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with higher derivative terms. In this paper, as the first step to study the gravity with a

Gauss-Bonnet(GB) term, we compute the quasi-normal modes of the spherically symmetric

GB black hole in the large D limit. When the GB parameter is small, we find that the

non-decoupling modes are the same as the Schwarzschild case and the decoupled modes are

slightly modified by the GB term. However, when the GB parameter is large, we find some

novel features. We notice that there are another set of non-decoupling modes due to the

appearance of a new plateau in the effective radial potential. Moreover, the effective radial

potential for the decoupled vector-type and scalar-type modes becomes more complicated.

Nevertheless we manage to compute the frequencies of the these decoupled modes analyti-

cally. When the GB parameter is neither very large nor very small, though analytic compu-

tation is not possible, the problem is much simplified in the large D expansion and could be

numerically treated. We study numerically the vector-type quasinormal modes in this case.

Keywords: Classical Theories of Gravity, Black Holes

ArXiv ePrint: 1511.08706

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2016)085

mailto:bchen01@pku.edu.cn
mailto:fanzhy@pku.edu.cn
mailto:wlpch@pku.edu.cn
mailto:victorye@pku.edu.cn
http://arxiv.org/abs/1511.08706
http://dx.doi.org/10.1007/JHEP01(2016)085


J
H
E
P
0
1
(
2
0
1
6
)
0
8
5

Contents

1 Introduction 2

2 Basic geometry 4

2.1 Small α̃ 4

2.2 Large α̃ 5

3 The quasinormal modes for a scalar field 5

3.1 Near-region solutions 6

3.1.1 Small α̃ 6

3.1.2 Large α̃ 7

3.2 Far-region solutions 7

3.3 Quasinormal modes 7

4 Non-decoupling modes for gravitational perturbations 8

4.1 Small α̃ 9

4.2 Large α̃ 9

4.2.1 Lower plateau 10

4.2.2 Higher plateau 12

5 Decoupled modes for gravitational perturbations 12

5.1 Small α̃ 13

5.1.1 Tensor type 14

5.1.2 Vector type 14

5.1.3 Scalar type 15

5.2 Large α̃ 16

5.2.1 Tensor type 17

5.2.2 Vector type 17

5.2.3 Scalar type 20

6 Summary and discussions 22

A Numerical results of the first leading order of decoupled quasinormal

modes of “hybrid” Gauss-Bonnet black holes 23

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
0
8
5

1 Introduction

In Einstein’s General Relativity, the vacuum equation takes a very simple form

Rµν = 0. (1.1)

However mathematically concise and beautiful it looks, the equation is a set of coupled

highly non-linear partial differential equations. The nonlinearity makes it extremely diffi-

cult to analyze. In recent years, Emparan, Suzuki and Tanabe (EST) [1–3] proposed an

ingenious method called “Large D Expansion” to study the dynamics of the black holes.

EST considers the limit that the spacetime dimension is very large and develops a sys-

tematic way to do 1/D expansion. This method was inspired by the large N expansion of

SU(N) gauge theories [4, 5]. Extended objects called strings are formulated in the large N

expansion of Yang-Mills theories and the counterpart of the string in the Large D expan-

sion of gravity is the black hole. A Schwarzschild black hole of a Schwarzschild radius r0

in D spacetime dimensions is described by the metric [6]

ds2 = −
(

1−
(
r0

r

)D−3)
dt2 +

dr2(
1−

(
r0
r

)D−3
) + r2dΩ2

D−2. (1.2)

We can see that the geometry of a black hole in D spacetime dimensions is non-trivial only in

a distance r0
D−3 away from its event horizon outside of which the geometry can be essentially

taken as the Minkowskian spacetime. Therefore, the black holes can be regarded as non-

interacting “particles” of finite radius but vanishingly small cross sections [1]. Thus, the

focus of EST’s work has been mainly on these non-perturbative extended objects, while the

black branes and the membranes have also been considered in their work and the following

works by other groups1 [1–3, 7–11].

Most importantly, EST have developed a systematic method of computing the quasi-

normal modes by the 1/D expansion and obtained the results in perfect agreement with

previous numerical results [7, 9, 10]. They found that there are two kinds of quasinormal

modes, the non-decoupling ones and the decoupled ones. The non-decoupling ones are non-

renormalizable in the near horizon geometry, and such modes have frequencies of order D
r0

.

These modes, however, are universally shared among all spherically static black holes since

they essentially reflect the asymptotic flatness of the black hole so that they carry little

information about the black hole geometry. Besides, there are decoupled modes localized

within the near horizon region, with their frequencies being of order 1
r0

. In contrast to the

non-decoupling modes, the decoupled modes is tightly related to the specific black hole

geometry beyond the leading large D limit. Therefore, their values at the higher orders

exhibit detailed near-horizon properties of a specific black hole.

The quantum corrections to the classical general relativity implies the existence of

the higher curvature terms. Among the higher curvature terms, the so-called Gauss-

Bonnet(GB) term is of particular interest. It is made up of the quadratic terms in curvature,

1For another large D limit, see [12].
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and appears as the leading correction in string theory [13, 14]. This term is a simple topo-

logical term when D = 4, and becomes physically relevant only when D ≥ 5. Including

the Gauss-Bonnet term into the gravity action, we get

I =
1

16πGD

∫
dD
√
−g
(
R+ α(RabcdR

abcd − 4RcdR
cd +R2)

)
, (1.3)

where α is a parameter for the GB term. This action describes the so-called Einstein-

Gauss-Bonnet gravity or simply Gauss-Bonnet gravity. One nice thing about this action

is that the equation of motion is still of second order and there is no ghost. Another nice

thing is that there are well-known black hole solutions in this theory.

A natural generalization of EST’s work is to perform a large D expansion in the Gauss-

Bonnet gravity theory. As the first step, we would like to compute the quasi-normal modes

of a spherically symmetric GB black hole in the large D expansions. The master equations

for the scalar-, vector- and tensor-type perturbations have been computed in [15–18]. A

complete numerical analysis of the evolution of the gravitational perturbations for D-

dimensional Gauss-Bonnet black holes with D = 5 ∼ 11 was performed by Konoplya [18],

and the stability and instability regions have been determined comprehensively there. The

aim of our work is to perform a systematic calculation of quasinormal modes in the large

D expansion. The Gauss-Bonnet term could be originated from the string theory which

might restrict the value of the parameter α. However, in this work, we just focus on the

Gauss-Bonnet gravity, without restricting the value of α. In the large D expansion, the

value of the parameter α determines the contribution of the GB term. It is easy to see

that the Riemann tensor Rµν scales as D2, and therefore the Einstein term also scales as

D2 while the Gauss-Bonnet term scales as D4! It is natural to assume that the value of α

does not change with D, leading to a theory that is dominant by the Gauss-Bonnet term

at large D. Under such circumstance the magnitude of the Einstein term is of two less

orders than that of the Gauss-Bonnet term, and we can regard the theory as a “pure”

Gauss-Bonnet theory at large D which includes only the Gauss-Bonnet term, plus a small

perturbation. The situation when α ∼ O(D−1) or larger is similar and we can just take

α ∼ O(D0) as an illustrative example. On the other hand, when α scales as D−3 or less,

the Einstein term dominates, and the black hole can be regarded as an Einstein black hole

with small perturbations from the Gauss-Bonnet term. Analytical results can be obtained

for both the small and large α cases. The situation becomes complicated if α scales as D−2.

In this case the magnitude of the Einstein term is the same as that of the Gauss-Bonnet

term. Although in the large D expansion the problem can still be simplified dramatically,

the analytical treatment is not feasible and the numerical calculations have to be carried

out. The paper is organized as follows. In section 2 we introduce the geometry of the

Einstein-Gauss-Bonnet black hole in the large D expansion. In section 3 we discuss briefly

the quasinormal modes for a minimally-coupled scalar field. In section 4 and section 5

we study the non-decoupling and decoupled quasinormal modes respectively. In appendix,

we give numerical results for the decoupled vector-type quasinormal modes of “hybrid”

Gauss-Bonnet black holes at the leading order.
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2 Basic geometry

The metric of a spherically symmetric and static black hole in the Einstein-Gauss-Bonnet

gravity could be written as [14]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

n+2, (2.1)

f(r) = 1 +
r2

α(D − 3)(D − 4)
(1− q(r)), q(r) =

√
1 +

4α(D − 3)(D − 4)µ

(D − 2)rD−1
, (2.2)

where µ is the mass of the black hole. The horizon is at r = rH which is related to the

mass µ by the relation

µ =
(D − 2)rD−3

H

4

(
2 +

α(D − 3)(D − 4)

r2
H

)
. (2.3)

For convenience we can set rH = 1 and introduce an useful quantity

α̃ ≡ α(D − 3)(D − 4)/2. (2.4)

In terms of α̃ the f(r) and q(r) can be expressed as

f(r) = 1 +
r2

2α̃
(1− q(r)), q(r) =

√
1 +

4α̃(1 + α̃)

rD−1
. (2.5)

In order to discuss the large D expansion, we introduce an expansion parameters

n ≡ D − 3, (2.6)

and let

R ≡
(
r

rH

)n
. (2.7)

2.1 Small α̃

When α̃ is small, for example α̃ ∼ O(1/n), the second term in q(r)2 is very small so q(r) can

be expanded as a power-series of α̃. This is always possible because we are interested in the

geometry outside the horizon such that r > rH = 1 and therefore 4α̃(1 + α̃)� 1. In order

to precisely represent the “smallness” of α̃, we introduce a new parameter β ≡ nα̃, which

is of order one β ∼ O(1). Using 1/n expansion the above formulas can be expanded as

q(r) = 1 +
1

n

2β

R
+

1

n2

2β(β(R− 1)− 2R lnR)

R2
+O

(
1

n3

)
, (2.8)

f(r) = 1− 1

R
+

1

n

β(1− R)

R2
+

1

n2

2β(β(R− 1)− R lnR)

R3
+O

(
1

n3

)
, (2.9)

In this case the near region is r − rH � rH , or R � en and the far region is R � 1.

Obviously, when β → 0 we recover the Schwarzschild case in pure Einstein gravity.

We could expect that in the case that α̃ is small, the corrections originating from the

Gauss-Bonnet term must be small. From the expansion in the function f(r), the effects

from the Gauss-Bonnet term should only be reflected at the 1/n order or even higher order

terms. In the limit β → 0 we should reproduce the results in the Schwartzschild black hole

in the Einstein gravity.
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2.2 Large α̃

When α̃ is large enough, for example α̃ ∼ O(n2) and α ∼ O(1), in the region where R� n4,

the second term in q(r)2 dominates and we could expand it in series of 1/n, so the forms

of q(r) and f(r) are expanded as

q(r) = n2 α√
R
− n α√

R
(1 + lnR) +

1

2
√
R

(2 + 2α+ α lnR + α(lnR)2) +O
(

1

n

)
, (2.10)

f(r) = 1− 1√
R
− 1

n

lnR√
R

+
1

n2

−2 + 2
√
R− α(lnR)2

2
√
Rα

+O
(

1

n3

)
. (2.11)

The validity of the expansion requires that R � n4, which we will refer to as the near

region although it is smaller than the usual near region where r − rH � rH . This is all

right since it still has overlap with the far region R� 1 .

When α̃ is a little smaller, e.g.∼ O(n) or even larger e.g.∼ O(n3), the discussion on

the 1/n expansion is similar. The only difference is that the near region becomes smaller

R� n2 or larger R� n6. Therefore we will treat α̃ ∼ O(n2) as a typical example for the

large α̃ case and discuss it explicitly.

However, when α̃ takes an intermediate value, i.e. α̃ ∼ O(1), even in the large D expan-

sion the metric is too complicated for us to compute the quasinormal modes analytically.

In this case, the leading order form of f(r) is given by

f(r) = 1 +
1

2α̃
− 1

2α̃

√
1 +

4α̃(1 + α̃)

R
, (2.12)

which is quite different from (2.9) or (2.11). As a result there are different spectrums

for the decoupled modes which are not universal and depend on the specific black hole

geometry. In the appendix we present the numerical result of vector-type quasinormal

modes at leading order to show this point.

3 The quasinormal modes for a scalar field

As the first step, let us consider a minimally-coupled scalar in the black hole background.

As the black hole geometry is spherically symmetric, the scalar wavefunction could be

decomposed into the following form

Φ = e−iωtφ(r)Yl,m(θ, ϕ) (3.1)

where ω is the frequency and Yl,m is the spherical harmonic function. The differential

equation for the radial function is

d

dR

(
f(r)R2 d

dR
φ(R)

)
+
ω̂2R2/n

f(r)
φ(R)−

(
ω2
c −

1

4

)
φ(R) = 0. (3.2)

where ωc = ˆ̀+ 1
2 , ˆ̀ = `/n, ω̂ = ω/n. The above equation can be recast into a master

equation of the form (
d2

dr2
∗

+ ω2 − V (r∗)

)
ψ(r) = 0, (3.3)

– 5 –
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where

r∗ =

∫
dr

f(r)
, ψ(r) = R

1
2

+ 1
2nφ(r), (3.4)

V (r∗) =
f(r)

4r2
((n2 − 1)f(r) + 4l(n+ l) + 2(n+ 1)rf ′(r)). (3.5)

The height of the potential is V max = n2ω2
c . Since the potential varies slowly in the over-

lapping zone, we can treat it as a constant. As a consequence, the differential equation (3.3)

in the overlapping region takes the form(
d2

d(lnR)2
+ ω̂2 − ω2

c

)
ψ = 0. (3.6)

In fact this form of the radial equation is independent of the value of α̃, although the range

of the overlapping region depends on α̃. If ω̂ 6= ωc, the solution of this equation is

ψ = A+ R
√
ω2
c−ω̂2

+A− R
−
√
ω2
c−ω̂2

, (3.7)

while if ω̂ = ωc, the solution is of the form

ψ = A+B lnR, (3.8)

where A±, A,B are integration constants.

The quasinormal modes are the solutions of (3.3), which should satisfy the ingoing

boundary condition at the event horizon and the outgoing boundary condition at the

infinity. At the horizon this requires

ψ(R) = (R− 1)−iω̂φs(R), (3.9)

when α̃ is small and

ψ(R) = (
√
R− 1)−2iω̂φs(R), (3.10)

when α̃ is large. Here φs(R) is some regular function at R = 1.

The strategy to find the quasinormal modes is to solve the differential equation of the

perturbation in the far region and the near region with appropriate boundary conditions.

The matching of the solutions in the overlapping region then determines the quasinormal

modes.

3.1 Near-region solutions

3.1.1 Small α̃

For a small α̃, consider the leading order in the 1/n expansion in the near region, from

the behavior of f(r) in (2.9) we see that the differential equation (3.2) is exactly the same

as the one in the Schwarzschild black hole, which is of a hypergeometric type. Hence the

solution that satisfies the ingoing boundary condition at the horizon is exactly the same

as the result in [1],

ψ(R) = (R− 1)−iω̂
√
R 2F1(a, b, a+ b; 1− R), (3.11)

where

a =
1

2
+
√
ω2
c − ω̂2 − iω̂, b =

1

2
−
√
ω2
c − ω̂2 − iω̂. (3.12)

– 6 –
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3.1.2 Large α̃

For a large α̃, up to the 1/n0 order, the radial equation is simplified to be

d

dR

(
R2 − R3/2

)
d

dR
φ(R) +

ω̂2

1− R−1/2
φ(R)−

(
ω2
c −

1

4

)
φ(R) = 0. (3.13)

The solution is

φ(R) = A1(
√
R− 1)−2iω̂

2F1(a, b, a+ b; 1−
√
R)

+A2(
√
R− 1)2iω̂

2F1(2− a, 2− b, 3− a− b; 1−
√
R),

(3.14)

where

a = 1− 2iω̂ + 2
√
w2
c − ω̂2, b = 1− 2iω̂ − 2

√
w2
c − ω̂2. (3.15)

The boundary condition (3.10) selects the solution to be

ψ(R) = (
√
R− 1)−2iω̂

√
R 2F1(a, b, a+ b− 1; 1−

√
R). (3.16)

As discussed in [9], the only information that we need from the solution is their large

R behavior in the overlapping region where R � 1. It is easy to find that for a general ω̂

no matter what value α̃ takes there is always∣∣∣∣A+

A−

∣∣∣∣= O(1). (3.17)

When ω̂ = ωc, the solution should be in match with (3.8) in the overlapping region, leading

to ∣∣∣∣AB
∣∣∣∣= O(1). (3.18)

3.2 Far-region solutions

In the far-region, 1/R is exponentially small. Thus we can set f = 1 no matter what value

α̃ takes and the radial equation (3.3) is exactly the same as the one in the Minkowski

spacetime, so the solution is just the Hankel functions [9]

ψ(r) =
√
r H(1)

nωc
(ω r). (3.19)

Following the discussion in [9], in the overlapping region, in terms of the coordinate R the

solution takes the form (3.7) or (3.8).

3.3 Quasinormal modes

As we have seen, the far-region solution is exactly the same as the one in the Schwarzschild

black holes whatever α̃ takes. On the other hand in the near region, the radial equation for a

small α̃ is identical to the scalar equation in the Schwarzschild black hole background. But

for a large α̃ the radial equation and its solution in the near region is different. Nevertheless

the useful information in the overlapping region is encoded in eqs. (3.17) and (3.18), the

same as the ones in the Schwarzschild case.

– 7 –
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If we try to paste the solutions in all regions satisfying the appropriate boundary

conditions, we see that even though the solution in the near region could be different, the

solution in the overlapping region is the same as the Einstein gravity. Consequently we

conclude that the quasinormal modes for a scalar field in the Gauss-Bonnet black hole (2.1)

are completely the same as the ones in the Schwarzschild black hole background.

4 Non-decoupling modes for gravitational perturbations

In the last section, we discussed the quasinormal modes of a scalar field in the Gauss-Bonnet

black hole background. The scalar field is taken as a probe and is minimally coupled to the

gravity. It could only probe the geometry of the background but cannot see the dynamics

of the Gauss-Bonnet gravity. In this section, we discuss the gravitational perturbation in

the Gauss-Bonnet gravity. This may allow us to investigate the dynamics of the theory.

The linearized gravitational fluctuations could be classified according to their trans-

formation properties under the rotation group: scalar-type(S), vector-type(V) and tensor-

type(T) gravitational perturbations. Each type of the perturbations satisfies the master

equation of the form (
d2

dr2
∗

+ ω2 − Vs
)

Ψs = 0, (4.1)

where s = S, V, T denotes three types of the perturbations. The potentials in (4.1) depend

on the types of the perturbation [18]

VT (r) = f(r)
λ

r2

(
3− B(r)

A(r)

)
+

1√
rD−2A(r)q(r)

d2

dr2
∗

√
rD−2A(r)q(r), (4.2)

VV (r) = f(r)
(D − 2)c

r2
A(r) +

√
rD−2A(r)q(r)

d2

dr2
∗

1√
rD−2A(r)q(r)

, (4.3)

VS(r) =
f(r)U(r)

64r2(D − 3)2A(r)2q(r)8(4cq(r) + (D − 1)2(q(r)2 − 1)2)
, (4.4)

and

A(r) =
1

q(r)2

(
1

2
+

1

D − 3

)
+

(
1

2
− 1

D − 3

)
, (4.5)

B(r) = A(r)2

(
1 +

1

D − 4

)
+

(
1− 1

D − 4

)
, (4.6)

H =
r2

α̃
, λ = (D − 2)(c+ 1) = l(l +D − 3), (4.7)

U(r) = 5(D − 1)6H2(1 +H) − 3(D − 1)5H((D − 1)H2 + 24c(1 +H))q(r)

+ 2(D − 1)4(24c(D − 1)H2 + 168c2(1 +H) − (D − 1)H2(−3 + 5H + 7D(1 +H)))q(r)2

+ 2(D − 1)4H(−184c2 + (D − 1)(13 +D)H2 + c(−84 + 44H + 84D(1 +H)))q(r)3

+ (D − 1)3(384c3 − 48c(2 +D(3D − 5))H2 + 192c2(−11 +D + (−15 +D)H)

+ (D − 1)H2(−3(7 + 55H) +D(26 + 106H + 7D(1 +H))))q(r)4

+ (D − 1)3H(−64c2(D − 38) + (D − 1)(71 +D(7D − 90))H2

– 8 –
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+ 16c(303 + 255H + 13D2(1 +H) − 2D(73 + 81H)))q(r)5

+ 4(D − 1)2(96c3(−7 +D) − 8c(D − 1)(145 − 74D + 6D2)H2

− 8c2(9 − 175H +D(−58 − 34H + 11D(1 +H))) + (D − 1)H2(−5(79 + 23H)

+D(5(57 + 41H) +D(−81 − 89H + 7D(1 +H)))))q(r)6

− 4(D − 1)2H(8c2(43 + (72 − 13D)D) + (D − 1)(−63 +D(99 +D(−49 + 5D)))H2

+ 4c(321 + 465H +D(121 − 39H +D(−123 − 107H + 17D(1 +H)))))q(r)7

+ (D − 1)(128c3(−9 +D)(D − 5) + 32c(D − 1)(246 +D(9 +D(−55 + 8D)))H2

+ 64c2(D − 5)(D2 − 3 + (49 + (D − 4)D)H)

− (D−1)H2(1173+565H+D(−4(997+349H)+D(6(393+217H)+D(−548−452R+45D(1+H))))))q(r)8

+ (D−1)H(−64c2(D − 5)(36 +D(−13 + 3D)) + (D − 1)(635 +D(−1204 + 3D(294 +D(−92 + 9D))))H2

− 8c(D − 5)(63 + 31H +D(127 + 191H +D(−47 +D + (−79 +D)H))))q(r)9

+ 2(D − 5)(64c3(D − 5)(D − 3) + 8c(D − 1)(−27 +D(141 + (−43 +D)D))H2

+ 8c2(D − 5)(−3 + 77H +D(D − 2 + (D − 18)H)) + (D − 1)2H2(−33(H − 7)

+D(59 + 43H +D(−59 − 35H + 9D(1 +H)))))q(r)10

− 2(D − 5)H(24c2(−11 +D)(D − 5)(D − 3) + (D − 1)2(−65 +D(81 +D(7D − 39)))H2

+ 12c(−7 +D)(D − 5)(D − 3)(D − 1)(1 +H))q(r)11

+ (D − 5)2(−1 +D)H2(16c(26 + (D − 9)D) + (D − 1)(77 − 3H +D(−18 +D + (D − 2)H)))q(r)12

+ (D − 5)2(D − 3)2(D − 1)2H3q(r)13, (4.8)

The discussion on the non-decoupling quasinormal modes is similar to the one for the

scalar field in the previous section. In order to find the quasinormal modes, one need to solve

the master equation in two different regions and then match them in the overlapping region.

4.1 Small α̃

Up to the leading order in 1/n, the metric is the same as the one in the Schwarzschild case,

so we could expect that the quasinormal modes are the same as long as we only keep to

leading order. Although the three potential forms are complicated, the GB effect appears

only at the next-to-leading order. Actually the leading order form of the three potentials are

VT =
(R− 1)(4ω2

cR + 1)n2

4R2
, (4.9)

VV =
(R− 1)(4ω2

cR− 3)n2

4R2
, (4.10)

VS =
(R−1)(1+(1+8ˆ̀(ˆ̀+1))R−12ˆ̀(ˆ̀+1)(ˆ̀(ˆ̀+1)+1)R2+4ˆ̀2(ˆ̀+1)2(1+2ˆ̀)2R3)n2

4R2(1 + 2ˆ̀R + 2ˆ̀2R)2
.

(4.11)

All of them are independent of β so that the GB term has no effect on the non-decoupling

quasinormal modes in the small α̃ case.

4.2 Large α̃

In figure 1, we show the potentials for different types of gravitational perturbation in the

very large n limit. Here we choose n = 103, α̃ = 106, and ` = 103. From figure 1, we find

that there are two plateaux, a fact that is very different from the Schwarzschild case. The
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Figure 1. Radial potential Vs(r) for the perturbations of different types in the Einstein-Gauss-

Bonnet black hole for n = 103, ` = 103 and α̃ = 106. The horizon is at r = 1. We use the coding

solid, dashed, and dot-dashed lines to denote the potentials for the tensor-, vector- and scalar-type

gravitational perturbations respectively.

lower one is unique for the Einstein-Gauss-Bonnet gravity and it disappears in the limit

that α̃ goes to zero. Its height is (1 + 8ˆ̀+ 8ˆ̀2)n2/16. It is in the range of the near horizon

region R � α̃2 we defined before so that it is suitable for the 1/n expansion. The higher

one is beyond the near horizon region, and its height is n2ω2
c , the same as the one in the

Schwarzschild case, since the Gauss-Bonnet black hole we considered is also asymptotically

flat. Recall that the non-decoupling modes are non-normalizable in the near horizon geom-

etry. The real part of the frequency of the non-decoupling quasinormal modes is lower than

the maximum of the potential. As now there are two separated plateaux in the potential,

there might be two different sets of non-decoupling modes. Let us work them out in detail.

4.2.1 Lower plateau

Let us focus on the lower plateau first. Up to the leading order in the 1/n expansion the

heights of the three potentials are the same, so in this case the basic form of the solutions

of the master equation (4.1) in the overlapping region must be

Ψs = A+ R
√
ω̄2
c−ω̂2

+A− R
−
√
ω̄2
c−ω̂2

, (4.12)

where we have defined a new quantity ω̄c =
√

1 + 8ˆ̀+ 8ˆ̀2/4. When ω̂ = ω̄c there is

Ψs = A+B lnR. (4.13)

For different types of the perturbations, the potentials in the master equation take

different forms. Up to the leading order they are respectively

VT =
(
√
R− 1)(16ω̄2

c

√
R + 1)n2

16R
, (4.14)

VV =
(
√
R− 1)(16ω̄2

c

√
R− 3)n2

16R
, (4.15)

VS =
(
√
R−1)(1+(1+16ˆ̀+16ˆ̀2)

√
R−24ˆ̀(1+3ˆ̀+4ˆ̀2+2ˆ̀3)R+16ˆ̀2(1+ˆ̀)2(1+8ˆ̀+8ˆ̀2)R3/2)n2

16R(1 + 4ˆ̀
√
R + 4ˆ̀2

√
R)2

.

(4.16)
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For the tensor- and vector-perturbations, their equations are of hypergeometric types.

Taking into account the boundary condition at the horizon the solutions are respectively

ΨT (R) = (
√
R− 1)−i2ω̂R1/4

2F1(a, b, a+ b; 1− R), (4.17)

ΨV (R) = (
√
R− 1)−iω̂R3/4

2F1(a+ 1, b+ 1, 1 + a+ b; 1− R), (4.18)

where

a =
1

2
+ 2
√
ω̄2
c − ω̂2 − i2ω̂, b =

1

2
− 2
√
ω̄2
c − ω̂2 − i2ω̂. (4.19)

For the scalar-type potential the equation is more complicated. As in the case discussed

in [9], the scalar solution can be expressed as some differential operators acting on a

hypergeometric function.

The only information that we need from the solutions is their large R behaviors in the

overlapping region where R� 1. It is easy to find that for general ω̂ , we have∣∣∣∣A+

A−

∣∣∣∣= O(1), (4.20)

while for ω̂ = ω̄c, ∣∣∣∣AB
∣∣∣∣= O(1). (4.21)

Similarly in the far-region we may set f = 1, and the outgoing solution is the Hankel

function

Ψs =
√
rHnω̄c(ωr). (4.22)

In terms of the coordinate R the solution can take the form (4.12) or (4.13).

The matching of the near- and far-region solutions give the non-decoupling modes

whose frequency are of order ∼ O(n). As discussed in [9], the least-damped modes have

analytic expressions and the case of higher overtones could be described numerically. Here,

we present the real part and the imaginary part of the least-damped mode frequencies as

follows

ωR =
n

4

√
1 + 8ˆ̀+ 8ˆ̀2 − ak

4
n1/3(1 + 8ˆ̀+ 8ˆ̀2)1/6, (4.23)

and

ωI = −
√

3ak
4

n1/3(1 + 8ˆ̀+ 8ˆ̀2)1/6, (4.24)

where ak correspond to the zeros of the Airy function.

As the lower plateau is unique for the GB gravity, one might expect that the frequencies

of the non-decoupling should be dependent of the parameter α̃. However, the frequencies

in eqs. (4.23) and (4.24) are independent of the parameter. This is simply because that

the frequencies have been solved at the leading order. At the leading order the function f

in eq. (2.11) and consequently the potentials (4.14)–(4.16) in the master equation are all

independent of α̃.

– 11 –
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4.2.2 Higher plateau

On the other hand, the higher plateau should also generate the non-decoupling quasinormal

modes. The solution should have ωc > |ω̂| > ω̄c such that the wave is purely outgoing with

no reflection in the overlapping region, but gets reflected in the far region due to the

presence of the second plateau. Because the second plateau is in the far-region the usual

far-region solution (4.22) still works, and the non-decoupling modes are determined by the

far-region solutions. Although the plateau is beyond the near-region, through a variable

replacement R → R̄n4 we can pull it back to the near region. For example, after the

replacement the leading order tensor potential becomes

V̄T

n2
=

16(1 + 2ˆ̀)2R̄4 + 12(5 + 16ˆ̀+ 16ˆ̀2)R̄2α4 + 24(1 + 3ˆ̀+ 3ˆ̀2)R̄α6 + (1 + 8ˆ̀+ 8ˆ̀2)α8 + 48R̄3(α+ 2ˆ̀α)2

16(R̄ + α2)2(2R̄ + α2)2
.

(4.25)

In the limit that R̄→∞, V̄T → n2ω2
c as we expected. Near the edge of the second plateau

R̄� 1, this corresponds R� 1 so the solution should be connected with far-region solution

of ΨT (R). We will not illustrate this point in detail since the most important information

is the amplitude ratios in front of wave-function components. The far-region solution tells

us that in the case of |ω̂| > ω̄c the quasinormal modes should be identical to the ones in

the Schwarzschild case, so for the least-damped modes the frequency spectrum is

ωR =
n

2
+ `− ak

24/3

(
n

2
+ `

)1/3

, (4.26)

and

ωI = −
√

3ak
24/3

(
n

2
+ `

)1/3

. (4.27)

As a conclusion we find that the interesting things happen when the GB coupling α̃

is very large. There are two kinds of non-decoupling quasinormal modes, one kind is the

same as the one in the Schwarzschild black holes. This kind of modes is universal for all

asymptotically flat static black holes. The other kind is special for the GB black holes due

to the emergence of a new plateau in the potential when α̃ is large enough.

5 Decoupled modes for gravitational perturbations

The decoupled modes are normalizable in the near horizon geometry. They are localized

within the near horizon region and decoupled with the asymptotically flat region. Their

frequencies are of order one. To leading order in 1/n, these modes are static and becomes

dynamical at the next-to-leading order. They can be studied in the 1/n expansion order

by order.

The form of the master equation can be recast into the form

(L+ Us)Ψs(R) = 0, (5.1)

where

LΨs = − 1

n2
f
d

dr

(
f
d

dr
Ψs

)
, (5.2)
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Us =
1

n2

(
Vs(R)− ω2

)
. (5.3)

All quantities can be expanded in powers of 1/n as

Ψs =
∑
k≥0

Ψ
(k)
s

nk
, L =

∑
k≥0

L(k)

nk
, ω =

∑
k≥0

ω(k)

nk
, (5.4)

such that the decoupled modes can be studied perturbatively.

The equation for the perturbation at each order is determined by the differential equa-

tion with a source (
L(0) + U (0)

s

)
Ψ(k)
s = S(k). (5.5)

Here the sources S(k) are obtained from L(j) +U
(j)
s with j ≤ k, and from the solutions Ψ

(j)
s

with j < k.

At each order, the solution should be normalizable. The strategy to read the decoupled

modes is to first compute the lowest order solution and then compute the higher order

solution order by order.

5.1 Small α̃

In this case, to the leading order

L(0)Ψ = −(R− 1)
d

dR

(
(R− 1)

d

dR
Ψ

)
. (5.6)

The equation is exactly the same as the Schwarzschild case, and the Gauss-Bonnet effect

is absent. At the next-to-leading order there are corrections from the Gauss-Bonnet term

L(1)Ψ = 2(R− 1)2

(
β

R
+ lnR

)
Ψ′′ + (R− 1)

(
β

R2
+
β − 1

R
+ 1 + 2 lnR

)
Ψ′. (5.7)

As the decoupled modes are normalizable, the boundary condition at R� 1 is

Ψ(R→∞)→ 1√
R
. (5.8)

This is because the maximum of all the three potentials is V max
s → n2/4, with ` = O(1),

in the overlapping region, where 1� R� en. The master equation now has the form(
d2

d(lnR)2
−
(

1

4
− ω2

n2

))
Ψs = 0. (5.9)

For the decoupled modes ω = O(1), the normalizability of the solution requires Ψ ∼ 1/
√
R.

The other solution being proportional to
√
R is non-normalizable and is excluded.

The boundary condition at the event horizon R = 1 is required by its regularity. This

asks the solution to be

Ψ(R→ 1) = e−iωr∗ , (5.10)
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where r∗ is the tortoise coordinate. Expanding Ψ(R) in series of 1/n, the explicit forms at

each order are respectively

Ψ(0)(R→ 1) → 1 , (5.11)

Ψ(1)(R→ 1) → −iω(0) ln(R− 1) , (5.12)

Ψ(2)(R→ 1) → −i(βω(0) + ω(1)) ln(R− 1)− 1

2
ω2

(0)

(
(ln(R− 1)

)2
, (5.13)

Ψ(3)(R→ 1) → i
(
β2ω(0)−β(2ω(0)+ω(1))−ω(2)

)
ln(R−1)−ω(0)(βω(0)+ω(1))(ln(R−1))2

+
1

6
iω3

(0)

(
ln(R− 1)

)3
, (5.14)

etc. Note that there are corrections from the GB term in Ψ(i), i ≥ 2.

5.1.1 Tensor type

For the tensor-type perturbation, the leading order potential is

U
(0)
T =

R2 − 1

4R2
, (5.15)

which is the same as the Schwarzschild black hole. The solutions are

u0 =
√
R, v0 =

√
R ln(1− R−1). (5.16)

Obviously, neither of the two solutions can satisfy the two boundary conditions simultane-

ously, so there is no decoupled quasinormal mode of the tensor type.

5.1.2 Vector type

The vector potential at the leading order is given by

U
(0)
V =

(R− 1)(R− 3)

4R2
, (5.17)

The two independent solutions are

u0 =
1√
R
, v0 =

R + ln(R− 1)√
R

. (5.18)

The two boundary conditions determine that

Ψ
(0)
V = u0. (5.19)

At the next-to-leading order, the potential is given by

U
(1)
V = −

(R− 1)
(
2β(R− 2) + R(3− 2`R) + R(R− 3) lnR

)
2R3

. (5.20)

The solution that satisfies the boundary condition at the infinity is

Ψ
(1)
V = A1u0 −

(`− 1) ln(R− 1) + ln
√
R√

R
, (5.21)
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where A1 is an integral constant. The boundary condition at the horizon requires A1 = 0

and determines the frequency of the decoupled mode to be

ω(0) = −i(`− 1). (5.22)

Therefore at the next-to-leading order even though the vector potential is modified by the

Gauss-Bonnet term, the quasinormal modes are the same as the ones in the Schwarzschild

case.

At the order in (1/n)2, there are decoupled modes with the frequencies

ω(1) = −i(`− 1)2 + i(`− 1)β. (5.23)

Now, there is a correction from the Gauss-Bonnet term. This conforms to the expansion

form of f(r) when α̃ is small. At the order in (1/n)3, the calculation is straightforward

and leads to

ω(2) = −i2(`− 1)2

(
π2

6
− 1

)
− iβ(`− 1)

(
− 1 + 3β − 3`

)
. (5.24)

5.1.3 Scalar type

Like the situation of the Schwarzschild black hole, in order to properly deal with the region

where R = O(n) we need to introduce a new variable

R̄ =
R

n
. (5.25)

Then the potential to the leading order becomes

VS(R̄) = n2V̄S(R̄) =
n2

4

1− 12(`− 1)R̄ + 4(`− 1)2R̄2

(1 + 2(`− 1)R̄)2
. (5.26)

This potential correctly captures all the features of the scalar potential in the near-region.

Especially, in the region 1� R� n, we have a small R̄ which should be matched with the

solution of Ψ(R) for R = O(1).

First of all it is straightforward to find the solutions for ΨS(R) with the ingoing bound-

ary condition at the horizon

Ψ
(0)
S (R) =

√
R, (5.27)

Ψ
(1)
S (R) =

√
R
(
− 2(`− 1)(R− 1)− iω(0) ln(R− 1) + (1− 2`+ 2iω(0)) ln

√
R
)
, (5.28)

Up to the second order, at the large R the expansion of ΨS(R) gives

ΨS(R) =
√
R

[
1 +

1

n

(
iω(0)

R
+ 2(`− 1)− 2(`− 1)R− (2`− 1) ln

√
R

)]
. (5.29)

To the second order, the solution for Ψ̄S(R̄) with the boundary condition Ψ̄S(R̄) ∼
1/
√
R̄ as R̄→∞ is

Ψ̄
(0)
S (R̄) +

1

n
Ψ̄

(1)
S (R̄) =

C1

√
R̄

1 + 2(`− 1)R̄

[
1− 1

n

(
3 + 2β + (2− 6`+ 4`2)R̄

2 + 4(`− 1)R̄
− (2`− 1) ln

√
R̄

)]
.
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The match of two solutions at the leading order requires C1 =
√
n+B1/

√
n with B1 being

undetermined, but this is not sufficient to determine the frequency of the decoupled mode

because there is 1/R̄ term coming from Ψ̄
(2)
S (R̄)/n2. Indeed there is such a term

1

n

`2 − `+ ω2
(0)

2(`− 1)
√
R
, (5.30)

which, by matching with (5.29), determines that

ω(0)± = ±
√

(`− 1)− i(`− 1). (5.31)

This is equal to the result of the Schwarzschild black hole. One can proceed to find the

frequency of the decoupled mode in the 1/n order

ω(1)± = ±
√

(`− 1)

(
3`

2
− 2− β

)
− i(`− 1)(`− 2− β), (5.32)

which encodes the correction from the Gauss-Bonnet term. The discussion for the higher

order decoupled modes is similar and straightforward but becomes more and more compli-

cated.

5.2 Large α̃

In this case, there is

L(0)Ψ = −(1− R−
1
2 )R

d

dR

(
(1− R−

1
2 )R

d

dR
Ψ

)
. (5.33)

As in the situation of small α̃, the boundary condition at the horizon can be given order

by order as

Ψ(0)(R→ 1) → 1, (5.34)

Ψ(1)(R→ 1) → −2iω(0) ln(
√
R− 1), (5.35)

Ψ(2)(R→ 1) → −2i(ω(1) + 2ω(0)) ln(
√
R− 1)− 2ω2

(0)(ln(
√
R− 1))2, (5.36)

Ψ(3)(R→ 1) → −2i

(
ω(2) + 2ω(1) +

(
4− 1

α

)
ω(0)

)
ln(
√
R− 1)

−4ω(0)(2ω(0) + ω(1))(ln(
√
R− 1))2 +

4

3
iω3

(0)

(
ln(
√
R− 1)

)3
, (5.37)

etc. The boundary condition at R� 1 requires

Ψ(R→∞)→ 1

R1/4
. (5.38)

Note that this is different from the Schwarzschild case, because the maximum of all the

three potentials in the large α̃ case is V max
s → n2/16. In order to be normalizable, the

decoupled modes should satisfy (5.38).
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Figure 2. Radial potential Vs(r) for the perturbations of the Einstein-Gauss-Bonnet black hole for

n = 103, ` = 3 and α̃ = 106 . The horizon is at rH = 1. Note that there are two minima for the

vector and scalar potential.

5.2.1 Tensor type

The leading order of the tensor potential UT is

U
(0)
T =

R− 1

16R
, (5.39)

and the corresponding solutions are

u0 = R1/4, v0 = R1/4 ln

(
1− 1√

R

)
. (5.40)

Obviously, none of the two solutions can satisfy the two boundary conditions simultane-

ously, and there is no decoupled quasinormal modes of tensor type.

5.2.2 Vector type

The leading order of the vector potential UV is given by

U
(0)
V =

3− 4
√
R + R

16R
, (5.41)

and the two independent solutions are

u0 =
1

R1/4
, v0 =

√
R + ln(

√
R− 1)

R1/4
. (5.42)

The boundary conditions select

Ψ
(0)
V = u0, (5.43)

so there could exist the quasinormal modes of vector type. At the next-to-leading order,

U
(1)
V =

2(−1 + 2`)(−1 +
√
R)− (−2 +

√
R) lnR

8
√
R

, (5.44)

then the solution is

Ψ
(1)
V = C1 u0 + C2

√
R + ln(

√
R− 1)

R1/4
− 2(`− 1) ln(

√
R− 1)

R1/4
, (5.45)
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where C1 and C2 are two integration constants. The boundary condition at the infinity

requires C1 = C2 = 0, and the boundary condition at the horizon determines the frequency

to be

ω(0) = −i(`− 1). (5.46)

It is a surprise that this is exactly the same as the one in the Schwarzschild case found

in [9]. At the second order in 1/n, the potential is

U
(2)
V =

1

8αR

[
(
√
R− 1)

(
− 3 +

√
R(1 + 4(`− 1)2α)

)
− 2(2`− 1)(2R−

√
R)α lnR

+ (R−
√
R)α(lnR)2

]
−ω2

(0).

(5.47)

Then the solution can be easily obtained. With the help of the boundary condition at the

horizon, the second order frequency can be read

ω(1) = −i(`− 1)(`− 3), (5.48)

which is different with the one in the Schwarzschild case due to different effect from the

boundary conditions. Actually, there is ω(1)+2ω(0) instead of a simple ω(1) from the ingoing

boundary condition, and the quasinormal mode at the second order is accordingly changed.

At the third order, it is straightforward to read

ω(2) = −i4(`− 1)2

(
π2

3
− 1

)
. (5.49)

From figure 2 we see that the vector potential has two minima, the negative one on the

left side and the positive one on the right side. The negative one gives the above decoupled

mode. The positive one is new, which does not appear when α̃ is small, and its location is

at R ∼ O(n4). We would like to investigate whether the positive one gives new decoupled

modes or it leads to the same wave function discussed above propagating through the whole

regions. In order to properly deal with the region with positive minimum, we introduce a

new variable

R̄ =
R

n4
. (5.50)

Since R̄ ∼ O(1) in the positive minimum region, we can study the wave function around

the minimum using the 1/n expansion. The leading order vector potential in terms of R̄ is

Ū
(0)
V (R̄) =

16R̄4 + 48R̄3α2 + 28R̄2α4 + α8

16(R̄ + α2)2(2R̄ + α2)2
. (5.51)

In the limit that R̄ is very small the potential reaches 1/16 which can be matched to the

maximum of the potential (5.41) in the region 1� R� α̃2. And when R̄ is very large the

potential has a maximum 1/4 which is the same as the Schwarzschild black hole, since the

spacetime is asymptotically flat.

At the leading order the differential equation becomes

R̄2Ψ̄′′V (R̄) + R̄Ψ̄′V (R̄)− Ū (0)
V (R̄)Ψ̄V (R̄) = 0, (5.52)
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and its solutions are

ū0 =
(R̄ + α2)1/4

R̄1/4
√

2R̄ + α2
, v̄0 =

2R̄1/4(R̄ + α2)3/4√
2R̄ + α2

. (5.53)

At the large R̄, ū0 gives the correct asymptotic behavior which is 1/
√
R̄. At the small R̄,

ū0 scales as 1/R1/4, this can be matched to the solution Ψ
(0)
V in the region 1� R� α̃2.

Next let us extend the discussion to the next-to-leading order. The solution ΨV with

the ingoing boundary condition at the horizon is

ΨV (R) = Ψ
(0)
V (R) +

1

n
Ψ

(1)
V (R)

=
1

R1/4

[
1 +

1

n

(
2iω − 2(`− 1) + 2(`− 1− iω)R1/2 − 2iω ln(

√
R− 1)

)]
. (5.54)

Its large R behavior is

ΨV (R) =
1

R1/4

[
1 +

1

n

(
2iω√
R

+ 2iω − 2(`− 1) + 2(`− 1− iω)R1/2 − 2iω ln(
√
R)

)]
. (5.55)

On the other hand, to the same order the solution for Ψ̄V (R̄) with the correct boundary

condition at the large R̄ is

Ψ̄
(0)
V (R̄) +

1

n
Ψ̄

(1)
V (R̄) =

C1

2R̄1/4(R̄ + α2)3/4(2R̄ + α2)3/2

[
2(R̄ + α2)(2R̄ + α2)

+
1

n

(
41(`− 1)

√
R̄(R̄ + α2)3/2(2R̄ + α2)

α2

− 1

α2
(−8R̄3 + 8`R̄3 − 18R̄2α2 + 20`R̄2α2 − 15R̄α4 + 16`R̄α4 − 6α6 + 4`α6)

−
(
(4`− 2)R̄2 + 3(2`− 1)R̄α2 + 2(`− 1)α4

)
ln R̄ + 4α4 lnn

)]
, (5.56)

where C1 is an integral constant. Then we make a replacement R̄ → R/n4 and expand

the expression in 1/n. From the matching with (5.55) at the leading order, we can fix

C1 =
√
α/n+B1/n

2. To the next-to-leading order we get

Ψ̄
(0)
V (R̄) +

1

n
Ψ̄

(1)
V (R̄) =

1

R1/4

[
1 +

1

n

(
B1√
α

+ 3− 2`− (`− 1) lnR + 2(2`− 1) lnn

)]
. (5.57)

The matching with (5.55) can determine all the undetermined constants (1/
√
R term comes

from the next order), among which we have

ω = −i(`− 1). (5.58)

Hence this verifies that the positive minimum do not give any new decoupled mode. Ac-

tually, the wave in the left valley of the potential propagate right to the next valley. In

other words, once we find the solution in the left valley, we can extend it to the right and

using the matching condition in the overlapping region we can determine the wavefunction

in the right valley completely.
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It seems that the decoupled modes are only determined by the wavefunction in the left

potential valley with the asyptotically boundary condition Ψ(R→∞) ∼ (1/R)1/4. This is

due to the fact that the potential plateau between two minima has a long enough extension.

As we discussed above, the wavefunction in the second valley could be determined by the

matching of the solution. A better treatment is to find the solutions in different regions

and paste them correctly, and then read the frequency of the decoupled modes. We will

have to use this treatment for the scalar type perturbation in the next subsection.

5.2.3 Scalar type

We follow the similar treatment in the small α̃ case. However now the first minimum

locates at R = O(n2), so the correct variable should be

R̄ =
R

n2
, (5.59)

then the scalar potential in the leading order becomes

V̄S(R̄) =
n2

16

1− 24(`− 1)
√
R̄ + 16(`− 1)2R̄

(1 + 4(`− 1)
√
R̄)2

. (5.60)

From this expression we can read all the features appearing in figure 2: it reaches the same

maxima n2/16 at the small R̄ and the large R̄, and reaches a minimum between these two

maxima at R̄ = 1/16(` − 1)2. Note that the scalar potential has a local maximum before

the minimum.

To determine the decoupled modes, we need to find the solutions in different regions

and paste them correctly. First let us first match the solutions for Ψ̄S(R̄) and the solutions

for ΨS(R) in the region 1 � R̄ � n2. It is easy to find the solutions for ΨS(R). With the

ingoing boundary condition at the horizon, we get

Ψ
(0)
S (R) = R1/4, (5.61)

Ψ
(1)
S (R) = R1/4

[
− 4(`− 1)(

√
R− 1)− 2iω(0) ln(

√
R− 1)− (`− iω(0)) lnR

]
. (5.62)

In the large R region, ΨS becomes

ΨS(R) = Ψ
(0)
S (R) +

1

n
Ψ

(1)
S (R)

= R1/4

[
1 +

1

n

(
i2ω(0)√

R
− 4(`− 1)(

√
R− 1)− ` lnR

)]
. (5.63)

On the other hand, up to the next-to-leading order the solution for Ψ̄S(R̄) with the

boundary condition Ψ̄S(R̄) ∼ R̄−1/4 is

Ψ̄
(0)
S (R̄) +

1

n
Ψ̄

(1)
S (R̄) =

C0R̄
1/4

1 + 4(`− 1)
√
R̄

(
1− 1

n

(
2(`− 1)

(
1 +

1

2
ln R̄

)
+

2− `+ ln R̄ + 2 lnn

1 + 4(`− 1)
√
R̄

))
,

(5.64)

Comparing with (5.63), we find that the matching at the leading order requires that C0 =√
n+C1/

√
n as before and the ω(0) term is given at the next order in Ψ̄

(2)
S (R̄)/n2. However,
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a little subtlety here is that the third order wavefunction Ψ̄
(2)
S (R̄) is not convergent any

more for large R̄, and it seems that the far region boundary condition cannot be achieved.

However, there is nothing bad that truly happens. This can be explained by examining

figure 2 carefully. The figure shows clearly that the scalar potential is very different from

the vector and the tensor potentials with a remarkable feature that the plateau connecting

the two valleys may not be sufficient long and high for the wavefunction to decay into zero.

Therefore the true far-region is in the higher plateau which has the same structure as the

Schwarzschild black holes. For the first and the second order wave functions the lower

plateau is long enough so that they would not stretch into the higher plateau, but for the

third and higher order wave functions the wave stretches into farther region. Therefore we

need to discuss the wavefunction in the second valley carefully.

To investigate the wave in the second valley, we introduce the variable

R̃ =
R

n4
. (5.65)

It can be used to investigate the region R ∼ O(n4) which is the location of the second

valley and the edge of the higher plateau. The leading order potential is now

ṼS(R̃) =
n2

16

16R̃4 − 16R̃3α2 − 4R̃α4 + 8R̃α6 + α8

(R̃ + α2)2(2R̃ + α2)2
. (5.66)

In the limit R̃→ 0, ṼS → n2/16 which is the height of the middle plateau. Moreover when

R̃ → ∞, ṼS → n2/4 gives the correct far-region behavior of GB black holes. The wave

functions R̃ should satisfy the boundary condition

Ψ̃S(R̃→∞)→ 1√
R̃
. (5.67)

With the potential and the boundary condition, the leading order solution is

Ψ̃
(0)
S (R̃) =

√
2R̃ + α2

R̃1/4(R̃ + α2)3/4
. (5.68)

On the other hand, at a small R̃ = R̄/n2 we find Ψ̃
(0)
S (R̃) → 1/R̄1/4 so that it can be

matched to the solution Ψ̄
(0)
S (R̄). Therefore we have three pieces of wave functions: the

first is Ψ(R) which satisfies the ingoing boundary condition at the event horizon, the second

is Ψ̄S(R) which is valid in the first valley in figure 2 and matches with Ψ(R) in the region

1� R� n2, the third is Ψ̃s(R̃) which is valid in the second valley and satisfies the far-region

boundary condition (5.67) and can be matched with Ψ̄S(R) in the region 1 � R̄ � n2.

The three pieces should be matched in the overlapping region, which constrains all of

the undetermined constants in solving the differential equation. This computation can be

carried out order by order. At the first order all the boundary conditions can be satisfied

provided that we have

ω(0) = ±
√
`− 1− i(`− 1). (5.69)
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At the next order, the frequency is

ω(1) = ±
√
`− 1

(
3`

2
− 4

)
− i(`− 1)(`− 4). (5.70)

Similar to the vector-type decoupled modes, the scalar decoupled mode at the first order

is the same as the one in the Schwarzschild case, but the scalar mode at the second order

is different.

6 Summary and discussions

In this paper we studied the quasinormal modes of the Gauss-Bonnet black holes in the

large D. We have obtained the quasinormal spectrum of a minimally coupled scalar field

in the background of the Gauss-Bonnet black hole and three types of quasinormal modes

of gravitational perturbations. Since the metric expansion depends on the value of the GB

parameter α̃, we chose two typical values, a small α̃ of order 1/n and a large α̃ of order

n2 to investigate. In the large D limit, the geometry of the Gauss-Bonnet black hole is

qualitatively similar to the one of the Schwarzschild case: the near horizon region becomes

very short and approach flat spacetime very quickly.

For the scalar field the quasinormal modes are identical to the ones in the Schwarzschild

case [9], and they are independent of the coupling constant α̃. This is in accord with the

fact that the scalar quasinormal modes are universal and is insensitive to the black hole

geometry.

When the effective GB parameter α̃ is small, the non-decoupling modes of the gravita-

tional perturbations are identical to the ones in the Einstein gravity. This is easy to under-

stand as the effect of the GB term is negligible. However, when the effective GB parameter

α̃ is large, there is another set of decoupling quasinormal modes, besides the ones in the

Schwarzschild case. This is due to the appearance of another plateau in the radial potential.

The basic picture is that even if the GB black hole and Schwarzschild black holes share the

same asymptotic geometry, the near region geometry is slightly different so that the non-

decoupling modes in two cases are slightly different. Nevertheless, all the non-decoupling

modes are non-renormalizable in the near horizon geometry, and their frequencies ω ∼ D.

For the decoupled modes, when the parameter α̃ is small, the effect of the Gauss-

Bonnet term only appears beyond the leading order. This is within our expectation since

the Gauss-Bonnet term is just a small modification to the Einstein’s gravity after all. When

the parameter α̃ is large, the radial potentials for the vector-type and scalar type present

new features: there are two minima rather than one, and the shapes of the potentials for

the vector and the scalar are different. There are a few remarkable points:

1. There is no tensor-type decoupled mode. This can be seen easily from the potential:

there is no place to define a normalizable mode.

2. For the vector-type perturbation, one can read the decoupled modes from the wave-

function in the first valley, as the plateau between two valleys are long enough.
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3. For the scalar-type perturbation, one has to compute the wavefunction in three re-

gions and paste them correctly to read the decoupled modes.

4. At the leading order the frequencies of the decoupled modes are the same as the ones

in the small α̃. This is a little surprise since in this case the Gauss-Bonnet term

should be dominant, and it raises an issue if the leading decoupled mode is universal

or not. However the numerical analysis of the vector-type modes in the appendix

shows that this is just a coincidence and even at the leading order the frequencies are

not universal when α̃ takes an intermediate value.

5. The fact that the leading order decoupled mode in the large α̃ is the same as the

Schwartzschild case could be explained by the similarity of the zeroth order eigen-

function. Actually, the source free equation (5.5) in the large α̃ could be transformed

into the one in the small α̃ by changing the variable R→ R2. As a result the zeroth

eigenfunction share the same behavior in the limit R → 1, which determines the

leading order decoupled modes.

It would be interesting to compare our analytic results with the numerical study.

In [18], the quasinormal modes of the GB black holes have been studied numerically in D =

5−11 for a large α. It was found that the instability in D = 5, 6 disappears in larger D. To

compare with our results obtained in this paper, one has to push the study to much larger D.

Our study could be extended to various directions. It would be nice to investigate if

the novel features found in this work exist for the charged GB black hole, the GB black

hole with a cosmological constant [20]. It is also interesting to discuss the black hole in

other Lovelock theories at large D.

The study of the quasi-normal modes in the Gauss-Bonnet black hole at a large D is

the first step to understand the black hole dynamics in the Gauss-Bonnet gravity. The

decoupled modes encodes the nontrivial black hole physics. It would be interesting to

extend the study to the nonlinear regime, as suggested recently in [11, 19].
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A Numerical results of the first leading order of decoupled quasinormal

modes of “hybrid” Gauss-Bonnet black holes

The computation of the decoupled modes in the Gauss-Bonnet black holes when α̃ is of

order one is similar , but the analytical results are difficult to obtain. Therefore, one

has to use numerical method to find the solution of ordinary differential equations with
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ω(α̃ = 0.05) ω(α̃ = 0.1) ω(α̃ = 0.15)

−i(0.956371l − 0.956001) −i(0.924064l − 0.923859) −i(0.899545l − 0.899402)

ω(α̃ = 0.2) ω(α̃ = 0.25) ω(α̃ = 0.3)

−i(0.880862l − 0.880752) −i(0.866594l − 0.866505) −i(0.855708− 0.855632)

ω(α̃ = 0.35) ω(α̃ = 0.4) ω(α̃ = 0.45)

−i(0.847443l − 0.847377) −i(0.841224l − 0.841166) −i(0.836619l − 0.836568)

ω(α̃ = 0.5) ω(α̃ = 0.55) ω(α̃ = 0.65)

−i(0.8333l − 0.833266) −i(0.830999l − 0.830968) −i(0.828697l − 0.828671)

ω(α̃ = 0.8) ω(α̃ = 1) ω(α̃ = 1.5)

−i(0.82904l − 0.829018) −i(0.833315l − 0.833299) −i(0.849988l − 0.849974)

ω(α̃ = 2) ω(α̃ = 2.5) ω(α̃ = 3)

−i(0.866657l − 0.866646) −i(0.880945l − 0.880936) −i(0.892852l − 0.892843)

ω(α̃ = 3.5) ω(α̃ = 4) ω(α̃ = 4.5)

−i(0.902774l − 0.902765) −i(0.911107l − 0.911099) −i(0.918178l − 0.918172)

Table 1. Decoupled quasinormal Modes for the “hybrid” Gauss-Bonnet black holes perturbation

of the vector type. The value of α and the frequencies are measured in units of the horizon radius

(r0 = 1).

2 4 6 8 10
Α
�
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0.90
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ImHΩL�Hl-1L

Figure 3. The decoupled quasinormal modes at the leading order versus the parameter α̃ for the

vector-type perturbation in a “hybrid” Gauss-Bonnet black hole.

suitable boundary conditions. The large D expansion can still simplify the numerical

calculation dramatically. Here we list the decoupled quasinormal modes of the vector-type

perturbations at the leading order in table 1.

It is obvious that these decoupled quasinormal modes are all of the form −ik(l − 1),

with k varying between 0.8 to 1. The relation between k and α̃ are plotted in figure 3, with

a minimum at around α̃ = 0.65. It indicates that black holes are more “stable” when the

GB term or the Einstein term dominates. On the other hand, when the GB term and the

Einstein term are comparable, the black holes are less “stable”.
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