on ν. Setting B̂ = B̂0 = ν solves eqs. (2.13) and (2.15) automatically. The

field Ŝα must then be constant in spacetime and satisfy the deformed oscillator algebra

[Ŝ0α, Ŝ0β ]⋆ = −2iǫαβ(1 + νK̂). (2.29)

The simplest solution (more general solutions will be discussed in section 3.5) which obeys

the reality condition (2.10), which we review in appendix C, is [1]

Ŝ0α = ρ

{
zα − ν

8

∫ 1

−1
ds(1− s)

(
(yα + zα)e

i
2
(1+s)u ⋆ 1F1

[
1

2
, 2,−νK̂ ln |s|

]

+ (yα − zα)e
i
2
(1+s)u ⋆ 1F1

[
1

2
, 2, νK̂ ln |s|

])
⋆ K̂

}

= ρzα

[
1 + ν

∫ 1

−1
ds(1− s)

(
F−(ν ln |s|)e i

2
(1+s)u + F+(ν ln |s|)e i

2
(1−s)uk

)]

=: z̃α (2.30)

where we are defining u := yαzα, the only non-trivial Lorentz-invariant combination of the

oscillators alone,

F±(x) ≡ 1

8

(
1F1

[
1

2
, 2, x

]
± 1F1

[
1

2
, 2,−x

])
, (2.31)

4We will not consider here the possibility of letting the identity component of B̂ vary over spacetime.
5Let us remind the reader that in AdS3 spacetime the Klein-Gordon equation takes the form

(
�−m2)φ ≡

(
�−M2

Λ −M2)φ =

(
�+

3

4
−M2

)
φ = 0 ,

where m2 separates into a mass-like term associated to the spacetime curvature (and which, reinstating

the AdS radius L that we are setting to L = 1 throughout the paper, reads M2
Λ = − 3

4L2 ), coming from a

curvature coupling in the action, and a proper mass term M2. We shall follow the convention in, e.g., [1],

and refer to the particles with M2 = 0 as massless.

– 7 –
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and 1F1

[
1
2 , 2, x

]
is the confluent hypergeometric function. Furthermore, there exist de-

formed oscillators ỹα that ⋆-commute with z̃α
6 [1]

ỹα = yα − ν

∫ 1

−1
ds (1− s) e

i
2
(1+s)u

(
yαF

−(ν ln |s|)− zαF
+(ν ln |s|)k

)
, (2.32)

such that

[z̃α, z̃β]⋆ = −2iǫαβ(1 + νK̂) , (2.33)

[ỹα, ỹβ]⋆ = 2iǫαβ(1 + νk) , (2.34)

[ỹα, z̃β]⋆ = 0 . (2.35)

Note that ỹα|ν=0 = yα and z̃α|ν=0 = ρzα. From now on, we shall adapt our notation to

an expansion over these vacua, and use hats over any variable that depends on z̃α, while

variables that only depend on ỹα will be unhatted even though the latter contain zα. For

ν = 0 this notation reduces to the one so far adopted.

An important property of the deformed oscillator algebra is that the bilinears

Mαβ = − i

4
{ỹα, ỹβ}⋆ (2.36)

satisfy the sp(2,R) commutation relations,

[Mαβ ,Mγδ]⋆ = 4ǫ(β|(γMδ)|α) , (2.37)

and

[Mαβ , ỹγ ]⋆ = 2ǫ(β|γ ỹ|α) (2.38)

for any ν. Eq. (2.14) implies that the vacuum solution Ŵ0 commutes with Ŝ0α, i.e., that

Ŵ0 = W0(ỹ;ψ1,2, k). The AdS3 geometry is then encoded in (2.12) for the flat connection

W0 = e0 + ω0 , ω0 =
1

4i
ωαβ
0 {ỹα, ỹβ}⋆ , e0 =

1

4i
eαβ0 {ỹα, ỹβ}⋆ψ1 (2.39)

where e0 and ω0 are the AdS3 vielbein and the Lorentz-connection, for which (2.12) results

in zero-torsion and zero-curvature conditions for any ν.

The global symmetry algebra of the theory corresponds to the stability subalgebra of

these maximally symmetric vacua, containing parameters ǫ̂gl = ǫ̂gl(ỹ;ψ1, k) [1]. Restricting

our attention to the bosonic subalgebra, which will be of relevance in the following, we find

that the the latter contains elements ǫ̂±gl(ỹ;ψ1),
7 which are expansions on symmetrized

even-degree polynomials in ỹα. By means of (2.32), the deformed oscillator algebra (2.34)

6For notational simplicity, we shall omit the hat over the deformed oscillators ỹα and z̃α even though

they are functions of zα for any ν 6= 0.
7The explicit dependence on k is absent because, as explained before, in the bosonic projection k becomes

central and the master-fields can be projected onto the two independent subsectors where k = ±1. The

dependence on ψ2 is absent because, as we shall recall immediately below, the expansion on ψ2 in the

master-fields separates the physical and the twisted sector of the theory. A symmetry parameter linear in

ψ2 would mix the two sectors, and for this reason should be ruled out in a unitary theory [1].

– 8 –
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turns out to be embedded in the tensor product of the undeformed oscillator algebras

of (y, z) and k. Taking ⋆-commutators of the bosonic parameter ǫgl(ỹ;ψ1, k) and then

projecting onto k = ±1 then amounts to realizing the algebra hs(2; ν)± ⊕ hs(2; ν)±, where
each hs(2; ν)± corresponds to an inequivalent higher-spin extension of the maximal finite

bosonic subalgebra sp(2,R). More specifically, hs(2; ν)± is the Lie algebra arising from the

unital associative algebra

Aq(2; ν)± =
U [sp(2,R)]

I[C2 +
3±2ν−ν2

4 ]
(2.40)

via commutators. U [sp(2,R)] is the universal enveloping algebra of sp(2,R), while I[C2 +
3±2ν−ν2

4 ] is a two-sided ideal generated by the relation in the argument, that fixes the

value of the Casimir of sp(2,R) in terms of ν, and the algebras Aq(2; ν)± correspond to

the associative algebra of even functions of the ỹa projected via P±. In the notation of [4]

and of the Introduction, hs(2; ν)± = hs[λ], where λ = (1 ∓ ν)/2 plays the role of a ’t

Hooft-like coupling of the dual CFT [4]. Finally, note that Aq(2; ν)± admit a uniquely

defined trace operation (descending from the supertrace of Aq(2; ν), see [1]) that consists

of the projection onto the coefficient of the unit element,

tr(f±(ỹ)) = f±(0) , (2.41)

and which, upon including also a dependence on ψ1,2, is defined as

tr(F±(ỹ;ψ1,2)) = F±(0)|ψ1,2=0 . (2.42)

An expansion around the ν-vacua (Ŵ0, B̂0, Ŝ0α) defined above, Ŵ = Ŵ0 + Ŵ1 + . . .,

B̂ = B̂0 + B̂1 + . . ., Ŝα = Ŝ0α + Ŝ1α + . . ., shows [1] that the local degrees of freedom of

the theory reside in the linearized zero-form C±(ỹ;ψ1,2) = B̂1. As anticipated, since the

background covariant derivative acting on it in (2.25) d + [Ŵ0, . . .] explicitly contains ψ1

(see (2.39)), the expansion in ψ2

C±(ỹ;ψ1,2) = C±,tw(ỹ;ψ1) + C±,phys(ỹ;ψ1)ψ2 , (2.43)

separates the field content of the zero-form into an infinite set of finite-dimensional so(2, 2)-

multiplets of tensor fields contained in C±,tw, on which (2.25) imposes Killing equations,

and the infinite-dimensional multiplet in C±,phys formed by the modes of two pairs of real

scalar fields of mass M2
± = ν(ν∓2)/4, on which (2.25) imposes the Klein-Gordon equation.

Each pair belongs to one of the two independent subsectors obtained via the projectors

P±, and the doubling within each subsector is due to ψ1.
8 The perturbative analysis also

shows that Ŝ1α can locally be solved entirely in terms of C, and that the field content of

ω := Ŵ1 also separates into

ω = ω±,phys(ỹ;ψ1) + ω±,tw(ỹ;ψ1)ψ2 , (2.44)

8The full Prokushkin-Vasiliev theory, on the other hand, contains these four real scalar fields, of masses

M2
± = ν(ν ∓ 2)/4, together with four fermions of masses M2

± = ν2/4 arranged in a N = 2 supersymmetry

multiplet [1].
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where ω±,phys contains the bosonic gauge fields of all spins, which in D = 3 are all topo-

logical, and ω±,tw contains twisted gauge fields.

It is presently not clear what is the correct interpretation of the fields in the twisted-

sector, nor what their role could be in the Gaberdiel-Gopakumar duality conjecture [4],

since there is no natural dual for them in the boundary theory. Moreover, in [17] it was

found that, up to second order in perturbation theory, there exists a field redefinition that

consistently truncates away the twisted sector, leaving only the physical fields. This issue

remains to be investigated at the non-perturbative level.

In this paper we shall construct and analyze a Lorentz-invariant exact solution which

is a D = 3 counterpart of the four-dimensional Sezgin-Sundell solution found in [6], mainly

focusing on the physical sector and on the hs[λ = 1/2]-theory (ν = 0). We shall separate

B̂ into the vev corresponding to the ν-vacua and a fluctuation Φ̂,

B̂ = ν + Φ̂, trΦ̂ = 0. (2.45)

Correspondingly, we shall expand the master fields of a general solution to the Vasiliev

equations in the symmetrized ⋆-monomials of the deformed oscillators ỹ, z̃ as

Ψ̂ =
∑

m,n

Ψα(m),β(n)(ψi, ρ, k|x)Wα(m),β(n) , (2.46)

Wα(m),β(n) ≡ ỹ(α1 ⋆ . . . ⋆ ỹαm) ⋆ z̃(β1 ⋆ . . . ⋆ z̃βn) . (2.47)

The only propagating field in the bosonic theory is the AdS scalar, which corresponds to

the component

φ ≡ (Φ̂ψ2)|y=0,z=0,ψ2=0 ≡ (Φψ2)|y=0,ψ2=0 = tr(Φψ2) , (2.48)

and in the following we shall explain how to extract the physical fields in the gauge-field

sector.

Finally, note that in the massless case ν = 0 the original system (2.12)–(2.16) acquires

the automorphism k → −k, which enables a consistent truncation according to the k-parity

conditions

Ŵ (k) = Ŵ (−k) , Ŝα(k) = Ŝα(−k) , B̂(k) = −B̂(−k) , (2.49)

eliminating the k-doubling in all the master-fields. Then, subjecting the system also

to (2.21) and to the bosonic projection, and using the notation (2.45), the equations reduce

to

dŴ + Ŵ ⋆ Ŵ = 0 (2.50)

dΦ̂ + [Ŵ , Φ̂]⋆ = 0 (2.51)

dŜα + [Ŵ , Ŝα]⋆ = 0 (2.52)

[Ŝα, Φ̂]⋆ = 0 (2.53)

[Ŝα, Ŝβ ]⋆ = −2iǫαβ(1 + Φ̂ ⋆ κ̂) , (2.54)
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with k-independent master-fields expanded in the undeformed (y, z) oscillators. Note that

the bosonic system above is formally identical to each one of the independent bosonic

subsystems (2.24)–(2.28).

As explained in [1] (see also [18]), it is possible to further truncate the bosonic PV sys-

tem down to a model that we shall refer to as “minimal bosonic PV model”, in analogy with

its four-dimensional counterpart (see for example [6]), by virtue of the anti-automorphism

τ ,9

τ(f̂ ⋆ ĝ) = (−1)deg(f)deg(g)τ(ĝ) ⋆ τ(f̂) , (2.55)

τ(zα, dz
α; yα; ρ, k, ψi) = (−izα,−idzα; iyα; ρ, k, ψi) . (2.56)

The truncation conditions on the bosonic master-fields are

τ(Ŵ , B̂, Ŝα) = (−Ŵ , B̂,−iŜα) , (2.57)

and, according to (2.56), they leave only one real physical scalar in the spectrum. Indeed,

imposing the τ -projection on the bosonic linearized zero-form

[C(ỹ;ψ1,2)] = Ctw
0 (ỹ) + Ctw

1 (ỹ)ψ1 + [Cphys
0 (ỹ) + Cphys

1 (ỹ)ψ1]ψ2 (2.58)

does not constrain the twisted sector, but requires τ(Cphys
0 ) = Cphys

0 and τ(Cphys
1 ) =

−Cphys
1 , thereby throwing away half of the modes from each physical scalar and recon-

structing a single real scalar field from the combination of the residual, allowed modes.

As we shall see, the solutions constructed in this paper admit truncation to the minimal

bosonic PV model.

We shall now turn to the construction of the exact solution, by first explaining the

solution method, which results from a combination of using a gauge function to strip off the

x-dependence of the master-fields, and of imposing Lorentz-invariance in the twistor-space

Y × Z. For the latter task, it is important to first recall how the local Lorentz symmetry

is manifestly realized in the Prokushkin-Vasiliev theory.

2.4 Manifest spin-2 Lorentz invariance

Following [1, 3, 6], in this section we recall the proper generalization of the Lorentz gen-

erators (2.37) at the fully interacting level and, consequently, how to disentangle a given

solution of (2.12)–(2.16) into fields that transform covariantly under the spin-2 local Lorentz

part of the higher spin gauge group. We will only sketch this procedure for ν = 0, which

is also the case to which we will apply this formalism in section 3.6.

The non-linear modification of Mαβ that properly rotates the z̃α on which the master-

fields depend, while still ensuring that the Ŝα have appropriate local Lorentz transforma-

tions, is

M̂L
αβ = M̂ tot

αβ − i

4
{Ŝα, Ŝβ}⋆ , (2.59)

9This notation is chosen to keep the four-dimensional notation of [6]. In the original paper [1] this

anti-automorphism was denoted with σ.
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where

M̂ tot
αβ =

i

4
({zα, zβ}⋆ − {yα, yβ}⋆) . (2.60)

They generate the desired transformation of B̂, Ŝα:
10

δǫ̂LΦ̂ = −[ǫ̂tot, Φ̂]⋆ (2.61)

δǫ̂LŜα = −[ǫ̂tot, Ŝα]⋆ + Λ β
α Ŝβ (2.62)

where the local Lorentz parameters are defined as

ǫ̂tot =
1

2
ΛαβM̂ tot

αβ , ǫ̂L =
1

2
ΛαβM̂L

αβ , (2.63)

and we used (2.15), (2.16). The master field W transforms as

δǫ̂LŴ =
1

2
dΛαβM̂L

αβ + [Ŵ , ǫ̂tot]⋆ (2.64)

where we used (2.14).

Taking the z = 0 components of these expressions we obtain the transformations of

the fields Φ,W

δǫ̂LΦ = −[ǫ0,Φ]⋆ , (2.65)

δǫ̂LW = [W, ǫ0]⋆ +
1

2
dΛαβM̂L

αβ |z=0 . (2.66)

where ǫ0,Mαβ are the gauge parameter and Lorentz generators that Lorentz rotate the y

oscillators:

Mαβ = − i

4
{yα, yβ}⋆ , (2.67)

ǫ0 =
1

2
ΛαβMαβ . (2.68)

eq. (2.65) tells us that the components in the y-expansion of Φ transform as Lorentz tensors.

We want to extract from W the fields that transform as Lorentz tensors as well as a (spin-2)

Lorentz-connection piece ωαβ which transforms inhomogeneously:

δǫ̂Lω
αβ = dΛαβ + ωαγΛ β

γ + ωγβΛ α
γ . (2.69)

Noting that the M̂L
αβ , being field-dependent, gauge-transform as

δǫLM̂
L
αβ |z=0 = −[ǫ0, M̂

L
αβ |z=0]⋆ − Λ γ

α M̂L
γβ |z=0 − Λ γ

β M̂L
αγ |z=0 (2.70)

and defining

ω =
1

2
ωαβMαβ (2.71)

10The desired transformation of Ŝα is such that the gauge choice which is customary in the perturbative

analysis of the PV equations (as it ensures that Ŝα can be locally reconstructed in terms of B̂ at any order in

perturbation theory), zαŜα = 0, is maintained under local Lorentz transformations [17] or, more generally,

that the gauge choice is such that the spinor index of Ŝα is not carried by any external field [38]. As we

shall see, our solutions respect this gauge condition.
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we find that the quantity W − 1
2ω

αβM̂L
αβ,|z=0 is composed of Lorentz tensors:

δǫ̂L

(
W − ω +

i

4
ωαβŜα ⋆ Ŝβ |z=0

)
=

[
W − ω +

i

4
ωαβŜα ⋆ Ŝβ |z=0 , ǫ0

]

⋆

. (2.72)

We can therefore decompose W into a Lorentz-connection part 1
2ω

αβM̂L
αβ,|z=0 and Lorentz-

tensor parts as follows

W =
1

2
ωαβ

(
Mαβ − i

4
{Ŝα, Ŝβ}⋆ |z=0

)
+ eψ1 + EHSψ1 +ΩHS (2.73)

where e, ω,EHS ,ΩHS are independent of ψ1. They represent the spin-2 vielbein and

Lorentz connection, and their higher-spin counterparts, respectively.

3 The 3D Sezgin-Sundell solution

3.1 Gauge function method

The idea behind the gauge function solution method [6, 36, 37] is to first solve the zero-

curvature and covariant constancy conditions (2.12)–(2.14) on X via some appropriately

chosen gauge function, which absorbs the spacetime dependence of the master fields, and

then solve for the twistor-space dependence from the remaining equations. In particular,

since Ŵ is flat, it can locally be gauged away by a gauge function L̂ = L̂(ỹ, z̃;ψ1, k|x). In
this “nothing gauge” the Vasiliev equations (2.12)–(2.16) with the expansion (2.45) reduce

to a kind of deformed oscillator problem for spacetime-independent fields Φ̂′, Ŝ′
α, which is

encoded in the “internal” equations (3.4)–(3.5):

Ŵ = L̂−1 ⋆ dL̂ , (3.1)

Φ̂ = L̂−1 ⋆ Φ̂′ ⋆ L̂, dΦ̂′ = 0 , (3.2)

Ŝα = L̂−1 ⋆ Ŝ′
α ⋆ L̂, dŜ′

α = 0 , (3.3)

[Ŝ′
α, Φ̂

′]⋆ = 0 , (3.4)

[Ŝ′
α, Ŝ

′
β ]⋆ = −2iǫαβ(1 + νK̂ + Φ̂′ ⋆ K̂) . (3.5)

After solving for Φ̂′, Ŝ′
α from the last two equations, one can reconstruct the spacetime

dependence of all fields by taking the ⋆-products with L̂ and its inverse.

3.2 AdS ν-vacua in stereographic coordinates

The simplest solution is to take the “nothing gauge” solution to be given by the deformed

oscillator solution of section 2.3

Φ̂′ = 0 , (3.6)

Ŝ′
α = z̃α . (3.7)

If we assume that the gauge function only depends on the ỹ oscillators, L̂ = L(ỹ;ψ1, k|x),
then it follows that L commutes with z̃α so that we also have Ŝα = z̃α. Thus, from (2.59)

the Lorentz generators are simply

M̂L
αβ = Mαβ = − i

4
{ỹα, ỹβ}⋆ , (3.8)
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and the above Ansatz obviously results in a solution with the full so(2, 2)-symmetry (and

its higher-spin extension).

Now we turn to the determination of the gauge function L which produces the AdS

vacuum without higher spins turned on. AdS3 is the coset SO(2, 2)/SO(2, 1) and the

standard theory of coset manifolds (see e.g. [39]) fixes the gauge function to be simply

the coset representative within SO(2, 2). As explained in appendix B, in stereographic

coordinates this representative is11

L(ỹ;ψ1|x) = exp⋆

(
− i

8

arctanh
√
x2√

x2
xαβ{ỹα, ỹβ}⋆ψ1

)
(3.9)

xαβ =

(
x0 + x1 x2

x2 x0 − x1

)
(3.10)

Working out L−1 ⋆ dL as in (B.11) indeed gives the vielbein and Lorentz connection for

AdS3:

e0 =
i

8

dxαβ

1− x2
{ỹα, ỹβ}⋆ , (3.11)

ω0 = − i

8

xαγdx β
γ

1− x2
{ỹα, ỹβ}⋆ , (3.12)

EHS
0 = ΩHS

0 = 0 , (3.13)

ds2 = (e0, e0) =
4dxadxa
(1− x2)2

. (3.14)

For ν = 0, we can also write down the Weyl-ordered formula for L, using the iden-

tity [41]

exp⋆

(
1

2
yTMy

)
= sech

√
detM exp

(
tanh

√
detM√

detM

1

2
yTMy

)
(3.15)

leading to

L(ỹ;ψ1|x) =
√

2h

1 + h
exp

(
− i

2

xαβyαyβ
1 + h

ψ1

)
, h ≡

√
1− x2. (3.16)

3.3 Sezgin-Sundell-like non-vacuum solutions

Having discussed the solutions describing the AdS vacuum, we now want to construct

simple solutions where the scalar field is also turned on. As we discussed in section (2.3),

the propagating components of the scalar reside in the sector where Φ̂ is proportional to

ψ2. In the gauge function method, the simplest choice is to set the nothing gauge scalar

11This can be rewritten in the form used in [6]:

L = exp⋆



− i

4

arctanh
√

1−h
1+h√

x2
xαβ{ỹα, ỹβ}⋆ψ1





where h =
√
1− x2.
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field equal to Φ̂′ = µψ2, with µ a real constant, which parallels the construction of the 4D

Sezgin-Sundell solutions [6, 7]. To find the corresponding solution for Ŝ′
α, we observe that

all the ingredients in the ν-vacuum solutions B̂′, Ŝ′
α of the previous subsection commute

with ψ2. Therefore we can generate the desired new nothing gauge solutions by shifting

ν → ν + µψ2 in the vacuum solutions (2.30), (3.7). This leads to

Φ̂′ = µψ2 (3.17)

Ŝ′
α = ρzα

[
1 + (ν + µψ2)

∫ 1

−1
ds(1− s)

(
F− ((ν + µψ2) ln |s|) e

i
2
(1+s)u

+ F+ ((ν + µψ2) ln |s|) e
i
2
(1−s)uk

)]
. (3.18)

As explained before, restricting to the bosonic theory we can set k = ±1 in the above

expression for Ŝ′
α. We observe that the corresponding solutions for ν = 0 then formally co-

incides with the solution of the internal bosonic equations with Φ̂′ = µψ2k of the truncated

system (2.50)–(2.54).

Next we should specify the gauge function L. The simplest possibility, which we shall

use in this work, is to choose the gauge function to be identical to the gauge function of the

AdS solution, namely L(ỹ;ψ1|x) in (3.10). Since in the limit µ → 0 the master fields (3.18)

reduce to their values in the ν-vacuum of the previous section, our choice for L guarantees

that we recover the pure AdS solution when sending µ → 0. Nevertheless more general

choices reducing to (3.10) in the limit µ → 0 would also be suitable.

Note that, due to the dependence of the gauge function on ψ1, turning on Φ′ in the

physical sector, linear in ψ2, effectively amounts to breaking the so(2, 2)-symmetry of the

ν-vacua down to the Lorentz subalgebra, thereby realizing a three-dimensional analogue of

the Sezgin-Sundell four-dimensional Ansatz [6].

3.4 The scalar profile

The scalar master field in these solutions takes the form

Φ̂ = Φ = µL−1ψ2 ⋆ L. (3.19)

and from (2.48) we find for the physical scalar

φ = µ tr(L−1 ⋆ L−1) . (3.20)

We should make here an important remark concerning this scalar profile. Since we are using

the gauge function method, using for L the same function as for the AdS vacuum, the master

field W is formally unchanged from the vacuum solution, although its decomposition in

terms of Lorentz tensors is of course different, see (2.73). The equation of motion for the

zero form master field Φ̂ ≡ Φ̂(ỹ;ψi|x), being linear, is then precisely the one analyzed in [42],

where it was shown that the physical field φ satisfies the free Klein-Gordon equation in

global AdS. While it is known that the PV theory describes a complex interacting system of

a scalar coupled to gravity and higher spins, the gauge function method picks out solutions

where the scalar profile is that of a free scalar in AdS. We will describe a toy example of a

scalar-gravity theory with this property in section 5.1.
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In the simplest case ν = 0, the gauge function is constructed from undeformed oscil-

lators, L = L(y;ψ1|x). We can explicitly evaluate L−1 ⋆ L−1 using (3.15), with the simple

answer

L−1 ⋆ L−1 =
√
1− x2 exp

(
− i

2
xαβyαyβψ1

)
(3.21)

and we get

φ = µ
√
1− x2 for ν = 0. (3.22)

One easily checks that (3.22) satisfies the Klein-Gordon equation with m2 = −3/4 (i.e., it

is an AdS3-massless scalar with M2 = 0, see footnote 4) with respect to the metric (3.14),

as expected from our remarks above.

For general values of the vacuum parameter ν, the theory is governed by the higher

spin algebra hs[λ] with, projecting onto k = 1 for definiteness,

λ =
1− ν

2
. (3.23)

We will only consider the range −1 ≤ ν ≤ 1, 0 ≤ λ ≤ 1, for which the PV theory is

conjectured to be dual to the ’t Hooft limit of the unitary WN minimal models [4]. The

overall mass of the scalar φ is m2 = λ2 − 1 and the solutions to m2 = ∆(∆− 2) are

∆± = 1± λ. (3.24)

From (3.20) we find that the scalar profile in the case of general λ is given by

φ = µ tr exp⋆

(
i

4

arctanh
√
x2√

x2
xαβ{ỹα, ỹβ}⋆ψ1

)

= µ tr cosh⋆

(
i

4

arctanh
√
x2√

x2
xαβ{ỹα, ỹβ}⋆

)
(3.25)

where in the second line we have used that the terms proportional to ψ1 do not contribute

to the trace as defined in (2.42). The final expression is a sum of two traces of group

elements in the SL(2,R) subgroup of the higher spin symmetry, and in appendix E we

provide one way of computing such traces using the fact that hs[λ] can be viewed as an

N → λ continuation of sl(N) [1, 3, 35, 40]. Using (E.6) with
√
v2 = 4arctanh

√
x2 we find

φ = µ
sinh(2λ arctanh

√
x2)

λ sinh(2 arctanh
√
x2)

(3.26)

For λ = 1
2 , this scalar profile reduces to (3.22), and one can also easily check that it satisfies

the free Klein-Gordon equation with m2 = λ2 − 1 as expected.

3.5 A generalization

Before continuing our analysis we would like to mention a possible generalization. The

solutions (3.18) can further be dressed with certain Lorentz-invariant projector solutions

which are the three-dimensional counterparts of those first found in [11] and that are
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here obtained in appendix C. These solutions, that seem to be gauge-inequivalent to AdS3

(although we shall not give a proof of this statement in this work), are activated by discrete

parameters θn = {0, 1}, each turning on a contribution from a Fock-space projector Pn(u).

Since they survive the limit ν,Φ′ → 0, they furnish new solutions without matter of the form

Ŝ′
α = ρzα

(
1− 2

∞∑

n=0

θnPn(u)

)
. (3.27)

Splitting Ŝ′
α = ρ(zα − 2iÂ′

α) into its AdS3 vacuum value, that act as a derivative in zα via

commutators (2.2), and a Z-space connection, the l.h.s. of (3.5) corresponds to the AdS-

vacuum solution plus a Z-space field-strength F ′
αβ = 2∂[αÂ

′
β]+[Â′

α, Â
′
β ]. This suggests that

these projector solutions represent monodromies of a flat but non-trivial connection on Z,

encoding the interesting possibility that Ŝ′
α might carry global degrees of freedom associated

to the zα-oscillators (qualitatively similar to windings). This issue touches upon various

other open questions, such as the definition and interpretation of higher-spin observables

(see, e.g., [6, 43, 44] for the construction of gauge-invariant quantities), as well as on similar

solutions of the Chern-Simons theory [45]. We shall defer a more thorough study of such

solutions to a future work, referring the reader to appendix C for the technical details.

3.6 Gauge sector for ν = 0

We shall now proceed to extract the expressions for the Lorentz-connection and vielbein

components from the master gauge field W in the manner explained in section 2.4. These

are a bit more involved, and we will restrict ourselves to the case ν = 0 for simplicity.

To obtain them we have to decompose W into Lorentz-connection and Lorentz tensors

according to (2.73). This leads to

W = − i

4
ωαβ
0 yαyβ − i

4
eαβ0 yαyβψ1

= − i

4
ωαβ

(
yαyβ +

1

2
{Ŝα, Ŝβ}⋆ |z=0

)
− i

4
eαβyαyβψ1 + EHSψ1 +ΩHS . (3.28)

The Ŝα-dependent deformation of the Lorentz generators can be evaluated as

1

2
{Ŝα, Ŝβ}⋆ =

1

2
L−1 ⋆ {Ŝ′

α, Ŝ
′
β}⋆ ⋆ L , (3.29)

inserting the expression (3.18) at ν = 0

Ŝ′
α = ρzα

[
1 + µ

∫ 1

−1
ds(1− s)

(
F− (µ ln |s|) e i

2
(1+s)u + F+ (µ ln |s|) e i

2
(1−s)uψ2k

)]
.

(3.30)

in the r.h.s. of (3.29) and evaluating the ⋆-products. We collect in appendix D a few relevant

steps of the calculation. Note that the ψ2-dependence of Ŝ′
α leads to the appearance of

two sectors in W : the physical one, proportional to the unit element, and the twisted one,
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proportional to ψ2, which we shall now display separately.12 Defining

aαβ :=
xαβ

1 + h
, a2 =

1− h

1 + h
, (3.31)

one finds, for the physical sector,

1

2
{Ŝα, Ŝβ}⋆ |z=ψ2=0 = Ayαyβ +B a γ

α yγa
δ
β yδ + C a γ

(α yβ)yγψ1 , (3.32)

where we have denoted

A =

∫ 1

−1
ds

∫ 1

−1
ds̃G(s, s̃)

(
1 + ss̃a2

)2
, (3.33)

B =

∫ 1

−1
ds

∫ 1

−1
ds̃G(s, s̃) (1 + ss̃)2 , (3.34)

C = 2

∫ 1

−1
ds

∫ 1

−1
ds̃G(s, s̃)

(
1 + ss̃a2

)
(1 + ss̃) , (3.35)

G(s, s̃) = − µ2(1− a2)

4 (1− (ss̃)2a2)3
[
(1− s)2(1− s̃)2F+(µ ln |s|)F+(µ ln |s̃|)

+(1− s2)(1− s̃2)F−(µ ln |s|)F−(µ ln |s̃|)
]
. (3.36)

Thus, the contribution of the non-linear correction to the Lorentz generators only contains

bilinear terms in the y oscillators, and therefore it does not give rise to any higher-spin

fields. This is similar to the four-dimensional result of [6].

On the other hand, in the twisted sector, which as previously recalled is peculiar to

the three-dimensional theory, we find
[
ψ2

2
{Ŝα, Ŝβ}⋆

]

|z=ψ2=0

= −k

∫ 1

−1
ds

[
F1 a

γ
α yγ a

δ
β yδ + F2 ψ1aαβ

]
e

i

1+s2a2
(1+s)2

2
aαβyαyβψ1

+k

∫ 1

−1
ds

∫ 1

−1
ds̃

[
F3 yαyβ + F4 a

γ
α yγ a

δ
β yδ

]
e

i

1+s2s̃2a2
(1−ss̃)2

2
aαβyαyβψ1 , (3.37)

where

F1 = µ(1− a2)

∫ 1

−1
ds (1− s2)F+(µ ln |s|) (1 + s)2

(1 + s2a2)3
, (3.38)

F2 = µ(1− a2)

∫ 1

−1
ds (1− s2)F+(µ ln |s|) 2i

(1 + s2a2)2
, (3.39)

F3 =

∫ 1

−1
ds

∫ 1

−1
ds̃H(s, s̃)(1− s)(1 + s̃)

(
1 + ss̃a2

)2
, (3.40)

F4 = −
∫ 1

−1
ds

∫ 1

−1
ds̃H(s, s̃)(1 + s)(1− s̃) (1− ss̃)2 , (3.41)

H(s, s̃) =
µ2(1− a2)

2 (1 + (ss̃)2a2)3
(1− s)(1− s̃)F+(µ ln |s|)F−(µ ln |s̃|) . (3.42)

12Strictly speaking, the notion of “physical” and “twisted” fields refers to an expansion over the AdS3-

background, as recalled in section 2.3. We keep this distinction here as we look at our exact solution as a

deformation of AdS3 turned on by the continuous deformation parameter µ.
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Note that the twisted sector contains contributions from all spins. With the goal of at-

tempting a holographic interpretation of this solution, in the following we shall focus on

the physical sector, leaving a study of this result for the twisted fields to future work.

Inserting (3.32) in (3.28) and solving for ω, ǫ, EHS and ΩHS leads to

ωab = fωab
0 (3.43)

ea = ηea0 +
(1− η)xa

x2(1− x2)
d(x2) (3.44)

EHS = ΩHS = 0 (3.45)

where e0, ω0 denote the global AdS solution

ea0 =
2dxa

1− x2
(3.46)

ωab
0 = −2(xadxb − xbdxa)

1− x2
, (3.47)

and we defined

f =
1

1 +A+ a2B
, (3.48)

η = 1 +
Cx2f

1 +
√
1− x2

. (3.49)

Note that, apart from the necessary adaptations to the three-dimensional formalism, the

algebraic structure of this solution is identical to the one of the four-dimensional Sezgin-

Sundell solution [6]. The main difference lies in the integral coefficients, which here are

slightly more complicated, and is a consequence of the different realization of translations

in AdS3 (i.e., of the presence of the Clifford elements ψ1 and ψ2 in L and Φ′, respec-

tively). This accounts for the fact that f and η are different functions of x2 from their 4D

counterparts.

Finally, note that the solutions above are also solutions of the minimal bosonic PV

model discussed in section 2.3. In order to show this, it is enough to realize that τ(L) =

L−1, and, as a consequence, the truncation conditions (2.57) are satisfied provided that

τ(B̂′, Ŝ′
α) = (B̂′,−iŜ′

α) (the condition on Ŵ follows automatically from Ŵ = L−1 ⋆ dL and

the properties of L under τ). It is immediate to check that this is true for (3.17)–(3.18),

as well as for (3.27).

4 Spacetime geometry

In this section we will discuss the spacetime geometry of the our solution (3.22), (3.43)–

(3.45). More precisely, we will discuss geometrical aspects from the point of view of the

spin-2 subalgebra of the higher spin algebra, i.e. treating them as we would solutions of

a standard scalar-gravity theory. A complete discussion would require a fully higher-spin

generalization of differential geometry, which is not available at present. Barring this

possible caveat, we will argue that the metric is asymptotically AdS and will see that the

connection has torsion, which can be removed by an approprate field redefinition. Finally,

we will discuss the interpretation of the solution as a Coleman-De Luccia bubble in AdS.
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4.1 Asymptotically AdS behaviour

We will presently argue that the solution (3.22), (3.43)–(3.45) is conformally AdS with the

conformal factor approaching one at the boundary. In other words, it is asymptotically

AdS with the same value of the cosmological constant as the global AdS vacuum solution.

This suggests that we should be able to holographically interpret the solution in (a possibly

relevant or marginal deformation of) the CFT whose vacuum state is represented in the

bulk by the global AdS solution (3.47). We will comment on the holographic interpretation

of the solution in section 5.

The conformally AdS character of the solution is manifest after rewriting the viel-

bein (3.44) as

ea =
2Ω d(g1x

a)

1− g21x
2

. (4.1)

where

g1 = exp

∫ x2

1

1− η(t)

2η(t)t
dt , (4.2)

Ω =
1− g21x

2

g1(1− x2)
η . (4.3)

In solving for g1, we have chosen the boundary condition that limx2→1 g1 = 1.

The conformal boundary is still at x2 → 1 since, as we shall presently see, the conformal

factor Ω is regular there. The limiting value limx2→1Ω determines the asymptotic value

of the AdS radius. To determine it we need the asymptotic behaviour of the quantities

defined above. Defining h ≡
√
1− x2 we find, working to order µ2 for simplicity, the

small-h expansions

A ∼ −µ2

8
+

π2µ2

128
h+O(h2, µ4) (4.4)

B ∼ −µ2

8
+

(π2 − 32)µ2

128
h+O(h2, µ4) (4.5)

C ∼ −µ2

4
+

(π2 − 16)µ2

64
h+O(h2, µ4) (4.6)

Substituting in (3.48), (3.49), (4.2) leads to

Ω = 1 +
π2µ2

64
h+O(h2, µ4) (4.7)

Hence at least to the first nontrivial order in µ the asymptotic value of the cosmological

constant is the same as for the vacuum solution.13

4.2 Torsion and field redefinitions

Before studying the geometry of our solutions, we would like to discuss a subtlety related

to field redefinitions. Since we do not yet have an action at our disposal for our theory,14

13The same conclusion holds for the 4D Sezgin-Sundell solution, contrary to what was claimed in eq.

(4.68) of [6] which we believe to be erroneous.
14See however [44, 46] for interesting proposals for constructing an action for the 3D and 4D Vasiliev

system.
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we also do not know which is the preferred set of fields in terms of which the action takes

a canonical form. For our class of solutions, any redefinition of the fields φ, ea, ωab which

preserves their transformation under reparametrizations and local Lorentz transformations

is just as good. In the current field redefinition frame, the connection defined by (3.43) has

torsion. Indeed, one finds it to be of the form

T a ≡ dea + ωa
be

b =
(
(ln η)′ + l

)
d(x2) ∧ ea (4.8)

where a prime denotes differentiation with respect to x2, and l is the function

l(x2) =
η − 1 + x2(1 + η − 2f)

2x2(1− x2)η
. (4.9)

Here we see another difference with the 4D Sezgin-Sundell solution where the combination

l actually vanishes, whereas in the case at hand it does not. In fact, the function l is

singular near the boundary, where it has the expansion

l(x2) ∼ π2µ2

32h
− µ2

2h2
+O(h0, µ2). (4.10)

For comparison with the standard framework for holographic duality it would certainly

be preferable to work in a field redefinition frame where the torsion vanishes. There is

actually an infinitude of field redefinitions which accomplish this. One such redefinition,

which was chosen for the 4D Sezgin-Sundell solution in [7], is to Weyl-rescale the vielbein

while keeping the connection and the scalar field unchanged. However, it is not hard to see

that in the present case, due to the singular behaviour of l in (4.10), the required conformal

factor blows up near the boundary, destroying the nice asymptotically AdS behaviour of

the metric found in the previous section. Therefore we will propose to instead redefine the

Lorentz connection, leaving the vielbein and scalar unchanged, in the following way. The

torsion (4.8) can be written as

T a = dH ∧ ea (4.11)

with H a certain function of x2. Because the scalar profile is monotonic in x2, we can also

view H as a function of φ, and hence T a as constructed out of φ and ea. Similarly, the

contorsion tensor

Kµ[νρ] = −1

2

(
T[µν]ρ − T[νρ]µ + T[ρµ]ν

)
(4.12)

can be viewed as constructed out of φ and ea. We then propose to make the field redefinition

ωab → ω̃ab(ω, e, φ) = ωab −Kab(φ, e), (4.13)

while leaving φ and ea unchanged. When evaluated on our particular solution, ω̃ becomes

by construction the Levi-Civita connection for the vielbein ea. Hence in our proposed field

redefinition frame we can keep working with the vielbein (3.44), while spacetime curvature

is measured by the standard Levi-Civita connection.
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4.3 Interpretation as a Coleman-De Luccia bounce-bubble-crunch

Let us now discuss the geometry of our solution in more detail. We start by discussing the

solution in Euclidean signature.15 We introduce spherical coordinates

xa = tanh
ρ

2
na (4.14)

with nana = 1. The solution then takes the form

ds2 = dρ2 + η(ρ)2 sinh2 ρ(dθ2 + cos2 θdϕ2) (4.15)

φ = µ sech
ρ

2
(4.16)

and is asymptotically Euclidean AdS in a spherical slicing. Furthermore the solution is

regular at the center ρ = 0 since one can check that η(0) = 1, φ′(0) = 0.

The solution has the characteristic form of an O(3)-invariant bounce, describing the

materialization of a Coleman-De Luccia bubble within a metastable AdS vacuum, as dis-

cussed in their classic paper [19]. From the scalar profile (4.16) we see that our solution

does not describe a thin-walled bubble, rather the scalar field is only excited in a small

region near the origin ρ = 0. The existence of the bounce solution indicates that it falls

within boundary conditions which render the AdS vacuum unstable. Examples of such

boundary conditions in AdS gravity have been studied extensively in the literature start-

ing from [20] (see [21]–[31] for a partial list of further references), and our solutions appear

to be higher spin gravity analogues of the bounce solutions appearing in those works. We

will have more to say on this in the next section.

The solution in Minkowski signature, in the patch where x2 > 0, can be written in

coordinates analogous to (4.14) as

ds2 = dρ2 + η(ρ)2 sinh2 ρ(−dτ2 + cosh2 τdϕ2) (4.17)

φ = µ sech
ρ

2
(4.18)

It has manifest O(2, 1) symmetry and is asymptotically Lorentzian AdS in a de Sitter

slicing. It can be matched to the Euclidean solution at θ = τ = 0 and then describes the

growth of the bubble after it materializes. Alternatively, we can forget about the bounce

and extend the solution (4.18) to negative values of τ .

The above coordinates break down at ρ = 0; the solution can be continued to the

patch x2 < 0 inside the bubble by choosing the coordinates

xa = tan
T

2
ma (4.19)

where mama = −1. This leads to

ds2 = −dT 2 + η(T )2 sin2 T (dβ2 + sinh2 βdϕ2) (4.20)

φ =
µ

cos T
2

(4.21)

15It was shown in [11] that, at least in four dimensions, the analytic continuation between Euclidean and

Lorentzian signatures is compatible with the Vasiliev equations.
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This is an open FRW universe whose constant time slices are copies of the hyperbolic plane

H2. The spacetime undergoes a big crunch at T = π.16 When the scalar is turned off, µ = 0,

this is just a coordinate artifact, but for µ 6= 0 it is a genuine singularity as can be seen from

the fact that φ blows up. We should however keep in mind that we used the term ‘singular-

ity’ here in the standard differential geometry sense, in that there exists a diffeomorphism

invariant quantity which diverges. This does not necessarily imply that the solution is

singular in the sense of higher spin geometry, i.e. that there exists a higher spin invariant

quantity which diverges on the solution. We defer the study of this issue to future work.

5 Towards a holographic interpretation

In this section we initiate the the study of our solutions from a holographic viewpoint. We

start by displaying their near-boundary behaviour and comparing it with that found in

standard scalar-gravity theories, addressing another subtlety related to field redefinitions.

Despite the fact that the precise holographic dictionary for the full PV system is currently

unknown, we will go on to propose a holographic picture for our solutions relying on some

mild assumptions on the AdS/CFT dictionary. This proposed interpretation is analogous

to the holographic picture which has emerged for big crunch solutions in other holographic

systems [20]–[31]. Finally, we will study in more detail the limit λ → 0 of our solutions,

where the new phenomenon of a running coupling in the dual theory emerges.

5.1 Comparison with 2-derivative scalar-gravity theories

In this section we will compare the near-boundary behaviour of our solutions (3.44), (3.22)

with that of standard two-derivative scalar-gravity theories. Using the near-boundary

expansions (4.4)–(4.6) and performing a shift of the radial coordinate

ρ = ρ̃+
µ2

4
+O(µ4) (5.1)

we find the following near-boundary behaviour of our solutions (4.18):

ds2 = dρ̃2 +G2(ρ̃)ds2dS2
(5.2)

G2(ρ̃) ∼ e2ρ̃

4
+

π2µ2

64
e

3ρ̃
2 +O

(
eρ̃, µ4

)
(5.3)

φ ∼ 2µ

(
1− µ2

8

)
e−

ρ̃
2 − 2µ

(
1− 3µ2

8

)
e−

3ρ̃
2 +O

(
(e−

5ρ̃
4 , µ4

)
(5.4)

The shift of ρ was performed so that the leading e2ρ̃ factor multiplies the dS2 metric with

curvature radius 1
2 , independent of µ.

The scalar profile has the standard falloff of a massive scalar field

φ ∼ βe−∆−ρ̃ + αe−∆+ρ̃ (5.5)

16This result is to be compared with the conclusions of [7] where, in four dimensions and in a differ-

ent torsion-free frame, the analogue of this solution was found to be singular in the Type B model and

singularity-free in the Type A model.

– 23 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

where ∆± are the roots of the equation m2 = ∆(∆ − 2) and m2 = −3/4. This behaviour

is guaranteed for solutions constructed using our gauge function, as we saw in section 3.4.

On the other hand, the subleading behaviour of the metric in (5.3) grows faster near

the boundary than one might naively expect, and we will devote the rest of this section to

understanding it. Let us compare the asymptotic behaviour (5.3) to the one encountered

in scalar-gravity theories, which we will first review. Consider a canonically normalized

scalar χ coupled to Einstein gravity through a two-derivative action

S =

∫
d3x

√−g

(
R+ 2− ǫ

(
1

2
∂µχ∂

µχ+ V (χ)

))

V (χ) =
m2

2
χ2 +O(χ3) (5.6)

where for later convenience we have introduced a sign factor ǫ = ±1; positive kinetic

energy requires ǫ = 1. We are interested in O(2, 1)-invariant solutions; it is convenient to

parametrize them in terms of a new radial coordinate r̃ in the following way:

ds2 = a(r̃)2dr̃2 + r̃2ds2dS2
, (5.7)

χ = χ(r̃) . (5.8)

The Einstein equation determines the function a to be

a(r̃)2 =
ǫr̃2(χ′)2 − 4

2ǫr̃2V (χ)− 4(r̃2 + 1)
. (5.9)

Inserting the asymptotic expansion of the scalar

χ ∼ β̃r̃−∆− +O(r̃∆−−2) (5.10)

we find, for ∆− < 1, the metric behaviour

a(r̃)2 ∼ r̃−2 − ǫβ̃2∆−
4

r̃−2(1+∆−) +O(r̃max(−4,1−4∆−)) (5.11)

For ǫ = 1, this is precisely the asymptotic behaviour of a solution satisfying the confor-

mally invariant boundary conditions introduced by Hertog and Maeda [47]. Translating

back to the radial coordinate ρ̃ in terms of which the metric takes the form (5.2), (5.11)

corresponds to

G2(ρ̃) ∼ e2ρ̃

4
− ǫβ̃2∆−

22(1−∆−)
e2(1−∆−)ρ̃ +O

(
(eρ̃)max(0,2−4∆−)

)
. (5.12)

This leads to an apparent puzzle: for a scalar of m2 = −3/4,∆− = 1/2, the sub-

leading term goes as eρ̃ rather than the e
3ρ̃
2 behaviour found in our Prokushkin-Vasiliev

solutions (5.3). The resolution comes from taking into account field redefinitions: indeed,

it is not consistent to model φ as a scalar which has a two-derivative action and is canoni-

cally normalized.17 To show this, we will now construct a two-derivative scalar-gravity toy

17Of course, if the action for φ would contain higher derivatives, as would be the case in the actual

Vasiliev theory, the two-derivative part could still be canonically normalized.
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model which allows precisely (3.44, 3.22) as a solution. A similar model was constructed

for the 4D Sezgin-Sundell solution in [7]. We start from a general two-derivative action

S =

∫
d3x

√−g

(
R+ 2− 1

2
K(φ)∂µφ∂

µφ− V (φ)

)
. (5.13)

Requiring that (3.44), (3.22) solves the equations of motion fixes K and V to be

K =
sinh2 ρ csch6

(ρ
2

) (
η2 − 1 + sinh2 ρ

(
(∂ρη)

2 − η∂2
ρη

))

2µ2η2
(5.14)

V = −
η∂2

ρη + (∂ρη)
2 + 4 coth ρ η∂ρη + csch2ρ

(
η2 − 1

)

η2
(5.15)

We are now to rewrite the right-hand sides expressing ρ in terms of φ by inverting (4.18).

In the near-boundary regime, φ is small and we can use the asymptotics (4.4)–(4.6) to find

K ∼ −
π2µ

(
1 + µ2

4

)

32φ
+O(φ0, µ3) (5.16)

V ∼ 7π2µ

256

(
1 +

µ2

4

)
φ+O(φ2, µ3). (5.17)

From the expression for K we see that φ is not canonically normalized. After making the

field redefinition

φ =
8
(
1− µ2

4

)

π2µ
χ2 +O(χ3, µ) (5.18)

the action becomes of the form (5.6), but now with m2 = −7/16, or ∆− = 1/4. This

explains e
3ρ̃
2 behaviour in our metric (5.3). Furthermore, since K is negative, ǫ = −1

in (5.6) and the field χ in our two-derivative theory is a wrong-sign scalar (hence the

nonstandard sign in front of the e
3ρ̃
2 term in (5.3) as compared to [47]). Hence the two-

derivative theory, which we cooked up to reproduce a particular PV solution, should not be

taken seriously as an approximation of PV theory: in the two-derivative model, the vacuum

is perturbatively unstable, in contrast to the full PV system which is believed to be dual

to a unitary CFT. This is perhaps not surprising in light of the fact that the PV system is

known to describe higher derivative interactions with arbitrarily high number of derivatives.

5.2 Dual picture as a CFT runaway

In the gauge-gravity correspondence one typically uses the process of holographic renor-

malization [32] to extract finite CFT quantities, such as VEVs of various operators, from

classical bulk solutions. Since this procedure relies heavily on knowledge of the action of the

bulk theory, it has so far been performed only for the subsector of the Prokushkin-Vasiliev

where the scalar field is turned off, which can be described by a Chern-Simons action, but

not yet for the full theory. We have for example at present no way to read off the VEV

of the dual stress tensor for our solutions, which on physical grounds we expect to be zero

since they represent what global AdS decays into. Since the precise holographic dictionary
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depends sensitively on the off-shell action, it would also not be prudent to try to inter-

pret our solutions using the holographic renormalization of the scalar-gravity action (5.13),

which as we already argued is not a very reliable guide to the full PV system.

However, we have already observed that, to first order in µ, the background remains

global AdS while the scalar profile solves the free Klein-Gordon equation in AdS. We will

use this to propose a dual picture for our solutions, under the assumption that the stan-

dard AdS-CFT dictionary for free scalar fields remains valid. Although this interpretation

strictly speaking holds only in the small-µ limit, we expect the qualitative picture to extend

to finite µ.

Returning to the case of general λ, the scalar profile (3.26) reads, in terms of the radial

coordinate defined in (4.14):

φ =
µ sinhλρ

λ sinh ρ
. (5.19)

For λ > 0, the near-boundary behaviour is18

φ ∼ βe−∆−ρ + αe−∆+ρ (5.20)

with

β = −α =
µ

λ
. (5.21)

Since φ satisfies the free Klein-Gordon equation it seems reasonable to assume that the

standard AdS/CFT dictionary for a free scalar, and in particular Witten’s prescription for

boundary conditions describing multi-trace deformations [48], is applicable to our solution

in the small-µ limit. Namely, imposing a boundary condition on the scalar where the

functional form of α is fixed in terms of β,

α = α(β) , (5.22)

corresponds in the dual theory to adding a deformation

∆S = −N

∫
d2xW (O−) (5.23)

where O− is an operator of dimension ∆− and the function W (β) satisfies

∂W

∂β
= α(β). (5.24)

The profile β is proportional the VEV 〈O−〉 in the deformed theory, for example taking

α(β) = 0 corresponds to the ‘alternate’ quantization of the scalar field.

We can of course interpret our solutions within an infinitude of different boundary

conditions of the form (5.22), leading to different dual interpretations of the same bulk

solution. In general, such multitrace boundary conditions and their corresponding CFT

deformations break conformal invariance unless W (O−) happens to be marginal. We will

here choose our boundary conditions precisely such that W (O−) is marginal, as in the

18The λ → 0 limit is special and will be discussed in the next section.
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majority19 of works discussing similar solutions. That is, for λ > 0 we will impose the

boundary condition [47]

α(β) = fβ
∆+
∆− (5.25)

corresponding to deforming the theory with the marginal20 operator

W (O−) =
f∆−
2

O
2

∆− (5.26)

The boundary condition (5.25) is manifestly scale invariant since the parameter f which

defines it does not change under the scale transformation ρ → ρ + Λ, β → e∆−Λβ. In our

solutions, we see from (5.21) that f takes the value

f = −
(µ
λ

) 2λ
λ−1

. (5.27)

It will be important later on that f is negative.

In the coordinates (5.2), describing a patch of the asymptotically AdS region (4.18),

the VEV β is constant and the CFT description seems smooth, despite the fact that the

bulk solution has a big crunch singularity. This apparent regularity is however misleading

since, as was pointed out in [20], this patch does not include the event of the bubble hitting

the AdS boundary at τ = ∞. To continue beyond this patch, it is convenient to go to global

coordinates (t, r, ϕ) in terms of which the AdS metric is

ds2 = − cosh2 r dt2 + dr2 + sinh2 r dϕ2 . (5.28)

From (B.17) we find that our earlier radial coordinate ρ corresponds to

sinh2 ρ = sinh2 r(1− sin2 t coth2 r). (5.29)

Substituting this into the scalar profile (4.18) we find that φ still obeys the boundary

conditions (5.25) for the same value (5.27) of f , but now the VEV α is time-dependent

while still spatially homogeneous:

β =
µ

λ(cos t)∆−
. (5.30)

The materialization of the bubble happens at global time t = 0, while the bubble reaches

the boundary in finite time t = π
2 . At this time, the VEV β blows up, signalling that the

deformation (5.26) has rendered the field theory singular.

To understand the behaviour of the VEV (5.30) from the point of view of the dual

theory, we consider the effective action Γ[σ] for σ ≡ 〈O−〉 in the theory deformed by (5.25),

which is defined as the Legendre transform of the generating function of O− correlators. As

19An alternative interpretation in a field theory with a relevant deformation is discussed in the appendix

of [29].
20To be more precise, the operator is classically marginal, but quantum corrections at large N could in

principle modify this. We see no evidence for this in the bulk theory except in the λ = 0 case to be discussed

in the next section.
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is the case for the similar scalar-gravity solutions [20]–[31], one can obtain a (surprisingly

good) qualitative picture from the leading terms in an expansion of Γ[σ] in derivatives as

in the setup of [49]. To second order in derivatives, Γ[σ] is of the form [22]

1

N
Γ[σ] = −

∫
d2x

(
f∆−
2

σ
2

∆− + c
∂µσ∂

µσ

2σ2
+ . . .

)
. (5.31)

Since O− is marginal, the effective action should be conformally invariant, which fixes the

form of the second term, with c an unknown constant. Note that upon redefining

σ = e
√
cψ (5.32)

one obtains the classical Liouville action:

1

N
Γ[σ] = −

∫
d2x

(
∂µψ∂

µψ +
f∆−
2

eγψ
)

(5.33)

where

γ =
2
√
c

∆−
. (5.34)

It will be useful to recall the expression for the stress tensor for Liouville theory defined

on the cylinder (see e.g. [50]):

T++ =
1

2
(∂+ψ)

2 − 1

γ
∂2
+ψ +

1

2γ2
(5.35)

and similarly for T−−, where x± = ϕ ± t. The last term, which would be absent on the

plane, comes from the Schwarzian derivative of the conformal transformation from the

plane to the cylinder.

When f is negative, the deformed theory is unstable since the potential term in (5.31)

and (5.33) is unbounded below. One easily checks that the effective theory then allows for

solutions

σ =

(
(−f) cos2 t

c∆−

)−∆−
2

. (5.36)

This is precisely of the form of the bulk profile β in (5.30) (and coincides with it for

c = µ2

∆−λ2 ), so it seems plausible that the behaviour of the VEV σ in the theory deformed

by (5.26) with a negative coefficient gives an (at least qualitatively correct) dual description

of our bulk solutions. In the solution (5.36), σ emerges at time t = 0 at rest at position

σ0 =
(
− c∆−

f

)∆−
2

on the slope of the negative potential in (5.31). The field then rolls down

the hill, and since the potential is unbounded below, σ blows up in finite time t = π/2

when the bubble hits the boundary. The stress tensor (5.35) of these solutions vanishes, as

one would expect for a solution that the vacuum tunnels into. Note that our expansion in

derivatives (5.31) is reliable only for |∂σ| ≪ σ1+1/∆− , which is the case close to the crunch

time t = π/2, but would be ill-suited to study small fluctuations around the vacuum σ = 0.

It would be interesting to apply methods used in the literature to further investigate

the singular behaviour of our dual field theory. An interesting question is whether, along
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the lines of [21, 26, 27], a quantum mechanical treatment favors a ‘bounce’ through the

singularity into a big bang phase of the evolution. Another approach, also discussed in [21],

would be to ‘repair’ the unboundedness of the potential (5.31) by adding positive terms

which dominate at large σ.

Let us also briefly comment on what our solutions look like in Poincaré coordinates

(z, y0, y1), in terms of which the AdS metric is

ds2 =
dz2 + dyµdyµ

z2
. (5.37)

The dual theory is now defined on the plane instead of the cylinder. Using the transfor-

mation (see (B.20))

x2 =
yµyµ + (z − 1)2

yµyµ + (z + 1)2
(5.38)

we find that the scalar profile once again fits in the boundary conditions (5.25), (5.27),

where β is now given by

β =
µ

λ

1

(1 + yµyµ)∆−
. (5.39)

The corresponding solution of the effective theory (5.31) is

σ = e
√
cψ =

(
(−f)(1 + yµyµ)

2

c∆−

)−∆−
2

. (5.40)

This profile is reminiscent of that of the Fubini instantons [51] which exist in classically con-

formally invariant scalar theories in d > 2. In appendix F we show that the solutions (5.40)

arise as a particular d → 2 scaling limit of the Fubini instantons.

We end this section with the remark that an analogous holographic interpretation was

proposed for the Sezgin-Sundell solution in 4D Vasiliev theory, namely as a runaway in a

CFT destabilized by a marginal triple-trace deformation [7]. Similar arguments using the

effective action Γ[σ] can be applied there as well.

5.3 The limit λ → 0 and interacting fermion models

We now comment on the limit λ → 0 which is particularly interesting since new phenomena

appear. On the bulk side, the mass of the scalar then saturates the Breitenlohner-Freedman

bound, m2 = −1, where the scaling dimensions become equal, ∆+ = ∆− = 1. For this

value of the mass, the profile of a free scalar has a logarithmic term in the near-boundary

expansion:

φ = α ln(mz)z + βz (5.41)

where z = e−r and we have introduced a scale m to define the logarithm. On the dual side,

this corresponds to the fact that the double-trace deformation with the operator dual to

φ is only classically marginal, while quantum mechanically it has a running coupling. At

large N , the corresponding beta function receives only a 1-loop contribution [48].

The limit λ → 0 of our scalar profile (5.19) reads

φ =
µρ

sinh ρ
(5.42)
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and in global coordinates (5.29) leads to

α = − 2µ

cos t
, (5.43)

β = −α ln(m cos t) . (5.44)

We will choose to interpret the solution within the boundary conditions21

α = fβ (5.46)

corresponding to a CFT deformation (5.23) with a double-trace operator

W (O) =
f

2
O2. (5.47)

From (5.44) we see that, in contrast with the λ > 0 case, f is now a scale- and time-

dependent source:

f(m, t) = − 1

log(m cos t)
. (5.48)

For a fixed scale m, f is small and positive sufficiently close to the ‘crunch time’ t = π/2.

It is interesting to note that the scale dependence of f is like in an infrared free theory

with a positive 1-loop beta function

m∂mf(m, t) = f(m, t)2. (5.49)

and that approaching the crunch time t → π/2 is equivalent to approaching the infrared

regime.

We would now like to explain the bulk relation (5.49) and the time-dependent profiles

α and β from the point of view of the dual theory. We can be quite explicit in this case,

using the fact that the undeformed dual CFT at λ = 0 is (the singlet sector of) a theory

with N free fermions Ψa, a = 1, . . . , N [33, 34]. The operator O dual to φ corresponds to

the single-trace singlet operator

O =

√
πΨ̄aΨa

N
. (5.50)

where the normalization is chosen so that the beta-function for the double-trace coupling

will turn out to have coefficient one as in (5.49). Including a double-trace deformation (5.47)

the action reads22

S =

∫
d2x

[
Ψ̄aγµ∂mΨa −

πf

2N
(Ψ̄aΨa)

2

]
. (5.51)

21An alternative way to interpret the solutions is in the conformally invariant boundary condition of

Hertog and Maeda [47],

β(α) = α

(
f̃ + log

α

m

)
(5.45)

with f̃ a constant. The field theory interpretation of these boundary conditions is not entirely clear to us,

however.
22Our 2D spinor conventions are as follows: the γ-matrices satisfy {γµ, γν} = 2ηµν with η = diag(−1, 1),

and Ψ̄ stands for −iΨ†γ0.
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As usual it’s convenient to perform a Hubbard-Stratonovich transformation to the equiva-

lent action

S =

∫
d2x

[
Ψ̄a(γµ∂m − σ)Ψa +

N

2πf
σ2

]
(5.52)

The equation for σ is σ =
√
πfO so that on the bulk side we should identify σ with

σ ∼ α. (5.53)

If f were small and negative, the leading part of the potential in (5.52) would have the

‘right’ sign, and the action (5.51) would describe the Gross-Neveu model [52] which is

asymptotically free. In view of (5.48) we will here consider positive f , for which the

leading part of the potential is unbounded below; in this case the theory is free in the

infrared, as we will presently review.

As in the previous subsection, we would like to compute the effective action for σ in

an expansion in derivatives. Integrating over the Ψa fields we obtain the effective action

Γ[σ] = N

∫
d2x

[
1

2πf
σ2 − itr ln(γµ∂µ − σ)

]
(5.54)

For the term without derivatives, the effective potential, we find in the standard man-

ner [52]23

1

N
V [σ] = − σ2

2πf
+

σ2

4π

(
ln

σ2

m2
− 3

)
(5.55)

where we have introduced a renormalization scale m and fixed counterterms by imposing

the renormalization conditions

V [0] = 0 (5.56)

∂2V [σ]

∂σ2 |σ=m
= − 1

πf
. (5.57)

It is then easy to see that, in order for the effective potential to be independent of the scale

m, f has to satisfy (5.49). Taking f to be the desired time-dependent source (5.48) and

taking the scale m to be the field σ itself, we obtain for the potential

1

N
V [σ] = −σ2

2π

(
lnσ cos t+

3

2

)
(5.58)

As in the previous subsection, the two-derivative term in the effective action is fixed by

dimensional analysis to be of the form (5.31), leading to the two-derivative effective action

Γ[σ] = −N

∫
d2x

(
V [σ] + c

∂µσ∂
µσ

2σ2
+ . . .

)
. (5.59)

This action allows for solutions of the form

σ = − σ0
cos t

(5.60)

23We have here neglected finite-size effects coming from the fact that the boundary theory is defined on

a cylinder of radius RS1 = 1
2
, which is justified since we are interested in the large field regime σRS1 ≫ 1.
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if we take c = σ2
0(1− 1

2 lnσ
2
0). In view of (5.53), this reproduces the behaviour of α in the

bulk.

Going to Poincaré coordinates, the profile for α becomes

α = − 2µ

1 + yµyµ
. (5.61)

We note that the source term (5.47, 5.48) was tuned precisely to make the 1-loop contribu-

tion to the effective potential (5.59) trivial. We should therefore be able to find solutions of

the classical theory (5.51) with constant coupling f where the bilinear Ψ̄aΨa has a profile

of the form (5.61). Indeed, such solutions have appeared in the literature [53].
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A Spinor conventions

We use conventions in which the so(2, 2) ≃ so(2, 1) ⊕ so(2, 1) generators MAB, A,B =

0, 1, 2, 0′ satisfy the commutation relations

[MAB,MCD] = 4η[C|[BMA]|D] , (MAB)
† = MAB , (A.1)

which can be decomposed, splitting ηAB = (ηab;−1), ηab = diag(−1,+1,+1) with a, b =

0, 1, 2, as

[Mab,Mcd]⋆ = 4η[c|[bMa]|d] , [Mab, Pc]⋆ = 2ηc[bPa] , [Pa, Pb]⋆ = λ2Mab , (A.2)

where Mab generate the Lorentz subalgebra so(2, 1) ≃ sl(2,R) ≃ sp(2,R), and Pa = λM0′a

with λ being the inverse AdS3 radius, related to the cosmological constant via Λ = −λ2.

We set λ = 1 in the body of the paper. In terms of the generators Ja, related to the Mab via

Mab = ǫab
cJc , Ja = −1

2
ǫabcM

bc , ǫ012 = 1 , (A.3)

the AdS3 isometry algebra reads

[Ja, Jb]⋆ = ǫab
cJc , [Ja, Pb]⋆ = ǫab

cPc , [Pa, Pb]⋆ = λ2ǫab
cJc . (A.4)

One can use the Clifford element ψ1, introduced in section 2.1 to project onto the two

sl(2,R) subalgebras of so(2, 2), to realize the translations as

Pa = Jaψ1 . (A.5)
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In terms of the oscillators yα introduced in (2.1), the generators can be realized as24

Ja =
i

8
(σa)

αβyα ⋆ yβ , Pa =
i

8
(σa)

αβyα ⋆ yβ ψ1 , (A.6)

using van der Waerden symbols obeying

(σa)α
γ(σb)γ

β = ηabδβα + (σab)α
β , (A.7)

((σa)αβ)
† = (σa)αβ = (σa)βα , (A.8)

(σab)αβ = −(σba)αβ = ǫabc(σc)αβ , (A.9)

and raising and lowering spinor indices according to the conventions

vα = ǫαβvβ , vβ = vαǫαβ , vαwβ − vβwα = ǫαβvγw
γ , (A.10)

ǫαβǫ
αβ = 2 , (ǫαβ)

† = ǫαβ . (A.11)

A convenient realization of the (σa)
αβ is σa = {I, σ̃3, σ̃1}, where σ̃a are the Pauli matrices.

The map between vector and spinor indices is provided by the van der Waerden symbols as

xαβ = xa(σa)
αβ , xa = −1

2
(σa)αβx

αβ . (A.12)

The so(2, 2)-valued connection

Ω := ω + e :=
1

2
ωabMab + eaPa := − i

4

(
ωαβ yα ⋆ yβ + eαβ yα ⋆ yβψ1

)
, (A.13)

ωαβ = −1

4
(σab)

αβ ωab , ωab = − (σab)
αβωαβ , (A.14)

eαβ = −λ

2
(σa)

αβ ea , ea = λ−1(σa)αβe
αβ , (A.15)

and its field strength

R := dΩ+Ω ⋆ Ω :=
1

2
RabMab+T aPa :=

1

4i

(
Rαβ yα ⋆ yβ+Tαβ yα ⋆ yβψ1

)
, (A.16)

Rαβ = −1

4
(σab)

αβ Rab , Rab = − (σab)
αβRαβ , (A.17)

Tαβ = −λ

2
(σa)

αβ T a , T a = λ−1(σa)αβT
αβ . (A.18)

In these conventions, it follows that

Rαβ = dωαβ − ωαγωγ
β − eαγeγ

β , Tαβ = deαβ − 2ωγ(α ∧ eγ
β) , (A.19)

Rab = Rab + λ2ea ∧ eb , Rab := dωab + ωa
c ∧ ωcb , (A.20)

T a := dea + ωa
b ∧ eb , (A.21)

where Rab :=
1
2e

cedRcd,ab and Ta := ebecT a
bc are the Riemann and torsion two-forms. The

metric gµν := eaµe
b
νηab. The AdS3 vacuum solution Ω0 = e0+ω0 obeying dΩ0+Ω0 ⋆Ω0 = 0,

24This realization corresponds to the diagonal embedding of the Lorentz subalgebra into the AdS3 isom-

etry group so(2, 2) ≃ so(2, 1)⊕ so(2, 1) (see e.g. [54] for a different, non-diagonal embedding).

– 33 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

with Riemann tensor R0µν,ρσ = −λ2 (g0µρg0νσ − g0νρg0µσ) and vanishing torsion, can be

expressed as Ω0 = L−1 ⋆ dL where the gauge function L ∈ SO(2, 2)/SO(2, 1) (3.16) and

reads, in stereographic coordinates (see appendix B),

ea0 =
2dxa

1− x2
, eαβ0 = − dxαβ

1− x2
, (A.22)

ωab
0 =

−4x[adxb]

1− x2
, ωαβ

0 =
xγ(αdxγ

β)

1− x2
. (A.23)

B Coset parametrization and stereographic coordinates

AdSd+1 can described as the following hypersurface in Rd,2 (setting the AdS radius to one,

indices are lowered with ηab ≡ diag(−++ . . .+)):

XaXa − (X0′)2 = −1, a = 0, . . . , d (B.1)

The stereographic coordinates xa used in the main text are given by

Xa =
2xa

1− x2
(B.2)

X0′ = ±
√
1 +XaXa (B.3)

ds2 =
4dxadxa
(1− x2)2

(B.4)

AdSd+1 can also be viewed as the coset SO(d, 2)/SO(d, 1). In the defining representa-

tion of SO(d, 2) the coset and SO(d, 1) generators can be taken to be

Pa = Ea,0′ + (−1)δa,0E0′,a (B.5)

Mab = Ea,b − (−1)δa,0Eb,a for a < b (B.6)

where the EMN are matrices with components (EMN )mn ≡ δM,mδN,n. Taking a canonical

parametrization of the coset:

L = eb
aPa , (B.7)

the embedding coordinates Xa, X0′ are obtained by taking the last column of the matrix

L in the above representation [39], leading to

Xa =
sinh

√
b2√

b2
ba (B.8)

X0′ = ± cosh
√
b2 (B.9)

Comparing to (B.3) we get the coset parametrization in stereographic coordinates:

L = exp
2arctanh

√
x2√

x2
xaPa. (B.10)
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Decomposing the left-invariant form L−1dL yields the vielbein and spin connection of

AdSd+1:

L−1dL = eaPa +
1

2
ωabMab (B.11)

ea =
2dxa

1− x2
(B.12)

ωab = −2(xadxb − xbdxa)

1− x2
(B.13)

ds2 = (e, e) =
4dxadxa
(1− x2)2

(B.14)

Specializing to d = 2, and using the oscillator realization of the generators spelled out

in appendix A, the coset element reads

L = exp⋆−
i

4

arctanh
√
x2√

x2
xαβyαyβψ1 , (B.15)

xαβ =

(
x0 + x1 x2

x2 x0 − x1

)
. (B.16)

For completeness, we also give the definition of global AdS3 coordinates (ρ, t, ϕ):

X0 = sin t cosh r, X1 = sinϕ sinh r

X0′ = cos t cosh r X2 = cosϕ sinh r
(B.17)

and of Poincaré coordinates (z, y0, y1):

Xµ =
yµ

z
µ = 0, 1 (B.18)

X2 =
z

2

(
1− 1− yµyµ

z2

)
(B.19)

X0′ =
z

2

(
1 +

1 + yµyµ
z2

)
(B.20)

C Internal solution and deformed oscillators

Drawing on [1, 6, 11], in this appendix we shall recall the main steps involved in the solution

of the internal equations (3.4)–(3.5). Since Φ̂′ is also a spacetime constant, which we later

choose to be Φ̂′ = µψ2, for notational simplicity in the following we shall denote ν+Φ̂′ =: Γ.

Moreover, we shall also obtain the projector solutions mentioned in section 3.3.

We want to solve the deformed oscillator problem

[Ŝ′
α, Ŝ

′
β ]⋆ = −2iǫαβ(1 + ΓK̂) , {Ŝ′

α, K̂}⋆ = 0 . (C.1)

Following [1], we start with a Lorentz-covariant Ansatz making use of the integral repre-

sentation

Ŝ′
α = ρ

[
1

2
(yα + zα)

∫ 1

−1
dt n(t, k) e

i
2
(1+t)u − 1

2
(yα − zα)

∫ 1

−1
dt m(t, k) e

i
2
(1+t)u

]
, (C.2)
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where u := yαzα, which reduces (C.1) to

[Ŝ′
α, Ŝ

′
β]⋆ = −2i ǫαβ

∫ 1

−1
dt

∫ 1

−1
dt′ e

i
2
(1−tt′)u n(t, k)m(t′, k)

{
1 +

i

4
(1− tt′)u

}
(C.3)

= −2iǫαβ(1 + ΓK̂) . (C.4)

The rationale behind the choice of contour in the Laplace-transform-like Ansatz (C.2) is

that it self-replicates under ⋆-product, in the sense that the latter maps (t, t′) ∈ [−1, 1] into

−tt′ ∈ [−1, 1]. One can then insert, in the l.h.s. of the last equation, 1 =
∫ 1
−1 ds δ(s− tt′),

turning it into the condition

− 2i ǫαβ

∫ 1

−1
dt

∫ 1

−1
dt′ e

i
2
(1−s)u h(s, k)

{
1 +

i

4
(1− s)u

}
= −2iǫαβ(1 + ΓK̂) , (C.5)

where we have set

h(s, k) := n(t, k) ◦m(t′, k) , (C.6)

and where ◦ defines the associative and commutative product [1]

(f ◦ g)(s) :=

∫ 1

−1
dt

∫ 1

−1
dt′δ(s− tt′) f(t) g(t′) . (C.7)

Rewriting (C.5) as

− 2i ǫαβ

∫ 1

−1
dt

∫ 1

−1
dt′ h(s, k)

{
1− 1

2
(1− s)

d

ds

}
e

i
2
(1−s)u = −2iǫαβ(1 + ΓK̂) , (C.8)

and integrating by parts, one gets

−iǫαβ

∫ 1

−1
ds {h(s, k) + h′(s, k)(1− s)}e i

2
(1−s)u

+iǫαβ

[
h(s, k)e

i
2
(1−s)u(1− s)

]1
−1

= −2iǫαβ(1 + ΓK̂) , (C.9)

where h′(s, k) = d
dsh(s, k). If

h(s, k) + h′(s, k)(1− s) = 2δ(s− 1) , (C.10)

the first term on the l.h.s. accounts for the Γ-independent term on the r.h.s. This condition

can be satisfied with

h(s, k) = δ(s− 1)− Γk

2
(s− 1) , (C.11)

which also ensures that the boundary term in the l.h.s. of (C.9) precisely reduces to the

Γ-deformation of the oscillator algebra.

Therefore, the Ansatz (C.2) reduces the deformed oscillator problem to the ◦-product
problem

(n(t, k) ◦m(t′, k))(s) = δ(s− 1)− Γk

2
(s− 1) (C.12)
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Even and odd functions, denoted in the following by f±(t), are orthogonal with respect to

the ◦-product. Thus, the ◦-product problem splits into separate conditions for the even/odd

parts of n(t, k) and m(t′, k) (their arguments will be understood in the following):

(n+ ◦m+)(s) = I+0 (t) +
Γk

2
, (C.13)

(n− ◦m−)(s) = I−0 (t)− Γk

2
s , (C.14)

where

I±0 (t) =
1

2
[δ(t− 1)± δ(t+ 1)] . (C.15)

One proceeds [1, 6, 11] by writing

n±(t, k) = nI(t, k) + np(t, k) =

∞∑

ℓ=0

(
nℓI

±
ℓ (t) + λℓp

±
ℓ (t)

)
, (C.16)

and analogously for m±, where I
(±)
0 (t) (defined in (C.15)) and the functions (ℓ ≥ 1)

Iσℓ (t) = [sign(t)]
1
2
(1−σ)

∫ 1

−1
ds1 · · ·

∫ 1

−1
dsℓ δ(t− s1 · · · sℓ)

= [sign(t)]
1
2
(1−σ)

(
log 1

t2

)ℓ−1

(ℓ− 1)!
, (C.17)

obey the algebra (ℓ1, ℓ2 ≥ 0)

Iσℓ1 ◦ Iσℓ2 = Iσℓ1+ℓ2 , (C.18)

and where pσℓ (t) (ℓ ≥ 0) are the ◦-product projectors

pσℓ (t) =
(−1)ℓ

ℓ!
δ(ℓ)(t) , σ = (−1)ℓ , (C.19)

that obey

pσℓ ◦ f = Lℓ[f ]p
σ
ℓ , Lℓ[f ] =

∫ 1

−1
dt tℓf(t) . (C.20)

In particular,

pσℓ1 ◦ pσℓ2 = δℓ1ℓ2p
σ
ℓ1 . (C.21)

Substituting the expansion (C.16) into (C.13) and (C.14), one finds, in view

of (C.18), (C.20) and (C.21), manageable algebraic equations. In particular, the prop-

erty (C.18) makes it possible to map the ◦-product between any two function expanded

over the Iσk into the ordinary product of two ordinary functions of the variable ξ. Therefore,

substituting to any fσ(t) =
∑∞

k=0 fℓI
σ
ℓ (t) its symbol f̃(ξ) =

∑∞
ℓ=0 fℓξ

ℓ, one has

(̃f ◦ g)(ξ) = f̃(ξ) g̃(ξ) . (C.22)

We shall exploit the mapping to the symbols in order to solve (C.13) and (C.14). After

that, we shall show that any so-obtained Γ-dependent solution (including the undeformed
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oscillators Ŝ′
α = ρzα) can be “dressed up” with projector solutions that bring in new,

discrete moduli. So in the following, and until the projectors will be reintroduced, we shall

set λℓ = λ′
ℓ = 0 and drop the I index used in (C.16).

By virtue of (C.22), (C.13) and (C.14) are mapped to

ñ+m̃+ = 1 +
Γk

2
ξ , (C.23)

ñ−m̃− = 1− Γk

2

ξ

1 + ξ/2
. (C.24)

Note that, differently from the four-dimensional minimal-bosonic model solutions of [6, 11],

the above equations constrain the product of two functions, and therefore admit a class

of solutions parameterized by an arbitrary function. However, it is only the symmetric

solution n(t, k) = m(t, k) that satisfies the reality condition on Sα (2.10), and for this

reason we shall focus on it in the following. After solving for ñ± = m̃±, one can transform

back, and thus reconstruct n(t, k). Taking into account the initial condition Ŝ′
α |Γ=0 = ρzα

implies that n(t, k) |Γ=0 = δ(t+ 1), which fixes n = n+ − n−.

Symmetric solutions. Let us first examine the even sector.

ñ+(ξ, k) = m̃+(ξ, k) =

√
1 +

Γk

2
ξ . (C.25)

Expanding in power series of ξ and transforming back to the corresponding t-functions one

finds

n+(t, k) = m+(t, k) = I+0 (t) +

∞∑

ℓ=0

(
1/2

ℓ+ 1

)(
Γk

2

)ℓ+1

I+ℓ+1(t) (C.26)

= I+0 (t) +
Γk

4
1F1

[
1

2
; 2; log |t|+Γk

]
. (C.27)

Getting an expansion in I−ℓ (t) is more complicated in the odd sector. Resorting to the

trick used in [6] to transform back

ñ−(ξ, k) = m̃−(ξ, k) =

√
1− Γk

2

ξ

1 + ξ/2
. (C.28)

to the t-functions, one obtains

n−(t, k) = m−(t, k) = I−0 (t)− Γk

4
t 1F1

[
1

2
; 2; log |t|−Γk

]
. (C.29)

Imposing the initial conditions as explained above, one finally obtains

n(t, k) = m(t, k)

= δ(t+ 1) +
Γk

4

(
1F1

[
1

2
; 2; log |t|Γk

]
+ t1F1

[
1

2
; 2; log |t|−Γk

])
, (C.30)
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that is,

Ŝ′
α = ρzα (C.31)

+ρzα
Γk

4

∫ 1

−1
dt e

i
2
(1+t)u

(
1F1

[
1

2
; 2; log |t|Γk

]
+ t1F1

[
1

2
; 2; log |t|−Γk

])
,

which corresponds to (2.30) or to (3.18) for Γ = ν or Γ = ν + µψ2, respectively.

Dressing with projectors. Let us now show how the above-obtained solutions can

be dressed-up with projectors. To begin with, we now plug the full expansion (C.16)

into (C.13)–(C.14), with nI , mI correspond to the symmetric solution above presented.

This means that, taking into account the property (C.20), the coefficients λℓ, λ
′
ℓ must

satisfy

λℓLℓ[m
±
I (t, k)] + λ′

ℓLℓ[n
±
I (t, k)] + λℓλ

′
ℓ = 0 . (C.32)

For symmetric solutions n(t, k) = m(t, k), which implies

λℓ = λ′
ℓ = −2θℓLℓ[n

±
I ] , θℓ ∈ {0, 1} . (C.33)

i.e., recalling the definition of Lℓ from (C.20),

λ2n = −2θ2n

√
1 +

Γk

2n+ 1
, (C.34)

λ2n+1 = −2θ2n+1

√
1− Γk

2n+ 3
. (C.35)

The resulting Ŝ′
α is therefore a sum of the “regular” part of the expansion (C.31) and of

the projector part, which can be written as

Ŝ′
α = Ŝ′reg

α + Ŝ′proj
α (C.36)

where

Ŝ′proj
α = −2ρzα

∫ 1

−1
dt e

i
2
(1+t)u ×

×
∞∑

n=0

θn

[
1 + (−1)n

2

√
1 +

Γk

1 + n
− 1− (−1)n

2

√
1− Γk

2 + n

]
pn(t) . (C.37)

Performing the t-integrals gives

Ŝ′proj
α = −2ρzα

∞∑

n=0

θn(−1)nPn(u)

[
1 + (−1)n

2

√
1 +

Γk

1 + n
− 1− (−1)n

2

√
1− Γk

2 + n

]
,

(C.38)

where

Pn(u) =
1

n!

(−iu

2

)n

e
iu
2 , (C.39)

are projectors in the ⋆-product algebra given by functions of u, viz.

Pn ⋆ Pm = δnmPn . (C.40)
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Let us define now the combinations Aα := 1
2(yα + zα) and A†

α := 1
2i(yα − zα). They span

the complexified Heisenberg algebra [Aα, A
†β ]⋆ = δβα. Recalling now that the ⋆-product

law (2.3) corresponds to normal-ordering with respect to Aα and A†
α, it becomes clear that

the Pk(u) are the Fock-space projectors

Pn(u) = |n〉〈n| = 1

n!
A†α1 ⋆ . . . ⋆ A†αn ⋆ e−N ⋆ Aα1 . . . ⋆ Aαn , (C.41)

where N is the number operator A†α ⋆ Aα = A†αAα, and, in normal ordering, e−N = P0.

Note that, as first observed in [11] for the four-dimensional case, the projector part

of the solution is non-trivial even at Γ = 0, i.e., the projectors give rise to seemingly new

vacuum solutions. In particular, for Γ = 0,

Ŝ′
α = ρzα

(
1− 2

∞∑

n=0

θnPn(u)

)
, (C.42)

and in this sense, as explained in section 3.3, the projector-dependent term above may be

regarded as a flat yet non-trivial Z-space connection. Note also that, interestingly, the

projector solutions (C.38) exhibit a regular behaviour for Γ in a finite region around the

origin, with branching points occurring at the critical values Γ = 2n + 1, n ∈ Z, at which

the higher-spin algebra develops infinite-dimensional ideals [1, 3, 35, 40]. We defer a study

of such solutions to future work.

D Internal solution and ⋆-product lemmas

In this appendix we collect a few technical remarks that are useful in obtaining the results

of section 3.6. In particular, starting from the expression (3.30), the deformation of the

Lorentz generator in the “nothing gauge” can be written as

1

2
{Ŝ′

α, Ŝ
′
β}⋆ = zαzβ + µ zαzβ

∫ 1

−1
ds (1− s)

[
(1− s)F−(µ ln |s|)e i

2
(1+s)u

− (1 + s)F+(µ ln |s|) e i
2
(1−s)u kψ2

]

−µ2

∫ 1

−1
ds

∫ 1

−1
ds̃ (1−s)(1−s̃)

{[
F+(µ ln |s|)F+(µ ln |s̃|)(a†α−s̃aα)(aβ−sa†β)

+ F−(µ ln |s|)F−(µ ln |s̃|)(a†α + s̃aα)(aβ + sa†β)
]
e

i
2
(1−ss̃)u

+
[
F+(µ ln |s|)F−(µ ln |s̃|)(a†α + s̃aα)(aβ − sa†β)

+ F−(µ ln |s|)F+(µ ln |s̃|)(a†α − s̃aα)(aβ + sa†β)
]
e

i
2
(1+ss̃)u kψ2

}
, (D.1)

where we have introduced the mutually conjugated oscillators aα := (yα + zα)/2, a
†
α :=

(yα− zα)/2, with [aα, a
†
β]⋆ = iǫαβ . This expression contains bilinears times exponentials in

(y, z), with or without an insertion of ψ2. In order to evaluate the ⋆-products in (3.29), it

is useful to represent the terms in (D.1) with the help of “sources” ρα and ρ′α, e.g.,

L−1 ⋆ yαzβ e
itu ψA

2 ⋆ L =
∂

∂ρα
∂

∂ρ′β
L−1 ⋆ eitu+ργyγ+ρ′γzγ ψA

2 ⋆ L

∣∣∣∣
ρ=ρ′=0

. (D.2)

– 40 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
7

where A = {0, 1}. By virtue of (2.7), the L-rotation in (3.29) acts differently on the

coefficients of the identity and of ψ2 above, giving rise to two types of structures. Using

the matrix notation, e.g., MaM := Mαaα
βMβ , the latter can be evaluated as

L−1 ⋆ eitu+ρy+ρ′z ⋆ L =
1− a2

1− a2(1− 2s)2
exp

[
itu+ ρy + ρ′z

− i

1− a2(1− 2s)2

(
1

2
ψ1(MaM −NaN)− a2(1− 2s)MN

)]
, (D.3)

where we defined the spinors

Mα := yα(1− t)− tzα − i(ρα − ρ′α) , (D.4)

Nα := yα(1− t) + tzα + i(ρα + ρ′α) , (D.5)

and the remaining variables are defined in the body of the paper; and, with the same

definitions,

ψ2L ⋆ eitu+ρy+ρ′z ⋆ L = ψ2
1− a2

1 + a2(1− 2s)2
exp

[
itu+ ρy + ρ′z

+
i

1 + a2(1− 2s)2

(
1

2
ψ1(MaM −NaN)− a2(1− 2s)MN

)]
. (D.6)

Using these lemmas for the L-rotation of the various terms in (D.1) and then projecting

onto z = 0 one obtains the results in (3.32) and (3.37).

E Characters of SL(2,R) ⊂ HS[λ]

In this appendix we compute the trace of an exponential of a quadratic expression in the

deformed oscillators:

trg ≡ tr exp⋆

(
− i

8
vαβ ỹα ⋆ ỹβ

)
(E.1)

= tr exp⋆ (−vaJa) (E.2)

where the trace is normalized such that tr exp⋆ 0 = 1. Such traces can be seen as characters

of the SL(2,R) subgroup of the higher spin gauge group HS[λ]. The character is to be

taken in the representation where the quadratic Casimir takes the value

C2 = −J2
0 + J2

1 + J2
2 =

1

4
(λ2 − 1) (E.3)

where λ = 1
2(1− νk). Hence the character can be computed by taking the character in the

N -dimensional representation of SL(2,R) and then continuing N → λ.

The character in the N -dimensional representation of SL(2,R) can be obtained by

analytic continuation from the character in the N -dimensional representation of SU(2).

For this we have the standard expression (see e.g. [55], p.144)

trN exp
(
−iω~n · ~T

)
=

sin Nω
2

N sin ω
2

. (E.4)
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where ~n · ~n = 1 and Ti are the SU(2) generators in the N dimensional representation with

commutation relations [Ti, Tj ] = iǫijkTk.

To continue this expression to the N -dimensional representation of SL(2,R), we can

take the SL(2,R) generators to be T1 = −iJ0, T2 = J1, T3 = J2, so that in order to compute

the character (E.2), we have to take ω = i
√
v2. Continuing N → λ then leads to

trg =
sinh λ

√
v2

2

λ sinh
√
v2

2

. (E.5)

We note also that trg = trg−1, so that we arrive at the formula needed in the main text:

tr cosh⋆

(
− i

8
vαβ ỹα ⋆ ỹβ

)
=

sinh λ
√
v2

2

λ sinh
√
v2

2

. (E.6)

F From Fubini to Liouville instantons

In this appendix we show that the solutions (5.40) of classical Liouville theory with a nega-

tive potential can be seen as a d → 2 scaling limit of the well-known Fubini instantons [51]

which exist in scalar theories in d > 2. We consider, in dimension d > 2, and in Minkowski

signature for definiteness, the following action for a scalar field φ:

Sd = −
∫

ddy

[
1

2
(∂φ)2 + gφ

2d
d−2

]
. (F.1)

The coupling g is dimensionless and these are classically conformally invariant theories.

When g < 0, the φ = 0 vacuum is unstable and the theory admits Fubini instantons [51]

with O(d− 1, 1) (or O(d) in Euclidean signature) symmetry:

φ =

(
d− 2√−2g

ρ

ρ2 + yµyµ

) d−2
2

(F.2)

where ρ > 0 is the size of the instanton.

When d = 2, the above action breaks down, while the Fubini solution behaves as

φ = 1 +
d− 2

2
ln

(d− 2)ρ√−2g(ρ2 + yµyµ)
+O(d− 1)2. (F.3)

This suggests the following scaling limit under which the solution stays regular. We define

φ = 1 +
d− 2

2

(
γψ

2
+ ln

(d− 2)γ

4

)
. (F.4)

for some constant γ. In the limit d → 2, the leading part of the action is of the Liouville

type:

S ∼ −
(
γ(d− 2)

4

)2 ∫
d2x

[
1

2
(∂ψ)2 + geγψ

]
+O(d− 2)3 (F.5)

and the Fubini solution (F.2) reduces to the O(1, 1) (or O(2)) invariant solution (5.40) of

Liouville theory with negative potential:

ψ =
2

γ
ln

4ρ√−2gγ(ρ2 + yµyµ)
. (F.6)
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