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aJožef Stefan Institute,

1000 Ljubljana, Slovenia
bInstitut de Physique Théorique,1 CEA-Saclay,
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1 Introduction

The minimal renormalizable supersymmetric SU(5) model [1], with just 3 pairs of 10 ⊕ 5̄
fermion representations and an adjoint 24 plus a 5 ⊕ 5̄ pair in the Higgs sector, is the

simplest supersymmetric Grand Unified extension of the Standard Model. It is therefore

particularly important to test this model in detail, and possibly to rule it out. Although the

choice of the gauge group, supersymmetry and minimality do not need a special motivation,

it is more difficult to justify the absence of non-renormalizable terms in the superpotential.

Experimental evidence tells us that some of these terms must be strongly suppressed. For

instance, the superpotential operators Q1Q1Q2Lk/MPlanck (k = 1, 2, 3) induce proton decay

at an unacceptable rate unless they come with coefficients smaller than about 10−7. Their

smallness will lead us to assume in this paper that for some (to us unknown) reason all

non-renormalizable operators can be neglected, and to adopt the minimal renormalizable

supersymmetric SU(5) model as a benchmark.1

It has been shown long ago [7] that the region of the parameter space of the minimal

renormalizable supersymmetric SU(5) model corresponding to TeV-scale soft terms is ex-

cluded.2 The reason put forward was the incompatibility between the colour triplet mass

constraints associated with gauge coupling unification on the one hand, and with proton

decay on the other hand. This conclusion relies however on the assumption of a relatively

light superpartner spectrum (although masses as large as 10 TeV for the first two gener-

ations of sfermions were considered in ref. [7]). The purpose of this paper is to ascertain

whether it can be extended to the region of larger superpartner masses.

1Another option is to give up renormalizability and to assume that the non-renormalizable operators

giving rise to fast proton decay are suppressed, while harmless higher-dimensional couplings can be sizable.

Under this assumption, it is possible to avoid fast proton decay from heavy colour triplet exchange [2–5]

and to correct the (phenomenologically inaccurate) SU(5) relations between charged lepton and down-type

quark masses [6] (for a review on these issues, see ref. [4]).
2In the case of decoupling scenario of heavy first two generations of sfermions considered in [7] proton

decay can still be consistent with the experimental bounds providing the flavor sfermion sector gets a very

specific form [3].
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In order to answer this question, several constraints have to be imposed on the model:

precise gauge coupling unification, correct predictions for charged fermion masses, the Higgs

mass constraint, the experimental bound on the proton lifetime, and finally the experimen-

tal bounds from flavour physics and from direct searches for supersymmetric particles. We

also require perturbativity of the model. The observed down-type quark and charged lepton

masses are accounted for by generation-dependent supersymmetric threshold corrections

with large A-terms [8–14], which in turn are bounded by considerations related to the stabil-

ity of the electroweak vacuum [15–17]. The soft supersymmetry breaking terms are required

to respect SU(5) invariance but are not assumed to be flavour universal as in the so-called

mSUGRA model (as a matter of fact, generation-dependent A-terms are needed to correct

the SU(5) fermion mass relations). To avoid potentially dangerous flavour effects, we will

therefore take the GUT-scale sfermion soft terms to be aligned with fermion masses3 [18].

Neutrino masses can be generated either through bilinear R-parity violation4 [19, 22–24] or

by adding right-handed neutrinos to the model in order to implement the seesaw mecha-

nism [25–29]. Finally, if the neutralino sector does not contain a suitable candidate for dark

matter (either because the lightest neutralino is not the lightest supersymmetric particle,

or because it is too heavy), this role may be played by the gravitino.

Not surprisingly, the main constraint on the superpartner mass scale comes from pro-

ton decay, which pushes the spectrum above the 10 TeV scale (the conflict between the

proton decay and unification constraints pointed out in ref. [7] is resolved by relaxing the

upper bound on the superpartner masses). Perturbativity imposes an upper bound on the

coloured triplet mass, which translates into an upper limit on superpartner masses once

gauge coupling unification is imposed. The observed Higgs mass, together with vacuum

metastability constraints associated with the stop A-term, also excludes large portions of

the parameter space. A priori, there is no guarantee that the minimal renormalizable su-

persymmetric SU(5) model will survive all these constraints, even if very large values of

the soft terms are allowed.

To give an idea of how the parameter space is restricted by the various phenomeno-

logical requirements, we show in figure 1 the approximate constraints in the (tan β, msusy)

plane obtained by making several simplifying assumptions. Namely, all sfermion masses are

taken to be equal to msusy at the low scale, as well as the µ parameter and mHu (m2
Hu

> 0
is assumed, and m2

Hd
and the B parameter are computed from the electroweak symmetry

breaking conditions), while the gaugino masses assume a common value M1/2 = msusy at

the GUT scale and are split by renormalization group running. Obviously, these inputs are

not consistent with SU(5) symmetry of the soft terms at the GUT scale, but they make it

possible to show several constraints in a single plot. Imposing SU(5) boundary conditions

3Flavour violating soft terms are going to be generated from renormalization group running (due to the

CKM matrix, and possibly to right-handed neutrino couplings and R-parity violating couplings), but this

will lead only to small effects in flavour-changing processes, especially in view of the large superpartner

masses. We shall therefore neglect these small RG effects.
4The SU(5)-invariant bilinear R-parity violating operators µi5̄i5H also contain baryon number violating

terms, which however are harmless by virtue of the doublet-triplet splitting if µi �MGUT [19, 20]. Contrary

to ref. [21], we assume negligible trilinear R-parity violating couplings.
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Figure 1. Approximate constraints on the minimal renormalizable supersymmetric SU(5) model

in the (tan β,msusy) plane. The region to the left of the red curve is excluded by the measured

Higgs boson mass, while the area to the right of the purple curve is excluded by vacuum stability

considerations (namely, the value of the stop A-term needed to reproduce the observed Higgs boson

mass would render the electroweak vacuum unstable with a lifetime shorter than the age of the

universe). The experimental lower bound on the proton lifetime is satisfied above the green line,

and the perturbativity constraint mT < MPlanck/10, where mT is the colour triplet mass, is satisfied

below the black line. The green area is consistent with all four constraints. In this plot, the sfermion

masses, the µ parameter and mHu are all equal to msusy, as well as the common gaugino mass at

the GUT scale. Since these values are not consistent with SU(5) boundary conditions, the figure

should be considered as illustrative only.

will significantly affect quantities such as the heavy colour triplet mass and more crucially

the proton lifetime, making the investigation of the parameter space of the minimal renor-

malizable supersymmetric SU(5) model more involved than suggested by figure 1. As we

are going to see, phenomenologically viable points typically feature superpartners in the

O(102 − 104) TeV range, with values of tan β between 2 and 5, but lighter spectra with

supersymmetric particles as light as a few 10 TeV can also be found.

In the process we have generalized the procedure of refs. [30, 31] for deriving approxi-

mate semi-analytic solutions to the one-loop renormalization group equations (RGEs) for

the MSSM soft terms. In this way we are able to write the low-energy soft terms as linear

or quadratic functions of the initial (GUT-scale) parameters, making it possible to explore

the parameter space without having to solve the RGEs for each point. In practice, one

just needs to solve numerically the RGEs for gauge and Yukawa couplings for each choice

of tan β and msusy, the matching scale between the SM and the MSSM. The low-energy

soft terms and their dependence on the other model parameters are then simply given by

linear and quadratic algebraic equations.

The paper is organized as follows. Section 2 introduces the minimal renormalizable

supersymmetric SU(5) model. In section 3, the running of the model parameters is dis-

cussed, and the semi-analytical procedure used to solve the renormalization group equations

– 3 –
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(RGEs) is presented in section 4 (more details can be found in appendix A). Proton decay

and the constraints associated with the metastability of the electroweak vacuum are ad-

dressed in sections 5 and 6, respectively, with technical details relegated to appendices B, C

and D. Finally, we present our results in section 7.

2 The minimal renormalizable supersymmetric SU(5) model

In this section, we briefly describe the minimal renormalizable supersymmetric SU(5)

model [1] and present our notations. The Higgs sector includes the adjoint 24H , which

spontaneously breaks the SU(5) gauge group to SU(3)×SU(2)×U(1), and a fundamental

and anti-fundamental representations 5H and 5̄H containing the two light Higgs doublets

responsible for electroweak symmetry breaking. The 5H ⊕ 5̄H Higgs fields also includes a

heavy pair of colour triplet and antitriplet that mediate proton decay through d = 5 op-

erators. All matter fields belong to 10i and 5̄i representations (leaving aside right-handed

neutrinos in the singlet representation that may also be present), where i = 1, 2, 3 is the

generation index.

In order to connect the minimal renormalizable supersymmetric SU(5) model with

experimental data, one has to deal with three different theories: SU(5) above the unification

scale MGUT, the Minimal Supersymmetric Standard Model (MSSM) between MGUT and

the supersymmetry scale msusy, and the Standard Model (SM) between msusy and the

weak scale mZ . Since the heavy GUT states (resp. the superpartners) are not degenerate

in mass, the matching between the SU(5) theory and the MSSM at MGUT (resp. between

the MSSM and the SM at msusy) will involve threshold corrections.

In the next subsections we give the relevant parts of the corresponding Lagrangians

(i.e. the Higgs and Yukawa sectors and the soft supersymmetry breaking terms, which

determine the superpartner spectrum) and we specify our notations and assumptions.

2.1 The SU(5) model

The superpotential of the minimal renormalizable supersymmetric SU(5) model is deter-

mined by its field content, gauge invariance and renormalizability. It can be divided into

two parts describing the Higgs and Yukawa sectors, respectively:

WH = µ5
2 Tr 242

H + λ5
3 Tr 243

H + 5̄H (µH + ηH 24H) 5H , (2.1)

WY = 1
4 Λ10

ij 10i10j5H −
√

2 Λ5̄
ij 5̄i10j 5̄H , (2.2)

in which we have omitted terms involving right-handed neutrinos as well as R-parity vi-

olating couplings that may be present, depending on how neutrino masses are generated.

After having solved the equations of motion for the 24H in the SM singlet direction:

〈24H〉 = σ0 Diag(2, 2, 2,−3,−3) , σ0 = µ5/λ5 , (2.3)

and performed the fine-tuning needed to achieve doublet-triplet splitting in the Higgs sector,

one can write down the masses of the heavy states in terms of the SU(5) superpotential

– 4 –
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parameters:

mV = 5gGUTσ0 , mT = 5ηHσ0 , m8 = −m3 = −5m1 = 5λ5σ0 , (2.4)

where mV is the mass of the SU(5) gauge bosons in the representations (3, 2)−5/3⊕(3̄, 2̄)+5/3
of the SM gauge group; mT is the mass of the colour triplet and antitriplet pair (T, T̄ )
contained in 5H ⊕ 5̄H ; and m1, m3 and m8 are the masses of the SM singlet, SU(2) triplet

and SU(3) octet components of 24H , respectively. Demanding that the superpotential

couplings λ5 and ηH be in the perturbative regime and taking into account the fact that

the unified gauge coupling gGUT is of order 1, one obtains the following constraint:

mT , m8, m3 ∼< mV . (2.5)

We also assume that supersymmetry breaking is coming from above the GUT scale, as

for example in supergravity. In practice this means that the soft terms should be SU(5)

symmetric at the GUT scale:

−Lsoft = (m2
10)ij 1̃0†i 1̃0j + (m2

5̄)ij ˜̄5†i ˜̄5j +
(1

2 A
10
ij 1̃0i1̃0j5H −A5̄

ij
˜̄5i1̃0j 5̄H + h.c.

)
+ m2

5H 5†H5H +m2
5̄H 5̄†H 5̄H +

(
B5 5H 5̄H + h.c.

)
+ 1

2 M1/2 λ̄
aλa. (2.6)

We will consider the possibility of generation-dependent soft terms (as explained in the

introduction, generation-dependent A-terms are needed to correct the SU(5) fermion mass

relations), but in order to comply with the strong constraints coming from flavour physics

we must ensure that they do not induce large flavour-violating effects. To this end, we

assume that the soft sfermion mass matrices are diagonal in the basis in which the Yukawa

couplings Λ5̄ are diagonal, and that the A-term matrices are diagonal in the corresponding

fermion mass eigenstate basis:

(m2
10)ij = m2

10iδij , (m2
5̄)ij = m2

5̄iδij , A5̄
ij = A5̄

i δij in the basis Λ5̄
ij = Λ5̄

i δij , (2.7)

A10
ij = A10

i δij in the basis Λ10
ij = Λ10

i δij , (2.8)

so that all flavour violation at the GUT scale is concentrated in the up squark sector and

controlled by the CKM angles, yielding an effective alignment of sfermion soft terms with

fermion masses [18]. In addition, we assume that the soft masses of the first two generations

of sfermions are degenerate:

m2
101 = m2

102 , m2
5̄1

= m2
5̄2
. (2.9)

Finally, we will take M1/2 and the A-terms (as well as the µ parameter µ ≡ µH − 3ηHσ0)

to be real. This may be more than what we need to evade flavour and CP constraints from

low-energy experiments, especially in view of the fact that the superpartner spectrum is

heavy, but this choice also helps reducing the number of parameters. In our subsequent

exploration of the parameter space of the minimal renormalizable supersymmetric SU(5)

model we shall completely neglect flavour violation in the sfermion sector, including the

small amount of flavour violation that is generated from the running of the soft terms.

– 5 –
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2.2 MSSM

Below the scale MGUT, the relevant theory is the MSSM, with superpotential

WMSSM = ΛUij U ciQjHu − ΛDij Dc
iQjHd − ΛEij EciLjHd + µHuHd , (2.10)

and soft supersymmetry breaking terms

−Lsoft = (m2
Q̃

)ij q̃†i q̃j + (m2
ũc)ij ũci ũ

c†
j + (m2

ẽc)ij ẽci ẽ
c†
j + (m2

L̃
)ij l̃†i l̃j + (m2

d̃c
)ij d̃ci d̃

c†
j

+
(
AUij ũ

c
i q̃jhu −ADij d̃ci q̃jhd −AEij ẽci l̃jhd + h.c.

)
+ m2

Huh
†
uhu +m2

Hd
h†dhd + (B huhd + h.c.)

+ 1
2M1

¯̃BB̃ + 1
2M2

¯̃W iW̃ i + 1
2M3 ¯̃gag̃a, (2.11)

where the contraction of SU(2)L indices is understood (for instance, HuHd stands for

εijH
i
uH

j
d = H+

u H
−
d − H0

uH
0
d , where i, j = 1, 2 are SU(2)L indices and εij is the totally

antisymmetric tensor with ε12 = +1). Due to the boundary conditions (2.7) and (2.8),

and to the fact that we are neglecting the effects of the CKM matrix in the running, the

sfermion soft terms keep a diagonal form all the way down to low energies.

2.3 Standard Model

Below the matching scale

msusy ≡
√
mt̃1(msusy)mt̃2(msusy) '

√
mQ̃3

(msusy)mũc3
(msusy) (2.12)

(where the last approximation is valid as long as the mixing in the stop sector is small,

i.e. mtXt � m2
Q̃3
,m2

ũc3
), the relevant theory is the Standard Model. The Higgs potential

is given by (with the SM Higgs doublet given by h =
√

2
(
cosβ hd + sin β iσ2h∗u

)
in the

decoupling limit):

VSM = −m2
h h
†h+ λ

2
(
h†h

)2
, (2.13)

while the Yukawa Lagrangian is

LYukawa = −HU
ij ūRih̃

†qj −HD
ij d̄Rih

†qj −HE
ij ēRih

†lj + h.c. , (2.14)

where h̃ ≡ iσ2h∗.

3 Renormalization group equations

In this section, we collect the SM and MSSM renormalization group equations (RGEs) and

various expressions used in our analysis (from boundary to matching conditions). We use

the SM RGEs [32] between mZ and msusy, and the MSSM RGEs [33] between msusy and

MGUT. The gauge and Yukawa couplings, as well as the Higgs quartic coupling are evolved

with the 2-loop RGEs, with the 1-loop threshold corrections accounting for the splitting

of superpartner masses added at the scale msusy. All soft parameters (A-terms, gaugino

masses and soft scalar masses) are run at 1 loop.

– 6 –
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3.1 Gauge couplings

The 2-loop RGEs for the gauge couplings gi (i = 1, 2, 3 for the gauge groups U(1)Y , SU(2)L
and SU(3)C , respectively, with g1 =

√
5/3 g′) read:

d

dt
gi = g3

i

(4π)2 bi + g3
i

(4π)4

 3∑
j=1

Bij g
2
j −

∑
α=u,d,e

Ciα Tr(Λ†αΛα)

 , (3.1)

where t ≡ ln(m/m0), m being the renormalization group scale, and the β-function coeffi-

cients below and above msusy are given by:

bSM
i = (41/10,−19/6,−7) , bMSSM

i = (33/5, 1,−3) , (3.2)

BSM
ij =

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26

 , BMSSM
ij =

 199/25 27/5 88/5
9/5 25 24
11/5 9 14

 , (3.3)

CSM
iα =

 17/10 1/2 3/2
3/2 3/2 1/2
2 2 0

 , CMSSM
iα =

 26/5 14/5 18/5
6 6 2
4 4 0

 . (3.4)

In the last term of eq. (3.1), the MSSM Yukawa couplings Λα should be replaced with the

SM ones (Hα) below msusy.

At msusy, the running gauge couplings should be converted from the MS scheme to the

DR scheme, in which the MSSM RGEs are written:

α−1
1 (msusy + ε) = α−1

1 (msusy − ε) , (3.5)

α−1
2 (msusy + ε) = α−1

2 (msusy − ε)−
1

6π , (3.6)

α−1
3 (msusy + ε) = α−1

3 (msusy − ε)−
1

4π , (3.7)

where αi ≡ g2
i /(4π) and ε→ 0+.

3.1.1 Threshold corrections to gauge couplings

Imposing gauge coupling unification at the GUT scale:

α1(MGUT) = α2(MGUT) = α3(MGUT) ≡ αGUT (3.8)

implies certain relations among the masses of the various thresholds (supersymmetric part-

ners of the SM fields and heavy GUT fields). Adding 1-loop threshold corrections [34–38]

to the running gauge couplings evolved with the 2-loop MSSM RGEs between the scales

msusy and MGUT yields the following relations (i = 1, 2, 3):

α−1
GUT =

2-loop single-scale MSSM︷ ︸︸ ︷
ᾱ−1
i (MGUT) −

1-loop low-energy threshold corrections︷ ︸︸ ︷
1

2π
∑
n

∆b(n)
i ln msusy

mn
(3.9)

− 1
2π

[
∆bVi ln MGUT

mV
+ ∆b8i ln MGUT

m8
+ ∆b3i ln MGUT

m3
+ ∆bTi ln MGUT

mT

]
︸ ︷︷ ︸

1-loop high-energy threshold corrections

,

– 7 –
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where the ᾱi denote the values of the gauge couplings obtained by solving numerically the

2-loop MSSM RGEs with all superpartner masses at the scale msusy, and n runs over the

superpartners. Their contributions ∆b(n)
i to the β-function coefficients are given by:

∆bQ̃ii = (1/30, 1/2, 1/3) , ∆bh̃i = (2/5, 2/3, 0) ,
∆bũii = (4/15, 0, 1/6) , ∆bAi = (1/10, 1/6, 0) ,
∆bd̃ii = (1/15, 0, 1/6) , ∆bb̃i = (0, 0, 0) ,
∆bL̃ii = (1/10, 1/6, 0) , ∆bw̃i = (0, 4/3, 0) ,
∆bẽii = (1/5, 0, 0) , ∆bg̃i = (0, 0, 2) ,

(3.10)

while the contributions of the heavy GUT fields are:

∆b8i = (0, 0, 3) , ∆b3i = (0, 2, 0) ,
∆b1i = (0, 0, 0) , ∆bTi = (2/5, 0, 1) ,
∆bVi = (−10,−6,−4) .

(3.11)

Taking appropriate combinations of the three equations (3.9), one obtains:

mT

MGUT
= exp

[5π
6
(
− ᾱ−1

1 + 3 ᾱ−1
2 − 2 ᾱ−1

3

)
(MGUT)

](
m3
m8

)5/2

×
(
mw̃

mg̃

)5/3 3∏
i=1

 m4
Q̃i

m3
ũci
mẽci

m2
L̃i

m2
d̃ci

1/12(
m4
h̃
mA

m5
susy

)1/6

, (3.12)

[
m2
V (m3m8)1/2

]1/3
MGUT

= exp
[
π

18
(
5 ᾱ−1

1 − 3 ᾱ−1
2 − 2 ᾱ−1

3

)
(MGUT)

]

×
(
m2

susy
mw̃mg̃

)1/9 3∏
i=1

mũci
mẽci

m2
Q̃i

1/36

, (3.13)

α−1
GUT =

[(
−5

9 ᾱ
−1
1 + 12

9 ᾱ−1
2 + 2

9 ᾱ
−1
3

)
(MGUT)

]
+ 1

2π ln
[
m

1/5
8 m

4/5
3

mV

]10/3

+ 1
2π ln

m12
h̃
m3
Am

32
w̃ m

8
g̃

m91
susy

3∏
i=1

m13
Q̃i
m3
L̃i

m2
ũci
m2
ẽci

1/18

. (3.14)

At the 1-loop level, the matching scales MGUT and msusy drop out from eqs. (3.12)

and (3.13), while only msusy drops out from eq. (3.14). Since msusy � mZ , one can

neglect the mixing between the higgsinos and the electroweak gauginos and identify:

mh̃ = µ , (3.15)

mA =
√

(|µ|2 +m2
Hd

(msusy))(1 + 1/ tan2 β)

'
√

(m2
Hd

(msusy)−m2
Hu

(msusy))(tan2 β + 1) / (tan2 β − 1) , (3.16)

mw̃/mg̃ ' α2(mg̃)/α3(mg̃) , (3.17)
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where tan β ≡ 〈h0
u〉/〈h0

d〉 is the ratio of the two MSSM Higgs doublet vevs, and µ satisfies

the electroweak symmetry breaking (EWSB) condition (again neglecting m2
Z):

|µ|2 '
m2
Hd

(msusy)−m2
Hu

(msusy) tan2 β

tan2 β − 1
. (3.18)

In spite of the initial historical success [39–42], it is well known that gauge couplings do

not unify accurately at the 2-loop level in the MSSM with TeV-scale superpartners. High-

energy threshold corrections thus play a crucial role in achieving precise unification [37].

Using eqs. (3.12) and (3.13), one can express the combinations of GUT state masses needed

for exact 2-loop unification in terms of the superpartner masses [37]. Assuming that all

superpartners have masses equal to msusy, one obtains for the colour triplet mass and for

the combination of heavy gauge boson and adjoint Higgs masses m
2/3
V m

1/3
3 :

mT ∼ 2× 1015 GeV
(
msusy
1 TeV

)5/6
, (3.19)

m
2/3
V m

1/3
3 ∼ 2× 1016 GeV

(
msusy
1 TeV

)−2/9
, (3.20)

where we have used the fact that m3 = m8 in the minimal renormalizable supersymmetric

SU(5) model. For superpartner masses in the TeV range, the colour triplet is far too

light and makes the proton decay too fast, which led ref. [7] to conclude that the minimal

renormalizable supersymmetric SU(5) model is excluded (this conclusion has been found

to be mitigated at the three-loop level [43] though, and can be avoided for a specific choice

of the soft terms [3]).

3.2 Yukawa couplings

For the Yukawa couplings, we use the 2-loop Standard Model RGEs [32] below the scale

msusy, and the 2-loop MSSM RGEs [33] above it. We neglect all CKM contributions and

work with diagonal Yukawa matrices. In the absence of threshold corrections, the matching

conditions at msusy are:

λt,c,u(msusy) = ht,c,u(msusy)/ sin β , (3.21)

λb,s,d(msusy) = hb,s,d(msusy)/ cosβ , (3.22)

λτ,µ,e(msusy) = hτ,µ,e(msusy)/ cosβ . (3.23)

where the h couplings (resp. the λ couplings) are the diagonal entries of the SM Yukawa

matrices HU,D,E (resp. of the MSSM Yukawa matrices ΛU,D,E).

3.2.1 Threshold corrections to Yukawa couplings

At the GUT scale, the SU(5)-invariant boundary conditions apply:

ΛU (MGUT) = ΛTU (MGUT) , (3.24)

ΛD(MGUT) = ΛTE(MGUT) . (3.25)
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Threshold corrections due to the splitting of the heavy GUT state masses slightly modify

these relations (see later). After running down to low energy, eqs. (3.25) lead to predictions

for down-type quark and charged lepton masses that are in gross contradiction with the

data. Supersymmetric threshold corrections at the scale msusy may cure this problem.

Supersymmetric threshold corrections to light fermion masses. In the following,

we will neglect supersymmetric threshold corrections to the leptonic Yukawa couplings, and

consider only the corrections to the down-type quark Yukawa couplings,5 whose dominant

contributions are proportional to α3 and λ2
t (see however ref. [44]). This will allow us to

derive the SU(5) Yukawa couplings Λ5̄ by simply running the charged lepton couplings up

to the GUT scale. The leading supersymmetric threshold corrections to down-type quark

masses are given by the gluino and higgsino contributions [8–10, 12–14] (the latter can

safely be neglected for the first two generations):

∆mdi

mdi

= − 2α3
3π mg̃Xdi I3(m2

g̃,m
2
d̃Li
,m2

d̃Ri
) + λ2

t

16π2 µXt tan β I3(|µ|2,m2
t̃1
,m2

t̃2
) δi3 , (3.26)

where

Xt ≡ At/λt − µ cotβ , (3.27)

Xdi ≡ Adi/λdi − µ tan β , (3.28)

Xei ≡ Aei/λei − µ tan β , (3.29)

and the loop function I3 is defined by:

I3(x, y, z) = −xy ln (x/y) + yz ln (y/z) + zx ln (z/x)
(x− y)(y − z)(z − x) , (3.30)

with the limits

I3(x, x, z) = 1− (z/x) + (z/x) ln (z/x)
x(1− (z/x))2 , (3.31)

I3(x, x, x) = 1
2x . (3.32)

The matching is done at the scale msusy:

mSM
di = mMSSM

di

(
1 + ∆mdi

mdi

)
, (3.33)

where

mSM
di = hdi(msusy) v , mMSSM

di = λdi(msusy) v cosβ , (3.34)

in which v = 〈h0〉. As a first approximation, b – τ Yukawa unification is a relatively suc-

cessful prediction of SU(5), while the discrepancy between the prediction and the data is

5Supersymmetric threshold corrections to up-type quark masses remain under control, as no large A-

terms are needed to correct the SU(5) prediction. As for the top quark mass, even the large stop mixing that

may be needed to reproduce the measured Higgs boson mass does not induce sizable threshold corrections.
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much more important for the first two generations. As can be seen from eq. (3.26), the non-

holomorphic (∝ µ tan β) contributions to ∆md/md and ∆ms/ms are the same for equal

first two generation squark masses, while the ratios ms/mµ and md/me are widely different.

This implies that large A-terms Ad and As are needed to bring these ratios into agreement

with experimental data,6 which in turn makes the electroweak vacuum metastable [12, 13].

This issue will be discussed in section 6.

High-scale thresholds corrections to λb and λτ . In addition to supersymmetric

corrections at the superpartner mass scale, Yukawa couplings are also subject to high-scale

threshold corrections due to the heavy GUT states. These may affect in particular bottom-

tau Yukawa unification, which as explained before is an important constraint on the model,

hence one must take them into account. In practice, all one needs is the difference between

λb(MGUT) and λτ (MGUT) induced by the GUT-scale threshold corrections. One can check

that it is given by:

λb(MGUT)− λτ (MGUT) = λτ (MGUT)
(4π)2

[
λ2
t (MGUT) lnMGUT

mT
− 4 g2

GUT lnMGUT
mV

]
. (3.35)

GUT threshold corrections also affect strange quark-mu and down quark-electron Yukawa

unification, but the numerical effect is negligible compared with the size of the low-scale

(supersymmetric) threshold corrections that are needed to account for the observed masses.

3.3 Higgs quartic coupling

For heavy stop masses, the proper way to compute the lightest supersymmetric Higgs

boson mass (for the standard computation, see refs. [45, 46]) is to consider the effective

theory below the scale msusy, in which all superpartners and heavy Higgs bosons have been

integrated out and the Higgs boson mass is determined from the Higgs quartic coupling λ,

with the value of λ(msusy) determined by the supersymmetric theory valid above msusy. At

tree level, the matching condition is λ =
(
3g2

1/5 + g2
2
)

cos2 2β/4, while at the 1-loop level

it is given by:

λ(msusy) =
(3

5g
2
1(msusy) + g2

2(msusy)
) cos2 (2β)

4 + ∆λreg + ∆λφ + ∆λχ , (3.36)

where the first term on the right-hand side of eq. (3.36) is the tree-level contribution, ∆λreg

accounts for the conversion of the gauge couplings from the DR scheme to the MS scheme,

and ∆λφ and ∆λχ are the one-loop threshold corrections due to scalars and electroweak

gauginos/higgsinos, respectively, whose expressions can be found in ref. [47]. The dominant

contributions are the ones proportional to (mt/v)4 in ∆λφ, which in the case where all

sparticle masses lie close to msusy (and in particular mQ̃3
' mũ3 ' msusy) reduce to the

leading stop mixing term:

∆λφ ' 6h4
t

(4π)2
X2
t

mt̃1mt̃2

[
1− 1

12
X2
t

mt̃1mt̃2

]
. (3.37)

6Incidentally, it turns out that the correct mb/mτ ratio cannot be obtained from the corrections propor-

tional to µ tan β and to Xt alone, and that a large Ab is also needed.

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
4

1 2 5 10 20
100

104

106

108

1010

1012

1014

tanβ

m
su
sy
[G
eV

]

Figure 2. Higgs mass constraint in the (tan β, msusy) plane for different matching conditions, with

all SM parameters set to their central values. The red curve corresponds to the tree-level matching

condition and the blue curve to the full 1-loop matching condition (3.36), while for the green curve

only the leading 1-loop threshold correction (3.37) was used. Both the blue and green curves assume

maximal positive stop mixing (Xt =
√

6msusy). The superpartner spectrum is chosen as in figure 1.

For large values of tan β and/or large values of Xb,τ , one should also include on the r.h.s.

of eq. (3.37) the leading sbottom and stau contributions, which in the limit mQ̃3
' md̃3

'
mL̃3

' mẽ3 ' msusy read:

6h4
b

(4π)2
X2
b

mb̃1
mb̃2

[
1− 1

12
X2
b

mb̃1
mb̃2

]
+ 2h4

τ

(4π)2
X2
τ

mτ̃1mτ̃2

[
1− 1

12
X2
τ

mτ̃1mτ̃2

]
. (3.38)

Considering only the leading term (3.37), one can see that for each value of msusy
and tan β there exist either 4, 2 or 0 different values of Xt satisfying the matching condi-

tion (3.36). There also exists a lower bound on msusy for each value of tan β, reached when

Xt becomes

Xmax
t = ±

√
6msusy , (3.39)

where the stop mixing contribution reaches its maximum [48] (when higher order corrections

are included the Higgs mass also depends on the sign of Xt). This is illustrated in figure 2, in

which the lower bound on msusy is represented by the green curve, assuming a superpartner

spectrum as in figure 1. The comparison with the red curve shows the importance of the

1-loop threshold corrections to the Higgs quartic coupling. Note that the SM parameters

were set to their central values in this figure; taking into account the uncertainty on the top

quark mass would spread the curves into bands which become very broad at small tan β
values. For a discussion on this point, see ref. [48].
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3.4 A-terms

As discussed in the introduction and in subsection 3.2, we assume the A-term matri-

ces to be diagonal7 in the corresponding fermion mass eigenstate basis, with generation-

dependent entries:

AU = Diag (Au, Ac, At) , (3.40)

AD = Diag (Ad, As, Ab) , (3.41)

AE = Diag (Ae, Aµ, Aτ ) . (3.42)

These matrices are run with the 1-loop MSSM RGEs, with the SU(5) boundary conditions

imposed at the GUT scale:

AU (MGUT) = ATU (MGUT) , (3.43)

AD(MGUT) = ATE(MGUT) . (3.44)

3.5 Gaugino masses

For the running of gaugino masses we use the 1-loop RGEs:

d

dt
Mi = bi

2παiMi , (3.45)

and impose the SU(5) boundary condition at the GUT scale:

M1(MGUT) = M2(MGUT) = M3(MGUT) ≡ M1/2 . (3.46)

3.6 Soft scalar masses

We also assume the soft sfermion mass matrices m2
X̃

(X = Q, uc, ec, L, dc) to be diagonal

with generation-dependent entries:

m2
X̃

= Diag (m2
X̃1
,m2

X̃2
,m2

X̃3
) , (3.47)

however with m2
X̃1

= m2
X̃2

imposed at the GUT scale. Furthermore, SU(5) invariance

requires the following relations to hold at MGUT (i = 1, 2, 3):

mQ̃i
(MGUT) = mũci

(MGUT) = mẽci
(MGUT) ≡ m10i , (3.48)

mL̃i
(MGUT) = md̃ci

(MGUT) ≡ m5̄i . (3.49)

Hence the splitting of the soft sfermion masses within SU(5) representations and between

the first two generations is only due to the running, performed at the 1-loop level as for the

other soft terms. As for the soft Higgs masses, we allow the possibility of different boundary

conditions for the two Higgs doublets of the MSSM, namely m2
Hu

(MGUT) 6= m2
Hd

(MGUT).
7Due to the CKM mixing in the quark sector, this assumption is not renormalization group-invariant.

However, the off-diagonal entries generated by the running from the GUT scale to low energy are suppressed

by the small CKM angles (the same statement holds for the soft sfermion mass matrices). We shall therefore

neglect this effect in the following.
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Note that our boundary conditions are less restrictive than the so-called minimal super-

gravity ansatz (mSUGRA), which assumes universal scalar and gaugino masses as well as

A-terms proportional to the Yukawa couplings. By contrast we allow for some generation

dependence in the sfermion soft terms, but we require them to be aligned with fermion

masses (exactly at the GUT scale, approximately at low energy due to the running) in

order to minimize supersymmetric contributions to flavour-violating processes.

3.7 µ and Bµ terms

Contrary to the other MSSM parameters, the µ andBµ terms are not fixed at the GUT scale

and renormalized down to low energy, but rather determined from the tree-level electroweak

symmetry breaking conditions at the scale msusy, as is usually done (by inserting the

running soft terms in the tree-level Higgs potential one ensures that the most relevant

1-loop radiative corrections are taken into account). This procedure yields:

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− m2

Z

2 , (3.50)

B = (m2
Hu +m2

Hd
+ 2|µ|2) sin 2β

2 =
(m2

Hd
−m2

Hu
) tan β

tan2 β − 1
− m2

Z tan β
tan2 β + 1

, (3.51)

while the sign of µ remains undetermined.

4 Solutions of the RGEs for soft terms

Here we present (approximate) semi-analytic solutions to the 1-loop renormalization group

equations for the MSSM soft terms. More details about the procedure used to derive them

can be found in appendix A.

4.1 Gauge and Yukawa couplings

As a first step, for each choice of msusy and tan β, one runs the gauge couplings gi(t) (i =
1, 2, 3) and the Yukawa couplings λn(t) (n = t, b, τ, c, s, µ, u, d, e) from tZ ≡ lnmZ to tS ≡
lnmsusy with the 2-loop SM RGEs. Then, after applying the matching conditions (3.5)–

(3.7), (3.21) and (3.23) at the scale msusy, the gauge couplings and the up-type quark and

charged lepton Yukawa couplings are further evolved up to the GUT scale with the 2-loop

MSSM RGEs. At MGUT the SU(5) boundary conditions (3.25) and the heavy threshold

corrections (3.35) are imposed, then the down-type quark Yukawa couplings are run back

from t0 ≡ lnMGUT to tS ≡ lnmsusy (in this procedure one needs to fix the heavy GUT state

masses mV and mT , in addition to the GUT scale itself). This provides us with numerical

solutions for the running gauge couplings gi(t) (i = 1, 2, 3) and Yukawa couplings λn(t)
(n = t, b, τ, c, s, µ, u, d, e) in the range tS ≤ t ≤ t0, accurate at the 2-loop level.

4.2 Gaugino masses

The solutions to the 1-loop RGEs for gaugino masses read:

Mi(m) = M1/2 e
−
∫ lnMGUT

lnm dt αi(t) bMSSM
i /(2π) . (4.1)

These 3 equations connect linearly 4 variables: M1,2,3(msusy) and M1/2.
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4.3 A-terms

As explained in appendix A, the hierarchy of Yukawa couplings makes it possible to solve

the 1-loop RGEs for A-terms in a sequential way, from At to Ae. With the convention that

the index n runs over the ordered values {t, b, τ, c, s, µ, u, d, e} (such that e.g. p < c means

p = t, b or τ), one can write the (approximate) solutions as:

An(t) = An(t0) e
∫ t
t0
dt′βAn (t′) + e

∫ t
t0
dt′βAn (t′)

∫ t

t0
dt′

(
γAn (t′) e−

∫ t′
t0
dt′′βAn (t′′)

)
, (4.2)

where βAn is a function of the gauge and Yukawa couplings, and γAn is the product of λn
times a linear combination of g2

iMi and λmAm with m < n, all of which are already known

quantities, since the RGEs for the Am’s are solved in order of increasing m. One can

therefore rewrite eq. (4.2) in the form:

An(t) =
n∑

m=1
anm(t)Am(t0) + bn(t)M1/2 , (4.3)

in which the coefficients anm(t) and bn(t) are integrals that can be evaluated numerically

after having solved the MSSM RGEs for the gauge and Yukawa couplings. Imposing

the SU(5) boundary conditions Adi(t0) = Aei(t0), one obtains the running A-terms at

an arbitrary scale as linear combinations of the SU(5) soft parameters M1/2, A10
i , A5̄

i

(i = 1, 2, 3), with numerical coefficients depending on the choice of msusy and tan β (and

very mildly on MGUT, mT and mV ).

In practice it may be more convenient to express the An(t) in terms of other input

parameters, for example M3(msusy) and the Adi(msusy) (i = 1, 2, 3), since these quantities

enter the supersymmetric threshold corrections to the down-type quark masses needed to

fit the experimental values. One may also want to trade A10
3 for At(msusy), which is directly

constrained by the measured value of the Higgs mass. To this end, it suffices to invert the

linear relations (4.3) so that the An(t) can be rewritten as a function of the desired input

parameters. In the following, we shall choose:

M3(msusy), Adi(msusy), Aui(msusy) (i = 1, 2, 3) . (4.4)

4.4 Soft scalar masses

Following appendix A, we first introduce the combinations of masses (which appear in the

RGEs for soft scalar masses):

S = m2
Hu −m

2
Hd

+
3∑
i=1

[
m2
Q̃i
−m2

L̃i
− 2m2

ũci
+m2

d̃ci
+m2

ẽci

]
, (4.5)

and

Σui ≡ m2
Q̃i

+m2
ũci

+m2
Hu , (4.6)

Σdi ≡ m2
Q̃i

+m2
d̃ci

+m2
Hd
, (4.7)

Σei ≡ m2
L̃i

+m2
ẽci

+m2
Hd
. (4.8)
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The 1-loop RGE for S is easily integrated to give:

S(t) = S(t0) e
∫ t
t0
dt′ α1(t′) bMSSM

1 /(2π)
, (4.9)

where S(t0) = m2
Hu

(t0) − m2
Hd

(t0) due to the SU(5) boundary conditions on soft scalar

masses, while the RGEs for the Σn’s can be solved sequentially in a similar way to the A-

term RGEs, taking advantage of the hierarchy of Yukawa couplings to neglect subdominant

terms. We then define:

IAn(t) ≡ 1
(4π)2

∫ t

t0
dt′A2

n(t′) , (4.10)

IMi(t) ≡
1

(4π)2

∫ t

t0
dt′ g2

i (t′)M2
i (t′) , (4.11)

IS(t) ≡ 1
(4π)2

∫ t

t0
dt′ g2

1(t′)S(t′) . (4.12)

With these ingredients one can express the solutions to the 1-loop RGEs for soft scalar

masses as:

m2
α(t) = m2

α(t0) +
∑
n

Tαn (Σn(t)− Σn(t0)) +
∑
n

Uαn IAn(t) +
∑
i

V α
i IMi(t) +RαIS(t) , (4.13)

where the index α runs over {Hu, Hd, Q̃3,2,1, ũ
c
3,2,1, ẽ

c
3,2,1, L̃3,2,1, d̃

c
3,2,1}, and the numerical

coefficients Tαn , Uαn and V α
i (resp. Rα) are given in table 4 (resp. table 3) of appendix A.

Plugging the previously derived semi-analytic expressions for An(t), eq. (4.3), and for Σn(t)
into eq. (4.13), one then arrives at

m2
α(t) =

∑
β

cαβ(t)m2
β(t0) +

∑
n,m

dαnm(t)An(t0)Am(t0)

+
∑
n

eαn(t)An(t0)M1/2 + fα(t)M2
1/2 , (4.14)

in which the coefficients cαβ(t), dαnm(t), eαn(t) and fα(t) are integrals that can be evaluated

numerically just from the knowledge of the solutions to the 2-loop MSSM RGEs for gauge

and Yukawa couplings. Finally, imposing the SU(5) boundary conditions on soft terms, one

obtains the running soft scalar masses m2
α(t) at an arbitrary scale as quadratic functions

of the SU(5) soft parameters m10i , m5̄i , mHu(MGUT), mHd(MGUT), M1/2, A10
i and A5̄

i

(i = 1, 2, 3), with numerical coefficients depending on the choice of msusy and tan β (and

very mildly on MGUT, mT and mV ).

As was done for A-terms, one can easily rewrite the running soft scalar masses in

terms of other input variables by inverting the system of equations (4.3) and/or (4.14).

As explained before, a convenient choice for exploring the parameter space of the minimal

renormalizable supersymmetric SU(5) model is to trade the 7 SU(5) parameters M1/2,

A10
i and A5̄

i for M3(msusy), Adi(msusy) and Aui(msusy). One may also invert 8 of the

17 equations (4.14) in order to replace the GUT-scale masses m10i , m5̄i , mHu(MGUT) and

mHd(MGUT) by 8 low-energy soft scalar masses, so that (for given values of msusy and tan β)

the whole supersymmetric spectrum is parametrized by 15 low-energy input variables.
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5 Proton decay

Proton decay is one of the main prediction of Grand Unified Theories, and since it has

not been observed yet, it sets strong constraints on the parameter space of the minimal

renormalizable supersymmetric SU(5) model. Qualitatively, the proton lifetime behaves as:

τp ' τ(p→ K+ν̄) ∝ m2
T m

2
susy tan2 β/(1 + tan2 β)2 , (5.1)

implying a tan β-dependent lower bound on the superpartner mass scale.

To compute precisely the proton lifetime we will need the following input parameters:

mp = 0.9383 GeV , mK+ = 0.4937 GeV , (5.2)

α3(2 GeV) = 0.31 , α3(mb) = 0.22 , (5.3)

W 112
0 (2 GeV) = (0.111± 0.027) GeV2 , W 121

0 (2 GeV) = (0.036± 0.014) GeV2 , (5.4)

where W 112
0 and W 121

0 appear in the hadronic matrix elements for proton decay, as well as

the entries of the CKM matrix:

VCKM(mZ) =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (5.5)

here written in the Wolfenstein’s parametrization, with [49]:

λ = 0.22537 , A = 0.814 , ρ = 0.117 , η = 0.353 . (5.6)

Details about the computation of the proton lifetime can be found in appendix B. The

predicted proton lifetime is compared with the experimental constraint τ(p → K+ν̄) >
2.3× 1033 yrs (90% C.L.) [50].

6 Vacuum (meta)stability

In the general MSSM, some regions of the parameter space lead to instabilities of the

electroweak vacuum. One may encounter two kinds of dangerous situations.

The first one is the possible existence of directions in field space along which the

potential is unbounded from below (UFB). To remain on the safe side, we will allow only

the points in parameter space that do not possess any such direction. The associated

constraints on the model parameters will be summarized in subsection 6.1.

The second one is the metastability of the electroweak vacuum, which due to the large

trilinear soft terms needed to correct the SU(5) predictions for fermion masses cannot be

avoided. This means that there are minima in field space, lower than the electroweak vac-

uum, into which it will eventually decay. These new minima are the so-called charge and

colour breaking (CCB) vacua. Although one cannot forbid the decay of the electroweak

vacuum into a lower minimum, one can check whether its lifetime is long enough on cosmo-

logical time scales. The procedure followed in our analysis is summarized in subsection 6.2.

All computations in this section are done at the tree level. The generalization to higher

orders is conceptually straightforward, although technically much more involved, so we will

leave it for future work. Below we summarize the discussion presented in appendices C

and D, where technical details and relevant references can be found.
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6.1 Unbounded from below directions

As explained in appendix C, the tree-level constraints associated with the absence of UFB

directions can be written as (neglecting mZ):

m2
Hu +m2

L̃i
> 0 , (6.1)

which must be satisfied for any of the three slepton generations.

6.2 Charge and color breaking vacua

We shall discuss the constraint applying to At separately from the ones applying to all

other A-terms. The reason to treat them differently is that in the second case the D-terms

can be considered to be vanishing to a good approximation, thus providing constraints on

the fields, while in the first case this assumption is not justified due to the large top Yukawa

coupling.8 We will nevertheless set the colour D-terms to zero for simplicity, but allow for

non-vanishing hypercharge and SU(2) D-terms.

6.2.1 Constraints on An (n 6= t)

Let us first define:

M2
2 (ψ, ψ̄,H, H̄) ≡ M2

ψψ
2 +M2

ψ̄
ψ̄2 +

(
m2
H + |µ|2

)
H2 +

(
m2
H̄

+ |µ|2
)
H̄2 − 2BHH̄, (6.2)

M3(ψ,H, H̄) ≡ −2ψ2(AψH − λψµH̄) , (6.3)

z(ψ, ψ̄,H, H̄, cz) ≡ 2
(
2ψ2 + czψ̄

2 +H2 + H̄2
)
, (6.4)

and write the SU(2) D-term constraint:

0 = −ψ2 + (3− 2c)ψ̄2 +H2 − H̄2, (6.5)

where ψ, ψ̄ are sfermion fields and H, H̄ Higgs fields that parametrize a specific direc-

tion in field space along which a CCB minimum is present. The different possibilities for

the constant fields ψ, ψ̄, H, H̄, their mass parameters and the coefficients c and cz are

summarized in table 5 of appendix D.

To evaluate the lifetime of the electroweak vacuum, we consider the (normalized)

bounce action, which for An 6= At can be approximated by:

S = z2M2
2

M2
3

(ψ, ψ̄,H, H̄) . (6.6)

This action is then minimized by varying the direction in field space (ψ, ψ̄,H, H̄), subject

to the constraint (6.5). In order for the lifetime of the electroweak vacuum to be larger

than the age of the universe, the minimum of S must satisfy

Smin
∼> 9 . (6.7)

8Strictly speaking, the same comment applies to Ab in the large tan β regime. In the minimal renor-

malizable supersymmetric SU(5) model, however, large values of tan β are excluded by a combination of

constraints (see section 7), so only the case of a large At needs to be discussed separately.
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Notice that one needs to minimize S with respect to two variables only. Indeed, one of

the variables ψ, ψ̄,H, H̄ is fixed by eq. (6.5), and the quantity (6.6) only depends on ratios

of fields. The minimization is performed numerically. A point of the parameter space is

admitted if the bounce action satisfies eq. (6.7).

6.2.2 Constraint on At

We now define:

M2
2 ≡

(
m2
Q̃

+m2
t̃

)
t2 +

(
m2
Hu + |µ|2

)
H2
u +

(
m2
Hd

+ |µ|2
)
H2
d − 2BHuHd , (6.8)

M3 ≡ −2t2(AtHu − λtµHd) , (6.9)

z ≡ 2
(
2t2 +H2

u +H2
d

)
, (6.10)

λ ≡ λ2
t t

2(t2 + 2H2
u) + g′2 + g2

2
8

(
H2
u −H2

d − t2
)2
. (6.11)

Due to the large value of the top quark Yukawa coupling, the bounce action can no longer

be approximated by eq. (6.6). One should instead minimize

S =
(

1 + f(κ)− f(0)
Ŝ(0)

)
z2M2

2
M2

3
, (6.12)

with

f(κ) = π2/6
(1− 4κ)3 + 16.5

(1− 4κ)2 + 28
1− 4κ , κ = λ

M2
2

M2
3
, Ŝ(0) = 45.4 . (6.13)

The minimization goes again over two variables (for example Hu/t and Hd/t), and is done

numerically.

7 Results and discussion

We are now ready to address the question we asked in the introduction, namely whether

the minimal renormalizable supersymmetric SU(5) model can be considered as a viable

extension of the Standard Model. To answer this question, we must scan over the parameter

space of the model and search for points passing all phenomenological and theoretical

constraints9 (precise gauge coupling unification, correct predictions for the Higgs boson

and charged fermion masses, proton lifetime, experimental lower bounds on superpartner

masses, metastability of the vacuum and perturbativity of the model). This is not a

straightforward task, as the model involves a large number of parameters with boundary

conditions defined at the GUT scale, while most constraints apply at low energy. In order

to ease the whole analysis, we will use the semi-analytic solutions to the soft term RGEs

9As discussed in the introduction, dark matter and neutrino masses can be accounted for by separate

sectors (in particular when the lightest neutralino is not a suitable dark matter candidate), so we do not

include them in the list of constraints to be imposed on the model. We also do not include the experimental

measurement of the anomalous magnetic moment of the muon [51], which deviates by ≈ (3− 4)σ from the

SM prediction [52–54] but still needs confirmation by another experiment.
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obtained in section 4. This will enable us to perform a much more efficient scan — even

though it still involves a large number of parameters.

Before going into this programme, let us first try to identify the region of the parameter

space in which viable points are likely to be found. For a qualitative discussion of how each

phenomenological or theoretical requirement constrains the model, we will consider only

two parameters, tan β and the overall superpartner mass scale msusy:

• a powerful constraint on the parameter space comes from accommodating the mea-

sured Higgs mass, which provides a tan β-dependent lower bound on msusy (the lower

the value of tan β, the higher the value of msusy). Sizable mass splittings among

superpartners can change this bound, but not very drastically.

• another important constraint comes from the non-observation of proton decay, which

provides another lower bound on msusy, with a different dependence on tan β. The

actual value of the bound depends on the details of the superpartner spectrum.

• requiring the masses of the heavy GUT states derived from gauge coupling unification

to remain below the cut-off scale MPlanck bounds msusy from above. The main con-

straint comes from the Higgs colour triplet mediating proton decay, whose mass mT

strongly depends (through the gauge coupling unification condition) on the higgsino

mass µ.

• the parameter space is also bounded by vacuum metastability constraints associated

with large values of the A-terms. These are unavoidably present due to the sizable

threshold corrections needed in the down-type quark sector. Furthermore, a large At
is necessary to accommodate the observed Higgs mass in some regions of the param-

eter space. Although the required values of the A-terms do not necessarily threaten

the metastability of the electroweak vacuum, significant regions of the parameter

space where the lifetime of the universe would be too short are excluded.

• the requirement that the third generation Yukawa couplings should remain perturba-

tive up to the GUT scale excludes some portions of the parameter space in the small

tan β region (top quark) and potentially also in the large tan β region (bottom quark

and tau Yukawa couplings).

• the perturbativity of the parameters of the SU(5) superpotential, reflected in the

condition mT ,m3,m8 ∼< mV , can easily be satisfied by using the freedom allowed by

gauge coupling unification. Indeed, for fixed MGUT and superpartner masses, mT and

m2
Vm3 are constant (using the fact that the colour octet and weak triplet components

of the adjoint Higgs field have equal masses, m3 = m8), see eqs. (3.12) and (3.13).

One can therefore increase mV and decrease m3 = m8 by diminishing λ5 and µ5 in

the superpotential (2.1) in such a way that σ0 = µ5/λ5 increases. Simultaneously,

ηH should be made smaller so that mT = 5ηHσ0 stays constant.

One can illustrate how these constraints restrict the parameter space of the model

by plotting them in the (tan β, msusy) plane, in the spirit of figure 1 in the introduction.
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Figure 3. A naive estimate of the allowed parameter space of the minimal renormalizable super-

symmetric SU(5) model (pale green region) in the approximation described in the text, where all

sfermions are assumed to have the same mass msusy.

To be able to do this, we assume a simplified superpartner spectrum with a common

scale msusy for all sfermion masses, the µ parameter, mHu and the SU(5) gaugino mass

parameter M1/2. The down-type squark A-terms and At are chosen to fit the fermion

masses and the Higgs mass, while the slepton A-terms are taken to be 2/3 of their down-

type quark counterparts,10 and Au and Ac are assumed to vanish. With m2
Hd

and the B

parameter determined by the electroweak symmetry breaking conditions, the whole MSSM

spectrum, including the heavy Higgs masses, can be computed. While these inputs are not

fully consistent with SU(5)-invariant boundary conditions at the GUT scale, they make

it possible to display all the constraints discussed above in a two-dimensional plot. The

result can be seen in figure 3, a simplified version of which was shown in the introduction.

Let us now comment it:

• the measured Higgs boson mass excludes the region below the red curve (which cor-

responds to maximal stop mixing);

• the region below the green line is ruled out by the experimental lower bound on

the proton lifetime (assuming the high-energy phases appearing in the proton decay

amplitude, see eq. (B.7), all vanish). The shape of this line can be understood by

noting that the proton lifetime approximately scales as

τ(p→ K+ν̄) ∝ m2
T m

2
susy tan2 β/(1 + tan2 β)2 , (7.1)

while given the assumptions made on the superpartner spectrum, the colour triplet

10This empirical factor roughly mimics the effect of the running from MGUT, where the SU(5) relations

Adi = Aei hold, to msusy.
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mass is proportional to11

mT ∝ m5/6
susy (tan2 β + 1)1/12 , (7.2)

giving

τ(p→ K+ν̄) ∝ m11/3
susy tan2 β (tan2 β + 1)−11/6 ; (7.3)

• the region above the purple curve is excluded by the vacuum metastability constraint

on At, while the region above the brown curve (which is almost entirely due to Ab) is

ruled out by the constraints on all other A-terms. In drawing these curves we used

the metastability conditions derived in appendix D, but they can be approximated

to a very good degree by:

|At| <
√
m2
Hu

+m2
Q̃3

+m2
ũ3 , |Ab| <

√
m2
Hd

+m2
Q̃3

+m2
d̃3
, (7.4)

for At and Ab, respectively. Note that the constraint on |Ab| is more easily satisfied

for large tan β values due to m2
Hd

= m2
susy(2 tan2 β − 1);

• perturbativity of the top quark Yukawa coupling excludes the region to the left of the

blue curve (which corresponds to λt(MGUT) = 1). There is no similar constraint for

λb and λτ , which are always in the perturbative regime in the region of the parameter

space shown in figure 3;

• the constraint mT < MPlanck/10 (resp. mT < MPlanck) rules out msusy values above

the solid black line (resp. the dashed black line), while there are no additional con-

straints from m3,m8,mT < mV < MPlanck/10;

• the pale green area is the region of the parameter space that is allowed by all the

above constraints.

The tentative conclusion one can draw from figure 3, even though the assumptions

made on the soft terms are not consistent with SU(5)-invariant boundary conditions at the

GUT scale, is that viable points satisfying all phenomenological and theoretical constraints

are likely to be found in the region bounded by 2 ∼< tan β ∼< 5 and 100 TeV ∼< msusy ∼<
1000 TeV. This definitely needs confirmation from a more careful investigation of the

parameter space. Namely, one should scan over the parameters of the model, which besides

tan β, sign(µ) and the heavy state masses include 15 soft terms: 8 sfermion (m101,2,3 , m5̄1,2,3)

and Higgs (m5, m5̄) soft masses, 1 gaugino mass parameter (M1/2) and 6 A-terms (A10
1,2,3,

A5̄
1,2,3). Since these soft parameters are defined at the GUT scale, one needs to run them

down to the scale msusy, where most constraints apply. In order to simplify the problem,

we shall use the semi-analytic approximate solutions to the soft term RGEs derived in

section 4. This will allow us to trade the GUT-scale soft parameters for low-energy ones

(namely the msusy values of the running parameters M3, Au,c,t, Ad,s,b and of 8 suitably

11Indeed, given the choice µ2 = m2
Hu

= m2
susy, one has from the electroweak symmetry breaking conditions

m2
Hd

= m2
susy(2 tan2 β − 1) and m2

A = 2m2
susy(tan2 β + 1). Plugging this, together with the assumption of

equal sfermion masses, into eq. (3.12), one arrives at mT ∝ m5/6
susy(tan2 β + 1)1/12.
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chosen soft scalar masses) and to use the constraints at msusy to effectively reduce the

number of free parameters.

Let us describe more precisely the procedure that we are going to employ:

1. first choose a random point in the (tan β,msusy) plane (where msusy is now the

matching scale between the SM and the MSSM), together with sign(µ) and some

sensible values of MGUT, mT and mV ;

2. solve numerically the 2-loop MSSM RGEs for the gauge and Yukawa couplings (tak-

ing into account the GUT-scale relations (3.25) and the heavy threshold corrections

to Yukawa couplings (3.35), as explained in subsection 4.1). Then, following the pro-

cedure of section 4, express the running soft terms at an arbitrary scale as algebraic

combinations of the msusy values of M3, Au,c,t, Ad,s,b, m
2
Q̃1,2,3

, m2
d̃c1,2,3

, m2
ũc3

and |µ|2,

which through the EWSB condition (3.50) can be written as a linear combination of

m2
Hu

(msusy) and m2
Hd

(msusy);

3. impose the following 8 constraints on the msusy values of the soft terms: (i) the

definition of the matching scale msusy ≡
√
mQ̃3

(msusy)mũc3
(msusy); (ii)-(iii) the

equality of the first and second generation soft sfermion masses, which for simplic-

ity we impose at the scale msusy rather than MGUT: m2
Q̃1

(msusy) = m2
Q̃2

(msusy)
and m2

d̃c1
(msusy) = m2

d̃c2
(msusy); (iv) the gauge coupling unification condition (3.12),

in which mT and MGUT are fixed and µ and mA are functions of m2
Hu

and m2
Hd

through the EWSB conditions; (v) the 1-loop matching condition for the Higgs quar-

tic coupling (3.36), keeping as a first approximation only the leading term (3.37);

(vi)-(viii) the supersymmetric threshold corrections (3.26) needed for the down-type

quark masses to match their measured values. Whenever these constraints admit

several solutions, we explore all of them. Imposing them allows us to express 8 of

the 15 input parameters at the scale msusy in terms of the remaining 7 ones and

of already known quantities; in practice we choose the remaining 7 free parameters

(the ones to which we assign random values in order to explore the model parameter

space) to be mQ̃1,3
(msusy), md̃c1,3

(msusy), M3(msusy) and Au,c(msusy).

4. for each point of the parameter space, defined by the chosen values of mQ̃1,3
(msusy),

md̃c1,3
(msusy), M3(msusy) and Au,c(msusy) (in addition to the values of tan β, msusy,

MGUT, mT and mV , already fixed in the first step), one can improve the analysis

by running the soft terms again, this time with the full RGEs, and use the complete

expression for the Higgs mass. Once this is done, the phenomenological viability of

this point must be further checked: proton lifetime, consistency of the superpartner

mass spectrum with the experimental limits, absence of UFB directions and metasta-

bility of the electroweak vacuum (which is checked following the procedure described

in appendix D), perturbativity constraints.

The procedure described above was applied by testing each randomly chosen point in

the (tan β,msusy) plane for 1000 different random configurations of the superpartner spec-

trum, which were obtained by scanning over mQ̃1,3
(msusy), md̃c1,3

(msusy) and M3(MGUT)
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Figure 4. Left panel: successful (green dots) and unsuccessful (red stars) points among 1000

randomly selected points in the (tan β,msusy) plane. Right panel: successful points only, where

the colour of a given dot represents the number of superpartner spectrum configurations respecting

SU(5) symmetry at MGUT that passed all phenomenological constraints (the number of solutions

found increases from light yellow to dark green). Also shown is a particular solution (magenta dot)

characterized by a low value of the matching scale msusy ≡
√
mQ̃3

(msusy)mũc
3
(msusy) and described

in greater detail in the text below. In both panels, the red, green, purple and black lines represent

the naive constraints from figure 3 associated with the measured Higgs mass, the proton lifetime,

the metastability of the electroweak vacuum and the condition mT < MPlanck/10, respectively.

in the range [0.5msusy, 2msusy], and over Au,c(msusy) in the range [−2msusy, 2msusy]. The

results of this exploration of the parameter space of the minimal renormalizable supersym-

metric SU(5) model can be seen in figure 4. The plot in the left panel displays all the points

of the (tan β,msusy) plane that have been checked; the ones for which at least one configu-

ration of the superpartner spectrum passed all constraints are in green, while the ones that

failed this test are in red. The plot in the right panel shows how frequently a solution was

found in the model parameter space for each green point. The more vivid the colour of the

point, the more spectrum configurations survived all the constraints. It turns out that the

naive estimate of the allowed parameter space (the green region in figure 3), despite not

respecting the SU(5) symmetry, tells us something about how likely it is for a randomly

chosen point in the parameter space with given values of tan β and msusy to be compatible

with all experimental and theoretical constraints discussed at the beginning of this section.

In the part of the green region of figure 3 around several hundreds of TeV (close to the

upper limit given by the requirement mT ≤ MPlanck/10), a randomly chosen point in the

parameter space has a few percent probability of success, while the probability decreases

when one exits the green region. One can see that the naive constraints associated with

the Higgs mass (red line) and with the proton lifetime (green line) are very robust, which

in the case of the Higgs mass can be traced back to the fact that the leading term in the

1-loop matching condition for the Higgs quartic coupling, eq. (3.37), only depends on msusy
in the maximal stop mixing case. The naive vacuum metastability bound (purple line) is
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less robust but remains a reasonable approximation to the exact condition, contrary to

the naive mT < MPlanck/10 constraint (black line). The main reason for this is that the

black line assumed µ(msusy) = msusy, while a sizable portion of the viable points of the

parameter space feature smaller values of µ, thus effectively decreasing the value of mT by

virtue of the gauge coupling unification condition (3.12).

While these results confirm the naive expectation from figure 3 that the allowed pa-

rameter space of the minimal renormalizable supersymmetric SU(5) model is restricted to

the region of heavy superpartners, isolated points with lighter supersymmetric particles are

likely to be missed in this random search. In fact we were able to find a viable point in the

parameter space with msusy = 63 TeV and some squarks as light as 22 TeV, depicted by a

magenta dot in figure 4. We give below the input parameters at the GUT scale as well as

the values of all soft terms at the scale msusy:

INPUT:

• Point in the (tanβ,msusy) plane:

tan β = 4.0 , (7.5)

msusy = 63.0 TeV , (7.6)

MGUT = 2.0× 1016 GeV , (7.7)

sign(µ) = + , (7.8)

• Soft terms at MGUT:

Au(MGUT) = Diag (2× 10−4, 9× 10−2, 13.9) TeV , (7.9)

Ad(MGUT) = Ae(MGUT) = Diag (−0.4, 41.2, 121.7) TeV , (7.10)

M1/2 = 34.4 TeV , (7.11)

mHu(MGUT) = 106.2 TeV , (7.12)

mHd(MGUT) = 531.2 TeV , (7.13)

m10i = Diag (79.9, 79.9, 125.7) TeV , (7.14)

m5̄i = Diag (151.8, 151.8, 141.1) TeV . (7.15)

OUTPUT:

• Values of gauge and Yukawa couplings at msusy, in the supersymmetric

(msusy + ε) and in the non-supersymmetric theory (msusy − ε):

gi(msusy + ε) = (0.47777, 0.61950, 0.88966) , (7.16)

gi(msusy − ε) = (0.47777, 0.61900, 0.88742) , (7.17)

(λt, λb, λτ )(msusy + ε) = (0.74778, 0.06325, 0.04229) , (7.18)

(ht, hb, hτ )(msusy − ε) = (0.72553, 0.01123, 0.01026) , (7.19)

(λc, λs, λµ)(msusy + ε) = (2.61× 10−3, 3.95× 10−3, 2.52× 10−3) , (7.20)
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(hc, hs, hµ)(msusy − ε) = (2.53× 10−3, 0.23× 10−3, 0.61× 10−3) , (7.21)

(λu, λd, λe)(msusy + ε) = (5× 10−6, 19× 10−6, 12× 10−6) , (7.22)

(hu, hd, he)(msusy − ε) = (5× 10−6, 12× 10−6, 3× 10−6) , (7.23)

• Soft terms at msusy:

Au(msusy) = Diag (0, 0,−25.9) TeV , (7.24)

Ad(msusy) = Diag (−0.9, 87.6, 237.2) TeV , (7.25)

Ae(msusy) = Diag (−0.6, 55.8, 163.4) TeV , (7.26)

Mi(mg̃) = Diag (16.9, 29.9, 62.0) TeV , (7.27)

mHu(msusy) = 82.1 TeV , (7.28)

mHd(msusy) = 483.5 TeV , (7.29)

mQ̃i
(msusy) = Diag (106.2, 100.0, 81.4) TeV , (7.30)

mũci
(msusy) = Diag (22.3, 22.3, 49.0) TeV , (7.31)

mẽci
(msusy) = Diag (138.0, 132.1, 120.1) TeV , (7.32)

mL̃i
(msusy) = Diag (131.4, 128.3, 84.4) TeV , (7.33)

md̃ci
(msusy) = Diag (172.0, 164.4, 76.5) TeV , (7.34)

µ(msusy) = 91.6 TeV , (7.35)

mA(msusy) = 507.3 TeV , (7.36)

• Values of gauge and Yukawa couplings at MGUT:

gMSSM
i (MGUT) = (0.68367, 0.67083, 0.66722) , (7.37)

gGUT = 0.71339 , (7.38)

(λt, λb, λτ )(MGUT) = (0.51487, 0.03185, 0.03132) , (7.39)

(λc, λs, λµ)(MGUT) = (1.47× 10−3, 1.86× 10−3, 1.86× 10−3) , (7.40)

(λu, λd, λe)(MGUT) = (3× 10−6, 9× 10−6, 9× 10−6) , (7.41)

• GUT state masses:

mT = 7.1× 1016 GeV , (7.42)

m8,3 = 5.1× 1013 GeV , (7.43)

mV = 8.8× 1016 GeV , (7.44)

• Other parameters and observables:

α−1
GUT = 24.7 , (7.45)

τp(p+ → K+ν̄) = 3.9× 1033 yrs ( for φ1 = φ2 = φ3 = 0) , (7.46)

Smin = 1780 , (7.47)

corresponding to a vacuum lifetime of

τvacuum = eS
min

m4
susyt

3
universe

≈ 10580 yrs . (7.48)
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Figure 5. Running A-terms and gaugino masses for the parameter space point described in the

text (magenta dot in figure 4), obtained using the 1-loop MSSM RGEs. Top and bottom left figures:

1st, 2nd and 3rd generation A-terms. The blue, yellow and green lines represent Aui , Adi and Aei ,

respectively. Bottom right figure: the blue, yellow and green lines represent M1, M2 and M3,

respectively.

For completeness, we also present the running of the A-terms in figure 5 and of the

soft scalar masses in figure 6.

Let us describe briefly the main features of this point. Most sfermions lie between 50
and 170 TeV, with however the ũR and c̃R as light as 22.3 TeV. The gauginos are typically

lighter than the sfermions and the higgsinos, and the lightest supersymmetric particle

(LSP) is the bino, with mass M1 = 16.9 TeV (the ũR and the c̃R are the co-NLSPs, i.e. the

next-to-lightest supersymmetric particles). The superpartners are therefore out of reach of

present and next-generation colliders, and supersymmetric contributions to flavour physics

observables are strongly suppressed, but proton decay will be easily accessible at future

large detectors. The Higgs sector is far into the decoupling regime, with a standard-like

lightest Higgs boson and all non-standard Higgs bosons around mA ≈ 500 TeV. Finally,

there is no suitable dark matter particle in the observable sector, as the relic density of

a 17 TeV bino by far exceeds ΩCDMh
2 ' 0.12 [55]. If R-parity is conserved, a natural

candidate is a gravitino in the GeV range (or lower), to which the bino NLSP would

decay without affecting Big Bang nucleosynthesis. The cold dark matter density would

then be in the form of gravitinos coming from NLSP decays [56] (giving a contribution

∆ΩG̃ = ΩB̃mG̃/M1, from which the upper bound mG̃ ∼< 1 GeV follows) and from thermal

production during reheating [57, 58]. In order to avoid gravitino overproduction from the
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Figure 6. Running soft scalar masses for the parameter space point described in the text (magenta

dot in figure 4), obtained using the 1-loop MSSM RGEs. Top and bottom left figures: 1st, 2nd and

3rd generation soft sfermion masses. The blue, yellow, green, red and purple lines represent m2
Q̃i

,

m2
ũc

i
, m2

ẽc
i
, m2

L̃i
and m2

d̃c
i

, respectively. Bottom right figure: soft Higgs boson masses. The blue line

represents m2
Hu

and the yellow line m2
Hd

.

latter process, the reheating temperature should lie in the TeV range, or lower. In the case

of R-parity violation (which may be invoked to generate neutrino masses, as an alternative

to the seesaw mechanism), the only possible dark matter candidate within this model is

again the gravitino. Since it decays into a photon and a neutrino, acting as a source of

monochromatic photons, extragalactic gamma ray constraints put a bound on its mass.

For bilinear R-parity violation, one obtains mG̃ ∼< 1 GeV [59]. Here, as in the R-parity

conserving case, the maximal reheating temperature is around the TeV scale.

One may wonder whether other points exist in the parameter space of the minimal

renormalizable SU(5) model with lighter superpartners than in the above example. While

performing an extensive scan would probably reveal the existence of such points, it appears

difficult to lower significantly the average superpartner mass scale below a few tens of

TeV (some supersymmetric particles may however be accidentally lighter). The reason

for this is the proton lifetime, which in the limit where all superpartners have the same

mass msusy scales as τp ∝ m2
T m

2
susy ∝ m

11/3
susy (where in the last step the approximate

constraint (3.19) from gauge coupling unification was used). The actual proton decay

constraint depends on the individual superpartner masses,12 and does not prevent some of

12In addition, non-zero values of the high-energy phases in the Yukawa matrices tend to increase the

proton lifetime.
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them to be much smaller than the naive lower bound on msusy, but it seems to be difficult

to reconcile a significantly lighter superpartner spectrum with proton decay and all other

constraints. In fact gauge coupling unification is the main obstacle here, which makes it

hard to accommodate a low superpartner mass scale with a large colour triplet mass [7].

What one may still try is to split the spectrum, making just a part of it light. This is

not easy though, because of the threshold corrections to gauge couplings at MGUT and to

the bottom and Higgs masses at msusy. For example, making the higgsino light decreases

the mass of the colour triplet, see eq. (3.12), and therefore shortens the proton lifetime.

The gluino and/or the b̃R cannot be much lighter than the b̃L (whose mass is of order msusy)

either, since this would suppress the loop function in eq. (3.26) and require an enormous

value of Xb to reproduce the observed mb/mτ ratio. This large value of Xb would in turn

imply a large negative threshold correction to the Higgs quartic coupling, see eq. (3.38),

making it impossible to fit the measured Higgs mass for moderate values of msusy. All

this motivates the choice of parameter intervals made in our scan, namely mQ̃1,3
(msusy),

md̃c1,3
(msusy) and M3(MGUT) in the range [0.5msusy, 2msusy]. The only remaining possi-

bility is to have the first two sfermion generations lighter than the third one, an opposite

situation to the one considered e.g. in ref. [7]. The investigation of this case would require

the use of 2-loop RGEs for soft terms, as a strong mass hierarchy between different sfermion

generations enhances the effect of 2-loop running and may give rise to tachyons [60]. Such

a study is beyond the scope of this paper, and we leave it for future work.

8 Conclusions

If one excepts the issue of neutrino masses, the minimal renormalizable supersymmetric

SU(5) model suffers from two main problems. The first one concerns the predictions for

charged fermion masses. Although the GUT-scale equality of down-type quark and charged

lepton Yukawa couplings leads to a qualitatively successful prediction for the bottom to tau

mass ratio, it quantitatively differs from the measured value by some 20–30%, while the

discrepancy is much larger for the first and second generations. Second, proton decay is too

fast by a factor 104 or so for typical soft terms in the TeV range, essentially because gauge

coupling unification requires a relatively light colour triplet. Each of the two problems has

been addressed separately in the literature: large supersymmetric threshold corrections

were used to modify the fermion mass predictions (see for example refs. [11, 12]); specific

flavour structures of the soft terms [3] and a heavy superpartner spectrum [61] were invoked

to increase the proton lifetime.

In this paper, we performed a complete analysis of the minimal renormalizable super-

symmetric SU(5) model, taking into account all relevant phenomenological and theoretical

constraints: charged fermion masses, the proton lifetime, gauge coupling unification, the

Higgs mass, experimental lower bounds on superpartner masses and flavour constraints,

metastability of the vacuum and perturbativity of the model. We showed that the model is

still alive, and that the allowed region of the parameter space spreads over a large domain

with msusy ≡
√
mt̃1mt̃2 ranging from around 50 TeV to 104 TeV and tan β from approxi-

mately 2 to 5. Viable points were also found outside this region of the parameter space,
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but they are less frequent. Particularly interesting are the ones featuring some (relatively)

light superpartners. We studied in greater detail one such point in which the lightest

supersymmetric particle is a bino with mass 16.9 TeV.

A generic feature of the model is the metastability of the vacuum, which is not a concern

since its lifetime is typically much larger than the age of the universe. A consequence of

the heavy supertpartner spectrum is that the observable sector does not contain a suitable

dark matter candidate; however, a gravitino with a mass around the GeV scale or below

can play the role of cold dark matter, both in the presence and in the absence of R-parity.

The present analysis is a good starting point for further research. One of the limita-

tions is that we used the central values of the input SM parameters; taking into account

the experimental and theoretical uncertainties will extend the viable region of the pa-

rameter space. We presented in a compact way all the ingredients that are needed for a

more extensive scan of the parameter space of the model. What we have shown is that

the minimal renormalizable supersymmetric SU(5) model is indeed a viable extension of

the Standard Model, in the sense that its parameter space contains points that satisfy all

relevant phenomenological and theoretical constraints. The price to pay is that the super-

partner spectrum is heavy, typically in the 100 TeV region or above, although we were able

to find particular cases in which some of the supersymmetric particles can be as light as

17 TeV, and it is not excluded that viable points with even more split spectra exist in some

corners of the parameter space.

We did not address in this paper the issue of neutrino masses. One possibility is to add

Standard Model singlets (right-handed neutrinos) to the model and to generate neutrino

masses via the seesaw mechanism. Another possibility is to allow either bilinear or trilinear

R-parity violating terms. Notice that integrating out higgsinos and colour triplets with R-

parity violating couplings induces corrections to the Yukawa couplings [21], which opens

the possibility that the SU(5) fermion mass relations are cured by the combined effect of

R-parity violation and of supersymmetric threshold corrections.

The possibilities to test experimentally the minimal renormalizable supersymmetric

SU(5) model are limited. Barring possible isolated points of the parameter space with light

remnants, superpartners are too heavy to be detected at the next generation of colliders

or to give sizable contributions to flavour-violating observables. Proton decay could be

around the corner, but the allowed parameter space is too vast to give a definite prediction

for the proton lifetime. It is, however, possible to rule out the model (or at least most of

its allowed parameter space), either by discovering a light superpartner spectrum or, if the

Higgs sector is light enough to be accessible and studied at the next generation of colliders,

by measuring a relatively large value of tan β. Finally, in the allowed parameter space

found in this paper, the minimal renormalizable supersymmetric SU(5) model does not

account for the muon (g − 2) anomaly. While theory calculations are generally considered

to be robust, confirmation of the BNL measurement by an independent experiment is

required to establish whether new physics is really needed. If the anomaly would persist

after the proposed new experiment at Fermilab [62, 63] has produced results, the minimal

renormalizable supersymmetric SU(5) model would be under strong pressure.
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A Procedure for solving the soft term RGEs

In this appendix, we derive the expressions for the superpartner spectrum of the minimal

renormalizable supersymmetric SU(5) model that we have used in our analysis. These

formulae account for the splitting of sfermion masses within the same SU(5) multiplet due

to renormalization group running. They are (approximate) semi-analytic solutions to the

1-loop MSSM RGEs for the soft terms obtained under certain assumptions (namely, the

hierarchy among Yukawa couplings allows us to neglect some terms in the RGEs and to

solve them in a sequential manner, as explained below). We have checked that they are

accurate up to the few percent level by running the full set of RGEs. The advantage of

these approximate solutions is that the low-energy soft terms can be written as quadratic

functions of the initial (GUT-scale) values of the soft parameters, which makes it possible

to perform a scan over the parameter space of the model without having to solve the full

set of RGEs for each point. Furthermore, it is possible to scan directly over the low-energy

values of the soft terms (rather than the GUT-scale ones), since these formulae implicitly

respect the SU(5) boundary conditions. A similar approach has already been employed in

the past, e.g. in ref. [30] for mSUGRA and in ref. [31] for SU(5). Here we generalize this

procedure to generation-dependent soft terms with SU(5) boundary conditions.

A.1 The procedure

In order to perform a scan over the parameter space of the minimal renormalizable su-

persymmetric SU(5) model, one has to solve a system of entangled differential equations

describing the running of gauge, Yukawa and Higgs quartic couplings, as well as of the soft

terms, which involves a large number of parameters (only in the supersymmetry breaking

sector, there are upon SU(5) unification 15 parameters, namely 6 A-terms, 1 gaugino mass

and 8 soft scalar masses). In addition, these parameters are subject to various phenomeno-

logical constraints defined at different scales. This makes it hard to solve the problem

by brute force, and motivates the use of approximate semi-analytical solutions to the soft

term RGEs.
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Let us first try to circumvent the issue by solving the RGEs in steps. We first integrate

numerically the system of RGEs for gauge, Yukawa and Higgs quartic couplings at the 2-

loop level. Note that these couplings depend on the soft terms only through supersymmetric

threshold corrections, so we can use this fact to determine the values of the relevant soft

terms at the matching scale msusy. Then we can solve the 1-loop RGEs for the soft terms

— first gaugino masses, then A-terms and finally soft scalar masses. By working them

out in this particular order, we are able to use in each step the knowledge of the running

parameters that we have computed in the previous steps. Unfortunately this method is not

efficient since one must solve the RGEs for the soft terms every time one changes the input

(GUT-scale) values of the soft parameters. What we would like is to numerically solve the

soft term RGEs for symbolic input values. The computational procedure described below

does precisely that: when the input values of the soft parameters are changed, only the

last step (out of 3) has to be re-run.

Step 1.

1. Choose the matching scales msusy and MGUT, the ratio of the MSSM Higgs vevs tan β
and the masses of the heavy GUT states mT and mV within the perturbative regime

mT < mV � MPlanck (note that mT and mV affect the running of the parameters

only through the high-scale threshold corrections to the Yukawa couplings, so their

influence is very mild).

2. Run the gauge, charged lepton and up-type quark Yukawa couplings as well as the

Higgs quartic coupling from their measured values at the weak scale up to the match-

ing scale msusy using the 2-loop SM RGEs.

3. Apply the matching conditions (3.5)–(3.7), (3.21) and (3.23) to the gauge and Yukawa

couplings at the scale msusy and use the 2-loop MSSM RGEs to run them up to the

scale MGUT.

4. Compute the down-type quark Yukawa couplings at MGUT from the values of the

charged lepton Yukawa couplings using the SU(5) mass relation (3.25) and the GUT

threshold corrections (3.35). Run them down to the scale msusy using the 2-loop

MSSM RGEs (the supersymmetric threshold corrections to the leptonic Yukawa cou-

plings are neglected in this procedure).

Step 2.

5. Solve the 1-loop MSSM RGEs for gaugino masses, taking into account the unification

condition (3.46).

6. Assume the hierarchy13 λt > λb > λτ > λc > λs > λµ > λu > λd > λe and the

unification of leptonic and down-type quark A-terms at the GUT scale to solve the

13This assumption is based on the observed hierarchy of fermion masses, taking into account the SU(5)

boundary condition ΛD = ΛTE and the supersymmetric threshold corrections to down-type quark masses, and

is better justified in the low to moderate tan β regime. For instance, the relation λs(MGUT) = λµ(MGUT)
implies λs(m) > λµ(m) for msusy < m < MGUT, while in the absence of this relation and of supersymmetric

threshold corrections to ms one would have λs(m) < λµ(m) over most of the range msusy < m < MGUT.
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RGEs for A-terms in a sequential way (see details in subsection A.3.2). As a result,

express the running A-terms as linear functions of the gaugino masses and of their

values at the scale msusy (which are more convenient input parameters than their

values at the GUT scale, since phenomenological constraints on A-terms apply at

the scale msusy), with coefficients depending on the running quantities determined in

Step 1. In this way one does not need to run the A-terms every time one changes

their initial values.

7. Solve the RGEs for the soft scalar masses in a similar manner.

Step 3.

8. Choose the values of the input soft parameters.

9. Make sure that no sfermion becomes tachyonic. Check that the values of the A-

terms and soft scalar masses at msusy reproduce the observed values of the down-type

quark masses and of the Higgs mass. Verify that all experimental lower bounds on

superpartner masses and flavour constraints are satisfied.

10. Check vacuum (meta)stability constraints and the proton lifetime.

A.2 Input values

All input values of the SM parameters needed for the running were taken either from

ref. [64] or from ref. [65]:

MPlanck = 2.4× 1018 GeV , (A.1)

v = 174.10362 GeV , (A.2)

(mZ ,mt,mh)pole = (91.1876, 173.10, 125.66) GeV , (A.3)

gi(mt) = (0.46167, 0.64822, 1.1666) , (A.4)

(ht, hb, hτ )(mt) = (0.93558, 0.0156, 0.0100) , (A.5)

(mc,ms,mµ)(mZ) = (619, 55, 103) MeV , (A.6)

(mu,md,me)(mZ) = (1.27, 2.9, 0.5) MeV , (A.7)

λ(mt) = 0.25420 , (A.8)

where g1,2,3(mt), ht,b,τ (mt) and λ(mt) are evaluated at NNLO (the NNNLO pure QCD

contribution is also included in ht(mt) [64]), and hi(mZ) = mi(mZ)/v for the first and

second generations of fermions.

A.3 Approximate expressions for the soft terms

In order to be able to approximately solve the 1-loop RGEs for soft terms, we shall neglect

all mixings. This means that in addition to assuming that the sfermion soft terms are

aligned with fermion masses at the GUT scale (see subsection 2.1), we shall neglect the

effects of the CKM matrix in the RGEs. This may not be fully justified, as the impact of

VCKM on the running of the first two generation parameters can be significant. However,

– 33 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
4

this effect is suppressed either by small Yukawa couplings or by small CKM angles and is

therefore never numerically important,14 so we shall set VCKM = 1 in the RGEs and omit

the subleading Yukawa contributions.

With these assumptions, we can derive approximate semi-analytic solutions to the

1-loop RGEs for the soft terms.

A.3.1 Gaugino masses

The 1-loop RGEs for gaugino masses:

d

dt
Mi = bMSSM

i

2π αiMi '
dαi
dt

Mi

αi
, (A.9)

(where the last equality is only approximate because we run gauge couplings at 2 loops)

has the following simple solution respecting SU(5) symmetry:

Mi(m) = M1/2 e
−
∫ lnMGUT

lnm dt αi(t) bMSSM
i /(2π)

' M1/2
αi(m)

αi(MGUT) ' Mi(mg̃)
αi(m)
αi(mg̃)

' mg̃
αi(m)
α3(mg̃)

α3(MGUT)
αi(MGUT) . (A.10)

This solution becomes exact when the 1-loop RGEs for gauge couplings are used.

A.3.2 A-terms

For small to moderate tan β, one can take advantage of the hierarchy among Yukawa

couplings (see subsection A.1, Step 2) to simplify the 1-loop RGEs for A-terms and to

solve them in a sequential way.15 Namely, one can write the A-term RGEs as:

d

dt
An = An

(4π)2

[∑
p

Jnp λ
2
p −

3∑
i=1

Kn
i g

2
i

]
+ λn

(4π)2

2
∑
p 6=n

Jnp λpAp + 2
3∑
i=1

Kn
i g

2
iMi

 , (A.11)

where the indices n and p run over the ordered values {t, b, τ, c, s, µ, u, d, e} (such that e.g.

p < c means p = t, b or τ) and the coefficients Jnp , Kn
i are collected in table 1. A su-

perscript ∗ on a coefficient Jnp in table 1 indicates that we neglect the corresponding term

2Jnp λnλpAp/(4π)2 in the r.h.s. of eq. (A.11), consistently with the hierarchy of Yukawa cou-

plings.16 The evolution of each A-term is then (approximately) described by a differential

equation of the form

d

dt
An(t) = βAn (t)An(t) + γAn (t) , (A.12)

14Obviously, this statement does not apply to RG-induced flavour-violating soft terms. These are not a

concern, however, since the superpartner spectrum is heavy and the first two generation squarks are almost

degenerate in mass.
15In case the Yukawa-dependent terms in the RGEs do not follow the hierarchy assumed for the Yukawa

couplings themselves, one can if necessary improve the accuracy of the solutions by iterating the procedure

described below.
16In addition, one does not need to include the terms that are suppressed by small Yukawa couplings in

the RGEs (A.11), as their effect is smaller than the precision of the 1-loop approximation. We nevertheless

give the corresponding coefficients in table 1 for completeness, allowing for the possibility of unusually large

first or second generation A-terms that would make some of these terms relevant.
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p t b τ c s µ u d e

J tp 18 1∗ 3∗ 3∗

Jbp 1 18 1∗ 3∗ 1∗ 3∗ 1∗

Jτp 3 12 3∗ 1∗ 3∗ 1∗

Jcp 3 18 1∗ 3∗

Jsp 3 1 1 18 1∗ 3∗ 1∗

Jµp 3 1 3 12 3∗ 1∗

Jup 3 3 18 1∗

Jdp 3 1 3 1 1 18 1∗

Jep 3 1 3 1 3 12

i 3 2 1
Kt
i

16
3 3 13

15

Kb
i

16
3 3 7

15

Kτ
i 3 9

5

Kc
i

16
3 3 13

15

Ks
i

16
3 3 7

15

Kµ
i 3 9

5

Ku
i

16
3 3 13

15

Kd
i

16
3 3 7

15

Ke
i 3 9

5

Table 1. The coefficients Jnp , Kn
i appearing in the 1-loop RGEs for A-terms (A.11).

where the coefficients βAn (t) and γAn (t) depend on the gauge and Yukawa couplings, and

in addition γAn (t) depends linearly on the gaugino masses and on the A-terms Am(t) with

m < n. This makes it possible to solve the RGEs (A.12) sequentially, from n = t to n = e.

The solutions can be written as:

An(t) = An(t0) e
∫ t
t0
dt′βAn (t′) + e

∫ t
t0
dt′βAn (t′)

∫ t

t0
dt′

(
γAn (t′) e−

∫ t′
t0
dt′′βAn (t′′)

)
, (A.13)

where, by using the already obtained expressions for the Am’s with m < n, the integrals

of the coefficients βAn (t) and γAn (t) can be computed numerically after having solved the

MSSM RGEs for the gauge and Yukawa couplings. As a result, one obtains the running

A-terms at an arbitrary scale as linear combinations of the 7 SU(5) soft parameters M1/2,

A10
i , A5̄

i (i = 1, 2, 3), with numerical coefficients depending on the choice of msusy and tan β
(and very mildly on MGUT, mT and mV ). In practice, it will prove convenient for the

exploration of the parameter space of the model to trade these GUT-scale parameters for

low-energy ones, so as to express the An(t) as a function of M3(msusy), Adi(msusy) and

Aui(msusy) (i = 1, 2, 3). Note that if the SU(5) boundary conditions at MGUT had not

been imposed, the An(t) would depend on 12 initial parameters, namely M1,2,3, Aui , Adi
and Aei .

A.3.3 Soft scalar masses

One can apply a similar procedure to the 1-loop RGEs for soft scalar masses. Let us first

define the following variables:

Σui ≡ m2
Q̃i

+m2
ũci

+m2
Hu , (A.14)

Σdi ≡ m2
Q̃i

+m2
d̃ci

+m2
Hd
, (A.15)

Σei ≡ m2
L̃i

+m2
ẽci

+m2
Hd
. (A.16)
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n t b τ c s µ u d e

Lnn 12 12 8 12 12 8 12 12 8

Table 2. The coefficients Lnn appearing in the 1-loop RGEs for Σn (A.17).

These combinations of masses appear on the r.h.s. of the RGEs for soft scalar masses, and

obey 1-loop RGEs of the form

d

dt
Σn = Lnnλ

2
n

(4π)2 Σn + 1
(4π)2

∑
p 6=n

Lnpλ
2
pΣp +

∑
p

LnpA
2
p −

3∑
i=1

Nn
i g

2
iM

2
i

 , (A.17)

where again the indices n and p run over the ordered values {t, b, τ, c, s, µ, u, d, e} and the

coefficients Lnn are collected in table 2, while Lnp 6=n = 2Jnp and Nn
i = 4Kn

i . Neglecting17 the

terms Lnpλ
2
pΣp/(4π)2 (p 6= n) on the r.h.s. of eq. (A.17) when the coefficients Jnp are marked

with a superscript ∗ in table 1, one can solve the RGEs for the Σn’s sequentially from n = t

to n = e, as we did for the A-term RGEs. Indeed, in this approximation eq. (A.17) can be

written in the form:

d

dt
Σn(t) = βΣ

n (t) Σn(t) + γΣ
n (t) , (A.18)

where βΣ
n (t) is proportional to λ2

n(t), and γΣ
n (t) is a linear combination of g2

i (t)M2
i (t), A2

p(t)
and λ2

m(t)Σm(t) with m < n. The solution reads:

Σn(t) = Σn(t0) e
∫ t
t0
dt′βΣ

n (t′) + e

∫ t
t0
dt′βΣ

n (t′)
∫ t

t0
dt′

(
γΣ
n (t′) e−

∫ t′
t0
dt′′βΣ

n (t′′)
)
, (A.19)

where the integrals involve only already known quantities, since the RGEs for the Σm’s

are solved in order of increasing m. Using the previously obtained expressions for the

running A-terms and gaugino masses, the combinations of masses Σn(t) are then ex-

pressed as quadratic functions of the GUT-scale soft scalar masses m10i , m5̄i , mHu(MGUT),
mHd(MGUT) and of the msusy values of M3, Au,c,t and Ad,s,b, with t-dependent coefficients

that can be computed numerically using the known solutions to the 2-loop MSSM RGEs

for gauge and Yukawa couplings.

Another combination of masses that appears in the RGEs for soft scalar masses is

S ≡ m2
Hu −m

2
Hd

+ Tr
[
m2
Q −m2

L − 2m2
U +m2

D +m2
E

]
= m2

Hu −m
2
Hd

+
3∑
i=1

[
m2
Q̃i
−m2

L̃i
− 2m2

ũci
+m2

d̃ci
+m2

ẽci

]
, (A.20)

for which the 1-loop RGE takes the simple form:

d

dt
S = 66

5
α1
4π S = bMSSM

1
2π α1S '

dα1
dt

S

α1
. (A.21)

17The terms suppressed by Yukawa couplings of the first and second generations can also be dropped, as

their effect is smaller than the precision of the 1-loop approximation.
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α Pαt,c,u Pαb,s,d Pατ,µ,e Qα3 Qα2 Qα1 Rα

Hu 6 6 6
5 +3

5

Hd 6 2 6 6
5 −3

5

α Pαui Pαdi Pαei Qα3 Qα2 Qα1 Rα

Q̃i 2 2 32
3 6 2

15 +1
5

ũci 4 32
3

32
15 −4

5

ẽci 4 24
5 +6

5

L̃i 2 6 6
5 −3

5

d̃ci 4 32
3

8
15 +2

5

Table 3. The non-vanishing coefficients Pαn , Qαi and Rα appearing in eq. (A.23).

The last equality is only approximate because we run gauge couplings at 2 loops. Working

in the 1-loop approximation, one can solve eq. (A.21) straightforwardly:

S(m) = S(MGUT) e−
∫ lnMGUT

lnm dt α1(t) bMSSM
1 /(2π)

' S(MGUT) α1(m)
αGUT

=
[
m2
Hu(MGUT)−m2

Hd
(MGUT)

] α1(m)
αGUT

, (A.22)

where we have used the fact that S(MGUT) = m2
Hu

(MGUT)−m2
Hd

(MGUT) due to the SU(5)

boundary conditions on soft scalar masses.

We now have all the ingredients needed to write the solutions to the 1-loop RGEs for

soft scalar masses as:

m2
α(m) = m2

α(MGUT) +
∑
n

Pαn IΣn(m) +
∑
n

Pαn IAn(m)−
3∑
i=1

Qαi IMi(m)+RαIS(m),

(A.23)

where α = Hu, Hd, Q̃i, ũ
c
i , ẽ

c
i , L̃i, d̃

c
i , the numerical coefficients Pαn , Qαi and Rα are given in

table 3, and the integrals IΣn , IAn , IMi and IS are defined by:

IΣn(m) ≡ 1
(4π)2

∫ lnm

lnmGUT
dt λ2

n(t)Σn(t) , (A.24)

IAn(m) ≡ 1
(4π)2

∫ lnm

lnmGUT
dtA2

n(t) , (A.25)

IMi(m) ≡ 1
(4π)2

∫ lnm

lnmGUT
dt g2

i (t)M2
i (t) '

M2
1/2

4bMSSM
i

(
α2
i (m)

α2
i (MGUT)

− 1
)
, (A.26)

IS(m) ≡ 1
(4π)2

∫ lnm

lnmGUT
dt g2

1(t)S(t) ' S(MGUT)
2bMSSM

1

(
α1(m)

α1(MGUT) − 1
)
. (A.27)

Plugging the semi-analytic expressions for Σn(t) and An(t) into eqs. (A.24) and (A.25),

one can express the running soft scalar masses as quadratic functions of the GUT-scale soft
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parameters m10i , m5̄i , mHu(MGUT), mHd(MGUT) and of the msusy values of M3, Au,c,t and

Ad,s,b, with m-dependent coefficients that can be computed numerically.

One can further simplify eq. (A.23) by writing IΣn as a linear combination of the

differences Σp(m) − Σp(MGUT) and of the integrals IAp and IMi . Indeed, Σn satisfies a

1-loop RGE of the form:

d

dt
Σn(t) = βΣ

n (t) Σn(t) + γΣ
n (t) , (A.28)

with βΣ
n (t) equal to 12λ2

n(t)/(4π)2 for squarks and to 8λ2
n(t)/(4π)2 for sleptons. From this

and from the definition (A.24) of IΣn , one immediately deduces that

IΣui,di (m) = Σui,di(m)− Σui,di(MGUT)
12 − 1

12

∫ lnm

lnMGUT
dt γΣ

ui,di(t) , (A.29)

IΣei (m) = Σei(m)− Σei(MGUT)
8 − 1

8

∫ lnm

lnMGUT
dt γΣ

ei(t) , (A.30)

where the integrals on the r.h.s. can be expressed in terms of IΣp , IAp and IMi , so that

eventually all IΣn ’s can be written as linear combinations of Σp(m)−Σp(MGUT), IAp and

IMi . This leads to the following expressions for the running soft scalar masses:

m2
α(m) = m2

α(MGUT) +
∑
n

Tαn (Σn(m)− Σn(MGUT))

+
∑
n

Uαn IAn(m) +
3∑
i=1

V α
i IMi(m) +RαIS(m) , (A.31)

with the numerical coefficients Tαn , Uαn , V α
i (resp. Rα) given in table 4 (resp. Table 3).

The quantities Σn(m), IAn(m), IMi(m) and IS(m) on the r.h.s. of eq. (A.31) — hence

the running soft scalar masses m2
α(m) — are quadratic functions of chosen initial param-

eters, with coefficients depending on the scale m, tan β and msusy (and very weakly on

MGUT, mT and mV ). In the above derivation, the initial parameters were taken to be

the GUT-scale soft masses m10i , m5̄i , mHu(MGUT), mHd(MGUT) and the msusy values of

M3, Au,c,t and Ad,s,b. Alternatively, one can trade the 8 GUT-scale masses m10i , m5̄i ,

mHu(MGUT) and mHd(MGUT) for 8 low-energy soft scalar masses by inverting 8 of the 17

equations (A.31), so as to express all running soft parameters (soft scalar masses, gaugino

masses and A-terms) as functions of the msusy value of 15 of them.

B Proton lifetime computation

In this appendix, we outline the computation of the higgsino-mediated (D=5) proton decay

rate [37, 66–68] in the minimal renormalizable supersymmetric SU(5) model. Integrating

out the heavy colour triplet components of the 5H and 5̄H superfields generates the following

D=5 operators:

1
2
κijkl
mT

QiQjQkLl

∣∣∣∣
θ2

+ 1
2
κ′ijkl
mT

uciu
c
jd
c
ke
c
l

∣∣∣∣∣
θ2

+ h.c. , (B.1)
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n, i t b τ c s µ u d e 3 2 1
THun

1
8

1
4

1
2

UHun −1
4 −3

4 −1
2 −9

4 −1
V Hu
i

56
3

9
2

11
6

THdn
19

1024
27
512

9
256

1
128

9
64

3
32 − 1

16
3
8

1
4

UHdn − 19
512 − 27

256 − 57
512 −139

256 −117
256 − 81

512 −463
256 −357

256
V Hd
i

545
48

1263
256

9461
3840

T Q̃3
n

5
36

1
6

U Q̃3
n − 5

18 −1
3 −5

6 −1 −1
3 −5

6 −1 −1
3

V Q̃3
i −112

27 −7
3

89
135

T
ũc3
n

1
3

U
ũc3
n −2

3 −2 −2
V
ũc3
i −32

9 4 −44
45

T
ẽc3
n

1
24 −1

4
1
2

U
ẽc3
n − 1

12
1
2 −1

4 −3
2 −1

2 −1
4 −3

2 −1
2

V
ẽc3
i −40

9
7
2 −137

90
T L̃3
n

1
48 −1

8
1
4

U L̃3
n − 1

24
1
4 −1

8 −3
4 −1

4 −1
8 −3

4 −1
4

V L̃3
i −20

9 −17
4

79
180

T
d̃c3
n − 1

18
1
3

U
d̃c3
n

1
9 −2

3
1
3 −2 −2

3
1
3 −2 −2

3

V
d̃c3
i −128

27
10
3 − 14

135
T Q̃2
n − 17

288 − 1
16 − 1

24
5
36

1
6

U Q̃2
n

17
144

1
8

17
48

25
72 −1

8 −23
48 −3

8 −1
8

V Q̃2
i −182

27 −103
24

41
1080

T
ũc2
n −1

6
1
3

U
ũc2
n

1
3 1 −2

3 −1
V
ũc2
i −64

9 2 −14
9

T
ẽc2
n − 1

192 − 3
32 − 1

16
1
24 −1

4
1
2

U
ẽc2
n

1
96

3
16

1
32

41
48

13
16 − 7

32 − 9
16 − 3

16
V
ẽc2
i −59

9
25
16 −1559

720
T L̃2
n − 1

384 − 3
64 − 1

32
1
48 −1

8
1
4

U L̃2
n

1
192

3
32

1
64

41
96

13
32 − 7

64 − 9
32 − 3

32
V L̃2
i −59

18 −167
32

169
1440

T
d̃c2
n

7
144 −1

8 − 1
12 − 1

18
1
3

U
d̃c2
n − 7

72
1
4 − 7

24
49
36 −1

4
1
24 −3

4 −1
4

V
d̃c2
i −172

27
17
12 − 83

108

Table 4. The non-vanishing coefficients Tαn , Uαn and V αi appearing in eq. (A.31). (Part 1 of 2 )
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n, i t b τ c s µ u d e 3 2 1
T Q̃1
n − 83

2304 − 3
128 − 1

64 − 17
288 − 1

16 − 1
24

5
36

1
6

U Q̃1
n

83
1152

3
64

83
384

203
576

13
64

73
128

335
576 − 3

64
V Q̃1
i −865

108 −997
192 −2101

8640
T
ũc1
n − 1

12 −1
6

1
3

U
ũc1
n

1
6

1
2

1
3

3
2 −2

3
V
ũc1
i −80

9 1 −83
45

T
ẽc1
n − 19

1536 − 9
256 − 3

128 − 1
192 − 3

32 − 1
16

1
24 −1

4
1
2

U
ẽc1
n

19
768

9
128

19
256

139
384

39
128

27
256

463
384

119
128

V
ẽc1
i −545

72
91
128 −14069

5760
T L̃1
n − 19

3072 − 9
512 − 3

256 − 1
384 − 3

64 − 1
32

1
48 −1

8
1
4

U L̃1
n

19
1536

9
256

19
512

139
768

39
256

27
512

463
768

119
256

V L̃1
i −545

144 −1445
256 − 49

2304

T
d̃c1
n

13
1152 − 3

64 − 1
32

7
144 −1

8 − 1
12 − 1

18
1
3

U
d̃c1
n − 13

576
3
32 − 13

192
107
288

13
32 −23

64
527
288 − 3

32

V
d̃c1
i −385

54
59
96 −4501

4320

Table 4. (Part 2 of 2 )

where the parameters κijkl and κ′ijkl can be expressed in terms of the SU(5) Yukawa

couplings Λ10
ij and Λ5̄

ij defined in eq. (2.2):

κijkl = Λ10
ij Λ5̄

lk , κ′ijkl = Λ10
il Λ5̄

kj − Λ10
jl Λ5̄

ki , (B.2)

and the contraction of gauge indices is understood. Since colour invariance implies κiiil = 0
and κ′iikl = 0, the dominant proton decay modes arising from the above operators involve

a kaon, and in practice p→ K+ν̄ dominates. The corresponding amplitude is obtained by

“dressing” the D=5 operators of eq. (B.1) with gaugino/higgsino loops. Over the region of

the parameter space considered in this paper, the dominant contribution comes from the

wino dressing of the QQQL operator,18 and the decay rate reads:

Γ(p→ K+ν̄) = mp

32π

(
1−

m2
K+

m2
p

)2 ∑
l

∣∣∣W 112
0 C112l +W 121

0 C121l
∣∣∣2 , (B.3)

where Cijkl(µ) is the Wilson coefficient of the 4-fermion operator uidjdkνl and the hadronic

parameter W ijk
0 is defined by 〈K+|(uLidLj)dLk|p〉 ' W ijk

0 PLup, where up is the proton

spinor. The lattice computation of ref. [69] gives W 112
0 (µ = 2 GeV) = (0.111± 0.027) GeV2

and W 121
0 (µ = 2 GeV) = (0.036± 0.014) GeV2, with statistical and systematic errors added

in quadrature. In order to minimize the dependence of the proton decay rate on the

renormalization scale µ, the Cijkl’s are evaluated at the scale µ = 2 GeV rather than

at µ = mp.

18The gluino dressing of the QQQL operator can be neglected as the mass difference between the first

two generations of squarks is small, and the charged higgsino dressing of the ucucdcec operator is significant

only for large values of tan β. Although we consider large A-terms, the left-right sfermion mixing remains

small (Av/m2
sfermions � 1), hence the wino dressing of the ucucdcec operator is not relevant either.
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The Wilson coefficients Cijkl are computed at the matching scale msusy at which su-

persymmetric partners are integrated out by “dressing” the QQQL operators with loops

containing a wino:

Cijkl(msusy) =
∑
m,n,p

VmjVnk
κ̃pmnl
mT

(∑
q

V ∗iqVpq I(W̃ , d̃Lq, ũLm) + δpi I(W̃ , ũLn, ẽLl)
)
, (B.4)

in which V is the CKM matrix, the parameters κ̃pmnl ≡ κpmnl − κnmpl are expressed

in the super-CKM basis in which the up quarks are mass eigenstates, and the possible

misalignment between the fermion and the sfermion mass eigenstate bases is neglected. In

eq. (B.4), the CKM matrix entries and the κ̃pmnl’s are renormalized at the scale msusy.

The loop function I(W̃ , a, b) is given by:

I(W̃ , a, b) = α2
4π mw̃ I3

(
m2
a,m

2
b ,m

2
w̃

)
, (B.5)

where the function I3(x, y, z) has been defined in eq. (3.30). For equal sfermion masses

(ma = mb ≡ msusy), I(W̃ , a, b) reads:

I(W̃ , a, b) = α2
4π

1
msusy

g

(
m2

susy
m2
w̃

)
, g(x) =

√
x (x− 1− ln x)

(x− 1)2 . (B.6)

The parameters κ̃ijkl depend on the details of the Yukawa sector of the Grand Unified

Theory. In the minimal supersymmetric SU(5) model, they are given by (neglecting the

running between MGUT and the triplet mass scale):

κ̃ijkl(mT ) = λuie
iφiδijV

∗
klλel − λuje

iφjδjkV
∗
ilλel , (B.7)

where the Yukawa couplings and the CKM matrix are evaluated at the scale mT , and the

φi are high-energy phases satisfying the constraint φ1 + φ2 + φ3 = 0. These parameters

must then be evolved down to the scale msusy by solving the appropriate RGEs. Neglecting

the Yukawa couplings, the running simply amounts to an overall rescaling:

κ̃ijkl(msusy) = ASD κ̃ijkl(mT ) , (B.8)

where in the minimal renormalizable supersymmetric SU(5) model:

ASD =
(
α1(msusy)
α1(mT )

)− 1
33
(
α2(msusy)
α2(m3)

)−3( α2(m3)
α2(mT )

)−1(α3(msusy)
α3(mT )

)+ 4
3
(
mT

m8

)2α3(mT )
π

. (B.9)

Finally, the Wilson coefficients C112l(msusy) and C121l(msusy) must be renormalized down

to the scale µ = 2 GeV before being inserted into eq. (B.3):

C112l(µ = 2 GeV) = A112
LD C112l(msusy) , (B.10)

C121l(µ = 2 GeV) = A121
LD C121l(msusy) , (B.11)

where A112
LD and A121

LD are renormalization factors given by (using the formulae of ref. [70]):

A112
LD = 1

3

[
2 +

(
α2(mZ)
α2(msusy)

)− 36
19 ]

ALD , (B.12)

A121
LD = 1

3

[
4−

(
α2(mZ)
α2(msusy)

)− 36
19 ]

ALD , (B.13)
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ALD =
(
α3(µ = 2 GeV)

α3(mb)

)+ 6
25
(
α3(mb)
α3(mt)

)+ 6
23
(

α3(mt)
α3(msusy)

)+ 6
21

×

×
(
α2(mZ)
α2(msusy)

)+ 45
19
(
α1(mZ)
α1(msusy)

)− 1
41

. (B.14)

The fact that A112
LD 6= A121

LD is due to the RG-induced mixing between 4-fermion operators

with different flavour indices; when this (numerically small) mixing is neglected, A112
LD =

A121
LD = ALD.

C UFB constraints

In this appendix, we derive the constraints on the model parameters associated with the

absence of directions along which the scalar potential is unbounded from below. In doing

this we will follow ref. [71].

C.1 UFB-1

The absence of this direction (where Hu = Hd to cancel the D-terms and all other vevs are

vanishing) requires

m2
Hu +m2

Hd
+ 2|µ|2 ≥ 2B , (C.1)

which can be rewritten (for finite mZ) as

m2
Hd
−m2

Hu ≥ m2
Z

tan2 β − 1
tan2 β + 1

, (C.2)

where

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− m2

Z

2 , (C.3)

B =
(m2

Hd
−m2

Hu
) tan β

tan2 β − 1
− m2

Z tan β
tan2 β + 1

. (C.4)

Eq. (C.2) is equivalent to

B ≥ 0 , (C.5)

which is automatically satisfied by assumption. As a cross-check, one can notice that

neglecting mZ (since we typically consider situations where m2
Hd,u

� m2
Z), the con-

straint (C.2) reduces to:

m2
Hd
≥ m2

Hu , (C.6)

which is again automatic since |µ|2 ≥ 0.

C.2 UFB-2

We now allow nonzero vevs for Hu, Hd and ν̃ only:

V =
(
m2
Hd

+ |µ|2
)
H2
d +

(
m2
Hu + |µ|2

)
H2
u − 2BHdHu + m2

L̃
ν̃2

+ g′2 + g2
2

8
(
H2
u −H2

d − ν̃2
)2
. (C.7)
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In the limit mZ → 0, one can recast eq. (C.7) into a sum of three positive terms:

V =

(
m2
Hd
−m2

Hu

)
(Hd tan β −Hu)2

tan2 β − 1
+ m2

L̃
ν̃2 + g′2 + g2

2
8

(
H2
u −H2

d − ν̃2
)2
, (C.8)

hence there cannot be any minimum lower than the electroweak vacuum V = 0. For finite

mZ only the first term in eq. (C.8) is modified, but this does not affect the minimization

of V with respect to ν̃:

ν̃

[
ν̃2 −

(
H2
u −H2

d −
4m2

L̃

g′2 + g2
2

)]
= 0 . (C.9)

The solution ν̃ = 0 brings us back to the UFB-1 case, so we are only interested in the non-

trivial ν̃ 6= 0 solution, which is however consistent only for H2
u > H2

d . One can check both

analytically (using for example the command Reduce in Mathematica) and numerically

that in this case there is an UFB direction only if

m2
Hd
−m2

Hu < m2
Z (C.10)

(plus some extra constraints), or

m2
Hd
−m2

Hu ≥ m2
Z , (C.11)

m2
L̃
≤ m2

Z

2
tan2 β − 1
tan2 β + 1

(C.12)

(plus some extra constraints). Since none of these conditions is satisfied in our analysis of

the minimal renormalizable supersymmetric SU(5) model, we can conclude that there are

no UFB-2 directions.

Naively one could think that this conclusion may change if instead of ν̃ 6= 0 one would

allow a nonzero ẽ = ẽc, because it contributes with the opposite sign to the D-term. This

is however not the case: while the non-trivial solution ẽ = ẽc 6= 0 is now consistent for

H2
u < H2

d , there is also a sign change in eq. (C.9). Hence also in this case there are no

dangerous UFB-2 direction.

C.3 UFB-3

One can avoid the UFB-3 direction (with nonzero vevs for Hu, ν̃ and d̃ = d̃c) if the

conditions

m2
Hu +m2

L̃
> 0 (C.13)

are satisfied for any of the three slepton generations.

D Decays into CCB vacua

In this appendix, we describe a method to estimate the lifetime of the electroweak vacuum

in the presence of charge and colour breaking (CCB) vacua induced by large A-terms from
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any sector and generation. To this end, we will approximate the minimal value of the

bounce action in Euclidean space [72–74]:

S = 2π2
∫ ∞

0
drr3 (Lkin + V ) (φi(r)) (D.1)

for the solution of the equations of motion

φ′′i (r) + 3
r
φ′i(r) = ∂V

∂φi
, (D.2)

subject to the boundary conditions (describing fields sitting in the false vacuum at r =∞
and tending to a lower minimum at r = 0):

φi(∞) = φ∞i , φ′i(0) = 0 . (D.3)

The general problem can be solved only numerically [16, 17, 75–79]. We will simplify it by

minimizing the bounce action along a constant direction in field space [80–82], which effec-

tively reduces the problem to a single differential equation. This approximation provides

an upper bound on the minimal value of the correct multi-field bounce action [82, 83]. This

means that the points of the parameter space ruled out in this way are indeed characterized

by a too short vacuum lifetime, but the method retains points that after a more careful

and complete analysis would be rejected.

What we have to do is therefore to minimize an Euclidean action of the form:

S = 2π2
∫ ∞

0
dr r3

(
z

2φ
′2 +M2

2φ
2 −M3φ

3 + λφ4
)
, (D.4)

where the field φ(r) parametrizes a direction in field space, and check whether its minimal

value is large enough for the lifetime of the electroweak vacuum to be larger than the age

of the universe, namely

S > 400 . (D.5)

This is done by solving the equation of motion (D.2) and plugging the solution back into

eq. (D.4). A semi-analytical approximate solution for the action can be found in ref. [84]

(see also ref. [85]):

S = z2M2
2

M2
3
Ŝ(κ) , (D.6)

where

Ŝ(0) ≈ 45.4 , (D.7)

and

κ = λ
M2

2
M2

3
. (D.8)

κ < 0 indicates that the potential is unbounded from below, while κ ≥ 1/4 ensures that the

minimum at φ = 0 is absolutely stable. Hence we only have to check that the metastability

constraint (D.5) is satisfied for 0 ≤ κ < 1/4. In this range of κ values, one has:

Ŝ(κ) ≥ Ŝ(0) ≈ 45.4 . (D.9)
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D.1 An example of CCB constraint

As a concrete example, let us first consider the vacuum decay to CCB minima induced by

a large A-term in the down squark sector [71]; then we will generalize the discussion to

other A-terms. The relevant Lagrangian is:

Lkin = |h′u(r)|2 + |h′d(r)|2 + |d̃′(r)|2 + |(d̃c)′(r)|2 + |ẽ′(r)|2 + |(ẽc)′(r)|2 ,

V = m2
Hu |hu|

2 +m2
Hd
|hd|2 +m2

Q̃
|d̃|2 +m2

d̃
|d̃c|2 +m2

L̃
|ẽ|2 +m2

ẽ|ẽc|2

+
(
Add̃

cd̃hd − λdµ∗d̃cd̃h∗u −Bhuhd + h.c.
)

+ |µ|2
(
|hu|2 + |hd|2

)
+ |λd|2

(
|d̃|2|d̃c|2 + |d̃c|2|hd|2 + |hd|2|d̃|2

)
+ 3g2

1/5
8

(
−|hd|2 + |hu|2 + 1

3 |d̃|
2 + 2

3 |d̃
c|2 − |ẽ|2 + 2|ẽc|2

)2

+ g2
2
8
(
|hd|2 − |hu|2 − |d̃|2 − |ẽ|2

)2
+ g2

3
6
(
|d̃|2 − |d̃c|2

)2
, (D.10)

where hu,d, d̃ (d̃c) and ẽ (ẽc) stand for the neutral components of the MSSM Higgs doublets,

the scalar partners of the left(right)-handed down-type quarks and of the left(right)-handed

charged leptons, respectively. Generation indices are omitted, and all mixing angles are

neglected. Finally, the parameters µ and B are determined by electroweak symmetry

breaking, i.e. in the limit mZ → 0:

|µ|2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
, (D.11)

B =
(m2

Hd
−m2

Hu
) tan β

tan2 β − 1
. (D.12)

From now on, all quantities are assumed to be real. This is equivalent to assuming that the

relative phase between λd and µ equals (modulo π) the relative phase between Ad and B

(a condition which may be realized in some scenarios of supersymmetry breaking), because

in this special case all phases can be absorbed in the fields involved.

For all CCB constraints except the one associated with At (which will be discussed

separately) and the one associated with Ab in the large tan β regime (which will not be

considered because, in the minimal renormalizable supersymmetric SU(5) model, large

values of tan β are excluded by a combination of constraints, see section 7) one has λ2
u,d,e �

g2
1,2,3, therefore one can impose the constraint of vanishing SU(3), SU(2) and U(1) D-

terms [71].

As explained at the beginning of the appendix, we will search for solutions to the field

equations of motion of the form:

(hu, hd, d̃, d̃c, ẽ, ẽc)(r) = (Hu, Hd, d, d, e, e) φ(r) , (D.13)

with Hu, Hd, d, e constant, where we have in addition imposed the SU(3) D-term constraint

(which also implies that d and dc point in the same SU(3) direction)

dc = d (D.14)
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(the alternative sign choice dc = −d would just flip the sign of M3, see eq. (D.18) below,

without affecting the action (D.6), which depends on M2
3 ), as well as the compatibility of

the U(1) and SU(2) D-term constraints:

ec = e . (D.15)

Finally, the vanishing of the SU(2) D-term:

− d2 − e2 +H2
d −H2

u = 0 , (D.16)

will be considered as a constraint in the following.

With these assumptions, the coefficients of the bounce action (D.4) can be expressed as:

M2
2 =

(
m2
Q̃

+m2
d̃

)
d2 +

(
m2
L̃

+m2
ẽ

)
e2

+
(
m2
Hu + |µ|2

)
H2
u +

(
m2
Hd

+ |µ|2
)
H2
d − 2BHuHd , (D.17)

M3 = −2d2(AdHd − λdµHu) , (D.18)

z = 2
(
2d2 + 2e2 +H2

u +H2
d

)
, (D.19)

λ = λ2
d d

2(d2 + 2H2
d) . (D.20)

Notice that we chose B > 0 (see eq. (D.12); this amounts to fix the sign of HuHd). Without

loss of generality, we can also choose

λd > 0 , Hu > 0 , (D.21)

while the signs of Ad, µ and Hd can in principle be arbitrary. For a given point in parameter

space (for which the signs of Ad and µ are fixed), one needs to consider both signs of Hd.

D.2 General CCB constraints

Let us now generalize the previous discussion to all CCB constraints (except for the one as-

sociated with At). The coefficients of the bounce action (D.4) can be written compactly as:

M2
2 (ψ, ψ̄,H, H̄) = M2

ψψ
2 +M2

ψ̄
ψ̄2

+
(
m2
H + |µ|2

)
H2 +

(
m2
H̄

+ |µ|2
)
H̄2 − 2BHH̄ , (D.22)

M3(ψ,H, H̄) = −2ψ2(AψH − λψµH̄) , (D.23)

z(ψ, ψ̄,H, H̄, cz) = 2
(
2ψ2 + czψ̄

2 +H2 + H̄2
)
, (D.24)

λ(ψ,H) = λ2
ψψ

2(ψ2 + 2H2) , (D.25)

and the D-term constraint is given by:

0 = −ψ2 + (3− 2c)ψ̄2 +H2 − H̄2 , (D.26)

where the 6 different possibilities are summarized in table 5 (the example considered pre-

viously was case 2).
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ψ ψ̄ H H̄ M2
ψ M2

ψ̄
m2
H m2

H̄
cz c

1 d (= dc) ν Hd Hu m2
Q̃

+m2
d̃

m2
L̃

m2
Hd

m2
Hu

1 1

2 d (= dc) e (= ec) Hd Hu m2
Q̃

+m2
d̃

m2
L̃

+m2
ẽ m2

Hd
m2
Hu

2 2

3 u (= uc) ν Hu Hd m2
Q̃

+m2
ũ m2

L̃
m2
Hu

m2
Hd

1 2

4 u (= uc) e (= ec) Hu Hd m2
Q̃

+m2
ũ m2

L̃
+m2

ẽ m2
Hu

m2
Hd

2 1

5 e (= ec) u (= uc) Hd Hu m2
L̃

+m2
ẽ m2

Q̃
+m2

ũ m2
Hd

m2
Hu

2 1

6 e (= ec) d (= dc) Hd Hu m2
L̃

+m2
ẽ m2

Q̃
+m2

d̃
m2
Hd

m2
Hu

2 2

Table 5. The six different cases of CCB constraints considered. The D-term constraints are given

in parenthesis. Whenever d and dc (u and uc) are involved, they point in the same SU(3)C direction.

For each case, there are several subcases to be checked according to which generation

indices are carried by the ψ and ψ̄ fields. For a given generation ψi (the 2 ψ fields belong

to the same generation), one must consider all generation choices for the ψ̄ fields that do

not give a substantial contribution to the F-terms due to the size of the corresponding

Yukawa couplings (otherwise there would be no CCB minimum lower than the electroweak

vacuum). Namely,

• when a single ψ̄ field is involved (Cases 1 and 3), all generation indices should be

considered;

• when two ψ̄ fields are involved (Cases 2, 4, 5 and 6), all combinations of two different

generation indices should be considered;

• the cases of two ψ̄ fields with the same generation index should also be considered

when the Yukawa coupling of the corresponding lepton is much smaller than λψ (i.e.

one needs to consider only generations of ψ̄’s whose fermionic partners are lighter

than the fermionic partner of ψ).

In practice, it is enough to check generations of the ψ̄ fields leading to the smallest value

of M2
ψ̄

, since the bounce action increases with M2
ψ̄

. There are thus 16 possible cases:

3 generations for case 1 with ψ = (d, s, b), 3 generations for case 2 with ψ = (d, s, b), 2

generations for case 3 with ψ = (u, c), 2 generations for case 4 with ψ = (u, c), 3 generations

for case 5 with ψ = (e, µ, τ) and 3 generations for case 6 with ψ = (e, µ, τ).
Finally, starting from the semi-analytic approximation (D.6), it is easy to show that:

S = 4Ŝ(κ)
[
λ

λ2
ψ

+ 2ψ2
(
(3 + cz − 2c)ψ̄2 +H2

)
+
(
(3 + cz − 2c)ψ̄2 + 2H2

)2
]
M2

2
M2

3

≥ 4Ŝ(κ) κ
λ2
ψ

, (D.27)

which is very large unless κ is very small. Thus only very small values of κ may lead

to a short vacuum lifetime, and we can approximate Ŝ(κ) ' Ŝ(0) ≈ 45.4. To a good
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approximation, the quantity that we have to minimize is therefore

S ≡ S

Ŝ(0)
= z2M2

2
M2

3
(ψ, ψ̄,H, H̄, c, cz) , (D.28)

subject to the D-term constraint (D.26), and we must check whether

Smin &
400
45.4 ≈ 9 , (D.29)

hereafter referred to as the metastability constraint. This condition must be satisfied for

all six cases in table 5 to be able to conclude (within our approximate method) that the

lifetime of the electroweak vacuum is longer than the age of the universe.

Notice that one needs to minimize S with respect to two variables only. Indeed, one of

the variables ψ, ψ̄,H, H̄ is fixed by the D-term constraint (D.26), and the quantity (D.28)

only depends on ratios of fields. The minimization is performed numerically. A point of

the parameter space is admitted if the bounce action satisfies eq. (D.29) in all cases listed

in table 5.

The D-term constraint (D.26) is most easily taken into account in the minimization of

S by choosing a suitable parametrization of its general solution, for instance:

D.2.1 Cases 1, 4, 5 (c = 1)

For c = 1, the most general solution of eq. (D.26) can be parametrized as:

H = sHH̄ cosh θ cosα , (D.30)

ψ̄ = H̄ cosh θ sinα , (D.31)

ψ = H̄ sinh θ , (D.32)

with sH = ±1, θ ∈ [0,∞[ and α ∈ [0, π/2]. The actual value of H̄ 6= 0 is irrelevant,

as (D.28) only depends on ratios of fields.

D.2.2 Cases 2, 3, 6 (c = 2)

For c = 2, the most general solution of eq. (D.26) can be parametrized as:

H = sHH̄ cosh θ , (D.33)

ψ̄ = H̄ sinh θ sinα , (D.34)

ψ = H̄ sinh θ cosα , (D.35)

with again sH = ±1, θ ∈ [0,∞[ and α ∈ [0, π/2]. As in the previous case, the actual value

of H̄ 6= 0 is irrelevant.

D.3 The special case of the stop

In this case too we will make suitable approximations for estimating the minimal value of

the bounce action (for more details on the subject, see refs. [17, 86–89]). As explained in

ref. [71], one cannot assume exact cancellation of the D-terms here, but we will nevertheless
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stick to the relatively good approximation of vanishing SU(3) D-terms, namely t̃ = t̃c.

Keeping the contributions of all other fields, one can write:

Lkin = |h′u(r)|2 + |h′d(r)|2 + 2|t̃′(r)|2 ,

V = m2
Hu |hu|

2 +m2
Hd
|hd|2 +

(
m2
Q̃

+m2
t̃

)
|t̃|2

+
(
Att̃

2hu − λtµ∗t̃2h∗d −Bhuhd + h.c.
)

+ |µ|2
(
|hu|2 + |hd|2

)
+ |λt|2

(
|t̃|4 + 2|t̃|2|hu|2

)
+ g′2 + g2

2
8

(
|hd|2 − |hu|2 + |t̃|2

)2
. (D.36)

Assuming again all quantities to be real, we take the same ansatz as for the other CCB

constraints:

(hu, hd, t̃)(r) = (Hu, Hd, t) φ(r) , (D.37)

with Hu, Hd and t constant. From this we obtain:

M2
2 =

(
m2
Q̃

+m2
t̃

)
t2 +

(
m2
Hu + |µ|2

)
H2
u +

(
m2
Hd

+ |µ|2
)
H2
d − 2BHuHd , (D.38)

M3 = −2t2(AtHu − λtµHd) , (D.39)

z = 2
(
2t2 +H2

u +H2
d

)
, (D.40)

λ = λ2
t t

2(t2 + 2H2
u) + g′2 + g2

2
8

(
H2
u −H2

d − t2
)2
. (D.41)

Due to the large Yukawa coupling of the top quark, we also have to check the lifetime of

the electroweak vacuum for sizable values of κ, as opposed to the previous cases. Hence we

can no longer approximate Ŝ(κ) by Ŝ(0), and we must minimize the following (normalized)

bounce action:

S =
(

1 + f(κ)− f(0)
Ŝ(0)

)
z2M2

2
M2

3
, (D.42)

with [84]

f(κ) = π2/6
(1− 4κ)3 + 16.5

(1− 4κ)2 + 28
1− 4κ , (D.43)

and Ŝ(0) ≈ 45.4. The minimization goes again over two variables, for example the ratios

Hu/t and Hd/t, and is done numerically. It is important to keep in mind that S should

be minimized only over the range 0 ≤ κ < 1/4, for which the potential is metastable. For

κ < 0 the potential is unbounded from below and for M2
2 < 0 it is unstable, while for

κ ≥ 1/4 the electroweak vacuum is the global minimum of the model.

D.4 How to improve the estimate

We can improve the estimates described above in several ways:

• on top of the 6 cases described in table 5, one could consider the case where both φ

and φ̄ are leptons. One would then need to perform a minimization with respect to

three fields, since there is no constraint due to SU(3) D-terms;
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• one could consider more general radius-dependent directions in field space, which

would require the use of numerical algorithms as in ref. [79];

• we have calculated transitions between vacua of the tree-level scalar potential at the

fixed scale msusy. To improve our estimates higher order corrections and/or RG-

improved potentials should be considered. Such corrections can be relevant in some

cases [71].

All these generalizations are however quite involved and are beyond the scope of this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[71] J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the

MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3

[hep-ph/9507294] [INSPIRE].

[72] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977)

2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

[73] C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum

corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[74] S.R. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of

euclidean scalar field equations, Commun. Math. Phys. 58 (1978) 211 [INSPIRE].

[75] A. Kusenko, Improved action method for analyzing tunneling in quantum field theory, Phys.

Lett. B 358 (1995) 51 [hep-ph/9504418] [INSPIRE].

[76] J.M. Cline, G.D. Moore and G. Servant, Was the electroweak phase transition preceded by a

color broken phase?, Phys. Rev. D 60 (1999) 105035 [hep-ph/9902220] [INSPIRE].

[77] T. Konstandin and S.J. Huber, Numerical approach to multi dimensional phase transitions,

JCAP 06 (2006) 021 [hep-ph/0603081] [INSPIRE].

[78] J.H. Park, Constrained potential method for false vacuum decays, JCAP 02 (2011) 023

[arXiv:1011.4936] [INSPIRE].

[79] C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures

and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006

[arXiv:1109.4189] [INSPIRE].

[80] F. Borzumati, G.R. Farrar, N. Polonsky and S.D. Thomas, Soft Yukawa couplings in

supersymmetric theories, Nucl. Phys. B 555 (1999) 53 [hep-ph/9902443] [INSPIRE].

[81] I. Dasgupta, B.A. Dobrescu and L. Randall, Vacuum instability in low-energy supersymmetry

breaking models, Nucl. Phys. B 483 (1997) 95 [hep-ph/9607487] [INSPIRE].

[82] I. Dasgupta, Estimating vacuum tunneling rates, Phys. Lett. B 394 (1997) 116

[hep-ph/9610403] [INSPIRE].

[83] S.R. Coleman, Quantum tunneling and negative eigenvalues, Nucl. Phys. B 298 (1988) 178

[INSPIRE].

[84] U. Sarid, Tools for tunneling, Phys. Rev. D 58 (1998) 085017 [hep-ph/9804308] [INSPIRE].

[85] M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the

electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203] [INSPIRE].

[86] J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against

sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].

[87] N. Blinov and D.E. Morrissey, Charge and color breaking constraints in the minimal

supersymmetric standard model, arXiv:1309.7397 [INSPIRE].

[88] D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking

constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110

[arXiv:1310.1932] [INSPIRE].

[89] N. Blinov and D.E. Morrissey, Vacuum stability and the MSSM Higgs mass, JHEP 03 (2014)

106 [arXiv:1310.4174] [INSPIRE].

– 54 –

http://dx.doi.org/10.1016/0550-3213(96)00194-0
http://arxiv.org/abs/hep-ph/9507294
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507294
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D15,2929"
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D16,1762"
http://dx.doi.org/10.1007/BF01609421
http://inspirehep.net/search?p=find+J+"Comm.Math.Phys.,58,211"
http://dx.doi.org/10.1016/0370-2693(95)00994-V
http://dx.doi.org/10.1016/0370-2693(95)00994-V
http://arxiv.org/abs/hep-ph/9504418
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504418
http://dx.doi.org/10.1103/PhysRevD.60.105035
http://arxiv.org/abs/hep-ph/9902220
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9902220
http://dx.doi.org/10.1088/1475-7516/2006/06/021
http://arxiv.org/abs/hep-ph/0603081
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603081
http://dx.doi.org/10.1088/1475-7516/2011/02/023
http://arxiv.org/abs/1011.4936
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4936
http://dx.doi.org/10.1016/j.cpc.2012.04.004
http://arxiv.org/abs/1109.4189
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4189
http://dx.doi.org/10.1016/S0550-3213(99)00328-4
http://arxiv.org/abs/hep-ph/9902443
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9902443
http://dx.doi.org/10.1016/S0550-3213(96)00578-0
http://arxiv.org/abs/hep-ph/9607487
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607487
http://dx.doi.org/10.1016/S0370-2693(96)01685-1
http://arxiv.org/abs/hep-ph/9610403
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9610403
http://dx.doi.org/10.1016/0550-3213(88)90308-2
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B298,178"
http://dx.doi.org/10.1103/PhysRevD.58.085017
http://arxiv.org/abs/hep-ph/9804308
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9804308
http://dx.doi.org/10.1103/PhysRevD.46.550
http://arxiv.org/abs/hep-ph/9203203
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9203203
http://dx.doi.org/10.1007/JHEP12(2013)103
http://arxiv.org/abs/1309.7212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7212
http://arxiv.org/abs/1309.7397
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7397
http://dx.doi.org/10.1007/JHEP02(2014)110
http://arxiv.org/abs/1310.1932
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1932
http://dx.doi.org/10.1007/JHEP03(2014)106
http://dx.doi.org/10.1007/JHEP03(2014)106
http://arxiv.org/abs/1310.4174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4174

	Introduction
	The minimal renormalizable supersymmetric SU(5) model
	The SU(5) model
	MSSM
	Standard Model

	Renormalization group equations
	Gauge couplings
	Threshold corrections to gauge couplings

	Yukawa couplings
	Threshold corrections to Yukawa couplings

	Higgs quartic coupling
	A-terms
	Gaugino masses
	Soft scalar masses
	mu and B mu terms

	Solutions of the RGEs for soft terms
	Gauge and Yukawa couplings
	Gaugino masses
	A-terms
	Soft scalar masses

	Proton decay
	Vacuum (meta)stability
	Unbounded from below directions
	Charge and color breaking vacua
	Constraints on A(n) (n != t)
	Constraint on A(t)


	Results and discussion
	Conclusions
	Procedure for solving the soft term RGEs
	The procedure
	Input values
	Approximate expressions for the soft terms
	Gaugino masses
	A-terms
	Soft scalar masses


	Proton lifetime computation
	UFB constraints
	UFB-1
	UFB-2
	UFB-3

	Decays into CCB vacua
	An example of CCB constraint
	General CCB constraints
	Cases 1, 4, 5 (c=1)
	Cases 2, 3, 6 (c=2)

	The special case of the stop
	How to improve the estimate


