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1 Introduction and results

Supersymmetric field theories have seen dramatic advances in recent years, many brought

about through the study of partition functions on compact manifolds admitting Killing

spinors. Most often those are the sphere partition function and the superconformal index

related to the Sd−1 × S1 partition function. The latter, first introduced for 4-dimensional

theories in [1, 2], is a generalization of the Witten index [3]. As such, it counts the states

of the theory according to their fermionic or bosonic nature, as well as according to their

quantum numbers. These charges, for symmetries which commute with the Hamiltonian

and preserved supercharges, are introduced in the usual trace formula through fugacities.

In this paper we study the index of 4d N = 2 superconformal theories on S3 × S1.

The representations of the corresponding superconformal algebra SU(2, 2|2) are labelled
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by the Cartans (E, j1, j2, R, r) of its bosonic subalgebra. E is the energy, (j1, j2) are the

Cartans of the SU(2)1⊗SU(2)2 isometries and (R, r) are the Cartans of the SU(2)R⊗U(1)r
R-symmetry group.

The superconformal index generally has three independent fugacities coupling to lin-

ear combinations of these Cartans, and in addition fugacities for flavour symmetries (see

appendix A). We are interested in an unrefined version of the index, known as the Schur

index [4–6], where one relation is imposed between the three fugacities, but it turns out

that the resulting index depends only on one unique fugacity q. The charge that this fu-

gacity couples to commutes with a pair of supercharges Q and Q′, which, following [5, 7],

we choose such that

δ ≡ 2{Q,Q†} = E − 2j2 − 2R+ r ,

δ′ ≡ 2{Q′, Q′†} = E + 2j1 − 2R− r .
(1.1)

The Schur index is then given by1

I = Tr(−1)F eβδeβ
′δ′q2(E−R)

∏
a

e2iu
(a)F (a)

, (1.2)

where q and e2iu
(a)

are the fugacities for the charges of the superconformal and flavour

groups respectively, and F (a) are the flavour charges. We express the flavour fugacities

in terms of their chemical potentials u(a), which appear in a natural way in the explicit

expressions for the index below. The sum in (1.2) is taken over all states of the theory, but

following the usual Witten argument [3], contributions from fermions and bosons cancel

for all multiplets except for those with δ = δ′ = 0, so that the index is independent of β, β′.

As shown in [1, 2], there is an elegant way to express the index (1.2) as a matrix model.

It was first noted in [8] that the contributions from each multiplet can be neatly expressed

in terms of elliptic gamma functions. For the Schur index, the contributions combine in

such a way that they can be written as q-theta functions (see appendix A and [6]). We

give here the expressions for each multiplet, in terms of Jacobi theta functions and the

Dedekind eta function (see appendix B for their definition and for useful identities). We

consider U(N) (or SU(N)) gauge groups, and use the gauge freedom to reduce the integral

over the Lie algebra to an integral over a Cartan subalgebra that we parametrize with αi,

i = 1, · · · , rG, which are π periodic and where rG is the rank of the gauge group.

The contribution from an N = 2 vector multiplet, including the integration with the

Haar measure is (A.6)

Ivec =
q−

rG
6 η2rG(τ)

|W|
1

πN

∫ π

0
dNα

∏
i<j

ϑ21
(
αi − αj , q

)
q

1
3 η2(τ)

. (1.3)

Here |W| is the order of the Weyl group of the gauge group and we use the notation

q ≡ eiπτ .

1We use a slightly different definition of the fugacity than in most of the literature. q in [6] corresponds

to q2 in our notations.
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An N = 2 hypermultiplet in the bi-fundamental representation of the gauge groups

G(1) ×G(2) contributes to the index as (A.3)

Ihyp =
∏
i,j

q−1/12η(τ)

ϑ4
(
α
(1)
i − α

(2)
j + u, q

) , (1.4)

where u is the chemical potential for the U(1) flavour symmetry, which enters in the index

as defined in (1.2). For U(N) theories we can also include Fayet-Iliopoulos (FI) parameters.

On S3 × S1 the FI parameters ζ(a) are quantized to integers [9] and contribute as

e2iζ
∑N
i=1 αi . (1.5)

The simplest matrix model of this class corresponds to N = 4 SYM, which in this

N = 2 formalism has one U(N) gauge group, as well as one adjoint hypermultiplet. The

model for this particular case was solved exactly in [10]. This was made possible by

expressing the matrix model as the partition function of a 1-dimensional free Fermi gas.

In the context of supersymmetric field theories, this type of manipulation was pioneered

in [11], who studied the S3 partition function of ABJM theory [12], as well as more general

circular quiver gauge theories. This led to numerous results, such as the discovery of the

universal Airy function behaviour of the perturbative part in the large N expansion for all

circular quivers [11], as well as a complete understanding of the non-perturbative effects of

the ABJ(M) partition function (see [13] for a review). This formalism was also successfully

applied to many other three dimensional superconformal theories, with wide ranging gauge

groups [14] and quiver structures [15, 16], and was also used to understand the relationship

between topological strings and 3d partition functions [17–19].

The key step in this method is the use of a determinant identity which expresses

the integrand of the matrix model as a determinant. Indeed, in [10] we used an elliptic

generalization (C.4) of the Cauchy determinant identity which resolved the interactions in

the matrix model of the index of N = 4 SYM.

In the present paper we study theories that are a natural generalisation of N = 4

SYM, namely circular quivers, and apply the Fermi gas formalism to compute the Schur

index. A circular quiver of length L has gauge group U(N)L (or SU(N)L), with vector

multiplets for each gauge group factor and bi-fundamental hypermultiplets connecting them

in circular fashion, as depicted in figure 1. These theories are of particular interest as the

circular structure is most susceptible to a Fermi-gas interpretation in terms of traces of

single particle density operators (theories with a quiver structure of a D̂ Dynkin diagram

are also interesting candidates, and a discussion of these will appear in [20]). It would

be interesting to understand whether any of the techniques developed here could also be

applied to non-Lagrangian “class-S” theories.

Unlike 3d circular quivers, where many theories with N ≥ 2 flow to conformal fixed

points, in 4d we cannot add extra fundamental hypermultiplets. The resulting theories

are neither conformal nor asymptotically free. Nonetheless, it is rather easy to add to the

matrix models factors associated to fundamental matter, but since we do not have a 4d
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Figure 1. A diagram ofN = 2 circular quiver theories. Each node of the diagram represents a U(N)

or SU(N) vector multiplet, while a solid lines connecting two nodes represents a bi-fundamental

hypermultiplet.

interpretation of this, we do not consider these here.2 Note however that in the calculation

of the Schur index of N = 4 SYM in the presence of Wilson loop operators [21], the matrix

model gets enriched by terms somewhat similar to those due to fundamental matter fields.

It would be interesting to try to generalize that calculation to the circular quivers studied

here and explore this generalization of the matrix model.

We find that for either U(N) and SU(N) circular quivers one can use the elliptic

determinant identity to write the index as the partition function describing a set of N

interacting fermions. The interaction terms are due to the center of mass dependence

of (C.4) for the U(N) case and from the tracelessness condition for the SU(N) case. We

avoid handling these interaction terms directly by expanding them in Fourier series, at the

cost of introducing an infinite number of terms, each of which can be interpreted as the

partition function of a free Fermi gas.

When the gauge groups are SU(N) the resulting infinite sum has a natural interpreta-

tion as a Fourier expansion in flavour fugacities of a rescaled index (provided the product

of the flavour fugacities is 1). Thus each Fourier coefficient of the rescaled index is given

by the aforementioned partition function of a free Fermi gas (2.9). Each Fermi gas can

then be studied independently, and we do so by considering the associated grand canonical

partition function with chemical potential µ.

For a circular quiver of arbitrary length we are able to write down (when the product of

the flavour fugacities is 1) a closed formula for the grand partition function (2.25), involving

a product of Jacobi elliptic theta functions evaluated at the roots of a polynomial (3.1),

whose degree grows with the length of the quiver.

2Supersymmetric partition functions and indices have been calculated for non-renormalizable theories,

including gauge theories in d > 4 and supergravity theories. So there may yet be a meaning for the index

of 4d theories with positive β-functions.
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In section 3 we then present a computation which gives the full perturbative (in N)

expression for the index in the large N limit. We first calculate the leading term of the grand

canonical partition function at large chemical potential µ, for which we give two different

methods. In one method we solve for the roots of the polynomial (3.1) in the large µ limit,

while in the other we use a Mellin-Barnes representation of the grand potential to extract

its large µ behaviour. For the SU(N) case we can then carry out the resummation over

the Fourier modes to obtain

ISU(N) =
q
L
6

ηL(τ)η2(Lτ2 )
+O(e−cN ) , c > 0 . (1.6)

We find here that the leading term is N -independent, as was already pointed out in [2] for

N = 4 SYM, that there are no perturbative 1/N corrections, and that the result is also

independent of the flavour fugacities.

It should be noted that this scaling does not match the supergravity action, which

grows as N2. Indeed the correct quantity to compare on the field theory side to the

classical supergravity action is the partition function on S3 × S1, which is related to our

index through a factor, dubbed the supersymmetric Casimir energy [22, 23], which does

scale like N2. There is still a discrepancy with the supergravity calculation, possibly due

to missing counterterms of supersymmetric holographic renormalization. As we see above,

we find the same N0 scaling for the index of N = 2 theories, and have not calculated the

Casimir energy. It is unclear whether the N = 2 generalization could shed light on this issue.

In the cases where we can find the non-perturbative corrections at large N , which are

N = 4 SYM [10] and the two node quiver (see section 4), there should be an interpretation

of the instanton corrections in terms of some other supergravity saddle points and/or D-

brane configurations, but such an understanding is also lacking.

As just mentioned, for short quivers we are able to go beyond the perturbative large N

result (1.6). This is based on the expression for the grand partition function in terms of the

roots of a polynomial, which for L = 1 and L = 2 is quadratic, so the roots can be obtained

explicitly. This allows us to compute the complete, all orders large N expansions of the in-

dex for these theories in section 4. For the two-node case, we find that the independence of

the asymptotic expression (1.6) on the flavour fugacity gets lifted by non-perturbative cor-

rections. Furthermore, in the absence of flavour fugacities, we extract exact results in terms

of elliptic integrals for finite values of N in section 5. Finally in section 5.3 we are able to

obtain similar finite N results also for longer quivers by comparing the q expansion of the in-

dex and polynomials of elliptic integrals, and present results for quivers of up to four nodes.

2 Circular quivers as free Fermi gases

Using the formulae given in the introduction, the matrix model for the Schur index of a

U(N) circular quiver gauge theory with L nodes is

I =
q−

LN2

4 η(τ)3NL

N !LπNL

×
∫ π

0

L∏
a=1

dNα(a)e2iζ
(a)

∑N
i=1 α

(a)
i

∏
i<j ϑ1

(
α
(a)
i − α

(a)
j

)
ϑ1
(
α
(a+1)
i − α(a+1)

j

)∏
i,j ϑ4

(
α
(a)
i − α

(a+1)
j + u(a)

) ,

(2.1)
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where it is understood that α
(L+1)
i = α

(1)
i , and we have used the notation ϑi(z) = ϑi(z, q).

We allow here for arbitrary FI parameters ζ(a) for the gauge fields and arbitrary chemical

potentials u(a) for the flavour symmetries of the hypermultiplets.

The integrand in (2.1) can be rewritten using an elliptic determinant identity (C.4)

given in appendix C∏
i<j ϑ1

(
α
(a)
i − α

(a)
j

)
ϑ1
(
α
(a+1)
i − α(a+1)

j

)∏
i,j ϑ4

(
α
(a)
i − α

(a+1)
j + u(a)

) =

(
ϑ2
ϑ4ϑ3

)N

× ϑ3 q
−N

2

4 eiN
2(A(a)−A(a+1)+u(a))

ϑ3
(
N(A(a) −A(a+1) + u(a) + πτ

2 )
) det

ij

(
cn
((
α
(a)
i − α

(a+1)
j + u(a)

)
ϑ23
))
.

(2.2)

Here we have used the notation ϑi = ϑi(0, q) and introduced the centers of mass

A(a) =
1

N

N∑
i=1

α
(a)
i . (2.3)

Putting this together allows us to write the index as

I =
q−

N2L
2 qiN

2
∑
a u

(a)

N !L

∫ π

0

L∏
a=1

(
dNα(a) ϑ3

ϑ3
(
N(A(a) −A(a+1) + u(a) + πτ

2 )
))

× det
ij

(
e2iζ

(a)α
(a)
i
ϑ22
2π

cn
(
(α

(a)
i − α

(a+1)
j + u(a))ϑ23

))
,

(2.4)

where we have used the identity (B.7) to simplify the α-independent factor.3

Each determinant can then be written as a sum over permutations, and by relabelling

the eigenvalues, one can factor all but one of the permutations, picking up a factor of N !L−1

and leading to

I =
q−N

2(L
2
−iU)

N !

∑
σ∈SN

(−1)ε(σ)
∫ π

0

L∏
a=1

(
dNα(a) ϑ3

ϑ3
(
N(A(a) −A(a+1) + u(a) + πτ

2 )
))

×
N∏
i=1

( L−1∏
a=1

e2iζ
(a)α

(a)
i
ϑ22
2π

cn
(
(α

(a)
i − α

(a+1)
i + u(a))ϑ23

)
(2.5)

× e2iζ(L)α
(L)
i
ϑ22
2π

cn
(
(α

(L)
i − α(1)

σ(i) + u(L))ϑ23
))
, U =

L∑
a=1

u(a) .

This expression strongly suggests that the eigenvalues describe fermionic degrees of free-

dom. The difficulty in writing down a single particle density operator comes from the

presence of the center of mass coordinates A(a) which introduce complicated interactions.

It is possible to overcome this problem by expanding the center of mass dependent terms

in Fourier modes, generating a weighted sum over partition functions of free Fermi gasses.

We explain this now separately for the cases of SU(N) and U(N) gauge group factors.

3The factor of ϑ2
2/2π is included with the cn functions to simplify their Fourier expansion below.
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2.1 SU(N) quivers

In the case of a quiver with SU(N) nodes, the center of mass parameters A(a) all vanish.

This elimination of this degree of freedom has four important consequences: first, it sim-

plifies the denominator in the first line of (2.5). Second, there is an extra overall factor of

q
L
6 η(τ)−2L, as can be seen from (1.3).4 Third, there cannot be any FI parameters. Lastly,

the eigenvalues α
(a)
i are subject to the (periodic) delta function constraint δ

(
NA(a)

)
. We

choose to represent all but one of these L delta function constraints in difference form

δ
(
NA(L)

)∏L−1
a=1 δ

(
N(A(a) −A(a+1))

)
.

From these considerations, (2.5) becomes

I =
q−N

2(L
2
−iU)q

L
6

η2L(τ)

L∏
a=1

ϑ3

ϑ3
(
Nu(a) +N πτ

2

) Z(N) (2.6)

where Z(N) is a rescaled index, given by

Z(N) =
∑
σ∈SN

(−1)ε(σ)
∫ π

0

L−1∏
a=1

dNα(a)δ
(
N(A(a) −A(a+1) − u(a))

)
×
∫ π

0
dNα(L)δ

(
N(A(L) + U − u(L))

)
×

N∏
i=1

(
ϑ22
2π

cn
(
(α

(L)
i − α(1)

σ(i) + U)ϑ23
) L−1∏
a=1

ϑ22
2π

cn
(
(α

(a)
i − α

(a+1)
i )ϑ23

))
,

(2.7)

where we have shifted the eigenvalues as α(a) → α(a) +
∑a−1

b=1 u
(b) so that the u’s appear

only inside the delta functions and one cn.

Though there is no longer any dependence on the center of masses A(a) in the theta

functions in (2.6), they still appear in the delta functions. To remedy that we represent

the delta functions by their Fourier expansion

δ
(
N(A(L) + U − u(L))

) L−1∏
a=1

δ
(
N(A(a) −A(a+1) − u(a))

)
=
∑
~n∈ZL

e−2iN
∑L
a=1 n

(a)u(a)e2iNUn
(L)
e2in

(L)
∑
i α

(L)
i

L−1∏
a=1

e2in
(a)

∑
i(α

(a)
i −α

(a+1)
i ) ,

(2.8)

with ~n = {n(a)}. We can then write the rescaled index as a sum

Z(N) =
∑
~n∈ZL

e−2iN
∑L
a=1 n

(a)u(a)e2iNUn
(L)
Z~n . (2.9)

Now each Fourier coefficient Z~n is a partition function of a free Fermi gas expressed as

Z~n =
1

N !

∑
σ∈SN

(−1)ε(σ)
∫ π

0
dNαi

N∏
i

ρ~n(αi, ασ(i)) , (2.10)

4For the single node theory (N = 4 SYM) the traceless condition also applies to the hypermulti-

plet, where the adjoint is of dimension N2 − 1 rather than N2. This introduces an additional factor of

q
1
12 η−1(τ)ϑ4(u).

– 7 –
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in terms of a single particle density operator

ρ~n
(
α(1), α(L+1)

)
=

∫ π

0

L∏
a=2

dα(a) e2in
(L)α(L) ϑ22

2π

L−1∏
a=1

e2in
(a)(α(a)−α(a+1))

× cn
(
(α(L) − α(L+1) + U)ϑ23

) L−1∏
a=1

ϑ22
2π

cn
(
(α(a) − α(a+1))ϑ23

)
,

(2.11)

where in Z~n we substitute α(1) = αi and α(L+1) ≡ ασ(i). Note that the Fourier modes n(a)

play a role in Z~n analogous to the FI parameters ζ(a) in (2.5) and couple to the flavour

chemical potentials u(a) in the expansion (2.9). In fact, this Fourier expansion closely

mirrors the original definition of the index with flavour fugacities (1.2) and were it not for

the u dependence in the rescaling factor in (2.6), then Z~n would be the index for fixed

flavour charges F (a) = −Nn(a).
The Fermi gas partition function (2.10) is completely determined by

Z~n;` = Tr(ρ`~n) =

∫ π

0
dx1 · · · dx` ρ~n(x1, x2) · · · ρ~n(x`, x1) , (2.12)

often referred to as the spectral traces. Indeed, conjugacy classes of SN have m` cycles of

length `, and from the definition (2.10) of Z~n(N) we get

Z~n(N) =
∑
{m`}

′∏
`

Zm`~n;` (−1)(`−1)m`

m`! `m`
, (2.13)

where the prime denotes a sum over sets that satisfy
∑

` `m` = N .

To evaluate Z~n;`, we first simplify the expression for the density ρ~n (2.11) by using the

Fourier expansion of the elliptic function

cn
(
z ϑ23

)
=

1

ϑ22

∑
p∈Z

ei(2p−1)z

cosh iπτ
(
p− 1

2

) , (2.14)

and we obtain

ρ~n =
∑
~p∈ZL

ei(2p
(L)−1)U

L∏
a=1

1

2π

1

cosh iπτ
(
p(a) − 1

2

) (2.15)

×
∫ π

0

L∏
a=2

dα(a) e2in
(L)α(L)

e2i(p
(L)− 1

2)(α(L)−α(L+1))
L−1∏
a=1

e2i(n
(a)+p(a)− 1

2)(α(a)−α(a+1)).

Shifting the summation over p(a)→ p(a)−n(a), and doing the integration over the α(a)’s gives

ρ~n =
1

π

∑
p∈Z

e2i(p−n
(L)− 1

2
)Ue2i(p−

1
2
)α(1)

e−2i(p−n
(L)− 1

2)α(L+1)
L∏
a=1

1

2 cosh iπτ
(
p− n(a) − 1

2

) .
(2.16)

– 8 –
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As explained above, we are interested in computing the quantity Z~n;` (2.12). For ` = 1

we find

Z~n;1 =

∫ π

0
dα ρ~n(α, α) = δn(L)

∑
p∈Z

e2i(p−n
(L)− 1

2)U
L∏
a=1

1

2 cosh iπτ
(
p− n(a) − 1

2

) . (2.17)

This structure persists also when considering the convolution of several ρ’s, with a con-

straint on n(L) and a single sum over p

Z~n;` = δn(L)

∑
p∈Z

e2i(p−n
(L)− 1

2)U`
L∏
a=1

(
1

2 cosh iπτ
(
p− n(a) − 1

2

))` . (2.18)

The presence of the δn(L) factor in the expression above tells us that the sum in (2.9) is in

reality only over {n(a)} ∈ ZL−1 with n(L) = 0. From now on we omit this Kronecker delta,

and the modes n(a) run over a = 1, · · · , L− 1.

We can plug the expressions (2.18) into (2.13) to evaluate Z~n(N) and then sum over

the integers ~n ∈ ZL−1 to find the index ISU(N) (2.6), (2.9). An alternative, which avoids

the combinatorics in (2.13) is to sum over the indices of quivers with arbitrary ranks N .

For each ~n ∈ ZL−1, we define the associated grand canonical partition function

Ξ~n(κ) = 1 +

∞∑
N=1

Z~n(N)κN . (2.19)

κ is the fugacity and we write it also in terms of the chemical potential µ as κ = eµ. This

definition is easily inverted to recover Z~n(N)

Z~n(N) =
1

2πi

∫ iπ

−iπ
dµΞ~n(eµ)e−µN . (2.20)

The combinatorics simplify when considering the grand potential

J~n(µ) ≡ log Ξ~n
(
eµ
)

= −
∞∑
`=1

(−1)`Z~n;`e
µ`

`
, (2.21)

and we can then easily sum over ` and find a very compact expression

Ξ~n(κ) =
∏
p∈Z

(
1 + κe2i(p−n

(L)− 1
2)U

L∏
a=1

1

2 cosh iπτ
(
p− n(a) − 1

2

)) . (2.22)

From now on we focus on the case with U = 0, i.e. the product of the flavour fugacities

is 1. This allows us to write Ξ~n as a product of theta functions evaluated at the roots of a

polynomial. Indeed, for U = 0, each term in the product over p in (2.22) can be written as

XLq−n κ+
∏L
a=1

(
1 +X2q−2n

(a))∏L
a=1

(
1 +X2q−2n

(a)
) , X ≡ qp−

1
2 , (2.23)
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where n =
∑L

a=1 n
(a). The numerator of (2.23) is a polynomial of degree 2L in X with

coefficients that depend on q, n(a) and κ, but not on p. It can be factored as∏2L
j=1

(
1 + e2idjX

)∏L
a=1

(
1 +X2q−2n

(a)
) . (2.24)

Now take the term in (2.22) with p → −p + 1. We can write it also as (2.23) with the

same denominator. The numerator is then of a similar form with n(a) → −n(a), which

is factorized by the inverse roots −e2idj . Splitting then the product in (2.22) over only

positive p gives

Ξ~n =
∞∏
p=1

∏2L
j=1

(
1 + e2idjqp−

1
2

)(
1 + e−2idjqp−

1
2

)∏L
a=1

(
1 + q−2n

(a)
q2p−1

)(
1 + q2n

(a)
q2p−1

) =

∏2L
j=1 ϑ3

(
dj , q

1
2

)
ϑL4
∏L
a=1 ϑ3(n

(a)πτ, q)

=
q
∑L
a=1(n

(a))2

ϑL4 ϑ
L
3

2L∏
j=1

ϑ3
(
dj , q

1
2
)
.

(2.25)

We cannot find the explicit roots of a polynomial of arbitrary degree, but for L = 1, it

is quadratic, which is what allowed us to solve the index for N = 4 SYM in closed form [10]

(see section 4.1). In fact, for even L the numerator of (2.23) can be viewed as a polynomial

of degree L in X2, which we use in section 4.2 to solve the index of the two node quiver.

Explicitly, equation (2.24) factorized into L terms is∏L
j=1

(
1 + e2id̃jX2

)∏L
a=1

(
1 +X2q−2n

(a)
) , (2.26)

and the grand partition function is now expressed in terms of theta functions with nome q

rather than q
1
2

Ξeven L
~n =

q
∑L
a=1(n

(a))2

ϑL3

L∏
j=1

ϑ3(d̃j) . (2.27)

Clearly the 2L roots for X are given in terms of the new ones by the pairs ±e−id̃j and the

expressions (2.25) and (2.27) are related by a simple application of Watson’s identity (B.9).

It is rather intriguing that the grand canonical partition function ends up also as a

product of Jacobi theta functions, similar to the superconformal indices of the free hy-

permultiplets and vector multiplets. The reason for this is not clear to us, but it is a

manifestation of the modular properties of the Schur index, discussed in [6]. The same can

be said for the expressions we find for finite N in section 5.

In the rest of this section we briefly comment on the case of U(N) gauge groups. In

section 3 we compute the dj ’s at leading order in the large µ expansion, from which we

obtain the leading large N contribution to the index. In section 4 we focus on the cases

of L = 1 and L = 2, for which the numerator of (2.23) is quadratic and so can be easily

factored algebraically, and the roots obtained exactly.5 This allows us to go beyond the

large N limit, and obtain an exact all order expression for the index.

5Note that the numerator of (2.23) can also be factored algebraically for L = 4, but we haven’t investi-

gated this case.
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2.2 U(N) quivers

A slight modification of the approach above allows to study quiver theories with U(N)

nodes. In that case the center of mass dependence is not in a delta function but in the

inverse Jacobi theta functions in the first line of (2.5). Those too can be expanded in a

Fourier series.

From the expression

ϑ3
ϑ3(z)

=
2q

1
4

ϑ2ϑ4

∑
n∈Z

(−1)nqn(n+1)

1 + e2izq2n+1
, (2.28)

we obtain the Fourier coefficients

ϑ3
ϑ3(z)

=
∑
n∈Z

Fne
2inz , Fn =

2q
1
4

ϑ2ϑ4

∞∑
k=0

(−1)kqk(k+1)(−1)nq|n|(2k+1) . (2.29)

The index (2.5) then becomes

IU(N) = q−
N2L

2 qiN
2Ue2i

∑L
a=1(ζ

(a)
∑a−1
b=1 u

(b))
∑
~n∈ZL

(
e2in

(L)NU
L∏
a=1

Fn(a)qNn
(a)

)
Z~ζ′(N) , (2.30)

where we have shifted once again the eigenvalues as α(a) → α(a) +
∑a−1

b=1 u
(b). Z~ζ′(N) is

exactly the same as (2.10) where now the subscript combines the FI parameters and Fourier

modes as

ζ ′(a) = n(a) − n(L) +

a∑
b=1

ζ(b) . (2.31)

The analysis proceeds as in the SU(N) case, where now the Kronecker delta in (2.18)

requires the sum of the FI parameters to vanish ζ ′(L) =
∑

a ζ
(a) = 0. Likewise the grand

partition function (2.22) is the same with ~n replaced by ~ζ ′.

The main difference from the SU(N) case lies in the highly non-trivial Fourier coef-

ficients in (2.29) and the sum over Ξ~ζ′ weighted by those coefficients is much harder to

implement than the SU(N) case, which we return to in the rest of the paper.

3 Large N limit of the index

In this section we compute the Schur index for SU(N) circular quivers with L nodes in the

large N limit and with the product of flavour fugacities set to 1, so that U = 0. The result

for all the theories scales as N0, is independent of the flavour fugacities, and there are no

perturbative 1/N corrections. We address the exponential corrections in N for L = 1 and

L = 2 in the next section. In the subsections below we present two different methods which

both give the same perturbatively exact large N result.
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3.1 Asymptotics from the grand canonical partition function

The first method relies on the expression (2.25) for the grand canonical partition function

Ξ~n in terms of the roots of a degree 2L polynomial. We solve for the roots of the polynomial

at large µ, from that obtain Ξ~n and through (2.20) find Z~n. Taking the sum over the Fourier

modes (2.9) and including the prefactors in (2.6), we finally obtain the index up to non-

perturbative corrections in the large N limit.

We first compute the large µ expansion of the dj , introduced in (2.24). Recall that

Xj = −e−2idj are the roots of the polynomial

L∏
a=1

(
1 + q−2n

(a)
X2
)

+ κq−nXL , (3.1)

Xj can be expanded at large κ as

Xj = X
(0)
j κγj (1 +O(κβj )) , (3.2)

where X
(0)
j is a (non zero) constant and βj < 0. Plugging this ansatz into (3.1), and

expanding at leading order in κ, the roots must satisfy
0 = q−2n(X

(0)
j )2Lκ2γjL + q−nκγjL+1(X

(0)
j )L +O(κ2γj(L−1)) , γj > 0,

0 = (X
(0)
j )Lq−nκ+O(κ0) , γj = 0 ,

0 = 1 + κ1−γjLq−n(X
(0)
j )L +O(κ−2γj ) , γj < 0 .

(3.3)

The second line has no solutions, while the first and third lines each admit L solutions with

γj = 1
L and γj = − 1

L respectively, and with

X
(0)
j = e

iπ(2j+1)
L q

n
L , j = 1, · · · , L . (3.4)

Going to the next order, we find that for all of the roots (3.2) βj = − 2
L . We can then

readily deduce the large µ expansions for dj

dj,± = ± iµ
2L

+
(L+ 1− 2j)π

2L
+
nπτ

2L
+O

(
κ−

2
L
)
, j = 1, · · · , L , (3.5)

where the indices differ slightly from the ones used in (2.24). Using the above expression,

we can in turn expand (2.25) in the large µ limit as

Ξ~n =
q
∑L
a=1(n

(a))2

ϑL4 ϑ
L
3

L∏
j=1

ϑ3

( iµ
2L

+
(L+ 1− 2j)π

2L
+
nπτ

2L
, q

1
2

)
× ϑ3

( iµ
2L

+
(L+ 1− 2j)π

2L
− nπτ

2L
, q

1
2

)
+O(κ−2/L) .

(3.6)

This last expression involves the product of theta functions shifted by fractions of π.

This product can be done using then the identity (B.14) proven in appendix B

Ξ~n =
q
∑L
a=1(n

(a))2

ϑL4 ϑ
L
3

η2L( τ2 )

η2(Lτ2 )
ϑ3

( iµ
2

+
nπτ

2
, q

L
2

)
ϑ3

( iµ
2
− nπτ

2
, q

L
2

)
+O(κ−2/L) . (3.7)
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Now using Watson’s identities (B.9), as well as (B.8), gives

Ξ~n = q
∑L
a=1(n

(a))2 ηL(τ)

ϑL3 ϑ4(0, q
L)η(Lτ)

(
ϑ3(iµ, q

L)ϑ3(nπτ, q
L) + ϑ2(iµ, q

L)ϑ2(nπτ, q
L)
)

+O(κ−2/L) . (3.8)

From this expression one can obtain Z~n (2.10) via the integral transform (2.20) and

the expressions for the Fourier coefficients of the theta function (B.5)

Z~n(N) = q
∑L
a=1(n

(a))2q
LN2

4
ηL(τ)

2ϑL3 ϑ4(0, q
L)η(Lτ)

×
(
(1 + (−1)N )ϑ3(πτn, q

L) + (1− (−1)N )ϑ2(πτn, q
L)
)

+ . . .

(3.9)

To get the index we need to sum over the Fourier modes ~n, as in (2.9) (recall that

n(L) = 0 (2.18)). Using the series representation (B.2) of the theta functions above, we find∑
~n∈ZL−1

q
∑L−1
a=1 (n

(a))2e−2iN
∑L−1
a=1 n

(a)u(a)ϑ3(πτn, q
L)

=
∑

{~n,p}∈ZL
q
∑L−1
a=1 (n

(a))2+Lp2e−2iN
∑L−1
a=1 n

(a)u(a) (3.10)

=
∑

{~n,p}∈ZL
q
∑L−1
a=1 (n

(a)+p)2+p2e−2iN
∑L−1
a=1 (n

(a)+p)u(a)−2iNpu(L)
=

L∏
a=1

ϑ3(Nu
(a)) .

Similarly we obtain

∑
~n∈ZL−1

q
∑L−1
a=1 (n

(a))2e−2iN
∑L−1
a=1 n

(a)u(a)ϑ2(πτn, q
L) =

L∏
a=1

ϑ2(Nu
(a)) . (3.11)

The sum over Z~n is now simple, with only some care required to account for the (−1)N

factors. For this, we use the formula (see (B.4))

q
N2

4 ϑ3

(
Nu(a) +

πτ

2
N
)

=

{
q−iN

2u(a)ϑ3(Nu
(a)) , N even,

q−iN
2u(a)ϑ2(Nu

(a)) , N odd,
(3.12)

which gives

Z(N) = q
LN2

2
ηL(τ)

ϑ4(0, qL)η(Lτ)

L∏
a=1

ϑ3
(
Nu(a) + πτ

2 N
)

ϑ3
+ . . . (3.13)

Substituting this result in (2.6), we finally obtain

ISU(N) =
q
L
6

ϑ4(0, qL)ηL(τ)η(Lτ)
+O

(
e−cN

)
, c > 0 . (3.14)

Writing the remaining theta function in terms of eta functions this can also be written as

ISU(N) =
q
L
6

ηL(τ)η2
(
Lτ
2

) +O
(
e−cN

)
. (3.15)
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As previously mentioned, for the case of L = 1 the result is slightly modified, because

the matter multiplet is in the adjoint rather than bi-fundamental representation (see foot-

note 4). (3.15) is the main result of this section, which we reproduce in the next subsection

using different techniques. We find that the full perturbative dependence on N is given

by this constant term with no subleading 1/N corrections (ignoring non-perturbative cor-

rections), and that the results does not depend on the flavour fugacities. We expect the

leading large N result for U(N) quivers to be of a similar form, since the index is a series in

powers of q with integer coefficients. It would be interesting to study this case by including

the Fourier coefficients in (2.29).

To get to the final result we have first integrated over µ and then summed over ~n. For

completeness we do it also in the reverse order, first summing Ξ~n over the Fourier modes.

This suggests to define an overall Ξ(κ) as

Ξ(κ) ≡ 1 +
∑

~n∈ZL−1

e−2iN
∑L−1
a=1 u

(a)n(a)
∞∑
N=1

Z~n(N)κN

= 1 +
∑

~n∈ZL−1

e−2iN
∑L−1
a=1 u

(a)n(a)
(Ξ~n(κ)− 1) .

(3.16)

Using (3.8) and (3.10) we obtain

Ξ(κ) =
ηL(τ)

η2
(
Lτ
2

) (ϑ3(iµ, qL)

L∏
a=1

ϑ3(Nu
(a))

ϑ3
+ ϑ2(iµ, q

L)

L∏
a=1

ϑ2(Nu
(a))

ϑ3

)
+ . . . (3.17)

Furthermore, as in the case of N = 4 SYM in [10], we can define the odd and even

parts of Ξ as

Ξ±(κ) =
1

2
(Ξ(κ)± Ξ(−κ)) . (3.18)

Since ϑ3 is periodic in π and ϑ2 antiperiodic, we find

Ξ+(κ) =
ηL(τ)

η2
(
Lτ
2

)ϑ3(iµ, qL)

L∏
a=1

ϑ3(Nu
(a))

ϑ3
+ . . .

Ξ−(κ) =
ηL(τ)

η2
(
Lτ
2

)ϑ2(iµ, qL)
L∏
a=1

ϑ2(Nu
(a))

ϑ3
+ . . .

(3.19)

Recall the factor in (2.6) relating the index with the rescaled index Z(N)

q−
N2L

2 q
L
6 qiN

2
∑
a u

(a)

η2L(τ)

L∏
a=1

ϑ3

ϑ3
(
Nu(a) +N πτ

2

) , (3.20)

which due to (3.12) has a nice alternating behavior between even and odd N apart for a

factor of q−
N2L

4 . This suggest that we can also define a grand index as

Ξ̂(κ) = 1 +

∞∑
N=1

q
LN2

4 ISU(N)(N)κN . (3.21)
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This does not involve all the rescaling factors in (2.6), and the difference between even and

odd N is captured by different rescalings of the Ξ± defined above as

Ξ̂(κ) = Ξ+(κ)
q
L
6

η2L(τ)

L∏
a=1

ϑ3

ϑ3(Nu(a))
+ Ξ−(κ)

q
L
6

η2L(τ)

L∏
a=1

ϑ3

ϑ2(Nu(a))

=
q
L
6

ηL(τ)η2
(
Lτ
2

) (ϑ3(iµ, qL) + ϑ2(iµ, q
L)
)

+ . . .

(3.22)

Equation (3.15) is easily reproduced from the inverse of (3.21), i.e., the Fourier expan-

sion of Ξ̂.

3.2 Asymptotics from the grand potential

In the previous subsection we used the formula for Ξ~n in terms of the roots of a poly-

nomial (2.25) and used the large µ expansion of the roots to find (3.8), from which we

deduced the perturbative part of the large N behavior of the index.

We now present an alternative way of obtaining the large µ limit of Ξ~n (3.8) in the

case with vanishing flavour fugacities, by applying the large µ approximation to the grand

potential (2.21). An analog method was used in the case of 3-dimensional theories and is

instructive as it does not rely on the exact expression for Z~n;`, which may not be available

in other settings.

To find the grand potential at large µ we only need the asymptotic behavior of Z~n;` at

large `. Following [24], we use the Mellin-Barnes representation

J~n(µ) = −
∫ c+i∞

c−i∞

d`

2πi

π

sinπ`

Z~n;`
`
e`µ , 0 < c < 1 , (3.23)

and extract the leading order in the large µ from the poles of Z~n;` with largest Re(`).

The representation (3.23) requires some explanation and justification. We first write

Z~n;` (2.18) as an analytic function of ` by splitting it into two sums, one for positive p

and one for strictly negative p. Denoting the sum over the terms with positive p as Z+
~n;`,

we have

Z+
~n;` =

∞∑
p=0

q`
∑L
a=1(p−n(a)+ 1

2)∏L
a=1

(
1 + q2(p−n

(a)+ 1
2))`

= q−`
∑L
a=1(n(a)− 1

2)
∞∑
p=0

q`Lp
∑
~k∈ZL+

q2
∑L
a=1 k

(a)(p−n(a)+ 1
2)

L∏
a=1

(
−`
k(a)

)

= q−`
∑L
a=1(n(a)− 1

2)
∑
~k∈ZL+

q−2
∑L
a=1 k

(a)(n(a)− 1
2)

L∏
a=1

(
−`
k(a)

) ∞∑
p=0

qp(`L+2
∑L
a=1 k

(a)) .

(3.24)

Doing the summation over p, we obtain

Z+
~n;` =

∑
~k∈ZL+

q−
∑L
a=1(2k

(a)+`)(n(a)− 1
2)

1− q(`L+2
∑L
a=1 k

(a))

L∏
a=1

(
−`
k(a)

)
. (3.25)
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This final form admits an analytical continuation in ` to the complex plane, and a similar

argument can be used for Z−~n;`, which is obtained by replacing n(a) → −n(a). For negative

values of µ one can then compute the r.h.s. of (3.23) by closing the contour with an infinite

half circle enclosing the simple poles due to π/ sinπ` at positive values of `, but none of

the poles due to Z~n;`. Using the fact that

Res
`=n

π

sinπ`
= (−1)n , (3.26)

and the fact that the evaluation of the integral on the remaining part of the contour gives

zero, we recover the representation (2.21) as an infinite sum, which is indeed convergent

for negative µ.

To analytically continue J~n(µ) to positive values of µ, we close the contour in (3.23)

with an infinite half-circle in the Re(`) ≤ c half-plane. In this enclosed region, the poles of

Z~n;` and of the cosecant are then at

` = − 2

L

L∑
a=1

k(a) +
2l

Lτ
, k(a) ∈ N , l ∈ Z ,

` = −n , n ∈ N .

(3.27)

It can be shown that the contour integrals coming from the integration over the infinite

half-circle do not contribute, so that (3.23) is determined only by the residues of the

poles (3.27).

As explained in the previous section we are ultimately interested in J~n(µ) for large µ.

The poles that are not on the imaginary axis are exponentially suppressed in this limit.

We can thus write

J~n(µ) = −
∑
m∈Z

Res
`= 2m

Lτ

π

sinπ`

Z~n;`
`
e`µ +O

(
e−

2µ
L

)
, (3.28)

where the scaling in µ of the next to leading order can be deduced from the lattices (3.27).

For the residue of the pole at ` = 0, we obtain

− Res
`=0

π

sinπ`

Z~n;`
`
e`µ

= i
4π2 + L2π2τ2 + 12µ2 − 12π2τ2n2

12Lπτ
+

L∑
a=1

∞∑
k=1

cosh 2iπτkn(a)
(−1)k

k sinh−iπτk
(3.29)

= i
4π2 + L2π2τ2 + 12µ2 − 12π2τ2n2

12Lπτ
−

L∑
a=1

(
log

ϑ3(τπn
(a))

ϑ3
+
iπτ

12
+

1

6
log

4

kk′

)
,

where the sum over k was done using (B.10).

The sum over the poles on the imaginary axis but away from the origin gives

−
∑
m 6=0

Res
`= 2m

Lτ

π

sinπ`

Z~n;`
`
e`µ =

∑
m 6=0

(−1)m+1 e
2mµ
Lτ cos 2πmn

L

m sinh 2iπm
Lτ

= log
ϑ3
(
π
L

( iµ
πτ + n

)
, q′

2
L
)
ϑ3
(
π
L

( iµ
πτ − n

)
, q′

2
L
)

ϑ23
(
0, q′

2
L

) − iπ

3Lτ
+

1

3
log

4

k̃k̃′
.

(3.30)
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This sum was again done using (B.10) but with the complement nome and corresponding

modulus

q′ = e−
iπ
τ , k̃ =

ϑ22(0, q
′ 2L )

ϑ23(0, q
′ 2L )

, k̃′ =
ϑ24(0, q

′ 2L )

ϑ23(0, q
′ 2L )

. (3.31)

Applying a modular transformation (B.6) to (3.30) gives

log
ϑ3
( iµ

2 + πτn
2 , q

L
2

)
ϑ3
( iµ

2 −
πτn
2 , q

L
2

)
ϑ23
(
0, q

L
2

) − iµ2

πτL
+
iπτn2

L
− iπ

3Lτ
+

1

3
log

4

k̃k̃′
. (3.32)

Putting the contributions from all the poles on the imaginary axis together, we obtain

J~n(µ) = log
ϑ3
( iµ

2 + πτn
2 , q

L
2

)
ϑ3
( iµ

2 −
πτn
2 , q

L
2

)
ϑ23
(
0, q

L
2

)
+

2− L
3

log 2 +
1

3
log

(kk′)L/2

k̃k̃′
−

L∑
a=1

log
ϑ3(τπn

(a))

ϑ3
+O(e−2µ/L) .

(3.33)

Finally we use Watson’s identity (B.9) to rewrite the product of theta functions in the

first line in terms of theta functions with nome qL. We also replace k, k′, k̃, k̃′, applying

modular transformations to the latter two. Then we use the quasi-periodicity of the theta

function (B.4), and use (B.7) and (B.8) to express the result in terms of the Dedekind eta

functions to find

J~n(µ) = log
(
ϑ3(iµ, q

L)ϑ3(πτn, q
L) + ϑ2(iµ, q

L)ϑ2(πτn, q
L)
)

+ log
η(τ)L

η(Lτ)ϑL3 ϑ4(0, q
L)

+ iπτ

L∑
a=1

(n(a))2 +O(e−2µ/L) .
(3.34)

We finally obtain

Ξ~n(κ) = q
∑L
a=1(n

(a))2 η(τ)L

ϑL3 ϑ4(0, q
L)η(Lτ)

×
(
ϑ3(iµ, q

L)ϑ3(πτn, q
L) + ϑ2(iµ, q

L)ϑ2(πτn, q
L)
)

+O(κ−2/L) ,

(3.35)

which is identical to (3.8).

4 Exact large N expansions for short quivers

For quivers with one or two nodes we can compute the Schur index exactly, without hav-

ing to resort to perturbative techniques. Recall that the grand partition function can be

expressed by a product of theta functions (2.25) evaluated at the roots of the polyno-

mial (2.23)

XLq−n κ+
L∏
a=1

(
1 +X2q−2n

(a))
. (4.1)
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For L = 1 and L = 2 this polynomial is quadratic in X and X2 respectively, and so the

roots are simply algebraic.6 This results in completely explicit expression for the grand

partition functions which allow us to find closed form expressions for the indices of these

theories. We start by reviewing, the L = 1 calculation carried out in [10], and then show

that the same discussion can be applied to the L = 2 case.

4.1 Single node, N = 4 SYM

For the single node theory (with the only flavour fugacity e2iu
(1)

= e2iU set to one), the

polynomial (4.1) can be factored as

Xκ+ 1 +X2 =
(

1 + κ+
√
κ2−4
2 X

)(
1 + κ−

√
κ2−4
2 X

)
, (4.2)

Comparing with (2.24) we readily obtain d± = ± i
2 log κ+

√
κ2−4
2 = ±1

2 arccos κ2 .

Unlike the cases of L > 1, there are no Fourier modes to sum over, giving a single free

Fermi gas whose grand partition function is7 (2.25)

ΞN=4(κ) =
ϑ23
(
1
2 arccos κ2 , q

1
2

)
ϑ3ϑ4

=
1

ϑ4

[
ϑ3

(
arccos

κ

2

)
+
ϑ2
ϑ3
ϑ2

(
arccos

κ

2

)]
. (4.3)

This is indeed the expression found in [10]. Recall that in terms of the grand partition

function, the index is given by8

IN=4(N) =
q−

N2

2 q
1
4 η2( τ2 )ϑ3

η4(τ)ϑ3(
πτ
2 N)

∫ iπ

−iπ

dµ

2πi
e−µNΞN=4(eµ) . (4.4)

In [10] the integral over µ was evaluated by studying the large µ expansion of the integrand.

We proceed here in a slightly different way, performing instead the complete expansion in

powers of eµ and q. Since the calculation is ultimately exact, we arrive at the same result.

Expanding the square of the theta function in the middle expression of (4.3) gives

e−µNΞN=4(eµ) =
e−µN

ϑ3ϑ4

∞∑
m=−∞

∞∑
j=−∞

q
1
2
(m2+j2)

(
eµ+
√
e2µ−4
2

)m+j
. (4.5)

Applying the expansion formula (D.2) this is

1

ϑ3ϑ4

∞∑
m=−∞

∞∑
j=−∞

∞∑
s=0

q
1
2
(m2+j2)eµ(m+j−2s−N) (−1)s(m+ j)(m+ j − s− 1)!

s!(m+ j − 2s)!
(4.6)

6For the theory with L = 4 the polynomial is quartic and so can also be factored algebraically. It would

be interesting to see if a similar analysis would also give a complete solution for the index of this theory.
7Although the matrix model still has a delta function coming from the tracelessness condition of SU(N),

the Kronecker delta in (2.18) ensures that only the mode with n = 0 contributes.
8Note the additional factor of q

1
12 η2( τ

2
)η−2(τ) in (4.4) compared with (2.6) with vanishing u’s, coming

from the fact that the hypermultiplets are in adjoint rather than bi-fundamental representations of SU(N)

(see also footnote 4).
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Integrating over µ simply gives a Kronecker delta δm+j−2s−N , which removes the sum

over m

Z(N) =

∫ iπ

−iπ

dµ

2πi
e−µNΞN=4(eµ)

=
1

ϑ3ϑ4

∞∑
j=−∞

∞∑
s=0

q(j−s−
N
2 )

2
+(s+N

2 )
2 (−1)s(N + 2s)(N + s− 1)!

s!N !
.

(4.7)

Finally evaluating the sum over j and including the prefactors from (4.4) yields

IN=4(N) =
q

1
4

η3(τ)

∞∑
s=0

(−1)s(N + 2s)
(N + s− 1)!

s!N !
qNs+s

2

=
q

1
4

η3(τ)

∞∑
s=0

(−1)s
[(
N + s

N

)
+

(
N + s− 1

N

)]
qNs+s

2
.

(4.8)

At leading order at large N this is simply q1/4/η2(τ), which differs from (3.15) by the

contribution of one free hypermultiplet (see footnotes 4 and 8). As discussed in [10] it

would be interesting to find an interpretation for the exponential corrections, possibly as

D3-brane giant gravitons in AdS5 × S5.

4.2 Two nodes

For the two-node quiver, L = 2, the polynomial (4.1) can be factored as

κq−nX2 + (1 +X2)(1 + q−2nX2) =
(

1 + κ̃+
√
κ̃2−4
2 q−nX2

)(
1 + κ̃−

√
κ̃2−4
2 q−nX2

)
, (4.9)

where κ̃ = κ + qn + q−n. Comparing with (2.26) we obtain d̃± = −πτn
2 ±

1
2 arccos κ̃2 and

substituting into (2.27) gives

ΞL=2
n (κ) =

qn
2

ϑ23
ϑ3

(πτn
2

+
1

2
arccos

κ̃

2

)
ϑ3

(πτn
2
− 1

2
arccos

κ̃

2

)
. (4.10)

Using Watson’s identity (B.9), this can also be written as the sum of theta functions with

nome q2, (cf., the last expression in (4.3)), but this representation will not be simpler for us.

In terms of the grand partition function, the index with flavour fugacities such that

u ≡ u(1) = −u(2), is given by (see (2.6), (2.9) and (2.20))

IL=2(N) =
q−N

2
q

1
3ϑ23

η4(τ)
∏
± ϑ3

(
N πτ

2 ±Nu
) ∞∑
n=−∞

e−2iNnu

2πi

∫ iπ

−iπ
dµ e−µNΞL=2

n (eµ) . (4.11)

One could proceed by evaluating the large µ expansion of the integrand, but it turns out to

be simpler to perform instead the full expansion of the grand partition function in powers

of eµ and q.

Expanding the theta functions in (4.10), the integrand of (4.11) can be written as

e−µNΞL=2
n =

e−µN

ϑ23

∞∑
m=−∞

∞∑
j=−∞

qn
2+m2+j2qn(m+j)

(
eµ+qn+q−n+

√
(eµ+qn+q−n)2−4
2

)m−j
.

(4.12)
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Using the expansion formula (D.1) this is

1

ϑ23

∞∑
m=−∞

∞∑
j=−∞

∞∑
k=0

∞∑
l=0

qn
2+m2+j2qn(m+j+k−l)eµ(m−j−k−l−N)

× (m− j) (m− j − k − 1)!(m− j − l − 1)!

k!l!(m− j − k − l)!(m− j − k − l − 1)!
.

(4.13)

Integrating over µ gives a Kronecker delta δm−j−k−l−N , which removes the sum over m

Zn =

∫ iπ

−iπ

dµ

2πi
e−µNΞn =

1

ϑ23

∞∑
j=−∞

∞∑
k=0

∞∑
l=0

qn
2+(j+k+l+N)2+j2qn(2j+2k+N)

× (N + l + k)
(N + k − 1)!(N + l − 1)!

N !(N − 1)!k!l!
.

(4.14)

Summing over n (2.9) then gives

Z(N) =

∞∑
n=−∞

e−2iNnuZn =
ϑ3
(
πτ
2 N − uN

)
ϑ23

∞∑
j=−∞

∞∑
k=0

∞∑
l=0

e2iuN(j+k)

× q(j+k+l+N)2+j2−(j+k)(j+k+N)(N + l + k)
(N + k − 1)!(N + l − 1)!

N !(N − 1)!k!l!
.

(4.15)

Finally evaluating the sum over j and including the prefactors from (4.11) we obtain

IL=2(N) =
q

1
3

η4(τ)

∞∑
k=0

∞∑
l=0

(N+k+ l)
(N + k − 1)!(N + l − 1)!

N !(N − 1)!k!l!
qN(k+l)+2kle2iuN(k−l) . (4.16)

Alternatively this can be written as

q
1
3

η4(τ)

∞∑
k=0

∞∑
l=0

[(
N + k

N

)(
N + l − 1

N − 1

)
+

(
N + k − 1

N − 1

)(
N + l − 1

N

)]
× qN(k+l)+2kle2iuN(k−l) .

(4.17)

At leading order at large N this is simply

IL=2(N) =
q

1
3

η4(τ)
+O(qN ) , (4.18)

in agreement with (3.15). Here we see explicitly how the dependence on u appears from

terms in the sum with k − l 6= 0, all of which are exponentially suppressed at large N .

As in the case of N = 4 SYM in the previous section, the large N expansion (4.16) begs

for a holographic interpretation (at least for u = 0). For N = 4 there is a single sum (4.8)

while here there is a double sum. In both cases the leading exponential term is proportional

to N , suggesting a D3-brane interpretation. The double sum could correspond to two

different types of D3 giant gravitons, with the extra 2kl term signifying some interaction

between the two stacks of branes. It would be interesting to find appropriate supergravity

solutions and/or brane embeddings that would reproduce this structure.
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5 Finite N results for short quivers

In [10] the index of the single node quiver (without flavour fugacity) was also written in

closed form for finite values of N in terms of complete elliptic integrals. This was done by

studying the spectral traces (2.18), which for L = 1 are particularly simple

ZN=4
` =

∑
p∈Z

(
1

2 cosh iπτ
(
p− 1

2

))` . (5.1)

These sums can be performed using the algorithm of [25]. The result can then be easily

recombined using (2.13) and (2.6) (with the additional factor in footnote 4) to recover the

index. For N = 1, · · · , 4 the results thus obtained are

IN=4(1) =
η2( τ2 )

√
k

η4(τ)

K

π
, IN=4(2) =

q−
3
4 η2( τ2 )

η4(τ)

−EK +K2

2π2
,

IN=4(3) =
q−2η2( τ2 )

√
k

η4(τ)

(
−3EK2 + (2− k2)K3

6π3
+

K

24π

)
,

IN=4(4) =
q−

15
4 η2( τ2 )

η4(τ)

(
3E2K2 − 6EK3 + (3− 2k2)K2

24π4
− EK −K2

24π2

)
,

(5.2)

where K ≡ K(k2) and E ≡ E(k2) are complete elliptic integrals of the first and second

kind respectively, with elliptic modulus given by k = ϑ22/ϑ
2
3.

For quivers with more than a single node, we find that computing the spectral traces

becomes intractable, due to the nontrivial dependence of (2.18) on the Fourier modes. In

the case with no flavour fugacities we are still able to proceed by a number of alternate

methods (which work perfectly well also for the single node case). The first two methods

apply to the case of L = 2 and are based on the exact solution and the large N expansion

in section 4. In the next subsection we use the explicit expression for the grand partition

function expanded at small κ to find the result for N = 2. In the following subsection

we use the exact large N expansion of the index (4.16) and resum it for finite values

of N . Finally we address some 3-node and 4-node quivers by guessing a finite basis of

polynomials of elliptic integrals and fixing the coefficient by comparing their q-expansion to

the representation of the index as the sum (2.9), (2.18). This can in principle be applied to

quivers of arbitrary length and with arbitrary rank, but requires significant computational

resources when either becomes large.

5.1 Expanding the grand partition function

Recall that the grand partition function for L = 2 is defined as (2.19)

ΞL=2
n = 1 +

∞∑
N=1

ZL=2
n (N)κN . (5.3)

Since we found the left hand side in closed form (4.10), we can recover ZL=2
n (N) for

finite values of N . The index is then given by the sum (2.9) together with the prefactors
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from (2.6), which in the case without flavour fugacities becomes

IL=2(N) =
q−N

2
q

1
3ϑ23

η4(τ)ϑ23
(
Nπτ
2

) ∞∑
n=−∞

ZL=2
n (N) . (5.4)

For instance, the coefficient of κ2 gives

ZL=2
n (2) =

qn
2

32

(
ϑ′′3ϑ3(nπτ)

ϑ23 sin2 nπτ
+

sinnπτϑ′′3(nπτ)− 2 cosnπτϑ′3(nπτ)

ϑ3 sin3 nπτ

)
. (5.5)

For n = 0 this is

ZL=2
0 (2) =

1

192ϑ3

(
4ϑ3ϑ

′′
3 + 3ϑ′′23 + ϑ3ϑ

(4)
3

)
(5.6)

=
3E2K2 − 6(1− k2)EK3 + (1− k2)(3− 2k2)K4

6π4
+

(1− k2)K2 −KE
12π2

.

To get the expression in the last line, one can apply the heat equation satisfied by all

Jacobi theta functions and convert the derivatives into τ derivatives. Then one can apply

the standard relation ϑ3 =
√

2K
π together with (5.19) to reduce everything to complete

elliptic integrals.

For n 6= 0 the partition function (5.5) is

ZL=2
n 6=0 (2) =

ϑ′′3
ϑ3

1

16 sin2 nπτ
+
in cosnπτ − n2 sinnπτ

8 sin3 nπτ
, (5.7)

where we have used

ϑ3(nπτ) = q−n
2
ϑ3 , ϑ′3(nπτ) = −2inq−n

2
ϑ3 , ϑ′′3(nπτ) = q−n

2
(ϑ′′3 − 4n2ϑ3) . (5.8)

The sum over n of the first term in (5.7) has been evaluated in [25]∑
n 6=0

1

16 sin2 nπτ
=

K

12π2
(
3E − (2− k2)K

)
− 1

48
, (5.9)

and the prefactor can be written in terms of elliptic integrals as

ϑ′′3
ϑ3

=
−4KE + 4(1− k2)K2

π2
. (5.10)

The sum over n 6= 0 of the second term vanishes since9∑
n 6=0

in cosnπτ

8 sin3 nπτ
=
∑
n 6=0

n2

8 sin2 nπτ
. (5.11)

Putting this together we obtain

IL=2(2) =
q−

5
3

η4(τ)

−3E2K2 + 2(2− k2)EK3 − (1− k2)K4

6π4
, (5.12)

One can apply this procedure to higher values of N , but we find the approach of the next

subsection to be more efficient.
9This equality can be easily verified by studying the q expansions.
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5.2 Resumming the large N expansion

Here we take the result of section 4 for the exact large N expansion (4.16) and resum it

for finite values of N . Inspired by the techniques of [25], we find a systematic approach to

computing this double infinite sum.

The details differ slightly for even and odd N . First we consider (4.16) with u = 0 for

even N = 2r

IL=2(2r) =
q

1
3

η4(τ)

∞∑
k=−r+1

∞∑
l=−r+1

(2r + k + l)
(2r + k − 1)!(2r + l − 1)!

(2r)!(2r − 1)!k!l!
q2r(k+l)+2kl . (5.13)

Notice that compared to (4.16) we have extended the sums to include negative values of k

and l, for which the summand clearly vanishes. Applying the formula

(2r + k − 1)!

k!
=

r−1∑
m=0

αm(r)(r + k)2r−2m−1, (5.14)

where αm(r) are numerical coefficients generated by

r−1∑
m=0

αm(r)tm =

r−1∏
j=1

(1− j2t) , (5.15)

and writing the sums over k and l in terms of indices j = k + r, n = l + r yields

IL=2(2r) =
q

1
3 q−2r

2

η4(τ)(2r − 1)!(2r)!

r−1∑
m=0

r−1∑
m′=0

αm(r)αm′(r)

×
∞∑
j=1

∞∑
n=1

(j + n)j2r−2m−1n2r−2m
′−1q2jn .

(5.16)

We are now faced by (finitely many) double infinite sums of the form

∞∑
j=1

∞∑
n=1

jana+2s+1q2jn =
∂aτ

(2πi)a

∞∑
j=1

∞∑
n=1

n2s+1q2jn =
∂aτ

(2πi)a
A2s+1 , a, s ∈ N , (5.17)

and likewise with j ↔ n. The quantities A2s+1 =
∑∞

n=1 n
2s+1 q2n

1−q2n played a central role

also in the evaluation of certain hyperbolic sums in [25]. They are be generated by10

∞∑
s=0

(−1)sA2s+1
(2t)2s

2s!
=
K(K − E)

4π2
+

1

8 sin2 t
− K2

4π2
ns2
(

2Kt

π
, k2
)
, (5.18)

Arbitrary numbers of τ derivatives of the A2s+1 can be easily evaluated by applying the

formulas
∂τ
2πi

k =
k(1− k2)K2

π2
,

∂τ
2πi

K =
EK2 − (1− k2)K3

π2
,

∂τ
2πi

E =
(1− k2)(EK2 −K3)

π2
.

(5.19)

10ns and sn used below are standard Jacobi elliptic functions (ns = 1/ sn).

– 23 –



J
H
E
P
0
1
(
2
0
1
6
)
1
6
7

Let us now turn to the case of odd N = 2r + 1. Analogously to the even case, the

formula
(2r + k)!

k!
= 2−2r

r∑
m=0

α̃m(r)(2r + 2k + 1)2r−2m , (5.20)

where α̃ are generated by
r∑

m=0

α̃m(r)tm =

r∏
j=1

(
1− (2j − 1)2t

)
, (5.21)

allows us to write (cf., (5.16))

I(2r + 1) =
q

1
3 q−

(2r+1)2

2

η4(τ)(2r)!(2r + 1)!24r

r∑
m=0

r∑
m′=0

α̃m(r)α̃m′(r)

×
∞∑
j=0

∞∑
n=0

(j + n+ 1)(2j + 1)2r−2m(2n+ 1)2r−2m
′
q

1
2
(2j+1)(2n+1) .

(5.22)

In this case we are faced by double infinite sums
∞∑
j=0

∞∑
n=0

(2j + 1)a(2n+ 1)a+2s+1q
1
2
(2j+1)(2n+1)

=
2a∂aτ
(πi)a

∞∑
j=0

∞∑
n=0

(2n+ 1)2s−1q
1
2
(2j+1)(2n+1) =

2a∂aτ
(πi)a

H2s+1 ,

(5.23)

The quantities H2s+1 =
∑∞

n=0(2n + 1)2s+1 qn+
1
2

1−q2n+1 also appeared in [25]. They are gener-

ated by
∞∑
s=0

(−1)sH2s+1
t2s+1

(2s+ 1)!
=
kK

2π
sn

(
2Kt

π
, k2
)
. (5.24)

Arbitrary numbers of τ derivatives of the H2s+1 can again be straight forwardly evaluated

using (5.19).

This algorithm can be easily implemented to sum (4.16) for finite values of N . For

N = 1, · · · , 4 this gives

IL=2(1) =
q−

1
6k

η4(τ)

K2

π2
,

IL=2(2) =
q−

5
3

η4(τ)

−3E2K2 + 2(2− k2)EK3 − (1− k2)K4

6π4
,

IL=2(3) =
q−

25
6 k

η4(τ)

(
6E2K4 − 6(1− k2)EK5 + (1− k2)2K6

12π6
− EK3 + k2K4

24π4
+

K2

192π2

)
,

IL=2(4) =
q−

23
3

η4(τ)

(
−3E4K4 + 4(2− k2)E3K5 − 6(1− k2)E2K6 + (1− k2)2K8

72π8

+
15E3K3 − 15(2− k2)E2K4 + (11− 11k2 − 4k4)EK5 + 2(1− k2)(2− k2)K6

1080π6

− 3E2K2 − 2(2− k2)EK3 + (1− k2)K4

432π4

)
. (5.25)

The algorithm can easily be pushed to higher values of N using Mathematica.
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5.3 Results from the q-expansion of longer quivers

In all the examples presented above the rescaled index Z(N) (2.6) at finite N is expressed

as a polynomial in K, E and k. This is also true for the trivial case of arbitrary L and

N = 1. This is just the theory of L free hypermultiplets, where the index without flavour

fugacities can be rewritten in terms of elliptic integrals as

IL>1(1) =

(
q−

1
12ϑ3

η2(τ)ϑ2

)L
Z(1) =

(
q−

1
12k

1
2K

πη2(τ)

)L
. (5.26)

Inspired by these results, we conjecture that for arbitrary L, N , the rescaled index Z(N)

is always given by a polynomial in complete elliptic integrals and the elliptic modulus11

Z(N) = k
L
2
(1−(−1)N )

∑
j,l,m

aj,l,mk
2j

(
K

π

)l (E
π

)m
. (5.27)

Studying which terms appear in (5.2), (5.25) and (5.26) we guess that the only nonzero

coefficients have
j ≥ 0 , l ≥ L , k ≥ 0 ,

l −m− 2j ≥ 0 ,

LN − l −m ≥ 0 is even.

(5.28)

These constraints leave us with finitely many aj,l,m, which we can fix by comparing the

q expansions of each side of (5.27). We first use the relations (2.9), (2.19) and (2.22) to

express the left hand side as

Z(N) =
∑

~n∈ZL−1

∏
p∈Z

(
1 + κ

L∏
a=1

1

qp−n
(a)+ 1

2 + q−p+n
(a)− 1

2

)∣∣∣∣
κN
, (5.29)

where |κN indicates extracting the coefficient of κN . Now the q expansion can be easily

obtained by truncating the sum over ~n and the product over p at large orders. Solving

the resulting linear problems for the aj,l,m and reintroducing the scaling factor in (2.6) we

have obtained the results

IL=3(2) =
q−

5
2

η6(τ)

(
−E3K3 + 3E2K4 − 3(1− k2)EK5 + (1− k2)2K6

2π6
− k2K4

8π4

)
,

IL=3(3) =
q−

25
4 k

3
2

η6(τ)

(
−(1− k2)2(1 + k2)K9

120π9
− 8EK4 − (29 + 21k2)K5

1920π5

− 24E2K5 − 24(1− k2)EK6 + 5(1− k2)2K7

96π7
+

K3

1536π3

)
,

IL=4(2) =
q−

10
3

η8(τ)

(
−3E4K4 + 4(2− k2)E3K5 − 6(1− k2)E2K6 + (1− k2)2K8

6π8

− 2(1− k2 + k4)EK5 − (1− k2)(2− k2)K6

45π6

)
. (5.30)

11Note that q
LN2

4
ϑL3 (πτN2 )

ϑL3
= k

L
4
(1−(−1)N ).
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To fix a unique solution for the first, second and third equalities of (5.30) we required the

q expansions of (5.27) up to q19, q38 and q38 respectively. We have further checked that

the solutions reproduce the q expansions of the right hand side of (5.29) up to q90, q90 and

q48 respectively. One could continue to larger values of N and L, but the number of terms

required in (5.29) grows very quickly.
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A The index of N = 2 multiplets and theta functions

The most general index of generic N = 1 superconformal theory in 4d depends on three

fugacities for space-time and R symmetry, denoted by p, q and t. The chiral multiplet with

flavour fugacity z is written as

IN=1
chir = Γe

(
tz; p2, q2

)
, (A.1)

where Γe is the elliptic gamma function, defined by

Γe(z; r, s) =
∏
j,k>0

1− z−1rj+1sk+1

1− zrjsk
. (A.2)

An N = 2 hypermultiplet then contributes the product of two elliptic gamma functions

IN=2
hyp = Γe

(
tz; p2, q2

)
Γe
(
tz−1; p2, q2

)
. (A.3)

The Schur limit corresponds to t = q, and the equation above becomes

IN=2
hyp = Γe(qz; p2, q2)Γe(qz

−1; p2, q2) =
1

θ(qz, q2)
. (A.4)

This last expression is a q-theta function defined as

θ(z, q) =
∞∏
n=0

(1− zqn)(1− qn+1/z) , (A.5)

and it is indeed simple to check from the definition (A.2) that the product of the two

gamma functions in (A.4) reduce to a theta function.
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As was already done in [8] for the N = 1 case, the contribution from an N = 2 vector

multiplet can also be expressed in terms of the q-theta function as

IN=2
vec =

(q2; q2)2rG∞
|W|

1

πN

∫ π

0
dNα

∏
i<j

θ(e−2i(αi−αj), q2)θ(e2i(αi−αj), q2) . (A.6)

The prefactor includes a q-Pochhammer symbol, defined for |q| < 1 by

(a; q)∞ =
∞∏
r=0

(1− aqr) . (A.7)

Clearly the q-theta function (A.5) is the product of two q-Pochhammer symbols.

B Definitions and useful identities

In this paper we chose to use Jacobi theta functions and the Dedekind eta function rather

than q-theta functions and q-Pochhammer symbols. These are related by

θ(e2iz, q2) =
−ieiz ϑ1(z, q)
q1/6η(τ)

,
(
q2; q2

)
∞ = q−1/12η(τ) . (B.1)

where the (quasi)period τ is related to the nome q by q = eiπτ . The Jacobi theta function

ϑ3(z, q) is given by the series and product representations

ϑ3(z, q) =

∞∑
n=−∞

qn
2
e2inz =

∞∏
k=1

(
1− q2k

)(
1 + 2q2k−1 cos (2z) + q4k−2

)
,

ϑ2(z, q) = q
1
4 e−izϑ3

(
z − 1

2πτ, q
)

=
∞∑

n=−∞
q(n+

1
2
)2ei(2n+1)z

= 2q
1
4 cos(z)

∞∏
k=1

(
1− q2k

)(
1 + 2q2k cos (2z) + q4k

)
.

(B.2)

The remaining two theta functions are given by

ϑ1(z, q) = iq
1
4 e−izϑ3

(
z − 1

2πτ −
1
2π, q

)
,

ϑ4(z, q) = ϑ3
(
z − 1

2π, q
)
.

(B.3)

ϑ3 satisfies the quasi-periodic properties for any integers n,m

ϑ3(z + nπ +mπτ, q) = q−m
2
e−2izmϑ3(z, q) . (B.4)

We also give here formulae to evaluate integrals of derivatives of theta functions

1

2πi

∫ iπ

−iπ
dµe−mµ∂lµϑ3(iµ, q) = mlq

m2

4
1

2
(1 + (−1)m) ,

1

2πi

∫ iπ

−iπ
dµe−mµ∂lµϑ2(iµ, q) = mlq

m2

4
1

2
(1− (−1)m) .

(B.5)
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Jacobi’s imaginary transformation with τ = −1/τ ′, and q′ ≡ eiπτ ′ are

ϑ1(z, q) = (−i)(−iτ)−
1
2 eiτ

′z2/πϑ1(τ
′z, q′) ,

ϑ2(z, q) = (−iτ)−
1
2 eiτ

′z2/πϑ4(τ
′z, q′) ,

ϑ3 (z, q) = (−iτ)−
1
2 eiτ

′z2/πϑ3(τ
′z, q′) ,

ϑ4 (z, q) = (−iτ)−
1
2 eiτ

′z2/πϑ2(τ
′z, q′) .

(B.6)

We also use in the main text the formula

ϑ3ϑ2ϑ4 = 2η(τ)3 , (B.7)

as well as (see 20.7(iv) of [26])

η2(τ/2) = ϑ4η(τ) . (B.8)

We also require Watson’s identity (see 20.7(v) of [26])

ϑ3(z, q)ϑ3(ω, q) = ϑ3
(
z + ω, q2

)
ϑ3
(
z − ω, q2

)
+ ϑ2

(
z + ω, q2

)
ϑ2
(
z − ω, q2

)
. (B.9)

An infinite sum in terms of Jacobi theta functions. We make use in section 3.2 of

the formula

∞∑
n=1

(−1)n
cos 4αn

n sinh(−iπτn)
= − iπτ

12
− 1

6
log

4

kk′
− log

ϑ3 (2α, q)

ϑ3(0, q)
, (B.10)

which is a combination of (see 16.30.3 of [27])

∞∑
n=1

(−1)n

n sinh(−iπτn)
(1− cos 4αn) = log

ϑ3 (2α, q)

ϑ3(0, q)
, (B.11)

and (see T1.3 of [28])

∞∑
n=1

(−1)n

n sinh(−iπnτ)
= − iπτ

12
− 1

6
log

4

kk′
, (B.12)

where the elliptic modulus and complementary elliptic modulus are respectively defined as

k =
ϑ22
ϑ23
, k′ =

ϑ24
ϑ23
. (B.13)
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A multiple angle formula for theta functions. We prove here a formula for the

product of theta functions shifted by roots of unity used in section 3.112

L∏
j=1

ϑ3

(
z + L−2j+1

2L π, q
)

=

∞∏
n=1

L∏
j=1

(1− q2n)(1 + 2q2n−1 cos
(
2z + π

L(L+ 2j − 1)
)

+ q4n−2)

=
∞∏
n=1

L∏
j=1

(1− q2n)
(
1 + eiπ

L−2j+1
L

+2izq2n−1
)(

1 + e−iπ
L−2j+1

L
−2izq2n−1

)
=
∞∏
n=1

(1− q2n)L
(
1 + e2iLzqL(2n−1)

)(
1 + e−2iLzqL(2n−1)

)
= ϑ3(Lz, q

L)
ηL(τ)

η(Lτ)
.

(B.14)

C A determinant identity for Jacobi theta functions

A crucial identity for our analysis is the generalization of the Cauchy determinant identity

to theta functions. For arbitrary xi, yj , t with i, j = 1, · · · , n we have the identity for

q-theta functions [30, 31]

det
ij

(
θ(txjyi)

θ(t)θ(xjyi)

)
=
θ(tx1x2 · · ·xny1y2 · · · yn)

θ(t)

∏
i<j xjyjθ(xi/xj)θ(yi/yj)∏

i,j θ(xjyi)
, (C.1)

where we have used the notation θ(z) = θ(z, q2).

One can recover the usual Cauchy identity by taking the limit q → 0, where θ(z) →
1− z. Taking also the limit t→∞ we find

det
ij

(
1

1− xiyj

)
=

∏
i<j(xi − xj)(yj − yi)∏

i,j(1− xiyj)
, (C.2)

and the usual form of the Cauchy identity is recovered by taking xi → 1
xi

.

In the study of indices we encounter a determinant closely related to (C.1). Making

the replacement xi → e2iαi , yi → qe−2iα
′
i as well as t→ −q2T , and rewriting the expression

in terms of Jacobi theta functions yields∏
i<j ϑ1

(
αi − αj

)
ϑ1
(
α′i − α′j

)∏N
i,j=1 ϑ4

(
αi − α′j

) (C.3)

= det
ij

(
ϑ3
(
αi − α′j + πτT

)
ϑ4
(
αi − α′j

) )
q−

N2

4
−NT

ϑ2
(∑N

i=1(αi − α′i) + πτ(T + N
2 )
) e−iN∑N

i=1(αi−α′i)

ϑ2(πτT )N−1
.

12This formula can also be found (without proof) in [29].
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By choosing T = −1
2 we obtain

det
ij

(
ϑ2
(
αi − α′j

)
ϑ4
(
αi − α′j

)) q−
N2

4

ϑ3

(∑N
i=1(αi − α′i) +N πτ

2

) e−iN∑N
i=1(αi−α′i)

ϑN−13 (0)
. (C.4)

The ratio of Jacobi theta functions appearing in the determinant is in fact closely

related to the Jacobi elliptic function cn

ϑ2(z)

ϑ4(z)
=
ϑ2
ϑ4

cn(zϑ23) , (C.5)

where cn(z) ≡ cn(z, k2) and the elliptic modulus k is defined in (B.13).

D An expansion formula

Here we present a proof for(
κ+q+q−1+

√
(κ+q+q−1)2−4
2

)x
=

∞∑
k=0

∞∑
l=0

x(x− k − 1)!(x− l − 1)!

k!l!(x− k − l)!(x− k − l − 1)!
κx−k−lqk−l . (D.1)

Our starting point is the expansion(
y +

√
y2 − 4

2

)x
=
∞∑
s=0

(−1)sx(x− s− 1)!

s!(x− 2s)!
yx−2s . (D.2)

Replacing yx−2s = (κ+ q + q−1)x−2s by its multinomial expansion gives

∞∑
s=0

∞∑
m=0

∞∑
j=0

(−1)sx(x− s− 1)!

s!m!j!(x− 2s−m− j)!
κx−2s−m−jqj−m . (D.3)

Rewriting the sum in terms of indices l = m+ s and k = j + s gives

∞∑
s=0

∞∑
k=s

∞∑
l=s

(−1)sx(x− s− 1)!

s!(k − s)!(l − s)!(x− k − l)!
κx−k−lqk−l . (D.4)

Interchanging the order of summation we finally obtain

∞∑
k=0

∞∑
l=0

min(l,k)∑
s=0

(−1)sx(x− s− 1)!

s!(k − s)!(l − s)!(x− k − l)!
κx−k−lqk−l

=

∞∑
k=0

∞∑
l=0

x(x− k − 1)!(x− l − 1)!

k!l!(x− k − l)!(x− k − l − 1)!
κx−k−lqk−l .

(D.5)
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