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1 Introduction

The idea that the weak scale could be dynamically generated from strong interactions has

a long history. Originally, techni-color models were developed as an alternative to the

Higgs: the weak interactions of the techni-quarks Q were chosen so that their condensates

would break the SM electro-weak group and the weak scale was the techni-color scale. This

scenario was disfavoured by flavour and precision data even before the first LHC run, where

the Higgs and no new physics was observed.

Later, strong dynamics was invoked to generate a composite or partially-composite

Higgs, although realising complete models is so complicated that model-building is usually

substituted by postulating effective Lagrangians with the needed properties.

Recently, models where new strong dynamics does not break the electro-weak sym-

metry nor provide a composite Higgs have been considered in the literature, just because

they are simple, phenomenologically viable and lead to interesting LHC phenomenology [1].
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With abuse of language we use the old name ‘techni-color’. In this paper we show that

these models

1. provide Dark Matter candidates;

2. provide a dynamical origin for the electro-weak scale, if we adopt the scenario of

‘finite naturalness’ [2–7].

Point 2 amounts to assuming that quadratically divergent corrections to the Higgs mass

have no physical meaning and can be ignored, possibly because the fundamental theory

does not contain any mass term [7]. In this context, dynamical generation of the weak scale

via dimensional transmutation has been realised with weakly-coupled dynamics, in models

where an extra scalar S has interactions that drive its quartic λS |S|4 negative around

or above the weak scale: S acquires a vev at this scale, and its interaction λHS |H|2|S|2

effectively becomes a Higgs mass term, m2 = λHS〈S〉2 [8–28]. A related possibility is

that the scalar S is interacting with techni-quarks [29, 30] or charged under a techni-color

gauge group ([31, 32]; see also [52], in the past other authors considered a similar idea, but

without an elementary Higgs [53, 54]) and again S acquires a vev or forms a condensate.

In all these models 〈S〉 can be pushed arbitrarily above the weak scale by making λHS
arbitrarily small, leaving no observable signals.

We here consider simple models without any extra scalar S beside the Higgs doublet H.

The SM is extended by adding a gauge group GTC (for example SU(N)) and techni-quarks

QL charged under the SM, as well as the corresponding QR in the conjugated representa-

tions of the gauge group GSM ⊗GTC, so that QL ⊕QR is vectorial. As a consequence the

condensate 〈QLQR〉 transforms as a singlet of GSM and does not break it.

The techni-quarks have no mass terms because of our assumption that only dimension-

less couplings exist;1 for certain assignments of their gauge quantum numbers, techni-

quarks can have Yukawa interactions y with the elementary SM Higgs doublet H. The

scenario that we consider is described by the renormalizable Lagrangian

L = L m=0
SM − 1

4
GA2
µν + Q̄iLi /DQiL + Q̄jRi /DQ

j
R + (yijHQiLQ

j
R + h.c.) (1.1)

where L m=0
SM describes the SM without the Higgs mass term, and GAµν is the techni-color

field strength. In models where Yukawa couplings y are not allowed (for example techni-

quarks in the 3 of SU(2)L) the number of free parameters is the same as in the Standard

Model: all new physics is univocally predicted. This new physics manifests as:

• Strong dynamics generates a dynamical scale ΛTC that can be identified with the

mass of the lightest vector meson resonance, the techni-ρ, and spontaneously breaks

accidental chiral symmetries conserved by the techni-strong interactions producing

light pseudo-Goldstone bosons (GB). Using large N counting mρ = gρf where f is

the decay constant of the techni-pions and gρ ≈ 4π/
√
N .

1Relaxing this hypothesis allows other interesting possibilities for Dark Matter that will be discussed in

a separate publication [33].
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• In absence of techni-quark masses, the techni-pions π ∼ QLQR acquire mass m2
π ≈

α2m
2
ρ/4π from the electro-weak gauge interactions that explicitly break the global

techni-flavour accidental symmetries. Yukawa couplings also contribute to their

masses; in absence of Yukawa couplings the lightest techni-pions could be a stable

SU(2)L triplet providing a viable DM candidate.

• The heaviest new particles are techni-baryons with mass mB ≈ Nmρ. The lightest

techni-baryon is stable and is a natural DM candidate; if it is a thermal relic, the

observed DM abundance is reproduced for mB ≈ 100 TeV [34, 35].

The LHC phenomenology of techni-strong dynamics was discussed in [1]. The main new

point of our work is the possible connection with the weak scale and implications for dark

matter. Assuming that power divergences vanish [2, 3, 7], the techni-strong interactions

give a finite negative contribution to the Higgs squared mass term, such that the weak

scale is dynamically generated. The Higgs physical mass arises as

M2
h ≈ +α2

2f
2 + y2

m2
ρf

2

m2
π

(1.2)

so that the techni-color scale is predicted to be f ≈Mh/α2 ≈ few TeV, or smaller in models

where y is present and dominant in eq. (1.2). Unlike ordinary techni-color as a solution

to the usual hierarchy problem, where the natural scale for new physics is the weak scale

itself, in this scenario the natural mass scales are

mπ ∼ 2 TeV, mρ ∼ 20 TeV, mB ∼ 50 TeV. (1.3)

New physics effects in accelerator searches and precision experiments are well below the

present sensitivity. In particular no new effects are generated in flavor physics. Techni-

pions [37] and techni-baryons [38], stable due to accidental symmetries of the renormalizable

Lagrangian, can provide a thermal Dark Matter candidate.

This work is organised as follows. In section 2 we consider the Higgs mass generated

by the SM electro-weak gauge couplings, by the SM strong coupling, and by the Yukawa

couplings of the Higgs with the techni-quarks, allowed in some models. Dark Matter is

discussed in section 3. We conclude in section 4. In the appendix we present the technical

details of the computation of the potential induced by Yukawa interactions.

2 Higgs Mass

We write the tree-level potential of the SM Higgs doublet H as

V = m2|H|2 + λ|H|4. (2.1)

If m2 ≡ −M2
h/2 is negative, the Higgs doublet H develops the vacuum expectation value

v = Mh/
√

2λ ≈ 246.2 GeV: expanding the potential V around its minimum as H =

(0, (v + h)/
√

2) shows that Mh ≈ 125 GeV is the tree-level mass of the physical Higgs

boson h.

– 3 –
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Under our assumptions, the only mass scale of the theory is set by the dynamical scale

of the techni-color sector. Through loop corrections it induces other scales and in particular

the Higgs mass parameter. Electro-weak interactions of the techni-quarks induce a 2-loop

contribution, computed in section 2.1, and color charges give a 3 loop contribution to the

Higgs mass, computed in section 2.2. If the Higgs couples to the techni-quarks through

Yukawa interactions (for example if techni-quarks contain doublets and singlets under the

electro-weak interactions) a contribution to the Higgs mass is also generated at 1-loop,

computed in section 2.3.

2.1 Electro-weak interactions

Electro-weak gauge interactions give a minimal, quasi-model-independent, contribution to

the Higgs mass, described by the non-perturbative techni-color multi-loop dressing of the

two-loop Feynman diagram in figure 1a (plus the associated seagull diagram): the Higgs

interacts with the electro-weak vectors, that interact with the techni-quarks.

To leading order in the SM interaction, and to all orders in the techni-strong interac-

tions, the techni-strong dynamics corrects the SM electro-weak gauge bosons propagator as

DY Y
µν (q) = −iηµν

q2
(1 + g2

Y ΠY Y (q2)) + iξY
qµqν
q2

(2.2)

Dab
µν(q) = −iηµν

q2
(1 + g2

2ΠWW (q2))δab + iξW
qµqν
q2

δab (2.3)

where ξV are gauge-fixing parameters. Techni-strong dynamics is encoded in the ΠV V (q2)

functions. From the point of view of the techni-strong dynamics, they are the renormalised

two-point functions of the currents Jaµ =
∑

i Q̄iγµT aQiQ
i (where Qi = (QiL, Q̄iR) is a Dirac

spinor and T a are the SM gauge generators) corresponding to the unbroken part of the

accidental global techni-flavour symmetry, partially gauged by electro-weak interactions:

i

∫
d4x eiq·x〈0|TJVµ (x)JV

′
ν (0)|0〉 ≡ δV V ′

(q2gµν − qµqν)ΠV V (q2). (2.4)

The correction to the Higgs mass is

∆m2 = − 3

4i

∫
d4q

(2π)4

3g4
2ΠWW (q2) + g4

Y ΠY Y (q2)

q2
, (2.5)

and, performing the Wick rotation to the Eucliedan Q2 = −q2 > 0,

∆m2 =
3

4(4π)2

∫
dQ2

[
3g4

2ΠWW (−Q2) + g4
Y ΠY Y (−Q2)

]
. (2.6)

In general the integral above is UV-divergent, quadratically and logarithmically. In the

case at hand, the unphysical power divergences are ignored because of our assumption of

finite naturalness, and logarithmic divergences (that describe the RGE running of m2) are

absent, because of our assumption that the only mass scale, ΛTC, is generated dynamically.

Thereby the generated squared Higgs mass term is finite and scheme independent.

We next show that the electro-weak interactions induce a calculable negative Higgs

mass so that the electro-weak symmetry is spontaneously broken. We proceed in 3 steps:

– 4 –
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Weak coupling

H H

H

W W

Q

Q

Strong coupling at high energy

XGΜΝ
a2\

H H

H

W W

Q

Strong coupling

H H

H

W W

Ρ

Figure 1. The two loop contribution to the Higgs mass coming from the electro-weak gauge

interactions of: a) a techni-quark, to be dressed with non-perturbative techni-interactions, ap-

proximated as: b) the techni-gluon condensate; c) the techni-ρ. The extra seagull diagram is not

explicitly plotted.

dispersion relations in section 2.1.1 show in general that ∆m2 < 0, Operator Product

Expansion in section 2.1.2 shows that ∆m2 is ultra-violet finite, vector meson dominance

and/or large N in section 2.1.3 allow to give the estimate ∆m2 ≈ −α2
2f

2.

2.1.1 Dispersion relation

Under our assumptions, quadratically divergent terms are zero and we are interested in the

dependence on the physical scales of the theory. To extract this we consider the variation

of the Higgs mass with respect to the dynamical scale of the theory ΛTC,

∂∆m2

∂Λ2
TC

=
3g4

2

4(4π)2

∫
dQ2

[
3g4

2

∂ΠWW

∂Λ2
TC

+ g4
Y

∂ΠY Y

∂Λ2
TC

]
. (2.7)

The sign of the gauge correction ∆m2 can be determined using the dispersion relation [42]

∂ΠV V (q2)

∂q2
=

1

π

∫ ∞
0

ds
Im ΠV V (s)

(s− q2 − iε)2
. (2.8)

where we use the conventions of [43] (our ΠV V is defined with the same sign as Π in this

book). The optical theorem relates the cross-sections σ(s) to Im ΠV V (s), allowing to show

in general that Im ΠV V ≤ 0.2 For dimensional reasons, the dimension-less ΠV V can only

depend on Q2/Λ2
TC. Thereby

∂ΠV V

∂Λ2
TC

= − Q2

Λ2
TC

∂ΠV V

∂Q2
=

Q2

Λ2
TC

1

π

∫
ImΠV V (s)

(s+Q2)2
ds < 0 (2.10)

2As a check, replacing techni-color with a perturbative one-loop correction of fermions with explicit mass

mQ, one would obtain
∂ΠV V (−Q2)

∂m2
Q

= − g2

2π2

Q2

m2
Q

∫ 1

0

x2(1− x)2

m2
Q + x(1− x)Q2

. (2.9)

Inserting this into eq. (2.7) the integrand is negative definite but the integral is logarithmically divergent.

This corresponds to a contribution proportional to g2m2
Q in the RG equation for the Higgs mass m2. No

such UV-divergent RGE effect is present in a techni-color theory that generates dynamically a mass scale

ΛTC from a dimension-less coupling gTC, given that, in any mass-independent scheme such as Minimal

Subtraction, only gTC can appear in the RGE.

– 5 –
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where in the last step we used the dispersion relation. A similar relation holds for the

hypercharge contribution. The integrand in (2.7) is negative definite corresponding to a

negative ∆m2 given the boundary condition ∆m2 = 0 for ΛTC = 0.

2.1.2 The ultra-violet tail

In a theory with a dynamical scale ΛTC, arguments based on Operator Product Expansion

allow to show that ∂∆m2/∂Λ2
TC is ultra-violet convergent as expected and to compute the

high-energy tail of ΠV V (q2). ΠV V can be expanded as

ΠV V (q2)
q2�Λ2

TC' c1(q2) + c2(q2)〈0|mQQLQR|0〉+ c3(q2)〈0|αTC

4π
GA2
µν |0〉+ · · · . (2.11)

The first term (unity operator) does not contribute to (2.7). Indeed, at leading order

it describes the diagram in figure 1a with techni-quarks but neglecting their techni-color

interactions, such that

c1 =
C

12π2
ln(−q2) + · · · (2.12)

where C > 0 is a model-dependent group theory factor given by C = TrT aT a in terms

of the SU(2)L techni-quark generators (with a similar expression factor for the U(1)Y
generators). This high energy tail does not contain any mass scale, so that the associated

quadratically divergent no-scale integral in eq. (2.6) vanishes, under our assumptions. The

second term also vanishes, because it is proportional to the techni-quark masses mQ that

vanish under our assumption that the theory does not contain any mass scale.

The third term in eq. (2.11) is represented by the Feynman diagram in figure 1b, which

gives c3 = −C ′/q4 [42], where C ′ > 0 is another order one model-dependent group theory

factor. The techni-gluons form a positive condensate (the condensate is positive-defined in

the Eucliedian path-integral [42], in agreement with QCD lattice computations)

〈0|αTC

4π
GA2
µν |0〉 = κΛ4

TC. (2.13)

where κ > 0 is an order-one coefficient. This allows to show that the UV contribution to

the squared Higgs mass term is negative as expected:

∆m2|UV ' −
3C ′g4

2

4(4π)2
κΛ4

TC

∫ ∞
Q2

min

dQ2

Q4
≈ −α2

2

κΛ4
TC

Q2
min

. (2.14)

The 1/Q2
min dependence on the artificial infra-red cut-off Qmin ∼ ΛTC shows that the

dominant effects comes from virtual momenta Q2 around the techni-meson masses.

2.1.3 The infra-red and resonance region

The dominant contribution to the Higgs mass comes from the Q2 region densely populated

by the techni-meson resonances. A variety of methods have been proposed to approxi-

matively describe such region: vector meson dominance, Weinberg sum rules, large N ,

holographic models. . . As long as the techni-quarks are charged under the electro-weak

– 6 –
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group, they form, among the various mesons, spin-1 resonances that mix with the SM

electro-weak vectors Vµ. This is described by the effective Lagrangian

Leff = − 1

4g2
0

V a
µνV

aµν − 1

4g2
ρ

ρaµνρ
aµν +

f2

2
(V a
µ − ρaµ)2 (2.15)

such that the massless eigenstate has gauge coupling 1/g2
2 = 1/g2

0 +1/g2
ρ and the orthogonal

heavy state has mass m2
ρ = f2(g2

0 + g2
ρ). Integrating out the ρ at tree-level one finds:

ΠV V (q2) =
m2
ρ

g2
ρ(q

2 −m2
ρ + iε)

. (2.16)

Plugging eq. (2.16) into eq. (2.6) we obtain a logarithmically divergent infra-red correction

to the squared Higgs mass term:

∆m2 ≈ − 9g4
2

4(4π)2

∫
dQ2

m2
ρ

g2
ρ(Q

2 +m2
ρ)
∼ −

g4
2m

2
ρ

(4π)2g2
ρ

log
Λ2

m2
ρ

∼ −α2
2 f

2 . (2.17)

The integrand is negative definite and its size agrees with the naive expectation based

on the Feynman diagram plotted in figure 1c, including the 1/g2
ρ suppression of vector

mixing. The logarithmic UV divergence here arises because this is only an approximate

description, where an explicit mass term mρ substitutes the dynamical mechanism of mass

generation. An infinite number of states would be needed to properly describe the non-

perturbative dynamics.

In theories with large N this can be made more rigorous: ΠV V can be represented

exactly as an infinite sum of poles corresponding to the physical quasi-stable techni-mesons

of the theory:

ΠV V (q2) =
N

16π2
m2
ρ

∑
i

c2
i

q2 −m2
i + iε

. (2.18)

where ci are adimensional coefficients. The infinite number of resonances allows to repro-

duce the logarithmic divergence, that does not contribute to the Higgs mass zero under

our assumption of finite naturalness.

These considerations offer an intuitive argument to understand the sign of ∆m2. The

net effect of non-perturbative dynamics is creating a mass gap that stops the techni-quark

contribution to the RGE running of g2, gY below ΛTC, effectively making g2, gY smaller with

respect to the perturbative case. As a consequence the unphysical power divergence present

in the SM, ∆m2 ∼ +g2
2,Y Λ2, gets replaced by a finite physical effect ∆m2 ∼ −g4

2,Y Λ2
TC.

2.2 Color interactions

We next consider techni-color models where the techni-quarks have SM color interactions.

For example, techni-quarks could be a color octet of SU(3)c, charged also under the techni-

color gauge group. Then techni-quarks cannot have any Yukawa coupling to the SM Higgs:

both the Yukawa contribution of section 2.3 and the electro-weak contribution of section 2.1

are absent.

– 7 –
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H H

G

G

t

t

Q Q

H H

t

t t

t

G

Figure 2. The three loop contribution to the Higgs mass coming from techni-quarks Q that only

have color interactions. Similar diagrams can be drawn for graviton contributions.

In these models, the Higgs mass is dominantly generated at three loops: the Higgs inter-

acts with the top quark, that interacts with the gluons, that interact with the techni-quarks,

as plotted in figure 2. The computation can be performed along the lines of section 2.1 by

defining ΠGG(q2), the techni-color correction to the gluon propagator. Summing the two

diagrams of figure 2, the result is ultraviolet-convergent:

∆m2 = −64y2
t g

4
3

(4π)4

∫
dQ2ΠGG(−Q2) ∼ y2

t g
4
3

4π4
f2. (2.19)

The computation of the sign is analogous to what described in the previous section (with

ΠWW replaced by ΠGG): in the present case we find a positive ∆m2, such that this con-

tribution does not induce electro-weak symmetry breaking. The sign of the effect also

corresponds to the intuitive reasoning presented at the end of the previous section: the

sign is opposite to the known negative sign of the naive quadratic divergence associated

with yt, because g3 and thereby yt are reduced by techni-strong dynamics.

We mention a final possibility. The techni-quarks could be completely neutral un-

der the whole SM gauge group. In this situation only gravity mediates a contribution to

the Higgs mass, proportional to the two-point function of the energy momentum tensor.

Furthermore, a super-Planckian techni-color condensate would dynamically generate the

Planck mass itself, within a dimensionless extension of Einstein gravity such as agrav-

ity [7]. The problem is that techni-color dynamics, dominated by a single non-perturbative

coupling, has no free parameters and would also generate a large negative cosmological

constant, which is at odd with observations.

2.3 Yukawa interactions

Finally, we consider the case where the gauge quantum numbers of the techni-quarks allow

for Yukawa couplings to the elementary Higgs. This choice implies the existence of a

techni-pion π2 with the same quantum numbers of the Higgs doublet H, that can then

mix with H.

The left panel of figure 3 shows the one-loop corrections to the squared Higgs mass

generated by a weakly coupled techni-quark with Yukawa interactions to the Higgs. At

strong coupling the physical degrees of freedom become bound state techni-hadrons that

can be described using effective Lagrangian techniques. The techni-quark loop can be

– 8 –
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Weak coupling

H H*

Q

U

Strong coupling

H H*
Π

Figure 3. Correction to the Higgs mass coming from the Yukawa coupling with: a) a weakly

coupled massive fermion; b) a massless strongly interacting fermion.

matched to an effective chiral Lagrangian, so that such diagrams collapses to a tree level

diagram (right-handed panel of figure 3) dominated by the lightest techni-mesons, the

techni-pions π ≈ QLQR. For simplicity we here consider Yukawa couplings that preserve

the QL ↔ QR parity of the techni-strong interactions; a more general discussion can be

found in the appendix. Similarly to quark masses in QCD, the Yukawa interactions produce

the following term in the chiral Lagrangian,

ymρf
2 Tr[HU ] + h.c. (2.20)

where U = exp(iπâT â/f) is the Goldstone boson matrix. As we discuss in detail in

the appendix, upon minimisation of the potential this term induces a mass mixing ≈
ymρfHπ

∗ between the techni-pion and the elementary Higgs. This term also explicitly

breaks accidental symmetries respected by gauge interactions.

What emerges is a two-Higgs doublet system where the extra Higgs doublet π2 is a

heavy composite doublet with negligible vev. In order to compute the mass eigenstates,

we need to compute the mass matrix. Including effects at tree and one-loop level in the

SM couplings g2 and y, the mass matrix has the structure

( π∗2 H∗

π2 (O(g2
2)±O(y2))/(4π)2 O(y)

√
N/(4π)

H O(y)
√
N/(4π) −O(y2)N/(4π)2

)
m2
ρ (2.21)

where we used the fact that the one-loop contribution of weak gauge interactions to m2
π ≈

g2
2m

2
ρ/(4π)2 is positive (as known from the SM analogous computation of the π+/π0 mass

difference [39]), and added the one-loop Yukawa contribution (absent in the SM3). The

HH∗ entry describes the contribution of composite scalar resonances that can also mix

with the Higgs giving a negative sub-leading contribution to its mass squared, see appendix

for more details.

3The literature on composite Higgs models explored linear couplings of SM quarks to composite fermionic

states, finding that they can give a negative contribution to the Higgs mass term. Simple UV completions

require extra scalars as in the supersymmetric realisation of [40]. Here instead we compute the techni-

pion potential induced by a bi-linear HQLQR Yukawa coupling, involving techni-quarks Q and a scalar H

without techni-strong interactions.

– 9 –
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We see that the phenomenologically acceptable regime is the one where the Yukawa

coupling is small, y � g, such that: 1) the loop contribution coming from the Yukawa

coupling can be ignored; 2) the heaviest eigenstate is the techni-pion with squared mass

m2
π > 0; 3) the determinant of the mass matrix is dominated by the off-diagonal terms

and is negative: the lightest eigenstate is the elementary Higgs, that acquires a negative

squared mass term dominated by the mass mixing term in eq.(2.21) and given by a see-

saw-like formula:

∆m2 ∼ − y2

(4π)2

m4
ρN

m2
π

∼ −y2
m2
ρf

2

m2
π

. (2.22)

3 Dark Matter

The models described in this paper contain two Dark Matter (DM) candidates: techni-

baryons and techni-pions. Their stability is guaranteed by accidental symmetries of the

renormalizable Lagrangian, techni-baryon number and (possibly) G-parity [37].

In fact the presence of stable states is a generic prediction of the framework that

implies restrictions on the representations of the techni-quarks under the SM gauge group,

such that the stable states are viable DM candidates. In table 1 we summarise the simplest

allowed charge assignments under the electro-weak group and the resulting DM candidates.

Introducing techni-quark masses allows several other possibilities [33].

The new matter modifies the running of SM gauge couplings. Adding n2 weak doublets

and n3 weak triplets in the N ⊕ N̄ of SU(N)TC the beta-function of SU(2)L becomes

b2 = −19

6
+

2N

3
(n2 + 4n3) (3.1)

such that the SU(2)L gauge coupling does not develop a Landau pole below the Planck

scale (b2<∼ 5) and possibly remains asymptotically free (b2 < 0) for small enough n2, n3, N .

Higher SU(2)L lead to Landau poles instead. The trans-Planckian Landau pole for hy-

percharge can be naturally avoided in models where hypercharge is embedded in SU(2)R
below a few TeV [36]; a technicolor sector could be used to dynamically break the extended

gauge group.

3.1 Techni-pions

If techni-quarks fill NF fundamentals and anti-fundamentals of the SU(N)TC gauge group

with N ≥ 3, the spontaneous symmetry breaking SU(NF )L ⊗ SU(NF )R/ SU(NF ) of the

accidental global techni-flavor symmetry produces N2
F − 1 Goldstone bosons in the adjoint

of the unbroken SU(NF ). These scalars acquire mass from effects that explicitly break the

global symmetries. Within finite naturalness the only contribution to their masses is due

to SM gauge interactions, and possibly to the techni-quark Yukawa couplings.

If Yukawa couplings are forbidden by the fermions quantum numbers, then the model

is extremely predictive: it only has one free parameter — the techni-color scale — which is

fixed by the Higgs mass under the hypothesis of finite naturalness. All the rest is univocally

predicted: techni-pion masses, Dark Matter and its thermal relic abundance.
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number of N = 3 N = 4

techni-flavors Yukawa TCb TCπ TCb TCπ

NF = 2 2 3 1 3 under TC-flavor SU(2)

model 1: Q = 2Y=0 0 charged 3 1 3 DM, under SU(2)L
NF = 3 8 8 6̄ 8 under TC-flavor SU(3)

model 1: Q = 1Y + 2Y ′ 1 1 no 1 no DM, under SU(2)L
model 2: Q = 3Y=0 0 3 3 1 3 DM, under SU(2)L

NF = 4 20 15 20′ 15 under TC-flavor SU(4)

model 1: Q = 4Y=0 0 charged 3 1 3 DM, under SU(2)L
NF = 5 40 24 50 24 under TC-flavor SU(5)

model 1: Q = 2Y + 3Y ′ 1 1 no charged no DM, under SU(2)L
model 2: Q = 5Y=0 0 3 3 1 3 DM, under SU(2)L

Table 1. Dimension-less techni-color models that give viable techni-baryon (TCb) and/or techni-

pion (TCπ) Dark Matter candidates with Q = Y = 0. We consider models with SU(N) gauge

group for N = {3, 4} and NF = {2, 3, 4, 5} flavours of techni-quarks in its fundamental plus anti-

fundamental. The darker rows give the techni-flavour content of the lightest TCb and TCπ con-

sidering only masses induced by techni-color interactions. The lighter rows consider models with

viable assignments of electro-weak interactions and show, after including the mass splitting due to

unbroken electro-weak interactions, the SU(2)L content of the lighter DM candidates.

The SM gauge interactions give positive squared masses to the gauge-charged techni-

pions, while SM singlets remain exact massless Goldstone bosons. If the NF techni-quark

flavors are composed of k irreducible (real or pseudo-real) representations of GSM, then the

techni-pions decompose under GSM as

Adj SU(NF ) =

[
k∑
i=1

ri

]
⊗

[
k∑
i=1

r̄i

]
	 1 (3.2)

so that k − 1 techni-pions are neutral singlets (the extra scalar singlet analog of the η′

in QCD acquires mass from anomalies with techni-interactions and will not play a role in

what follows).

One combination of singlets corresponds to a global symmetry anomalous under

SU(2)L, so that the corresponding Goldstone boson acquires an axion-like coupling to

SM vectors: an almost massless axion with a decay constant f ∼ TeV would be grossly

excluded by star cooling and other bounds. In absence of techni-quark Yukawa interac-

tions, these bounds significantly reduce the space of models favouring the simplest mod-

els with k = 1. The techni-quarks should belong to a single irreducible representation

j = (NF − 1)/2 of SU(2)L and, in order to obtain a neutral lightest techni-baryon, the

techni-quark hypercharge should vanish. Then the N2
F − 1 techni-pions lie in the following

irreducible representations J of SU(2)L:

Adj SU(NF ) =

NF−1∑
J=1

J. (3.3)
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Models of this kind were studied in [37], where it was pointed out that a discrete symmetry,

“G-parity” exists in these theories (for zero hypercharge) due to the fact that SU(2)L rep-

resentations are real or pseudo-real. G parity acts on techni-quarks as Q → exp(iπT 2)Qc,
replacing any SU(2)L representation with its conjugate representation, which is equivalent

to the original representation. SM fields are neutral. On techni-pions G parity becomes

the (−1)J Z2 symmetry, so that techni-pions with even (odd) isospin (J) are even (odd).

Summarizing:

• Techni-pion singlets under SU(2)L are G-even, do not acquire masses from SM gauge

interactions and can have anomalous couplings to SU(2)L vectors: they are excluded

in our framework unless Yukawa couplings make them massive. They are absent if

techni-quarks fill a single irreducible representation of SU(2)L.

• Techni-pions in the 3 of SU(2)L are G-odd and could be the lightest stable DM

candidates. The simplest models are listed in table 1.

• Techni-pions in the 5 of SU(2)L are G-even and are heavier, mπ5 ≈
√

3mπ3 : they

undergo anomalous decays into electro-weak vectors, π5 →WW .

• Techni-pions in higher representations of SU(2)L, if present, decay into lighter techni-

pions respecting G-parity by emitting two SU(2)L vectors, e.g. π7 → π3WW .

The situation is different in models where Yukawa couplings y of techni-quarks to the

elementary Higgs are present. The Yukawa couplings break explicitly G-parity and acciden-

tal global symmetries so that the SM singlet techni-pions η receive non-zero masses given

by eq. (A.20), Mη ∼ |y|vmρ/mπ2 and star cooling bounds are easily avoided. Furthermore,

techni-pions can now decay through the Higgs, so that only techni-baryons remain as dark

matter candidates.

Models with techni-color gauge group SU(2) ∼ Sp(2) are special: its fundamental

representation is pseudo-real, 2 ∼ 2∗, so that the techni-flavour symmetry is enhanced

becoming SU(2NF )/Sp(2NF ). The extra techni-pions are QQ scalars and there are no

stable techni-baryons. Dangerous light techni-pions neutral under SU(2)L are again absent

if techni-quarks lie in a single representation of SU(2)L with dimension 2NF . Within our

assumptions however these models do not provide DM candidates because techni-pions

are G-even.

3.2 Techni-baryons

Techni-baryons are techni-color singlet states constructed with N techni-quarks. The

stability of the lightest techni-baryon follows from the accidental techni-baryon number

global symmetry.

Using the non-relativistic quark model, group theory allows to compute the electro-

weak quantum numbers of the techni-baryons: their wave-function must be anti-symmetric

in the techni-quarks. The wave function is assumed to be antisymmetric in techni-color,

and so must be symmetric in spin and flavour for the lightest techni-baryons that have

no orbital angular momentum. Different techni-baryons are split by spin-spin interactions
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that prefer, as lightest techni-baryon, the one with smallest spin. As a consequence, the

lightest techni-baryons have spin 0 (1/2) for even (odd) N ≥ 2.

In general the SU(NF ) techni-flavour representation of the lightest techni-baryon cor-

responds to a Young diagram with 2 rows having N/2 boxes each (for N even) and to a

Young diagram with 2 rows having (N + 1)/2 and (N − 1)/2 boxes respectively (for N

odd). In particular, they are

for N = 3 and for N = 4. (3.4)

This is the end of the story, as long as techni-color interactions are involved.

Next, the components of a techni-baryon multiplet are split by SM gauge interactions,

and possibly by techni-quark Yukawa interactions. The lightest components are those with

smallest GSM charge.

Furthermore, electro-weak symmetry breaking induces extra splitting within the com-

ponents of any electro-weak multiplet, with the result that the component with smallest

electric charge is the lightest stable state [44, 45]. Since DM direct detection constraints

demand that DM does not couple at tree level to the Z, the DM hypercharge should be

zero, which is possible for integer isospin.

3.3 Direct detection of Dark Matter

The previous discussion is summarised in table 1, which tells that the simplest TC models

lead to the following viable stable DM candidates:

• Techni-baryons, fermions for odd N and scalars for even N . Their annihilation cross

section is estimated to be σv ∼ g4
TC/4πM

2, around the unitarity bound [34, 35]. By

performing a naive rescaling of the QCD non-relativistic pp̄ cross section, σpp̄v ∼
100/m2

p, we estimate that the cosmological thermal relic abundance of a techni-

baryon equals the total DM abundance if its mass is loosely around mB ∼ 200 TeV.

A cosmological techni-baryon asymmetry can leave a higher abundance, allowing for

a lighter mB.

• Scalar techni-pions, that fill a SU(2)L triplet with hypercharge Y = 0. Techni-pions

have small residual techni-color interactions (as well as small quartic couplings) and

thereby behave as Minimal Dark Matter [44, 45]. Their cosmological thermal relic

abundance equals the total DM abundance if their mass is around 2.5 TeV [44, 45].

Their spin-independent cross section for direct detection is σSI ≈ 0.12 10−46 cm2 [2,

3, 46, 47], as plotted in figure 4.

As already discussed, both mass scales suggested by the DM cosmological abundance arise

naturally within the context of finite naturalness.

Techni-baryons have distinctive features in direct detection experiments: if DM is a

neutral composite particle made of charged techni-quarks, direct detection can be mediated

by the photon [49]. Any such DM particle can have a non trivial form factor, dominated at
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Figure 4. The signals in Dark Matter direct detection produced by a DM techni-baryon with

magnetic or electric dipole moment (line) or from a Minimal-Dark-Matter-like techni-pion with

thermal abundance (star), compared to the present experimental LUX bound [48] and to the

background due to neutrinos.

low energy by the ‘charge radius’ interaction. For a scalar DM S this is the only interaction

and can be written as
e

Λ2
TC

(S∗i∂αS)∂µF
µα. (3.5)

The resulting cross section for direct detection is suppressed by four powers of the TC

scale, and is negligible for ΛTC ∼ few TeV.

The situation is more promising if DM is a fermionic techni-baryon B, which generically

has magnetic (and possibly electric) dipole moments, µ and d. They are described by the

effective operator

B̄σµν
µ+ idγ5

2
B Fµν . (3.6)

Electro-magnetic dipoles give sizeable direct detection signals with a characteristic testable

enhancement at low recoil-energy ER, given that the DM/matter scattering is mediated

by the massless photon. Furthermore, in the relevant non-relativistic limit, the cross-

section induced by the magnetic dipole µ is suppressed by two extra power of the relative

DM/matter velocity v with respect to the cross section induced by the more speculative

electric dipole d [49]
dσ

dER
≈ e2Z2

4πER

(
µ2 +

d2

v2

)
. (3.7)

For simplicity, we here assumed a nucleus with Z � 1, a recoil energy ER � mN v
2 and

approximated the nuclear charge form factor with unity.

The magnetic g-factor, defined by µ = ge/2mB, is expected to be of order one for a

strongly-coupled particle (while it is loop suppressed for an elementary particle). We also
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define the electric g-factor as d = gEe/2mB. In terms of such g-factors we find that the

present direct detection bound is

g2 + 1.2 107g2
E <

(
mB

5.1 TeV

)3

(3.8)

dominated by LUX data [48, 50]. This bound assumes that techni-baryons constitute all

galactic DM, and must be rescaled otherwise. Figure 4 shows the resulting prediction in the

usual plane (MDM, σSI) used to describe spin-independent direct detection of Dark Matter.

An electric dipole moment needs CP-violation. In our context, techni-quarks are

strictly massless, such that the CP-violating techni-strong θ term is not physical. A small

gE could be generated if techni-quark masses are included.

3.4 A worked example

More quantitative predictions can be given in the QCD-like scenario with N = NF = 3 [38].

In this case the spectrum can be obtained by rescaling known QCD results,

mB

mρ
≈ 1.3

mπ

mρ
≈ 0.1

√
J(J + 1) (3.9)

where mρ is the mass of the lightest techni-vector resonance and techni-pions π lie in the

J representation of SU(2)L. The second estimate is obtained from the electro-magnetic

splitting of QCD pions, see the appendix.

The lightest techni-baryons are an octet of flavour SU(3) and table 1 lists the two

possible viable assignments for techni-quarks under SU(2)L ⊗U(1)Y :

Q =

{
1∓1/3 ⊕ 2±1/6

30
. (3.10)

The hypercharges are determined by requiring that the lightest techni-baryon is neutral;

in the first case their overall normalisation is determined by requiring that techni-quarks

can have a Yukawa interaction with the Higgs. For this choice of quantum numbers the

lightest techni-baryon is an electro-weak singlet with Y = Q = 0, avoiding direct detec-

tion constraints.

The lightest technibaryons decompose under SU(2)L as

8 =

{
2(p, n)⊕ 3(Σ±,0)⊕ 2(Ξ0,Ξ−)⊕ 1(Λ0) for Q = 1⊕ 2

3⊕ 5 for Q = 3
. (3.11)

In the Q = 1⊕ 2 model we used the familiar names of the QCD octet. The lightest techni-

baryon is Λ0, that is analogous to the QCD state ΛQCD
0 ∼ s(ud− du). Its magnetic dipole

moment can be estimated from QCD data: µ
ΛQCD
0

= 0.61e/2mp [51]. Inserting g = −0.61

in eq. (3.8) we obtain the bound mΛ0 > 3.7 TeV. The previous QCD-based estimate of the

DM annihilation cross section becomes exact, such that the cosmological DM density is

reproduced for mΛ0 ≈ 200 TeV. In this model there are no stable techni-pions.
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In the Q = 3Y model the lightest technibaryon is a triplet 33Y of SU(2)L, so that

neutral DM is obtained for Y = 0 and Y = ±1/3: the first possibility is allowed by

direct detection constraints. Due to the absence of Yukawa and hypercharge interactions,

the neutral member of the techni-pion triplet is the DM candidate, stable thanks to the

accidental G-parity discussed in section 3.1. Its mass must be smaller than 2.5 TeV in order

to avoid a thermal relic density bigger than the observed DM density. This implies that in

this model the thermal relic density of the technibaryon dark matter is subdominant.

4 Conclusions

In conclusion, we presented a new class of models where the Standard Model is made

dimension-less by dropping the mass term of the elementary Higgs and extended by adding

techni-quarks with techni-color interactions arranged in such a way that they do not break

the electro-weak gauge group nor generate a composite Higgs. Within the context of finite

naturalness — the assumption that a QFT with no mass parameters nor power divergences

might provide a revised concept of weak-scale naturalness and of the origin of mass scales

— the simplest models of this type dynamically generate a mass term for the Higgs.

The elementary Higgs acquires a squared mass term m2 entirely determined in terms

of weak interactions of the techni-quarks and of the techni-color scale. Using various

approximation techniques that allow to control the techni-color dynamics, in section 2.1

we found that the sign ofm2 is negative, such that SU(2)L⊗U(1)Y gets broken, and that the

observed weak scale is obtained for a techni-color scale mρ ≈ 4πMh/α2 ≈ 10−20 TeV. This

is large enough that such models do not pose any phenomenological problem. Techni-pions

are lighter, as determined by their electro-weak interactions, and could give observable

signals at LHC; in particular techni-pions π5 in the 5 of SU(2)L undergo anomalous decays

into pairs of electro-weak vectors, π5 → WW . Such models can have the same number

of free parameters as the Standard Model: all new physics is univocally predicted, up to

theoretical uncertainties in the techni-strong dynamics, that could be reduced with respect

to our estimates by performing dedicated lattice computations.4

Independently of the assumption of finite naturalness, the models studied in this paper

contain two Dark Matter candidates: the lightest techni-baryon B with mass mB ∼ 50 TeV

(section 3.2) and, in some models, the lightest techni-pion π3, a triplet under SU(2)L
with mass mπ3 ∼ 0.1mρ ∼ 1 − 2 TeV (section 3.1). Their thermal relic abundance is

also univocally predicted, with the result that the observed cosmological Dark Matter

abundance is naturally reproduced in the techni-pion case, while the techni-baryon seems

more likely to be a sub-dominant Dark Matter component, if a naive rescaling of the

QCD pp̄ cross-section holds, and ignoring possible techni-baryon asymmetries. The direct

detection cross section of such DM candidates is predicted to be 2− 3 orders of magnitude

4Techni-strong dynamics generates a negative vacuum energy of order −Λ4
TC. It can be canceled, com-

patibly with the scenario of dynamical mass generation in the SM sector, by adding another sector negligibly

coupled to SM particles; this kind of sector is anyhow needed to account for the Planck mass. This cancel-

lation is the usual huge fine-tuning associated with the cosmological constant problem, on which we have

nothing to say.
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below present bounds. Magnetic moment interactions of techni-baryons would lead to recoil

events with a distinctive energy spectrum (section 3.3).

table 1 offers a panoramic of models that lead to DM candidates. In some models the

quantum numbers allow for Yukawa interactions between techni-quarks and the elementary

Higgs. Such Yukawas give extra negative contributions to the squared Higgs mass term

(section 2.3), so that the techni-color scale needed to reproduce the weak scale gets lighter;

in such models a singlet techni-pion is especially light. Models where techni-quarks only

have QCD interactions or gravitational interactions do not seem to lead to a promising

phenomenology, as discussed in section 2.2.
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A Effective potential

The effective potential for the elementary Higgs and the techni-pions receives contributions

at tree level in the Yukawa couplings and at loop level in the gauge and Yukawa couplings.

It can be computed using the techniques reviewed in [41]: the relevant ingredients are

the correlation functions of the composite operators of the theory. There are three main

contributions: from SM gauge interactions at loop level (section A.1); from the possible

Yukawa couplings at tree level (section A.2) and at loop level (section A.3). Summing

these contributions, the full potential is studied in section A.4.

A.1 Gauge contribution at one loop level

At 1-loop the SM gauge interactions induce a techni-pion mass that can be computed in

terms of correlators of the vector (Jaµ =
∑
Q Q̄γµT aQQ) and axial (Jaµ =

∑
Q Q̄γµT âQγ5Q)

symmetry currents. On general grounds these have the form,

i

∫
d4x eiq·x〈0|TJVµ (x)JV

′
ν (0)|0〉 ≡ δV V ′

(q2gµν − qµqν)ΠV V (q2),

i

∫
d4x eiq·x〈0|TJAµ (x)JA

′
ν (0)|0〉 ≡ δAA′

(q2gµν − qµqν)ΠAA(q2). (A.1)

The one-loop techni-pion potential reads [41]:

Vg1 ≈
3

2(4π)2

∑
i

g2
i Tr[UT iU †T i]

∫ ∞
0

Q2dQ2
[
ΠAA(−Q2)−ΠV V (−Q2)

]
(A.2)

where U = eiπ
âT â/f is the Goldstone boson matrix, gi are the SM couplings and Ti their

generators. Gauge-charged techni-pions acquire positive squared masses, that, for the
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SU(2)L interactions, are estimated as

m2
π ≈

3g2
2

(4π)2
J(J + 1)m2

ρ (A.3)

where J is the weak isospin of the techni-pion representation.

A.2 Yukawa contribution at tree level

We now consider the potential generated by the Yukawa interactions. For concreteness we

here focus on the case where techni-quarks Q = 2 ⊕ 1 fill one doublet and one singlet of

SU(2)L with hypercharges as in section 3.4. The 8 techni-pions decompose under SU(2)L⊗
U(1)Y as

8 = 2±1/2 + 30 + 10. (A.4)

In general there are two Yukawa couplings:

yHQ1
LQ2

R + y′H†Q1
RQ2

L + h.c. = HQ̄2

(
y + y′∗

2
+ γ5

−y + y′∗

2

)
Q1 + h.c. (A.5)

where on the right hand side we used Dirac spinors Qi = (QiL, Q̄iR). The phases of y and

y′ are not physical and can be chosen for convenience, for example real and positive. The

terms above generate the tree level effective potential

Vy0 = a0Tr[MU ] + h.c. (A.6)

where a0 ≈ −mρf
2 and

M =

( Q1
R Q2

R

Q1
L 0 yH

Q2
L y′H† 0

)
. (A.7)

The explicit result for the potential of the doublet (π2) and singlet (η) techni-pions is

Vy0 = −8
√

2a0 Im e
− i η

4
√
3f

sin ∆/f

∆
[yH†π2 + y′π†2H], ∆ =

1

4

√
3η2 + 8π†2π2. (A.8)

A.3 Yukawa contribution at one loop level

To compute the one-loop Yukawa correction to the effective potential we proceed similarly

to the gauge interactions. We formally introduce sources Sīj for the techni-quark bilinears

QiLQ
j̄
R(x) (such that, in the real theory of interest, it contains yH in some of its com-

ponents) and write the effective Lagrangian that describes the Higgs/techni-pion system

after having integrated out the heavier techni-strong dynamics. For simplicity we consider

vectorial couplings as in these case fewer invariants exist. In a constant techni-pion con-

figuration and to quadratic order in the sources S, the effective action has the following

structure determined by the symmetries,

L QQ
eff = a0δ

4(q)(Tr[SU ] + h.c.) + ΠQQ
0 (q2)Tr[SS†] + ΠQQ

1 (q2)|Tr[SU ]|2. (A.9)
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The first term linear in S describes theQLQR condensate. The form factors can be obtained

integrating over the strong dynamics including techni-pion fluctuations. By construction

they encode the two point functions of the techni-quark bilinears,

〈0|Q̄iQj̄(q) Q̄k̄Q̄l(−q)|0〉 = iGQQAdj(q
2)

(
δik̄δlj̄ − 1

3
δij̄δlk̄

)
+ iGQQS (q2)δij̄δlk̄ (A.10)

where GQQS and GQQAdj correspond to the singlet and adjoint channels (namely, the octet for

NF = 3). Matching eq.s (A.9) and (A.10) (for example choosing U = 1) one finds

ΠQQ
0 = GQQAdj , ΠQQ

1 = GQQS − 1

3
GQQAdj. (A.11)

At large N one has

GQQAdj(q
2) =

N

16π2
m4
ρ

∑
n

c2
Adjn

q2 −m2
Adjn

+ iε
, GQQS (q2) =

N

16π2
m4
ρ

∑
n

c2
Sn

q2 −m2
Sn

+ iε
,

(A.12)

where the coefficients c are of order 1 and the sum is over the scalar resonances in the

theory. The sum does not include techni-pions because we only consider vectorial Yukawa

couplings that do not generate 1 techni-pion states.

To obtain the effective action for the scalars we just need to set to zero the non

dynamical components of S and add kinetic terms for the components of S associated to

the Higgs. This produces

L H
eff = a0δ

4(q)(Tr[MU ] + h.c.) + (q2 + y2ΠQQ
0 (q2))H†H + ΠQQ

1 (q2)|Tr[MU ]|2. (A.13)

The first term describes the tree level contribution discussed above. The second term

encodes the tree level effect of mixing with heavy scalar resonances that gives the HH∗

entry of the mass matrix in eq. (2.21),

m2
H = y2ΠQQ

0 (0) ∼ − y
2N

(4π)2
m2
ρ. (A.14)

Performing the path integral with respect to H we obtain the one-loop Yukawa contribution

to the techni-pion potential,

Vy1 =
1

2

∫
d4Q

(2π)4
ln

[
Q2 − y2ΠQQ

0 (−Q2)− y2ΠQQ
1 (−Q2)

∑
a

Tr[T aU ]Tr[T aU †]

]

≈ v4
0 −

y2

2(4π)2

∑
a

Tr[T aU ]Tr[T aU †]

∫ ∞
0

dQ2ΠQQ
1 (−Q2) (A.15)

where v0 is the contribution to the the vacuum energy and T a are SU(3) matrices derived

from (A.7).

One can prove that, similarly to the gauge contribution, the loop integral in (A.15)

is finite: since ΠQQ
1 is sensitive to the chiral symmetry breaking, the Operator Product

Expansion demands that

ΠQQ
1 (q2)

q2�Λ2
TC' 〈0|(Q̄LΓ1QR)(Q̄RΓ2QL)|0〉

q4
(A.16)

where Γ1,2 are appropriate matrices in techni-color and flavour space, see [42].
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Contrary to the gauge contribution we are not aware of any theorem that guarantees

the sign of this contribution. As an estimate the contribution above gives

δm2
π ∼

y2m2
ρ

(4π)2
. (A.17)

Summing up all the contributions we obtain a mass matrix with the structure of eq. (2.21).

A.4 Minimization of the potential

The vacuum is determined through the minimization of the potential

Veff(π, η,H) = Vg1 + Vy0 + Vy1 +m2|H|2 + λ|H|4 (A.18)

where m2 < 0 is induced by gauge loops (section 2.1). The gauge-charged techni-pions

π acquire a large mass from gauge loops and can be integrated out, leaving an effective

potential for the lighter scalars: the elementary Higgs doublet H and the gauge-neutral

techni-pion η. In the parameter range of interest for us, g � y, one has Vy1 ≈ 0 and

Vg1 ≈ 1
2m

2
ππ

2(1 − η2/16f2), where, for simplicity, we expanded at second order in η/f

sufficient to compute the mass of the singlet. We can freely redefine the phases of the

Yukawa couplings y and y′ so that yy′ is real and negative. With this choice η = 0 indeed

is a local minimum of the effective potential

Veff(η � f,H) ≈ |H|2
[
m2 − 32

m2
ρf

2

m2
π

(
(|y|+ |y′|)2 − |yy′| η

2

12f2

)]
+ λ|H|4. (A.19)

Around the minimum η acquires a positive squared mass

Mη ∼ |y|
mρ

mπ
v (A.20)

without mixing with the Higgs, that receives a negative contribution to its m2 parameter.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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