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1 Introduction

In particle physics and cosmology, decay of false vacua is an important subject. For ex-

ample, with the observed Higgs and top masses, it has been known that the Higgs quartic

coupling constant becomes negative above ∼ 1010GeV if the standard model (SM) is a good

effective theory up to the scale [1]. Then the electroweak symmetry breaking (EWSB) vac-

uum is a false vacuum. Even if there exists a true vacuum other than the EWSB vacuum,

we may still live in the EWSB vacuum as long as the lifetime of the EWSB vacuum is

longer than the present cosmic time. In models beyond the SM, the EWSB vacuum may

still be a false vacuum. For example, in supersymmetric (SUSY) models, there may exist a

color and/or charge breaking (CCB) vacuum (at which some of the superpartners of quarks

and/or leptons acquire non-vanishing expectation values) whose vacuum energy is lower

than that of the EWSB vacuum. Existence of such a CCB vacuum imposes important and

stringent bounds on SUSY models [2–5].

Precise calculation of the decay rate of the false vacua is important from both theoret-

ical and phenomenological points of view. The procedure to calculate the decay rate was

formulated in [6, 7], in which the decay rate is evaluated by performing the path integral

around the saddle-point solution (i.e., so-called the “bounce”) of the equation of motion in

the Euclidean field theory. Given the bounce solution, the decay rate per unit volume is

given by

γ ≡ Ae−B, (1.1)

where B is the bounce action, which is the Euclidean action of the bounce solution, while

the prefactor A takes account of the effects of fluctuations around the bounce. In many

analyses, B has been evaluated from the tree-level Lagrangian, while an order-of-magnitude

estimate has been adopted for A. The main subject of this paper is the calculation of A,

which is important to determine the overall scale of the decay rate. Another motivation of
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the calculation comes from the scale independence of the decay rate. B inevitably depends

on the renormalization scale Q at which the tree-level parameters in the Lagrangian are

defined. As we will see, the scale dependence of B can be sizable. The decay rate of the

false vacuum is a physical quantity, and therefore, the scale dependence should be cancelled

in the expression of γ = Ae−B.

In this paper, we discuss the calculation of the decay rate of false vacua, paying par-

ticular attention to the renormalization-scale dependence of the decay rate γ. In section 2,

we summarize the formalism to calculate the prefactor. In sections 3 and 4, we perform

numerical calculations of the decay rate γ for a simple model of a real scalar field and

Higgs-stau system in the minimal SUSY SM (MSSM), respectively. We show that, in those

models, B has sizable dependence on Q, while the scale dependence of γ = Ae−B becomes

weak once the effect of the prefactor A is properly taken into account. Section 5 is devoted

to the summary of this paper.

2 Formalism

In order to calculate the decay rate of false vacua, we follow the procedure given in [6–12].

In the calculation, the bounce solution plays an important role. The bounce is the solution

of the classical field equations that interpolates between the false and true vacua. It is an

O(4) symmetric solution of the four-dimensional Euclidean equation of motion, and it only

depends on the radial distance in the Euclidean space r =
√
xµxµ. In the following, the

bounce solution is denoted as σ(r) (or σi, when we need to specify the individual fields). We

also denote the expectation value of the scalar field at the false vacuum as σ̄ ≡ σ(r → ∞).

Hereafter, we calculate the prefactor A at the one-loop level. We consider the prefac-

tor arising from the coupling of the bounce to scalar and spinor fluctuations. Then, the

prefactor A can be decomposed as

A =
B2

4π2
A′

φAψ, (2.1)

where A′
φ and Aψ are scalar- and fermion-loop contributions, respectively. As we see below,

Aψ is dimensionless, while the mass dimension of A′
φ is four.

We assume the bosonic contribution arises from the Euclidean Lagrangian of the fol-

lowing form:

Lφ =
1

2
∂µφi∂µφi + V (σ, φi), (2.2)

where φi denotes scalar fluctuations around the bounce solution σ(r), and V is the scalar

potential. We take the basis of the scalar fields such that each φi becomes a mass eigenstate

around the false vacuum. Then,

A′
φ =

∣

∣

∣

∣

Det′[−∂2 + Vij(σ)]

Det[−∂2 + V̄ij ]

∣

∣

∣

∣

−1/2

e−S
(c.t.)
φ , (2.3)

where

Vij(σ) ≡
∂2V

∂φi∂φj

∣

∣

∣

∣

φ=0

, (2.4)
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V̄ij ≡ Vij(σ̄), and S
(c.t.)
φ is the counter term to remove the divergences due to φi. In

addition, Det′ is the functional determinant with omitting four zero-eigenvalues associated

with the translation of the bounce solution. Then, the mass dimension of A′
φ is four, that

is the mass dimension of γ. A′
φ is often estimated to be the fourth power of a typical mass

scale in the bounce.

The fermionic part of the Euclidean Lagrangian is denoted as

Lψ = ψ̄γµ∂µψ +M(σ)ψ̄ψ, (2.5)

where γµ is the γ-matrix, satisfying the anti-commutation relation as {γµ, γν} = 2δµν .

Then, fermionic contribution is given by

Aψ =

[

Det[−(/∂ +M)(/∂ −M)]

Det[−∂2 + M̄2]

]1/2

e−S
(c.t.)
ψ , (2.6)

where M̄ ≡ M(σ̄), and S
(c.t.)
ψ is the counter term.

We first discuss the effect of fluctuations which are not related to the zero-modes. As

shown in eqs. (2.3) and (2.6), the prefactor A is related to the following quantity:

Aϕ =

(

Det

[−∂2 +W (r)

−∂2 + W̄

])(−1)F+1/2

e−S
(c.t.)
ϕ , (2.7)

with ϕ = φ or ψ, where (−1)F = +1 and −1 for boson and fermion, respectively, S
(c.t.)
ϕ is

the counter term, and W̄ ≡ W (r → ∞), which is the value at the false vacuum.

We can obtain a formal expression of Aϕ. Expanding W as

W (r) = W̄ + δW (r), (2.8)

we obtain

lnAϕ = −
∞
∑

p=1

s(p)ϕ , (2.9)

where

s(p)ϕ ≡ (−1)F+p+1

2p
Tr

[

δW
1

−∂2 + W̄

]p

+ (counter term), (2.10)

with “Tr” denoting the functional trace. In addition, divergences appear only for p = 1

and 2, and hence the counter term contributions do not appear for p ≥ 3. In our analysis,

s
(1)
ϕ and s

(2)
ϕ are evaluated by performing the momentum integration with the MS scheme:

s(1)ϕ = (−1)F+1
∑

i

δW̃ii(0)
W̄ii

32π2

[

1− ln
W̄ii

Q2

]

, (2.11)

s(2)ϕ = (−1)F+1 1

512π4

∑

i,j

∫

dk k3δW̃ij(k)δW̃ji(k)

×
[

2− 1

2
ln

W̄iiW̄jj

Q4
+

W̄ii − W̄jj

2k2
ln

W̄ii

W̄jj
− ω2

2k2
ln

k2 + W̄ii + W̄jj + ω2

k2 + W̄ii + W̄jj − ω2

]

, (2.12)
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where

ω2 =
√

(W̄ii + W̄jj + k2)2 − 4W̄iiW̄jj , (2.13)

δW̃ (k) =
4π2

k

∫

dr r2δW (r)J1(kr), (2.14)

with J1(x) being the modified Bessel function of the first kind. Notice that W̄ is a diagonal

matrix in our choice of the basis.

Next, let us consider the finite part, i.e.,
∑

p≥3 s
(p)
ϕ . Because the bounce solution has

O(4) symmetry, the eigenfunctions of the operator (−∂2 + W ) can be characterized by

the quantum numbers for the rotational group of the four-dimensional Euclidean space,

i.e., SU(2)A× SU(2)B. We denote the spin operators for SU(2)A and SU(2)B as Âi and

B̂i, respectively, and the eigenvalues of (Â2, Â3, B̂
2, B̂3) are denoted as (jA,mA, jB,mB);

jA = jB for scalars, and jA = jB ± 1
2 for fermions. Hereafter, we denote

J ≡ min(jA, jB), (2.15)

which takes the values of J = 0, 1
2 , 1,

3
2 , · · · . Then, the functional determinant of our

interest can be decomposed into the contributions of each J as

Det

[−∂2 +W

−∂2 + W̄

]

=
∏

J

Det

[−∆J +W

−∆J + W̄

]

, (2.16)

where ∆J is the four-dimensional Laplace operator acting on the mode with J =

min(jA, jB). For scalars,

[∆J −W ]φ = ∂2
r +

3

r
∂r −

2J(2J + 2)

r2
− Vij , (2.17)

and for fermions,

[∆J −W ]ψ = ∂2
r +

3

r
∂r −

(

2J(2J + 2)r−2 +M2 ∂rM

∂rM (2J + 1)(2J + 3)r−2 +M2

)

. (2.18)

Using the technique given in [13–19], it is possible to express the determinant as

follows,1

Det

[−∆J +W

−∆J + W̄

]

= det(ϕJ/ϕ̄J)
NJ

∣

∣

r=∞
, (2.19)

where NJ is the degeneracy; NJ = (2J + 1)2 for a scalar, and NJ = 2(2J + 1)(2J + 2) for

a fermion. Notice that the factor of 2 in NJ for fermions originates from two choices of

jA = jB − 1
2 and jA = jB + 1

2 . In addition, ϕJ is the function, which is regular in r = 0,

obeying the following equation:

[∆J −W (r)]ϕJ(r) = 0. (2.20)

1Here and hereafter, (ϕJ/ϕ̄J) should be understood as the product ϕJ ϕ̄
−1
J if ϕJ and ϕ̄J are matrices.
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The function ϕ̄J , which has the same boundary condition as ϕJ at r = 0, is obtained from

eq. (2.20) with W being replaced by W̄ . We define the function ϕ
(p)
J which obeys

[∆J − W̄ ]ϕ
(p)
J = δWϕ

(p−1)
J , (p ≥ 1), (2.21)

with ϕ
(0)
J = ϕ̄J . Then, ϕJ =

∑∞
p=0 ϕ

(p)
J , and the following relation holds:

∑

p≥3

s(p)ϕ =
(−1)F

2

∑

J

NJ [tr ln(ϕJ/ϕ̄J)− ϕ̃J ]|r=∞ , (2.22)

where

ϕ̃J ≡ tr

[

(ϕ
(1)
J /ϕ̄J)−

1

2
(ϕ

(1)
J /ϕ̄J)

2 + (ϕ
(2)
J /ϕ̄J)

]

. (2.23)

Using eqs. (2.11), (2.12), and (2.22), Aϕ is given by

Aϕ = e−s
(1)
ϕ −s

(2)
ϕ

∏

J

[

det(ϕJ/ϕ̄J)e
−ϕ̃J

](−1)F+1NJ/2
∣

∣

∣

r=∞
. (2.24)

This expression can be used for numerical calculations. Importantly, the quantities s
(1)
ϕ

and s
(2)
ϕ are finite, while the quantity det(ϕJ/ϕ̄J)e

−ϕ̃J approaches to 1 as J → ∞, which

make it possible to numerically evaluate Aϕ with eq. (2.24).

In general, the bounce action cannot be expressed by analytic functions. For our

numerical calculations in the following sections, we use CosmoTransitions 2.01a [20] to

determine the bounce solution as well as B.
In the calculation of γ, the zero-eigenvalues in association with the translation of the

bounce should be eliminated from the functional determinant. For this purpose, we add a

small constant w to the function W (r) in eq. (2.20) without changing the bounce. With w

being small enough, the functional determinant given in eq. (2.19) is proportional to wn0/2,

where n0 is the number of zero-modes. The zero-eigenvalues can be omitted with dividing

the functional determinant (for non-vanishing w) by wn0/2 and taking w → 0.

Due to the zero-modes associated with the translation of the bounce, Aφ given by

eq. (2.24) is proportional to w−2 (if there is no other zero-mode). Thus, Aφ diverges as

w → 0; such a behavior is related to the infinite space-time volume. The dependence

of Aφ ∝ w−2 originates from the relation of det[φ1/2(r;w)/φ̄1/2(r)]r=∞,w→0 ∝ w, where

φJ(r;w) obeys
[

∂2
r +

3

r
∂r −

2J(2J + 2)

r2
−W (r)− w

]

φJ(r;w) = 0. (2.25)

Notice that the zero-modes are involved in the modes with J = 1
2 . After omitting the

zero-eigenvalues, we obtain

A′
φ = e−s

(1)
φ −s

(2)
φ

[

lim
w→0

det

(

∂wφ1/2(r;w)

φ̄1/2

)

e−φ̃1/2

]−2

×
∏

J 6=1/2

[

det(φJ/φ̄J)e
−φ̃J

]−(2J+1)2/2
∣

∣

∣

∣

r=∞

. (2.26)
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Combining eqs. (2.1), (2.24), and (2.26), the decay rate γ is obtained. Defining

Stot ≡ B +∆Sφ +∆Sψ, (2.27)

with

∆Sφ ≡ − ln

[

B2

4π2

A′
φ

Λ4

]

, (2.28)

∆Sψ ≡ − lnAψ, (2.29)

the decay rate is given by

γ = Λ4e−Stot , (2.30)

where Λ is an arbitrary scale. Notice that the mass dimension in the bracket of ∆Sφ is zero,

while γ is independent of Λ. Taking Λ = 100GeV, for example, Stot is required to be larger

than 4.0×102 to make the quantity H−4
0 γ smaller than 1, where H0 ≃ 67 km/sec/Mpc [21]

is the expansion rate of the present universe.

The prefactor A depends on the renormalization scale via e−s
(1)
ϕ −s

(2)
ϕ . Such a scale de-

pendence is necessary to make the decay rate scale-independent. Indeed, in the calculation

of the decay rate γ = Ae−B, the renormalization-scale dependence of B is compensated by

that of A. The cancellation of the scale dependence at the leading order of lnQ is shown

in the appendix.2 We also comment that
∑

p≥3 s
(p)
ϕ can be as large as s

(1)
ϕ and s

(2)
ϕ . Thus,

the calculation of both the divergent and convergent parts of the prefactor A is needed.

Explicit calculations of the prefactor A, including the finite part, are performed in the

next sections.

Before closing this section, we comment on the zero-modes in association with the

spontaneous breaking of global symmetry. In the following analysis, we also consider

the case where a U(1) global symmetry preserved in the false vacuum is broken by the

bounce solution. In such a case, another zero-mode appears, which is related to the U(1)

transformation of the bounce. The path integral for such a zero-mode can be performed

as an integration over the parameter space of the U(1) group. The zero-mode is involved

in the J = 0 mode, and its effect can be taken care of with the following replacement [23]:

det (φ0/φ̄0)
−1/2

∣

∣

∣

r=∞
→ 2π

√

∫

d4x

2π

∑

i

q2i σ
2
i

[

lim
w→0

det

(

∂wφ0(r;w)

φ̄0(r)

)]−1/2
∣

∣

∣

∣

∣

r=∞

, (2.31)

where qi is the charge of the complex scalar field whose real component contains σi. The

normalization of the U(1) charge is fixed so that the volume of the U(1) group is equal

to 2π.

3 Model 1: model with a real scalar field

First let us consider the simplest example with a real scalar field Φ = σ+φ, where σ and φ

are the bounce and the fluctuation around the bounce, respectively. The scalar potential is

V (Φ) = −ξΦΦ+
1

2
m2

ΦΦ
2 − 1

2
TΦΦ

3 +
1

8
λΦΦ

4, (3.1)

2Discussion on the scale dependence of the decay rate based on the effective potential is given in [22].
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with m2
Φ > 0 and λΦ > 0. The bounce σ obeys the following equation:

∂2
rσ +

3

r
∂rσ − ∂V (σ)

∂σ
= 0. (3.2)

We concentrate on the case where the false vacuum is the one around Φ = 0; such a

situation is realized for T 2
Φ & λΦm

2
Φ. The renormalization group equations (RGEs) of the

Lagrangian parameters are given by

dξΦ
d lnQ

=
3

16π2
TΦm

2
Φ, (3.3)

dm2
Φ

d lnQ
=

3

16π2
(λΦm

2
Φ + 3T 2

Φ), (3.4)

dTΦ

d lnQ
=

9

16π2
λΦTΦ, (3.5)

dλΦ

d lnQ
=

9

16π2
λ2
Φ. (3.6)

We calculate the bounce solution with the potential given in eq. (3.1) by varying the

renormalization scale. Here, we adopt the following renormalization condition:

ξΦ(Q0) = 0, (3.7)

m2
Φ(Q0) = m2, (3.8)

TΦ(Q0) = T, (3.9)

λΦ(Q0) = λ, (3.10)

with Q0 = m. The parameters m and λ(< 1) are positive. The Lagrangian parameters for

different scale are evaluated by using the RGEs given in eqs. (3.3)–(3.6). We set T = m

and λ = 0.6 in our numerical calculation.

The model involves various mass scales; the scalar mass is m, the true vacuum is at

σ ≃ 4.2m, the potential energy at the true vacuum is |V |1/4 ≃ 1.5m, the field value at

r = 0 is σ(0) ≃ 3.7m, and the barrier hight is |V |1/4 ≃ 0.6m at Φ ≃ 0.8m. Since the

scales distribute in a wide range, it is difficult to determine which is appropriate for the

renormalization scale. We vary the renormalization scale in the range, Q/m = 0.5–5.

In figure 1, we plot B as a function of the renormalization scale, Q. The value of B
has sizable dependence on Q. Hence, it is important to properly calculate the prefactor A
in order to reduce the renormalization-scale uncertainty as well as to determine the overall

scale of the decay rate.

Following the procedure explained in the previous section, we calculate Stot in

eq. (2.27). The result is also plotted in figure 1. When the prefactor A is calculated at the

one-loop level, the renormalization-scale uncertainty is significantly reduced; B changes

between 404 and 373 for Q/m = 0.5–5, while Stot = B + ∆Sφ is stable at Stot ≃ 400.

Thus, the study of this simple model shows that the proper inclusion of the prefactor A is

necessary for an accurate estimation of the decay rate γ.

– 7 –
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Figure 1. B and Stot as a function of the renormalization scale Q in the model of a real scalar

field with the potential (3.1). We take T = m and λ = 0.6. Also, Λ = 100GeV for ∆S.

4 Model 2: Higgs-Stau system in the MSSM

In SUSY models, the EWSB vacuum becomes a false vacuum if there exists a true vacuum

which is CCB or unbounded-from-below directions. The stability of EWSB vacuum often

gives significant constraints on the SUSY parameters [2–5, 22, 24–27]. The CCB vacua

show up in particular when scalar tri-linear coupling constants are large. Although the

decay rate of the EWSB vacuum is important, the prefactor A is estimated by an order-

of-magnitude estimate argument, and is often chosen to be the SUSY scale.

In this section, we consider the case where the tri-linear coupling of the Higgs boson

and the scalar taus (staus) is large. Such a setup is attractive because, if we assume the

universality of the slepton masses, SUSY contributions to the muon g−2 can be large [28–

30]. Then, a CCB vacuum may show up in the parameter regions where the muon g − 2

anomaly is solved [31]. We study the decay rate of the EWSB vacuum in such a case.

For simplicity, we consider the case where masses of all the superparticles and heavy

Higgs bosons except for sleptons are much larger than the electroweak scale. We call the

mass scale of heavy superparticles as the SUSY scale MSUSY. Then, an effective theory

is defined between the electroweak scale and the SUSY scale. The effective Lagrangian is

described as

Leff = Lkin − yt(HqLt
c
R + h.c.)−m2

H |H|2 − 1

4
λH |H|4

−m2
ℓ̃L
|ℓ̃L|2 −m2

τ̃R
|τ̃R|2 − Tτ (H

†ℓ̃Lτ̃
∗
R + h.c.)− 1

4
κ(1)|ℓ̃L|4 −

1

4
κ(2)|τ̃R|4

− 1

4
λ(1)|H|2|ℓ̃L|2 −

1

4
λ(2)|H†ℓ̃L|2 −

1

4
λ(3)|H|2|τ̃R|2 −

1

4
κ(3)|ℓ̃L|2|τ̃R|2, (4.1)
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where H is the SM-like Higgs doublet, qL and tcR are the third-generation quark doublet

and right-handed anti-top, respectively, ℓ̃L is the third-generation slepton doublet, and τ̃R
is the right-handed stau. We denote the kinetic terms as Lkin. Terms containing the first-

and second-generation sleptons are omitted for simplicity because they are irrelevant for

the following discussion.

The scalar potential is significantly affected by the large top-quark Yukawa coupling

constant yt and the tri-linear coupling constant of the stau Tτ . Because the renormalization-

scale dependence of B comes from that of the scalar potential, we concentrate on the RG

evolutions of the couplings associated with the bounce fields. The relevant RGEs are

given by

dm2
H

d lnQ
=

3y2t
8π2

m2
H +

1

8π2
T 2
τ , (4.2)

dm2
ℓ̃L

d lnQ
=

1

8π2
T 2
τ , (4.3)

dm2
τ̃R

d lnQ
=

1

4π2
T 2
τ , (4.4)

dλH

d lnQ
=

3y2t
4π2

λH − 3

8π2
y4t , (4.5)

dTτ

d lnQ
=

3y2t
16π2

Tτ , (4.6)

dλ(I)

d lnQ
=

3y2t
8π2

λ(I), (4.7)

dκ(I)

d lnQ
= 0, (4.8)

with I = 1, 2, 3. Because we discuss the renormalization-scale uncertainty at the one-loop

level, it is sufficient to consider the leading-logarithmic dependence on the renormalization

scale of the parameters which determine the bounce. Hence, we neglect higher loop effects

on the vacuum decay rate. In particular, the RG running of yt is neglected because the

top quark does not compose B, and thus, the RG running is two-loop effects.

In the effective Lagrangian, the parameters associated with the SM are determined by

the electroweak-scale observables. At the top-quark mass scale, we set them as

yt =
Mt

v
, (4.9)

m2
H(Mt) = −1

2
M2

h , (4.10)

λH(Mh) =
M2

h

2v2
, (4.11)

where Mt and Mh are the top-quark and Higgs masses, respectively. Numerically, we use

v ≃ 174GeV, Mt = 173.5GeV, and Mh = 125GeV [32]. With the boundary condition,

eq. (4.11), λH(MSUSY) may be different from the MSSM prediction at the tree level. We

assume that such a deviation is explained by the threshold correction of the scalar-top

loops [33].
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The quartic scalar coupling constants, λ(I) and κ(I), are described by the gauge and

tau Yukawa coupling constants at the SUSY scale. At the tree level, they are given by

λ(1)(MSUSY) = (g2 + g′2) cos 2β, (4.12)

λ(2)(MSUSY) = 4y2τ − 2g2 cos 2β, (4.13)

λ(3)(MSUSY) = 4y2τ − 2g′2 cos 2β, (4.14)

κ(1)(MSUSY) =
1

2
(g2 + g′2), (4.15)

κ(2)(MSUSY) = −κ(3)(MSUSY) = 2g′2, (4.16)

where g and g′ are the gauge coupling constants of the SU(2)L and U(1)Y gauge symmetries,

respectively, and tanβ is a ratio of the Higgs vacuum expectation values at the EWSB

vacuum, tanβ = 〈Hu〉/〈Hd〉. In addition, yτ is the Yukawa coupling constant of τ lepton,

and is given by yτ = Mτ/v (with Mτ being the mass of τ). The SUSY scale, MSUSY, is

assumed to be 10TeV, and tanβ = 20, for our numerical study.

The stau parameters, mℓ̃L
, mτ̃R and Tτ , have not been determined experimentally. As

one can expect from the Lagrangian eq. (4.1), CCB vacua show up when the tri-linear

scalar coupling Tτ becomes large. As a sample point at which the EWSB vacuum becomes

a false vacuum, we choose the following parameters,

mτ̃ ≡ mℓ̃L
= mτ̃R = 250GeV, (4.17)

Tτ = 300GeV. (4.18)

at the scale, Q = mτ̃ . Then, the CCB vacuum is at 〈H0〉 ≃ 1.7TeV, 〈τ̃L〉 ≃ 2.5TeV, and

〈τ̃R〉 ≃ 2.5TeV, where the vacuum energy is smaller than that of the EWSB vacuum.

In order to see the dependence of B on the renormalization scale, Q is varied from

Mt/2 to 2mτ̃ . Using the Lagrangian parameters at the scale Q, the Euclidean equation of

motion is solved to calculate the bounce action. In figure 2, B is plotted as a function of Q.

It changes from 420 to 240 for Q = Mt/2 to 2mτ̃ , corresponding to 45% scale uncertainty

for B = 400.

The prefactor A is calculated by the procedure explained in section 2. It consists of

the fermion and scalar contributions which are denoted as ∆St and ∆Sφ, respectively; ∆St

comes from the top quark, while ∆Sφ is from H, ℓ̃L, and τ̃R. In our analysis, we neglect

the SU(2)L × U(1)Y gauge interactions in the calculation of A because the gauge coupling

constants are numerically small. The inclusion of the gauge boson loops is technically and

conceptually complicated, and is beyond the scope of this paper; this issue will be discussed

elsewhere [34]. One subtlety is that there exists the U(1)em symmetry which is preserved

in the EWSB vacuum and is broken in the true vacuum. Because we neglect the U(1)em
gauge interaction, the U(1)em symmetry is treated as a global symmetry, and eq. (2.31) is

used to take account of the effect of the associated zero-mode.

In figure 2, the renormalization-scale dependences of B + ∆St, B + ∆Sφ, and Stot =

B + ∆St + ∆Sφ are displayed. ∆St and ∆Sφ as well as B depend on Q, and ∆St (∆Sφ)

increases (decreases) as Q increases. Importantly, the renormalization-scale dependence of
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Figure 2. Renormalization-scale dependences of B, B+∆St, B+∆Sφ, and Stot = B+∆St +∆Sφ

in the Higgs-stau model. Here, mτ̃ ≡ mℓ̃L
= mτ̃R = 250GeV, Tτ = 300GeV, and tanβ = 20. Also,

Λ = 100GeV is taken for ∆Sφ.

Stot is significantly reduced. We can see that Stot is stable around 400; the scale uncertainty

becomes about 5%.3 Thus, the proper inclusion of the prefactor A stabilizes the decay rate

of the EWSB vacuum against the change of the renormalization scale.

As in the case of the previous section, the calculation of the prefactor A is found to

be important to determine the overall scale of the decay rate as well as to reduce the

renormalization-scale uncertainty. We also comment that, at the tree level, it is impossible

to find an appropriate renormalization scale to estimate the decay rate of the false vac-

uum, because there is no well-defined procedure to determine A without performing the

loop calculation.

Before closing this section, we comment on other CCB vacua in the MSSM. They also

arise in the stop-Higgs potential [5, 22, 24–27]. The calculation of the prefactor A in this

system has not been performed yet despite of its importance. This issue will be discussed

elsewhere [34].

5 Summary

We have performed a detailed calculation of the decay rate of the false vacuum γ = Ae−B,

paying particular attention to its renormalization-scale dependence. The bounce action B
depends on the renormalization scale through the Lagrangian parameters, which makes it

difficult to accurately calculate the decay rate at the tree level. Such a scale dependence

disappears once we take account of the effects of fluctuations around the bounce, i.e., loop

3The renormalization-scale dependence can be improved if we take all the interactions of the effective

Lagrangian such as λH into account for the beta functions.
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corrections. In addition, the prefactor A cannot be determined at the tree level and is

often replaced by fourth power of a typical mass scale in the Lagrangian. To resolve this

arbitrariness, the calculation of A is necessary.

We have carefully included one-loop corrections to the decay rate. We have considered

a simple model with a scalar field as well as a supersymmetric model in which Higgs-stau

system has CCB vacua. With the change of the renormalization scale within the reasonable

range, the bounce action can change by O(10)% in these models. We have shown that the

renormalization-scale uncertainty is reduced to be O(1)% if the prefactor A is taken into

account properly. Thus, for an accurate calculation of the decay rate, proper inclusion of

the loop effects is important.
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A Scale independence at the leading order of lnQ

In this appendix, we show the cancellation of the Q-dependence of Ae−B at the leading

order of lnQ. For simplicity, we assume that there is no kinetic mixing among scalar fields,

which is the case in the models we have studied.

Let us denote the tree-level potential of real scalar fields as

V =
4

∑

n=1

∑

i1,··· ,in

C
(n)
i1,··· ,in

Φi1 · · ·Φin , (A.1)

where C
(n)
i1,··· ,in

are Lagrangian parameters. Because of the renormalizability, terms with

n > 4 do not exist. The bounce action is given by

B =

∫

d4x

[

− 1

2

∑

i

Φi∂
2Φi + V

]

Φ→σ

. (A.2)

The prefactor A depends on Q through s
(1)
ϕ and s

(2)
ϕ . The Q-dependent parts of s

(1)
ϕ

and s
(2)
ϕ can be expressed as space-time integrals of local terms; their sum should result in

the following form:

∑

ϕ

(s(1)ϕ + s(2)ϕ ) =

∫

d4x

[

− 1

2

∑

i

ζiσi∂
2σi +

4
∑

n=1

∑

i1,··· ,in

η
(n)
i1,··· ,in

σi1 · · ·σin

]

lnQ+ · · · .

(A.3)

The renormalization-group equations are expressed by using the wave-function corrections

ζi and the vertex corrections η
(n)
i1,··· ,in

. At the leading order of lnQ, the scale dependence of
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the Lagrangian parameters is given by

C
(n)
i1,··· ,in

(Q) = C
(n)
i1,··· ,in

(Q0) +

[

− η
(n)
i1,··· ,in

+
1

2
C

(n)
i1,··· ,in

in
∑

j=i1

ζj

]

ln(Q/Q0) + · · · . (A.4)

Then, the scale dependence of Stot = B +
∑

ϕ

∑

p s
(p)
ϕ is given by

Stot(Q) = Stot(Q0) +
1

2

∫

d4x
∑

i

ζi

[

Φi

(

−∂2Φi +
∂V

∂Φi

)]

Φ→σ

ln(Q/Q0) + · · · . (A.5)

The Q-dependent terms in the right-hand side vanish due to the equation of motion for

the bounce. Notice that, in order to eliminate the Q-dependence from the decay rate, the

wave-function corrections as well as the vertex corrections should be included.

So far, we have neglected the fact that the shape of the bounce solution σ(r) depends on

the choice of the renormalization scale because of the running of the Lagrangian parameters.

Because the bounce is the solution of the equation of motion, the effect of the change of

the bounce shape on the bounce action B is higher order in lnQ.
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[4] J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the

MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3

[hep-ph/9507294] [INSPIRE].

[5] A. Kusenko, P. Langacker and G. Segre, Phase transitions and vacuum tunneling into charge

and color breaking minima in the MSSM, Phys. Rev. D 54 (1996) 5824 [hep-ph/9602414]

[INSPIRE].

[6] S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory,

Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

[7] C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum

corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[8] J. Avan and H.J. De Vega, Inverse scattering transform and instantons of four-dimensional

Yukawa and φ4 theories, Nucl. Phys. B 269 (1986) 621 [INSPIRE].

[9] G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum,

Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

– 13 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6497
http://dx.doi.org/10.1016/0550-3213(83)90606-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B222,11"
http://dx.doi.org/10.1016/0550-3213(88)90168-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B306,1"
http://dx.doi.org/10.1016/0550-3213(96)00194-0
http://arxiv.org/abs/hep-ph/9507294
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507294
http://dx.doi.org/10.1103/PhysRevD.54.5824
http://arxiv.org/abs/hep-ph/9602414
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602414
http://dx.doi.org/10.1103/PhysRevD.15.2929
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D15,2929"
http://dx.doi.org/10.1103/PhysRevD.16.1762
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D16,1762"
http://dx.doi.org/10.1016/0550-3213(86)90515-8
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B269,621"
http://dx.doi.org/10.1016/S0550-3213(01)00302-9
http://arxiv.org/abs/hep-ph/0104016
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104016


J
H
E
P
0
1
(
2
0
1
6
)
0
3
1

[10] J. Baacke and G. Lavrelashvili, One loop corrections to the metastable vacuum decay,

Phys. Rev. D 69 (2004) 025009 [hep-th/0307202] [INSPIRE].

[11] G.V. Dunne, Functional determinants in quantum field theory, J. Phys. A 41 (2008) 304006

[arXiv:0711.1178] [INSPIRE].

[12] G.V. Dunne and H. Min, Beyond the thin-wall approximation: Precise numerical

computation of prefactors in false vacuum decay, Phys. Rev. D 72 (2005) 125004

[hep-th/0511156] [INSPIRE].

[13] J.H. Van Vleck, The correspondence principle in the statistical interpretation of quantum

mechanics, Proc. Nat. Acad. Sci. 14 (1928) 178 [INSPIRE].

[14] R.H. Cameron and W.T. Martin, Evaluation of various Wiener integrals by use of certain

Sturm-Liouville differential equations, Bull. Am. Math. Soc. 51 (1945) 73.

[15] I.M. Gelfand and A.M. Yaglom, Integration in functional spaces and it applications in

quantum physics, J. Math. Phys. 1 (1960) 48 [INSPIRE].

[16] R.F. Dashen, B. Hasslacher and A. Neveu, Nonperturbative methods and extended hadron

models in field theory. 1. Semiclassical functional methods, Phys. Rev. D 10 (1974) 4114

[INSPIRE].

[17] S.R. Coleman, The uses of instantons, Subnucl. Ser. 15 (1979) 805 [INSPIRE].

[18] K. Kirsten and A.J. McKane, Functional determinants by contour integration methods,

Annals Phys. 308 (2003) 502 [math-ph/0305010] [INSPIRE].

[19] K. Kirsten and A.J. McKane, Functional determinants for general Sturm-Liouville problems,

J. Phys. A 37 (2004) 4649 [math-ph/0403050] [INSPIRE].

[20] C.L. Wainwright, CosmoTransitions: computing cosmological phase transition temperatures

and bubble profiles with multiple fields, Comput. Phys. Commun. 183 (2012) 2006

[arXiv:1109.4189] [INSPIRE].

[21] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological

parameters, arXiv:1502.01589 [INSPIRE].

[22] J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against

sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].

[23] A. Kusenko, K.-M. Lee and E.J. Weinberg, Vacuum decay and internal symmetries,

Phys. Rev. D 55 (1997) 4903 [hep-th/9609100] [INSPIRE].

[24] D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and color breaking

constraints in MSSM after the Higgs discovery at LHC, JHEP 02 (2014) 110

[arXiv:1310.1932] [INSPIRE].

[25] N. Blinov and D.E. Morrissey, Vacuum stability and the MSSM Higgs mass,

JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].

[26] J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod and F. Staub, Constraining the

natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature,

Phys. Lett. B 737 (2014) 156 [arXiv:1405.7376] [INSPIRE].

[27] M. Endo, T. Moroi and M.M. Nojiri, Footprints of supersymmetry on Higgs decay,

JHEP 04 (2015) 176 [arXiv:1502.03959] [INSPIRE].

[28] J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g − 2)µ in SU(5)×U(1) supergravity

models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].

– 14 –

http://dx.doi.org/10.1103/PhysRevD.69.025009
http://arxiv.org/abs/hep-th/0307202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307202
http://dx.doi.org/10.1088/1751-8113/41/30/304006
http://arxiv.org/abs/0711.1178
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.1178
http://dx.doi.org/10.1103/PhysRevD.72.125004
http://arxiv.org/abs/hep-th/0511156
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511156
http://dx.doi.org/10.1073/pnas.14.2.178
http://inspirehep.net/search?p=find+J+"Proc.Nat.Acad.Sci.,14,178"
http://dx.doi.org/10.1063/1.1703636
http://inspirehep.net/search?p=find+J+"J.Math.Phys.,1,48"
http://dx.doi.org/10.1103/PhysRevD.10.4114
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D10,4114"
http://inspirehep.net/search?p=find+J+SUSEE,15,805
http://dx.doi.org/10.1016/S0003-4916(03)00149-0
http://arxiv.org/abs/math-ph/0305010
http://inspirehep.net/search?p=find+EPRINT+math-ph/0305010
http://dx.doi.org/10.1088/0305-4470/37/16/014
http://arxiv.org/abs/math-ph/0403050
http://inspirehep.net/search?p=find+EPRINT+math-ph/0403050
http://dx.doi.org/10.1016/j.cpc.2012.04.004
http://arxiv.org/abs/1109.4189
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4189
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1007/JHEP12(2013)103
http://arxiv.org/abs/1309.7212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7212
http://dx.doi.org/10.1103/PhysRevD.55.4903
http://arxiv.org/abs/hep-th/9609100
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609100
http://dx.doi.org/10.1007/JHEP02(2014)110
http://arxiv.org/abs/1310.1932
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1932
http://dx.doi.org/10.1007/JHEP03(2014)106
http://arxiv.org/abs/1310.4174
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4174
http://dx.doi.org/10.1016/j.physletb.2014.08.036
http://arxiv.org/abs/1405.7376
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7376
http://dx.doi.org/10.1007/JHEP04(2015)176
http://arxiv.org/abs/1502.03959
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03959
http://dx.doi.org/10.1103/PhysRevD.49.366
http://arxiv.org/abs/hep-ph/9308336
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9308336


J
H
E
P
0
1
(
2
0
1
6
)
0
3
1

[29] U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven

g − 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

[30] T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric

standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424]

[hep-ph/9512396] [INSPIRE].

[31] M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing bino contribution to muon

g − 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].

[32] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics,

Chin. Phys. C 38 (2014) 090001 [INSPIRE].

[33] Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs

mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54

[INSPIRE].

[34] M. Endo, T. Moroi, M. M. Nojiri and T. Shoji, work in progress.

– 15 –

http://dx.doi.org/10.1103/PhysRevD.53.1648
http://arxiv.org/abs/hep-ph/9507386
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9507386
http://dx.doi.org/10.1103/PhysRevD.53.6565
http://arxiv.org/abs/hep-ph/9512396
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9512396
http://dx.doi.org/10.1007/JHEP11(2013)013
http://arxiv.org/abs/1309.3065
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3065
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+"Chin.Phys.,C38,090001"
http://dx.doi.org/10.1016/0370-2693(91)90642-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B262,54"

	Introduction
	Formalism
	Model 1: model with a real scalar field
	Model 2: Higgs-Stau system in the MSSM
	Summary
	Scale independence at the leading order of ln Q

