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1 Introduction and summary

Superconformal field theories (SCFTs) form an interesting class of supersymmetric QFTs.

They arise naturally at fixed points of renormalization group flows, and the additional

symmetry provides important constraints on the theory. SCFTs also arise on one side of

the AdS/CFT correspondence, giving dual descriptions of quantum gravity in AdS space.

Since the advent of AdS/CFT [1] there has been enormous progress in the understand-

ing and construction of SCFTs, often through their embedding in string theory. There

are many classes of such constructions. One approach is via the low-energy effective field

theories on branes probing singular spaces. The geometry of the singularity determines

the amount of supersymmetry, gauge group, matter content and interactions of this low-

energy theory.

For example, one can engineer a four-dimensional N = 1 quiver gauge theory as the

worldvolume theory on a stack of N D3-branes probing a Calabi-Yau three-fold singularity

X. When X admits a conical metric of the form gX = dr2 + r2gY , such gauge theories

are expected to flow to (in general strongly interacting) SCFTs in the IR, with large N

type IIB supergravity duals of the form AdS5×Y . This is by now a well-established story.

An important development on the field theory side was a-maximization [2]. Every four-

dimensional N = 1 SCFT has a conserved U(1)R symmetry, which for example determines

the scaling dimensions of chiral primary operators. However, due to potential mixing with

non-R Abelian flavour symmetries, in general symmetry principles alone do not determine

the superconformal U(1)R. In [2] it was shown that the latter is determined uniquely as

the local maximum of the a-function a = a(R). Here a(R) is a certain cubic combination

of ’t Hooft anomalies, which may thus be computed in the UV theory. Evaluated on

the superconformal R-symmetry the a-function is simply the a central charge, which for

theories with AdS gravity duals of the above type is related to the volume of Y [3, 4]:

a =
π3

4 Vol(Y )
N2 . (1.1)
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This allowed for precision tests of the AdS/CFT correspondence, notably for the in-

finite family of Y p,q models in [5, 6]. This work led to many related developments

and generalizations.

There is a parallel, but more recent, story for three-dimensional SCFTs, starting with

the seminal work of [7]. Here one can for example engineer an N = 2 superconformal theory

on the worldvolume of N M2-branes probing a Calabi-Yau four-fold singularity. These have

large N M-theory duals of the form AdS4 × Y , with the UV gauge theory typically being

a Chern-Simons quiver theory. Three-dimensional N = 2 superconformal field theories

similarly have a conserved U(1)R symmetry, but there is of course no central charge in

three dimensions. However, it turns out that a closely analogous role is played by the free

energy F = − logZS3 , where ZS3 denotes the partition function on the three-sphere. For

N = 2 theories this may be computed using localization techniques, and depends on a

choice of R-symmetry for the UV theory [8]. The superconformal U(1)R locally maximizes

the real part of F = F (R) [9, 10].

In this note we show that there is a class of theories which link these two developments.

We begin with a four-dimensional N = 1 “parent” quiver gauge theory, arising on N

D3-branes probing a Calabi-Yau three-fold singularity X. On T-dualizing/dimensional

reduction one obtains a three-dimensional N = 2 theory on N D2-branes probing R×X.

We then add a Romans mass F0 = n/(2π`s), where n is quantized to be an integer. This

is well-known to generate a Chern-Simons coupling on the D2-branes, and we conjecture

that the resulting theory flows to a superconformal fixed point in the IR, with very closely

related properties to the parent four-dimensional theory. In fact this construction was

recently applied to N D2-branes in flat space in [11], where the dual N = 2 AdS4 × S6

solution in massive IIA supergravity was constructed. For D2-branes probing R×X, where

the conical singularity X has link Y = {r = 1}, this supergravity solution generalizes to

AdS4 × M6, where M6
∼= SY is topologically the suspension of Y . We find that the

gravitational free energy of this solution is

Fgravity =
21/3 31/6 π3

5 Vol(Y )2/3
n1/3N5/3 . (1.2)

The field theory free energy F = F (R) localizes to a matrix model, and the large N limit

may be computed. Remarkably, we find that to leading order at large N

ReF (R) =
25/3 31/6 π

5
(nN)1/3a(R)2/3 , (1.3)

where a(R) is the a-function of the parent four-dimensional theory! It immediately follows

that locally maximizing ReF (R) is equivalent to locally maximizing a(R). Moreover,

substituting (1.1) into (1.3) shows that the field theory free energy agrees precisely with the

supergravity result (1.2), for a generic Calabi-Yau three-fold singularity. We also compute

the VEV of a certain 1/2 BPS Wilson loop operator W in the matrix model, finding the

leading order large N result

Re log 〈W 〉 =
24/3 π

31/6
(nN)−1/3 a1/3 . (1.4)
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We show that this precisely agrees with minus the action of a dual fundamental string

in AdS4, where the string sits at either of the two points of suspension in the internal

space M6
∼= SY .

The outline of this note is as follows. In section 2 we describe the string theory origin

of the Chern-Simons gauge theories of interest, and write down the dual AdS4 solution

of massive type IIA supergravity. In section 3 we compute the large N limit of the field

theory matrix model, and compare to the supergravity results.

2 D2-brane Chern-Simons theories

2.1 String theory set-up

Consider a system of N D2-branes on the background R1,2 × R × X, where X is a local

Calabi-Yau three-fold singularity. The metric on R×X is given by

gR×X = dz2 + dr2 + r2gY , (2.1)

where z ∈ R, r ≥ 0 and (Y, gY ) is a Sasaki-Einstein five-manifold. There are many

constructions of such Calabi-Yau cones X, including infinite families of explicit metrics, as

well as abstract existence results — see [12] for a review. Taking Y = S5 with the round

metric leads to flat space, while other simple examples include the homogeneous space

Y = T 1,1 and the infinite family Y = Y p,q [5].

The low-energy effective theory on N D2-branes placed at z = r = 0 is in general

a three-dimensional N = 2 field theory. When the singularity X admits a Calabi-Yau

(crepant) resolution, one expects this effective theory to be a quiver gauge theory, with

superpotential. For example this is the case for toric Calabi-Yau singularities, for which the

gauge group will be U(N)G where G is the Euler number of the resolved space. Each copy of

U(N) arises as the gauge group on a fractional D-brane, wrapping various collapsed cycles

at r = 0, and the bifundamental matter fields in the quiver are massless strings between

these branes. This set-up is perhaps more familiar in the context of N D3-branes probing

X, which leads to a four-dimensional N = 1 theory. A simple T-duality/dimensional

reduction relates the two, and since the D3-brane theory will play a role later in the paper

we shall refer to it as the “parent” theory.

The Yang-Mills gauge coupling is dimensionful in three dimensions, but an alternative

gauge kinetic term is provided by the Chern-Simons three-form. Suppose we have a three-

dimensional N = 2 U(N)G quiver gauge theory, engineered as above. The N = 2 vector

multiplet contains the gauge field A, two real scalars D and σ, and a two-component

spinor λ, all in the adjoint representation of the gauge group. Labelling the gauge groups

by a = 1, . . . , G, we can consider adding the N = 2 Chern-Simons interaction

LCS =
G∑
a=1

ka
4π

∫
R1,2

Tr

[
Aa ∧ dAa +

2

3
Aa ∧ Aa ∧ Aa + (2Daσa − λ†aλa)vol3

]
. (2.2)

The Chern-Simons levels ka for a U(N) or SU(N) gauge group should be integer in order for

the theory to be gauge invariant. Provided the sum of levels ka is zero,
∑G

a=1 ka = 0, such

– 3 –
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gauge theories generically describe the low-energy limit of N M2-branes probing certain

Calabi-Yau four-fold singularities. Such a relation to parent four-dimensional N = 1 gauge

theories was first suggested in [13], and later given a string theory derivation in [14]. The

idea is that M-theory on a Calabi-Yau four-fold singularity may often be reduced to type

IIA string theory on a Calabi-Yau three-fold X fibered over R, with RR two-form flux

arising as the curvature of the corresponding S1
M−theory bundle. The M2-branes reduce

to N D2-branes probing R × X, whose N = 2 worldvolume theories are essentially just

the dimensional reduction of the four-dimensional N = 1 D3-brane theory. Turning on

the RR flux and fibering X over R induces Chern-Simons couplings in this theory, via the

Wess-Zumino couplings on a D-brane.

In this paper we would like to consider precisely the opposite type of Chern-Simons

deformation, setting instead

ka = k , a = 1, . . . , G . (2.3)

As explained in [15], in type IIA string theory this corresponds to adding a Romans mass

F0 =
n

2π`s
, (2.4)

where `s denotes the string length and

n =
G∑
a=1

ka = Gk . (2.5)

For N D2-branes in flat space the low-energy effective theory is of course N = 8 U(N)

super-Yang-Mills, and turning on the Romans mass n induces a Chern-Simons term via

the Wess-Zumino coupling

SWZ = (2π`2s)
2µD2

∫
R1,2

F0 ·
1

2
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
=

n

4π

∫
R1,2

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.6)

where µD2 is the D2-brane charge. For our more general set-up of D2-branes at a Calabi-

Yau singularity, a similar mechanism induces Chern-Simons couplings for each fractional

brane, resulting in the relation (2.5).

Provided the Romans mass can be turned on preserving N = 2 supersymmetry, the

Chern-Simons terms above will be completed to the N = 2 couplings (2.2). At the level

of the corresponding D2-brane supergravity solution this is not immediately clear, since

turning on the Romans mass modifies the stress energy tensor and supersymmetry trans-

formations, potentially sourcing other supergravity fields and deforming the D2-brane ge-

ometry. It would be interesting to try to construct such a solution explicitly, but we shall

content ourselves in this note with instead writing down the AdS4 near horizon limit. We

turn to this now.
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2.2 Dual supergravity solution

We would like to argue that the above D2-brane Chern-Simons theories flow in the IR to

a superconformal fixed point with an AdS dual. Such a relation between superconformal

Chern-Simons gauge theories and massive IIA was first suggested in [16], and was recently

reconsidered in [11]. In the latter reference the authors considered N D2-branes in flat

space, together with an N = 2 Chern-Simons interaction generated by the Romans mass.

The dual supergravity solution is a warped product AdS4 × S6. In our more general set-

up, topologically the near horizon geometry should be AdS4 × SY , where SY denotes the

suspension of Y . This is because the link of the singularity z = r = 0 in (2.1) is z2 +r2 = 1,

which has induced metric

ds2
SY = dα2 + sin2 α ds2

Y , (2.7)

where r = sinα, z = cosα. The metric (2.7) is called the sine cone over Y , and is itself an

Einstein metric admitting a Killing spinor. There are isolated conical singularities at α = 0,

α = π, inherited from the line of singularities at r = 0 parametrized by z. However, as

mentioned in the last section, we expect the N = 2 preserving Romans mass deformation

to also source other supergravity fields, and for the metric (2.7) to correspondingly be

deformed, but with the same topology.

N = 2 supersymmetric AdS4 ×M6 solutions to massive IIA supergravity have been

constructed in the literature, notably in [17–19]. In particular in the latter reference M6 is

constructed from a generic Sasaki-Einstein manifold (Y, gY ). However, these solutions are

globally well-defined only when Y is a regular circle bundle over a Kähler-Einstein manifold

M4, so that M6 is the total space of an S2 bundle over M4. This is not the topology we

want, and the restriction on Y being regular is too strong. We conjecture that the relevant

N = 2 AdS4 supergravity solution in massive IIA supergravity is the following solution,

constructed recently in [11]:

g = e2A

(
gAdS4 +

3

2
dα2 +

9 sin2 α

5 + cos 2α
η2 +

6 sin2 α

3 + cos 2α
gT

)
,

eΦ = eΦ0
(5 + cos 2α)3/4

3 + cos 2α
, F0 =

e−5Φ0/4

√
3L

,

B = 6
√

2L2eΦ0/2d

(
cosα

3 + cos 2α

)
∧ η ,

F2 = −
√

6L e−3Φ0/4

[
4 sin2 α cosα

(3 + cos 2α)(5 + cos 2α)
ωT − 3

(3− cos 2α)

(5 + cos 2α)2
d cosα ∧ η

]
,

A3 = 6L3e−Φ0/4Γ + 3
√

3L3e−Φ0/4 7 + 3 cos 2α

(3 + cos 2α)2
sin4 αωT ∧ η , (2.8)

where dΓ = volAdS4 and the warp factor is

e2A = L2 (3 + cos 2α)1/2 (5 + cos 2α)1/8 . (2.9)

Here g is the ten-dimensional Einstein frame metric, Φ is the dilaton, B is the B-field, while

F2 is the RR two-form flux and A3 is the RR three-form potential. All Sasaki-Einstein
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metrics take the form

gY = η2 + gT , (2.10)

where η is a contact one-form and gT is a transversely Kähler-Einstein metric. The corre-

sponding transverse Kähler form has been denoted ωT , and dη = 2ωT . The AdS4 metric

gAdS4 has unit AdS radius. Finally L and Φ0 are constants, that we shall determine shortly.

The ten-dimensional metric takes a warped product form g = e2A(gAdS4 + gM6), where

gM6 =
3

2
dα2 +

9 sin2 α

5 + cos 2α
η2 +

6 sin2 α

3 + cos 2α
gT . (2.11)

Here α ∈ [0, π], and this metric may be compared to the sine cone (2.7). The topology is

precisely M6 = SY , with α = 0 and α = π being isolated conical singularities. However,

compared to (2.7) the Sasaki-Einstein metric at fixed α ∈ (0, π) has been squashed, with

the relative sizes of η2 and gT varying along the polar direction α.1

Recall that the Romans mass F0 is quantized as in (2.4), while N D2-branes source

N units of six-form flux over M6. These Dirac flux quantization conditions lead to the

unlikely expressions

L =
π`s n

1/24

27/48 37/24

(
N

Vol(Y )

)5/24

, eΦ0 =
211/12

31/6 n5/6

(
N

Vol(Y )

)−1/6

, (2.12)

where Vol(Y ) denotes the volume of the Sasaki-Einstein metric on Y . The holographic free

energy is given by the effective four-dimensional Newton constant, F = π/(2GN ), which

we calculate as

Fgravity =
16π3

(2π`s)8

∫
M6

e8A volM6 =
21/3 31/6 π3

5 Vol(Y )2/3
n1/3N5/3 . (2.13)

Setting Y = S5 equipped with its round metric, topologically M6 = SS5 ∼= S6 and

Vol(S5) = π3, and (2.13) reduces to the result in [11].

The metric (2.11) has Calabi-Yau conical singularities at α = 0, α = π, for generic

Y . Nevertheless, these singularities do not lead to any divergences in the holographic

free energy, and we believe the supergravity solution (2.8) is the correct gravity dual.

More precisely, although one expects some stringy degrees of freedom to be supported

at the Calabi-Yau singularities, in addition to the massive IIA supergravity fields, the

supergravity solution captures the leading order large N behaviour. We shall confirm this

in the next section, by computing the free energy directly in field theory.

3 Field theory

Let us now turn to the dual field theory. The three-dimensional N = 2 superconformal

field theories of interest in this paper have UV descriptions as Chern-Simons quiver gauge

theories. There is some number G of U(N) gauge groups, with equal Chern-Simons cou-

plings k, together with various chiral multiplets in bifundamental representations (N, N̄) of

1These are called η-Sasaki-Einstein metrics in the mathematics literature.
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U(N)a×U(N)b, and adjoint representations of U(N)c, specified by the quiver diagram. We

assign the matter fields R-charges ∆ab, ∆c respectively, consistent with the superpotential

having R-charge 2, which is necessary in order to define the theory on S3 [8]. The partition

function for such theories is given by [8, 20, 21]

ZS3 =
1

(N !)G

∫ G∏
a=1

[
N∏
i=1

dλai
2π

]
exp

[
ik

4π

N∑
i=1

(λai )
2

]
N∏
i 6=j

sinh2

(
λai − λaj

2

)
e−Fmatter , (3.1)

where λai , i = 1, . . . , N , are the eigenvalues of 2πσa and the matter part is determined by

the precise quiver data. Here a single bifundamental chiral multiplet transforming in a

representation (N, N̄) of U(N)a ×U(N)b and with R-charge ∆ab contributes as

F abmatter = −
N∑

i,j=1

`

[
1−∆ab +

i

2π
(λai − λbj)

]
, (3.2)

and a chiral multiplet transforming in the adjoint representation of U(N)c and with R-

charge ∆c contributes as

F adj,c
matter = −

N∑
i,j=1

`

[
1−∆c +

i

2π
(λci − λcj)

]
. (3.3)

Here we have used the common definition

`(z) = −z log
(
1− e2πiz

)
+

i

2

[
πz2 +

1

π
Li2
(
e2πiz

)]
− iπ

12
. (3.4)

3.1 Matrix model large N limit

We next compute the large N limit of a rather generic such matrix model, following the

saddle point method of [22]. Based on numerical simulations in a variety of examples,

including both non-chiral and chiral models, we conjecture the following leading order

ansatz for the large N saddle point eigenvalue distribution:

λai = Nν (xi + iyi) . (3.5)

Here xi, yi ∈ R are O(1) in the large N expansion, and we shall determine the exponent

ν > 0 analytically later. Notice that crucially all the U(N) gauge groups have the same

behaviour, i.e. the right hand side of (3.5) is independent of a = 1, . . . , G.

Following [22] to compute the large N limit of the free energy, we define a density

ρ(x) =
1

N

N∑
i=1

δ(x− xi) , (3.6)

with support on the finite interval [−x?, x?]. In the continuum limit, ρ(x) becomes an

integrable function satisfying ∫ x?

−x?
dx ρ(x) = 1 . (3.7)

– 7 –
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Furthermore a discrete sum over eigenvalues converges to a Riemann integral

1

N

N∑
i=1

−→
∫ x?

−x?
dx ρ(x) (3.8)

in the continuum limit N →∞.

Classical contribution. Given the large N behaviour of the eigenvalues (3.5), the clas-

sical contribution to the large N free energy F = − logZS3 for a theory with G U(N) gauge

groups is

Fclassical = − in

4π
N1+2ν

∫ x?

−x?
dx ρ(x)

[
2ixy(x) + (x2 − y(x)2)

]
+ o

(
N1+2ν

)
, (3.9)

where n = Gk.

Vector multiplet contribution. A single vector multiplet appears as

Fvector = −
N∑
i<j

2 log 2 sinh

(
λi − λj

2

)
(3.10)

in the matrix model. In order to obtain the continuum limit we use the expansion

log 2 sinh z = sgn [Re z] z −
∑
m≥1

e−sgn [Re z] 2mz

m
. (3.11)

The first term will cancel against the chiral multiplet contribution for the models of interest

(see below). The second term can be evaluated by a repeated application of integration

by parts

2N2

∫ x?

−x?
dx′
∫ x′

−x?
dx ρ(x′)ρ(x)

∑
m≥1

1

m
e−N

νm[x′−x+i(y(x′)−y(x))]

= 2N2−ν
∫ x?

−x?
dx′ρ(x′)ρ(x)

∑
m≥1

1

m2
e−N

νm[x′−x+i(y(x′)−y(x))]

∣∣∣∣x′
−x?
− 2N2

∫ x?

−x?
dx′

·
∫ x′

−x?
dx ρ(x′)

∑
m≥1

1

m

[
N−ν

m
ρ′(x) + iρ(x)y′(x)

]
e−N

νm[x′−x+i(y(x′)−y(x))] .

(3.12)

The contribution in the second line coming from x = −x? is exponentially suppressed and

only the term with x = x′ contributes to leading order. We again perform integration by

parts on the last line in (3.12) and make sure to only extract the leading order terms for

large N (in particular the ρ′(x) term is subleading). Repeated application of this procedure

leads to a geometric series

2N2−ν
∫ x?

−x?
dx′ρ2(x′)

∑
m≥1

1

m2

[
1− iy′(x′)− y′(x′)2 + · · ·

]
, (3.13)

– 8 –
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which, using
∑

`≥1
1
`2

= π2

6 , gives the leading order behaviour of a single vector multiplet2

Fvector = N2−ν π
2

3

∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)
+ o(N2−ν) . (3.14)

Chiral multiplet contribution. A bifundamental chiral multiplet between U(N)a and

U(N)b, with R-charge ∆ = ∆ab, contributes to the matrix model via (3.2). We use a

convenient expansion of the `-function (see for example [23])

`(z) = sgn [Im z]
iπ

2

(
z2 − 1

6

)
+
∑
m≥1

(
z

m
+ i

sgn [Im z]

2πm2

)
esgn [Im z] 2πimz . (3.15)

Substituting in our ansatz (3.5) and taking the continuum limit, the first term in the

expansions leads to a contribution of

−Nν
N∑
i<j

(1−∆) sgn(xi − xj) [xi − xj + i(yi − yj)]

−→ −N2+ν(1−∆)

∫ x?

−x?
dx′ρ(x′)

∫ x′

−x?
dx ρ(x)

[
x− x′ + i(y(x)− y(x′))

]
. (3.16)

This precisely cancels the contribution coming from the vector multiplets. More precisely,

it cancels against the first term in the expansion (3.11) provided that

G =
∑

I ∈matter fields

(1−∆I) , (3.17)

where the sum is taken over all matter fields (bifundamental and adjoint) in the quiver and

∆I are their respective R-charges. Equation (3.17) is simply TrR = 0, where the trace is

over all fermions in the theory (compare to (3.29) below). Precisely the same constraint

arose in the Chern-Simons quiver theories in [23], for essentially the same reason. The

parent four-dimensional N = 1 superconformal field theory certainly satisfies (3.17), as it

is implied by the vanishing of the NSVZ beta functions for all the gauge groups (see for

example [24]). As in [23], TrR = 0 is an additional constraint on the three-dimensional

theories under consideration.

Focusing on the second part in the expansion (3.15), and using exactly the same

integration-by-parts argument as for the vector multiplet, a careful analysis shows that

N∑
i,j=1

∑
m≥1

i sgn[xi − xj ]
2πm2

esgn[xi−xj ] 2πim[1−∆+ i
2π
Nν(xi+iyi−(xj+iyj))]

−→ −N2−ν
∑
m≥1

sin 2πm(1−∆)

πm3

∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)
, (3.18)

2Recall that we are neglecting the linear term in (3.11), as it will cancel for the models considered in

this paper.
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for large N . For the remaining part of the expansion we compute the large N contribution

N∑
i,j=1

∑
m≥1

1−∆ + i
2πN

ν [xi + iyi − (xj + iyj)]

m
esgn[xi−xj ] 2πim[1−∆+ i

2π
Nν(xi+iyi−(xj+iyj))]

−→ N2−ν
∑
m≥1

[
2(1−∆) cos 2πm(1−∆)

m2
− sin 2πm(1−∆)

πm3

] ∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)
.

(3.19)

It remains to evaluate the Fourier series. For ∆ ∈ [0, 1] these are given by

∑
m≥1

sin 2πm∆

m3
=
π3

3
∆(1−∆)(1− 2∆) ,

∑
m≥1

cos 2πm∆

m2
= π2

(
∆− 1

2

)2

− π2

12
. (3.20)

Putting everything together we arrive at the final form of the large N chiral multiplet

contributions3

F abmatter = N2−ν π
2

3
(1−∆ab)

[
1− 2

(
1−∆ab

)2
] ∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)
,

F adj,c
matter = N2−ν π

2

3
(1−∆c)

[
1− 2(1−∆c)2

] ∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)
, (3.21)

for bifundamenal and adjoint chiral multiplets of R-charges ∆ab, ∆c, respectively. The

contribution of an adjoint chiral multiplet is derived in exactly the same fashion.

Large N free energy. We consider a generic three-dimensional N = 2 Chern-Simons

quiver theory, with G U(N) gauge groups and some number of bifundamental and adjoint

chiral multiplets, giving the R-charge spectrum {∆I : I ∈ matter fields}. Given the ex-

pressions obtained above, the saddle point large N free energy for such a model is obtained

by extremizing

F =
n

4π
N1+2ν

∫ x?

−x?
dx ρ(x)

[
2xy(x)− i(x2 − y(x)2)

]
+N2−ν π

2

3

{
G +

∑
I ∈matter fields

(1−∆I)
[
1− 2(1−∆I)2

]}∫ x?

−x?
dx

ρ2(x)

1 + iy′(x)

+ o
(
N2−ν) . (3.22)

In order to find a non-trivial saddle point both contributions have to be of the same order,

which determines ν = 1/3. This precisely agrees with numerical simulations of a variety

of models.

3Again recall that we are neglecting the linear term in (3.15), since we showed that it will cancel for the

models considered in this paper.
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Noting that y(x) is real, computing the leading order behaviour is now a simple vari-

ational problem, with the following general solution

y(x) =
1√
3
x , (3.23)

ρ(x) =
3 · 22/3π2n1/3

{
G+

∑
I(1−∆I)

[
1− 2(1−∆I)2

]}2/3 − 4nx2

4
√

3π3 {G+
∑

I(1−∆I) [1− 2(1−∆I)2]}
, (3.24)

x? =

√
3π
{
G+

∑
I(1−∆I)

[
1− 2(1−∆I)2

]}1/3

22/3n1/3
. (3.25)

Substituting these expressions back into (3.22), we arrive at the final form of the large N

free energy

F =
3
√

3π

20 · 21/3

(
1− i√

3

){
G +

∑
I ∈matter fields

(1−∆I)
[
1− 2(1−∆I)2

]}2/3

n1/3N5/3

+ o(N5/3) . (3.26)

3.2 Comparison to supergravity

Let us compare this result to our supergravity prediction (2.13). To do so, we start by

making an important observation. The part of (3.26) which depends on the quiver data

can in fact be rewritten in terms of the a-function of the four-dimensional parent theory.

In particular, using the relation (3.17), which as mentioned above is implied by the four-

dimensional theory having vanishing beta functions, one finds that

GN2 +
∑

I ∈matter fields

(1−∆I)
(
1− 2(1−∆I)2

)
N2 =

64

9
a . (3.27)

Here a is the a-function of the four-dimensional N = 1 superconformal parent theory. It

can be expressed as [25, 26]

a =
3

32

(
TrR3 − 5TrR

)
, (3.28)

where R is a choice of U(1)R symmetry. In terms of the quiver data we have

TrRγ = G dim U(N) +
∑

I ∈matter fields

dimRI(∆I − 1)γ , (3.29)

where dimRI is the dimension of the respective matter representation with R-charge ∆I .

(Notice then that (3.17) is simply TrR = 0.) Given this remarkable relation, we can express

the free energy (3.26) in terms of the a-function

F (R) =
25/331/6π

5

(
1− i√

3

)
(nN)1/3a(R)2/3 + o(N5/3) , (3.30)

and we see that F -maximization is in fact equivalent to a-maximization for the three-

dimensional SCFTs considered here. Evaluating the a-function on the superconformal
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U(1)R gives the a central charge. This in turn is related by AdS5/CFT4 to the volume of

the internal space Vol(Y ) (1.1). Putting all this together, we see that the real part of the

large N free energy precisely agrees with the supergravity result (2.13).

We conclude this subsection with a brief comment on the imaginary part of the free

energy (3.30). This is well-defined only modulo 2π, and so is effectively O(1) in the large

N expansion. Its value is also altered by adding a Chern-Simons term for a background

Abelian gauge field [10]. One therefore doesn’t expect to be able to match it to a leading

order supergravity calculation.

3.3 Wilson loop

We may decorate our three-dimensional field theory with Wilson loops. A BPS Wilson

loop in a representation R of a single U(N) gauge group is given by

WR =
1

dimR
TrR

{
P exp

(∮
γ

ds (iAµẋµ + σ|x|)
)}

, (3.31)

where P denotes the path-ordering operator, Aµ is the gauge field with σ the corresponding

scalar in the N = 2 vector multiplet, and xµ(s) parametrizes the Wilson line γ ⊂ S3. In

order to preserve some supersymmetry, γ lies on a Hopf circle in S3. In particular this

gives rise to 1/2 BPS Wilson loops in the three-dimensional theory. The VEV of such a

1/2 BPS Wilson loop can be computed by insertion of WR into the path integral, and so

expressed in terms of the matrix model via localization [20]. This amounts to an additional

factor of

TrR e2πσ , (3.32)

where γ has length 2π.

We now focus on Wilson loops in the fundamental representation of a quiver with G

U(N) gauge groups and some generic matter. In the large N limit the VEV is then given by

〈Wfund 〉 −→ GN

∫ x?

−x?
dx ρ(x) eN

ν(x+iy(x)) . (3.33)

The leading order saddle point configurations in (3.23), (3.24) and (3.25) are not affected

by the addition of a Wilson loop, since it is subleading. The large N VEV of a 1/2 BPS

fundamental Wilson loop is therefore simply given by

log 〈Wfund 〉 =

(
1 +

i√
3

)
x?N

1/3 + o(N1/3) . (3.34)

Substituting for the saddle point configuration of x? as written in (3.25), we end up with

log 〈Wfund 〉 =
24/3π

31/6

(
1 +

i√
3

)
(nN)−1/3a(R)1/3 , (3.35)

where we have used equation (3.27). Again appealing to the relation (1.1) leads to a precise

supergravity prediction.
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Dual fundamental string. On general grounds the 1/2 BPS fundamental Wilson loop

should map to a fundamental string in AdS4 [27]. This wraps a disk Σ2 ⊂ AdS4, where Σ2
∼=

AdS2 has boundary ∂Σ2 = γ ⊂ S3. It is natural for this to sit at one of the two suspension

points in the internal space, with α = 0 or α = π. Computing the fundamental string action

simply reduces to computing the volume of Σ2 in the string frame metric. Converting from

Einstein to string frame introduces an additional factor of the ten-dimensional dilaton,

eΦ/2. Putting everything together, we find

Sstring =
61/8

π`2s
eΦ/2|α=0,πL

2 Vol(Σ2) . (3.36)

The divergent area of Σ2
∼= AdS2 is here renormalized via a local counterterm, namely the

length of the boundary, leading to the standard result

Vol(AdS2) = −2π . (3.37)

We hence find that

Sstring = − 22/3π2

31/6n1/3 Vol(Y )1/3
N1/3 . (3.38)

As expected, this precisely agrees with minus the real part of log 〈Wfund 〉 as given in (3.35),

if we use the relation (1.1) to express the a central charge in terms of the internal space

volume Vol(Y ).
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