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1 Introduction and summary

The phenomenological importance of medium-induced gluon radiation associated to the

production of high-p⊥ hadrons in collisions involving relativistic nuclei has been established

about two decades ago. Various approaches using different setups (projectile type, specific

observable, kinematical range, etc.) have been explored, as well as their applications to the

description of experimentally observed phenomena. In particular, medium-induced parton

energy loss in a hot quark-gluon plasma was found to provide a natural explanation of the

suppression of high-p⊥ hadron spectra in high-energy nucleus-nucleus collisions (see ref. [1]

for an overview and references therein).

Comparatively, medium-induced radiation in the collision of a light projectile (hadron

or electron) with a nuclear target (in which collision one does not a priori expect the

formation of the quark-gluon plasma), received much less attention. Still, the importance

of induced gluon radiation also in this situation and especially for particle production at

moderate p⊥ and forward rapidity has been recognized by several authors. For example,

the effects due to initial and final state radiation in hadron and Drell-Yan production at

forward rapidity in p–A (or d–A) collisions have been studied, in particular in refs. [2–4].

On the other hand, a few years ago the role of the coherent radiation arising from

the interference between emission amplitudes off the incoming and outgoing particles was

emphasized [5]. Such interferences are expected in all situations where the hard partonic

process in the nuclear target rest frame is effectively equivalent to the forward scattering

of an incoming parton to an outgoing compact colored system of partons. Moreover, the

interference can come into play only when the phase space for gluon radiation with large

enough formation time tf is available, i.e., when the energy of the effective color charge

– 1 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
1

crossing the medium is large enough. In ref. [5], the medium-induced radiation off an

energetic gluon crossing a nuclear medium was studied in the specific kinematics where

the gluon energy E (in the medium rest frame) is asymptotically large, E → ∞, the other

(transverse momentum) scales of the problem being fixed. In this kinematical setup, which

we will also choose in the present study (see below and section 2.1 for more details), the

average medium-induced energy loss ∆E turns out to scale as E, and the behavior ∆E ∝ E

arises from soft gluon radiation with formation time tf also scaling as E, thus being fully

coherent over the medium size (tf ≫ L, with L the fixed medium size) at asymptotically

large E [5]. It is important to point out that the behavior ∆E ∝ E also arises when E is

not too large, namely in the Gunion-Bertsch incoherent radiation limit where the typical

radiation formation time does not exceed the mean free path of the energetic parton in

the medium. Such behavior was also found in refs. [2, 3] for initial-state medium-induced

bremsstrahlung.

Fully coherent energy loss should play an important role in high-energy

hadroproduction of hadrons, but should be absent in (inclusive) Drell-Yan production, as

well as in hadron photoproduction. In the case of J/ψ hadroproduction at low p⊥ .MJ/ψ,

viewed in the target rest frame as the scattering of an incoming gluon to an outgoing

color octet compact cc̄ pair, such energy loss was shown to provide a successful description

of J/ψ nuclear suppression in proton-nucleus (p–A) as compared to proton-proton (p–p)

collisions, from fixed-target (SPS, HERA, FNAL) to collider (RHIC, LHC) energies [6–8].

Before studying the possible effect of coherent energy loss on other observables, one

should first consider the question of the process dependence of the medium-induced coher-

ent radiation spectrum ωdI/dω. Recent studies [9, 10] started to address this question.

The radiation spectra associated to 1 → 1 [10] and 1 → 2 [9] forward scattering processes

are found to be proportional to the same logarithm of the kinematical parameters, but to

possibly differ by an overall factor. For instance, Liou and Mueller showed that the q → qg

and g → qq̄ processes, in the kinematics where the outgoing jets have identical longitudinal

momenta and nearly back-to-back transverse momenta, lead to the same medium-induced

radiation spectrum up to a surprising factor 4/5 [9].

In the present study, we derive the coherent radiation spectrum associated to the

q → qg process already studied in [9], but using slightly more general kinematics. First, we

consider the outgoing gluon and quark to carry the fractions xh and (1−xh) of the incoming

(light-cone) longitudinal momentum p+ (xh = 1/2 was chosen in [9]). Second, not only

the final gluon and quark transverse momenta ~K1⊥ ≡ K1 and ~K2⊥ ≡ K2, but also their

momentum imbalance K1 + K2 ≡ q, are chosen to be hard compared to the transverse

momentum broadening ∆q⊥ across the medium, |K1|, |K2|, |q| ≫ ∆q⊥. However, similarly

to [9] (and also to [5, 10]), we focus on the specific asymptotic limit already mentioned

above, namely p+ → ∞ at fixed |K1|, |q| and |∆q⊥|. Within this setup, the radiation

spectrum associated to q → qg is derived in the opacity expansion (as in [10] for 1 → 1

forward processes), and in the large Nc limit (as in [9]). Throughout our calculation we

are using the (physical) light-cone A+ = 0 gauge1 with polarization vectors of the radiated

1We limit our calculation to the light-cone gauge, as in ref. [9]. For an example of an explicit calculation

of medium-induced radiation in different gauges, see ref. [11].
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gluon satisfying ǫ+(k) = 0, ǫ−(k) = 2~ǫ⊥ · ~k⊥/k+ and
∑

ǫµ⊥
∗
ǫν⊥ = −gµν⊥ for the sum over

the two physical polarization states. The resulting radiation spectrum is proportional to

the same leading logarithm as in refs. [9, 10], but with a prefactor depending on the hard

q → qg process through the kinematical variables xh, q, K1. This prefactor is simply

interpreted as the probability for the qg pair to be produced in the 6̄⊕ 15 subspace of all

possible qg color states. For |q| ≪ |K1| and xh = 1/2 we recover the factor 4/5 found

in [9]. We conjecture a simple formula (3.27) for the medium-induced radiation spectrum

associated to hard forward 1 → n processes. The conjecture is explicitly verified in the

case of the g → gg process, where in the particular limit |q| ≪ |K1| and xh = 1/2 we find

the overall factor 5/3, instead of 4/5 for the q → qg process.

In section 2 we review the theoretical setup and the results of refs. [5, 10] for 1 → 1

forward processes, and give a physical interpretation of the main features of the medium-

induced coherent radiation spectrum. The setup and calculation are generalized to the

hard q → qg and g → gg processes in section 3. In the final section 4, we briefly discuss the

link between our study and the phenomenology of nuclear suppression in p–A collisions.

2 Forward single jet production

2.1 Review of previous studies

Consider a massless parton of large momentum p = (p+, 0,~0⊥) with p+ ≡ 2E,2 prepared

in the far past and traversing some nuclear medium, see figure 1. The final energetic

‘jet’ is ‘tagged’ with a transverse momentum p′ much larger than the nuclear transverse

broadening ℓ =
∑

ℓi acquired through multiple soft scattering. As a consequence p′ must

arise dominantly from a single hard scattering q ≃ p′, with |q| ≫ |ℓ|. We focus on the

p+ → ∞ limit at fixed transverse momentum (small angle scattering). The fast parton is

also assumed to scatter with a negligible longitudinal momentum transfer to the medium,

which allows one to neglect the recoil of the target partons. This setup is used in [5, 10] to

derive the medium-induced coherent radiation associated to ‘forward single jet’ production

(i.e., 1 → 1 forward production), which we briefly review below. In the following, the

radiated gluon momentum is denoted by k = (k+,k2/k+,k ≡ ~k⊥), and we focus on soft

(x ≡ k+/p+ ≪ 1) and small angle (|k| ≪ k+) radiation (hence k+ ≡ ω + kz ≃ 2ω). As we

will see, the main features of coherent radiation induced by 1 → 1 processes also arise for

the 1 → 2 process (q → qg) studied in section 3. This is because coherent radiation, in the

limit considered in section 3, effectively sees the ‘dijet’ qg final state as a pointlike object.

In this work we define the intensity of soft radiation accompanying the hard production

of some final state with specific kinematics (characterized by the hard momentum p′) by

the ratio:

dI =
dσrad(p

′, k)

dσprod(p′)
. (2.1)

Here the denominator represents the inclusive cross section for producing the final state

under consideration, while the numerator is the inclusive cross section for producing the

2We use light-cone variables, p = (p+, p−,p), with p± = p0 ± pz and p ≡ ~p⊥.
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final state and a soft gluon. Formally the latter, integrated over the radiated gluon phase

space, enters the denominator as one of the contributions. However, to leading order in

αs, the denominator can be approximated by the hard production cross section without

soft gluon emission. Moreover, assuming that soft rescatterings of the leading parton do

not affect dσprod(p
′), the latter can be calculated as if there were no rescattering in the

medium, i.e., at zeroth order in the opacity expansion [12].

On the contrary, the numerator of (2.1) is modified by soft rescatterings and must

be represented as an expansion in the number n of scattering centers encountered by the

leading parton. The n = 0 term in this expansion coincides with the radiation cross section

in absence of a medium, and thus cancels out in the medium-induced radiation intensity

defined as

dI induced ≡ dI − dIvacuum =

∞
∑

n=1

dσ
(n)
rad(p

′, k)

dσprod(p′)
≡

∞
∑

n=1

dI(n) . (2.2)

The definition of the induced spectrum as it stands in (2.1) represents the conditional

probability of having gluon radiation provided a given final state with specific kinematics

is produced in a hard process. In particular, when several hard subprocesses are possible

(in the case of di-jet production the subprocesses may differ by the color representation of

the final state), (2.1) reduces to the sum of induced spectra for each of the subprocesses,

weighted by the corresponding subprocess probability. As we will briefly argue in section 4,

for the interpretation of the accompanying radiation spectrum in terms of induced energy

loss, the spectrum should be considered for each channel separately. However, in the

following sections we calculate the quantity defined by (2.1) and (2.2), which will allow a

comparison of our result with that of ref. [9] where the same definition was used.

In ref. [5] the medium-induced coherent radiation spectrum dI/dx associated to the

g → g process (with the final ‘gluon’ being a compact color octet QQ̄ pair of mass M) was

derived by modeling the transverse momentum broadening ∆q⊥ across the medium by a

single rescattering ℓ⊥, and identifying ℓ2⊥ = ∆q2⊥(L) = q̂L, where q̂ = µ2/λg, with µ the

typical transverse momentum exchange in a single scattering and λg the gluon mean free

path in the medium. The obtained result,

x
dI

dx

∣

∣

∣

∣

g→g

= Nc
αs
π

log

(

1 +
∆q2⊥(L)

x2M2
⊥

)

, (2.3)

where M2
⊥ ≡ M2 + p′ 2⊥ ≃ M2 + q2⊥, was confirmed in [10] in a theoretical setup using the

opacity expansion [12], allowing one to consider an arbitrary number n of soft rescatterings

in the medium.

More precisely, it was shown in ref. [10] that at small enough x, (2.3) has the same

parametric behavior (in particular as a function of L) as the exact spectrum, provided

∆q2⊥(L) is defined as the typical transverse broadening. In the case of a Coulomb scattering

potential considered in [10] and in the present study, the latter reads ∆q2⊥(L) ≃ q̂L logL/λg
at very large L (specifically, when logL/λg ≫ 1), see for instance ref. [13]. However,

using ∆q2⊥(L) = q̂L logL/λg in (2.3), the expression (2.3) turns out to be numerically a

very accurate approximation to the exact spectrum as soon as logL/λg ≥ 1, and up to
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ℓ1⊥ ℓn⊥

p′⊥p+

p⊥ = 0 ℓ2⊥ q⊥

z1 z2 zh zn

Figure 1. Setup for 1 → 1 forward production used in [5, 10], as viewed in the nuclear target

rest frame. The solid line denotes the energetic parton (gluon or quark). The hard process is

modeled by a transverse momentum exchange q⊥ (in red) occurring at the longitudinal position

zh, and supplemented by soft rescatterings ℓi⊥ ≪ q⊥ (with also ℓ⊥ = |∑ ℓi| ≪ q⊥) occurring at

longitudinal positions zi.

values of x ∼ ∆q⊥(L)/M⊥ [10]. Thus, for both parametric and numerical accuracy, we set

∆q2⊥(L) = q̂L logL/λg (rather than simply q̂L) in (2.3) and in the following.

In the present paper we focus on the case of massless particles and, similarly to

ref. [9], on the small-x region where the spectrum is logarithmically enhanced. We thus

rewrite (2.3) as

x
dI

dx

∣

∣

∣

∣

g→g

= Nc
αs
π

[

log

(

∆q2⊥(L)

x2q2⊥

)

+O (1)

]

. (2.4)

We stress that the latter expression holds when not only the argument of the logarithm,

but the logarithm itself is much larger than unity, i.e., to logarithmic accuracy, which will

be implicit throughout our study.3

It is useful to recall the basic steps leading to (2.4). It was shown in [10] that the

spectrum at order n in the opacity expansion is given by

x
dI(n)

dx
=
αs
π2

∫

d2k

[

n
∏

i=1

∫

dzi
CRλR

∫

d2ℓi V (ℓi)

]

∑

z1 znzhzi
ℓ1

ℓ1

ℓi

ℓi

q

q

k

zh
q

(2.5)

where the diagrams appearing in the numerator and denominator are evaluated using the

pictorial rules defined in figure 2. The upper (lower) part of each diagram appearing in

the numerator of (2.5) corresponds to a contribution to the emission amplitude (conju-

gate amplitude) of the soft gluon k induced by the rescatterings ℓi. The diagram in the

denominator stands for the hard process ‘cross section’ (which here is a single color fac-

tor, other factors cancelling between numerator and denominator). The quantity λR is

the elastic mean free path of the fast parton of color charge CR (note that the product

3It might seem that within logarithmic accuracy, the factor logL/λg in the expression of the typical

broadening ∆q2⊥(L) = q̂L logL/λg should be irrelevant, since log logL/λg is realistically ∼ O (1). However,

this amounts to consider the small x limit of (2.4) at fixed L. As explained in the former paragraph,

setting ∆q2⊥(L) = q̂L logL/λg allows the spectrum (2.4) to have a correct L dependence (at fixed x), both

parametrically and numerically.
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k k k

q q q
∼ k

k2
∼ k−q

(k−q)2

k − q

∼ − k−xq

(k−xq)2

(a)

(b)

= CR =
Nc
2

=
(

CR − Nc

2

)

Figure 2. Pictorial rules for (a) emission vertices and (b) color factors. The energetic parton of color

charge CR is denoted by the solid line (CR = CA = Nc for a gluon and CR = CF = (N2
c − 1)/(2Nc)

for a quark). For the pictorial representation of color factors, see for instance ref. [14].

CRλR = CFλq = Ncλg is independent of the parton type), and an average over soft trans-

fers ℓi is performed using the screened Coulomb potential V (ℓi) = µ2/[π(ℓ2i + µ2)2]. The

latter provides the typical magnitude of soft transfers, |ℓi| ∼ µ ≪ |q|, with µ being the

inverse screening length of the medium.

We stress that the evaluation of (2.5) in [10] is done in the limits tf ≫ L and k⊥ ≪ q⊥
(which can be justified a posteriori, see below), which leads to important simplifications:

(i) The diagrams where the time t associated to the soft emission vertex is in between

two rescatterings, zi < t < zi+1, are proportional to the difference ∼ (eiϕi+1 − eiϕi)

between two ‘phase factors’, where ϕi ∝ zi/tf [15], and vanish in the limit tf ≫ L.

(ii) The diagrams where the hard gluon exchange q couples to the soft radiated gluon

k are suppressed as k2/q2 due to the hard momentum q entering the soft gluon

propagator. However the rescattering gluons ℓi can couple to both the energetic

parton and the soft gluon, including virtual contributions where two gluon lines ℓi

and −ℓi are transferred in either the amplitude or conjugate amplitude.

(iii) At each order in opacity, and to leading logarithmic accuracy (as defined after (2.4))

considered throughout our study, the contribution to (2.5) of purely initial state

radiation can easily be checked to be negligible. (The same holds for purely final

state radiation.) Only interference diagrams remain, like the generic diagram drawn

in the numerator of (2.5).

At first order in opacity we find [10]

x
dI(1)

dx
= (2CR −Nc)

αs
π2

L

λg

∫

d2k

∫

d2ℓ1 V (ℓ1)

[

k − ℓ1

(k − ℓ1)2
− k

k2

]

· −(k − xq)

(k − xq)2
, (2.6)

which can be interpreted as the interference between the wavefunction of the final parton-

gluon fluctuation (the last factor in the integrand of (2.6)), and the incoming ‘medium-

induced wavefunction’ (factor in between brackets). For the purpose of the present study, it
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is sufficient to observe that when x|q| ≪ |ℓ1| ∼ µ, the spectrum arises from the logarithmic

k⊥-domain x|q| ≪ |k| ≪ µ, leading to

x
dI(1)

dx
= (2CR −Nc)

αs
π

L

λg
log

(

µ2

x2q2

)

. (2.7)

Since µ ≪ q⊥, the dominance of the k⊥-domain xq⊥ ≪ k⊥ ≪ µ justifies a posteriori the

working assumption k⊥ ≪ q⊥. The assumption tf ≫ L is also verified, since at fixed x and

in the p+ → ∞ limit, the formation time tf ∼ xp+/k2⊥ ≫ xp+/µ2 is asymptotically large

compared to L. This makes the calculation of (2.7) fully self-consistent.

In the limit L ≫ λg, all terms of the sum over n in (2.2) become important. The

induced spectrum at ‘all orders in opacity’, corresponding to the case L≫ λg, was derived

rigorously in ref. [10] and reads4

x
dI

dx
=

∞
∑

n=1

x
dI(n)

dx
= (2CR −Nc)

αs
π

log

(

∆q2⊥(L)

x2q2

)

, (2.8)

which in the case of an incoming gluon (CR = Nc) yields the result (2.4). Similarly to

the derivation of (2.7), the calculation of (2.8) is fully self-consistent [10]. The working

assumptions k⊥ ≪ q⊥ and tf ≫ L are indeed verified in the dominant k⊥-domain xq⊥ ≪
k⊥ ≪

√
q̂L contributing to (2.8).

To conclude this section, we may recover the parametric dependence of the average

radiated energy ∆E found in [10], by integrating the spectrum (2.8) up to x-values where

the logarithm in (2.8) is of order unity, setting the limit of validity of the logarithmic

approximation. The result is proportional to E and power-suppressed (as 1/q⊥) in the

hard scale,

∆E ∼ E

∫

O

(

∆q⊥
q⊥

)

0
dxx

dI

dx
∼ (2CR −Nc)αs

∆q⊥(L)

q⊥
E . (2.9)

2.2 Physical interpretation

Logarithmic range. At small x ≪ ∆q⊥(L)/|q| and to logarithmic accuracy, the spec-

trum (2.8) arises from the region

x|q| ≪ |k| ≪ ∆q⊥(L) , (2.10)

which has a simple physical interpretation.

First, the leftmost inequality is equivalent to saying that at the time tf ∼ ω/k2⊥ of its

emission, the soft gluon does not probe the relative displacement ∆~r of the core charge

4The result (2.8) (L ≫ λg) could have been guessed from the result (2.7) (L ≪ λg) using heuristic

arguments. In the case L ≪ λg, the prefactor L/λg in (2.7) can be interpreted as a (small) rescattering

probability. At the same time, µ2 in the logarithm of (2.7) is the typical transverse exchange (squared)

in a single scattering. When L ≫ λg, the rescattering probability becomes 1 − exp (−L/λg) ≃ 1, and the

typical transverse momentum broadening becomes ∆q2⊥(L).

– 7 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
1

compared to the case of unperturbed (vacuum) propagation. Indeed, denoting v1 (v2) the

velocity of the incoming (outgoing) energetic charge, the latter statement reads [16]

1/ω ≫ ∆r‖ = |v2‖ − v1‖| tf ∼
q2⊥
E2

ω

k2⊥
and 1/k⊥ ≫ ∆r⊥ = v2⊥ tf ∼

q⊥
E

ω

k2⊥
, (2.11)

which is equivalent to the single condition k⊥ ≫ xq⊥.

Second, for the radiation with k⊥ ≫ xq⊥ to actually contribute to the medium-induced

spectrum, the soft gluon should probe the transverse displacement ∆rg⊥ of the core charge

proper gluon field induced by rescatterings. This implies 1/k⊥ ≪ ∆rg⊥ ∼ (ℓ⊥/ω) tf , where

ℓ⊥/ω is the deviation angle of the incoming gluon proper field in the medium. This leads

to the second inequality of (2.10). In other words, the condition that k⊥ is softer than ℓ⊥
is precisely the requirement that the induced radiation can be shaken off by the additional

ℓ⊥-kick.

Color factor. The color factor associated to the coherent radiation spectrum (2.8) can

also be simply understood. For a general 1 → 1 process with incoming and outgoing

particles in color representations R and R′, respectively, the color factor is 2T aRT
a
R′ , as can

be trivially checked from the structure of the interference terms giving rise to (2.8). Using

the identity

2T aRT
a
R′ = (T aR)

2 + (T aR′)2 − (T aR − T aR′)2 = CR + CR′ − Ct , (2.12)

where Ct is the color charge exchanged in the t-channel of the hard process, we recover

the factor 2CR − Nc in the case (2.8) of asymptotic parton scattering. For the processes

q → g and g → q mediated by t-channel color triplet exchange, the color factor reads

CF +Nc − CF = Nc, as found in [10].

We emphasize that the calculation of [10] did not use the large Nc limit, and the factor

2CR − Nc in the induced spectrum (2.8) is thus exact and holds for any finite Nc. This

factor equals Nc for g → g, and −1/Nc for q → q forward scattering. In the Nc → ∞ limit,

the fully coherent induced radiation associated to q → q vanishes, which technically arises

from the fact that in this case the interference diagrams contributing to (2.8) are non-

planar [17]. At finite Nc however, the induced spectrum associated to q → q is negative,

which is somewhat unusual,5 but should not be a source of concern. Indeed, the factor

2CR −Nc in the induced (fully coherent) radiation spectrum can be anticipated from the

general properties of the total radiation spectrum in vacuum,6 as discussed in ref. [10] and

briefly recalled here.

The total spectrum associated to q → q (or g → g) derived in [10] reads

x
dIvacuum

dx
≃ αs

π

[

(2CR −Nc) log

(

x2q2

Λ2
IR

)

+Nc log

(

Λ2
S

Λ2
IR

)

+ 2Nc log

(

q2

ΛIRΛS

)]

, (2.13)

5Let us mention that there exist other examples, in different kinematic situations and setups, of negative

medium-induced spectra, see e.g. ref. [18].
6We call ‘total’ spectrum the spectrum at zeroth order in opacity, corresponding to the term dIvacuum

in (2.2), which is subtracted in the medium-induced spectrum.
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Figure 3. (a) Amplitude for hard q → qg production process. (b) Elastic amplitude Mel.

where ΛIR is an infrared regulator, and ΛS a scale satisfying xq⊥ ≪ ΛS ≪ q⊥ but otherwise

arbitrary. The first two terms of (2.13) arise from the ‘soft’ region k⊥ ≤ ΛS, while the last

term arises from the ‘hard’ region k⊥ ≥ ΛS (the latter extending up to k⊥ ∼ q⊥) [10]. When

calculating the medium-induced radiation spectrum defined in (2.2), nuclear transverse

momentum broadening ∆q⊥(L) ∼ ℓ⊥ comes into play, and constrains k⊥ to be soft, k⊥ <

ℓ⊥, as discussed previously. We thus expect the induced radiation to correspond to the

medium-modification of the soft part of the total spectrum (2.13), and thus to come with

the color factor 2CR − Nc. For the q → q process, we have 2CF − Nc < 0 and thus a

negative induced spectrum. But this does not contradict any first principle. At the level

of the total spectrum (2.13), the fact that 2CF −Nc < 0 simply means that the intensity

of gluon radiation off a quark into a cone of fixed size (k⊥ ≤ ΛS) decreases with increasing

|q|. At the same time, the total radiation intensity, which receives a contribution from

gluons with k⊥ ∼ q⊥, increases with increasing |q| (as expected) with a rate proportional

to (2CF +Nc) log |q|.

3 Forward q → qg production

We now consider a simple generalization of section 2, by replacing the 1 → 1 forward hard

process by the q → qg process, and derive the associated medium-induced soft radiation

spectrum.

3.1 Model for q → qg hard process

The q → qg production amplitude is depicted in figure 3a, where the final gluon and

quark have transverse momenta K1 ≡ ~K1⊥ and K2 ≡ ~K2⊥, and light-cone longitudinal

momentum fractions xh ≡ K+
1 /p

+ and 1 − xh ≡ K+
2 /p

+, respectively. We consider the

p+ → ∞ limit at fixed and finite xh ∼ O (1). The amplitude of figure 3a is conveniently

derived in a light-cone formalism and in light-cone A+ = 0 gauge.

In scalar QCD, we find

Mhard = M̂el ·2g(1−xh)·
[

T aT b
K1

K2
1

+
[

T b, T a
] K1 − q

(K1 − q)2
− T bT a

K1 − xhq

(K1 − xhq)2

]

·ε1, (3.1)

where M̂el denotes the Lorentz part (i.e., without color factor) of the elastic amplitude of

figure 3b , and ε1 ≡ ~ε1⊥ the final gluon physical polarization. Since ε1 formally disappears

after squaring the amplitude and summing over the two physical polarization states, it can

be dropped in (3.1).
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In QCD, the spinor structure makes the amplitude of figure 3a slightly more compli-

cated than (3.1).7 However, after squaring and summing over polarization states the result

for |Mhard|2 in QCD is the same (for a given quark light-cone helicity) as if Mhard were

given by the scalar QCD expression (3.1), up to the replacement of the overall factor

1− xh (scalar QCD) →
√

1 + (1− xh)2

2
(QCD) . (3.2)

Moreover, specific contributions to |Mhard|2 corresponding to the interference of different

graphs of figure 3a (including initial and final state radiation) are reproduced one by one

with this replacement. We specially emphasize this fact since only part of these contribu-

tions enter the calculation of the induced soft radiation spectrum (see section 3.2).

The overall factor is irrelevant for our purpose, since it will cancel between numerator

and denominator in the induced soft radiation spectrum (3.6). We can thus use (in either

spinor or scalar QCD):

Mhard ∝ T aT b
K1

K2
1

+
[

T b, T a
] K1 − q

(K1 − q)2
− T bT a

K1 − xhq

(K1 − xhq)2
. (3.3)

We stress that this expression, derived long ago by Gunion and Bertsch [20],8 holds for any

finite xh in the p+ → ∞ limit.

The amplitude (3.3) will be our model for the hard process. In addition to xh ∼ O (1),

we choose (as in ref. [9]) K1 and K2 to be much larger than the nuclear broadening ∆q⊥.

However, in view of applying the opacity expansion as in the 1 → 1 case studied in section 2,

we also choose the dijet momentum imbalance q = K1 +K2 to satisfy |q| ≫ ∆q⊥. As a

consequence, the dijet imbalance is provided by a single hard exchange q and negligibly

affected by soft rescatterings in the medium. In summary we consider the q → qg process

in the kinematics

xh ∼ O (1) and |K1|, |K2|, |q| ≫ ∆q⊥ . (3.4)

3.2 Medium-induced coherent radiation spectrum

The medium-induced radiation spectrum associated to q → qg is derived in the soft radi-

ation limit defined by

x ≡ k+

p+
≪ 1 and k⊥ ≪ |K1|, |K2|, |q| . (3.5)

The calculation is greatly simplified by observing that the hard process structure (3.3)

is given by the pictorial rules of figure 2. It is then straightforward to show that the radia-

tion spectrum associated to q → qg is given, at order n in opacity, by the expression (2.5)

with the 1 → 1 replaced by the q → qg hard process. For instance, at first order in opacity,

x
dI(1)

dx

∣

∣

∣

∣

∣

q→qg

=
αs
π2

∫

d2k

∫

dz

Ncλg

∫

d2ℓV (ℓ)
C

H
, (3.6)

7The QCD calculation can be done using light-cone helicity spinors [19].
8In ref. [20], the scalar QCD expression (3.1) is given, but used only in the limit xh → 0, where the scalar

QCD and spinor QCD expressions of |Mhard|
2 coincide (after summing over gluon polarization states).
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Figure 4. Set H of diagrams corresponding to the q → qg hard process, appearing in the denomi-

nator of the radiation spectrum (3.6). (The barred diagrams are suppressed in the large Nc limit.)

where H is the set of diagrams corresponding to the q → qg hard process, see figure 4, and

C the set of diagrams (to be discussed in detail below) obtained from H by adding one

in-medium rescattering and one soft gluon emission. (The diagrams of the set C which will

turn out to dominate are shown in figure 5.) In order to simplify the calculation of the set

C, we work within the following limits:

(i) We choose the gluon formation time tf to be large not only compared to L (as in

section 2) but also compared to the hard process production time thard,

tf ∼
k+

k2⊥
≫ thard ∼ p+

K2
1⊥

≫ L . (3.7)

For the self-consistency of the derivation, the assumption tf ≫ thard should be checked

a posteriori. In other words, the final result (3.16) for the induced radiation spectrum

should arise from a kinematical domain where indeed tf ≫ thard. As explained in

the end of this section, this implies that our derivation is self-consistent provided x

belongs to the interval (3.18), which we thus assume in the following.

(ii) We work in the large Nc limit, where non-planar diagrams can be neglected [17]. We

stress that the results of ref. [10] for 1 → 1 processes, reviewed above in section 2,

are independent of this limit and hold for any fixed Nc, as for instance the general

rule (2.12) for the color factor of the induced spectrum associated to 1 → 1 processes.

It is only for 1 → 2 processes that we use the Nc → ∞ limit, which greatly simplifies

the calculation of the induced spectrum. However, we expect the results for 1 → 2

processes to hold beyond this limit, see our comments in the final discussion.

In the limit tf ≫ thard, the dominant diagrams of the set C are those where the

time of the soft gluon emission vertex, denoted by t in the amplitude or t′ in the conjugate

amplitude, occurs either long before or long after the interaction vertices of the hard process
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Figure 5. Set C of diagrams (numerator of (3.6)) for the emission of a soft gluon (in red) induced by

a single in-medium rescattering (in blue). The black lines of the diagrams stand for the underlying

hard q → qg process depicted in figure 4. For each of the nine graphs above, only one attachment of

the rescattering gluon is drawn among all possible ones. Graphs which are suppressed at large Nc

(independently of the precise attachment of the rescattering gluon) are barred. See text for details.

shown in figure 4. Similarly to [10], those potentially dominant diagrams can be separated

in three classes: purely initial-state radiation (t and t′ large and negative), purely final-state

radiation (t and t′ large and positive), and interference diagrams (t < 0 and t′ > 0, or t > 0

and t′ < 0). As in the case of 1 → 1 forward processes, and within the logarithmic accuracy

defined in section 2, purely initial-state or purely final-state radiation is suppressed in the

medium-induced spectrum. Only interference diagrams remain. The diagrams where the

soft gluon is emitted before the hard process in the amplitude (−t ≫ thard) and after in

the conjugate amplitude (t′ ≫ thard) are depicted in figure 5, where the overall factor 2

arises from the contribution of diagrams with t ≫ thard and −t′ ≫ thard. Note that the

diagrams where the soft radiated gluon connects to the final quark line are all suppressed

in the Nc → ∞ limit, and are thus not drawn in figure 5. Some of the diagrams where the

radiated gluon connects to the final hard gluon line are also suppressed at large Nc, and

are barred in figure 5. Finally, the sum over all possible attachments of the rescattering

gluon to the hard quark and gluon lines, as well as to the soft radiated gluon, is implicit

in figure 5, where only one of those attachments is drawn.

As already mentioned, the hard process amplitude (3.3) is given by the pictorial rules

of figure 2, which allows one to calculate the set H of figure 4 using these rules. Denoting

K = K1 we find

H =
[

C2
FNc

]

· 1

(K − xhq)2
+
[

C2
FNc

]

· 1

K2 +
[

CFN
2
c

]

· 1

(K − q)2

+2

{[

−CFN
2
c

2

]

· K · (K − q)

K2(K − q)2
−
[

CFN
2
c

2

]

· (K − q) · (K − xhq)

(K − q)2(K − xhq)2

}

, (3.8)
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Figure 6. The various attachments of the rescattering gluon (in blue) contributing to the second

term of figure 5. Diagrams which are suppressed at large Nc are barred.

where for clarity the color factors arising from the rules of figure 2b are put in between

brackets and the explicit factors CF are kept, despite the fact that CF ≃ Nc/2 at large

Nc. The factor 2 in the second line of (3.8) arises from the equality between the second

and third lines of figure 4, and the two barred diagrams of figure 4, suppressed at large Nc,

have been dropped. Setting now CF → Nc/2, (3.8) simplifies to

H =
N3
c

4

q2

K2(K − q)2

[

1 +
(1− xh)

2K2

(K − xhq)2

]

. (3.9)

The calculation of the set C requires counting all attachments of the rescattering (blue)

gluon for each diagram of figure 5. For instance, the second term of figure 5 corresponds

to the sum of diagrams depicted in figure 6. In the kinematical limits (3.4) and (3.5), it is

easy to check using the rules of figure 2a that for all diagrams of figure 6, the Lorentz factor

associated to the hard q → qg splitting is the same, namely (K/K2) · (K/K2) = 1/K2.

As for the Lorentz factor associated to the soft radiated (red) gluon, it reads

−
k − x

xh
K

(k − x
xh
K)2

· k − ℓ

(k − ℓ)2

for the first four diagrams of figure 6 and

−
k − x

xh
K

(k − x
xh
K)2

· k

k2

for the others. The color factors are calculated using pictorial rules, and we recall that

‘virtual contributions’, where the rescattering gluon couples to two lines in either the

amplitude or conjugate amplitude, contribute a factor (−1), and a symmetry factor 1
2

when the rescattering gluon connects to the same parton line (see for instance ref. [21]).

The diagrams of figure 6 then sum up to (CF ≃ Nc/2):

figure 6 ≡ graph 2 of figure 5 = − 1

K2 ·
k − x

xh
K

(k − x
xh
K)2

·
[

k − ℓ

(k − ℓ)2
− k

k2

]

N5
c

8
. (3.10)
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The other graphs of figure 5 can be similarly calculated, leading to:

graph 3 = − 1

(K − q)2
·

k − x
xh
K

(k − x
xh
K)2

·
[

k − ℓ

(k − ℓ)2
− k

k2

]

N5
c

8
, (3.11)

graph 4 = graph 7 = +
K · (K − q)

K2(K − q)2
·

k − x
xh
K

(k − x
xh
K)2

·
[

k − ℓ

(k − ℓ)2
− k

k2

]

N5
c

8
, (3.12)

the other graphs being suppressed at large Nc, as indicated in figure 5. Using (3.10), (3.11)

and (3.12), the set C defined by figure 5 (including the overall factor 2) reads

C =
N5
c

4

q2

K2(K − q)2

[

k − ℓ

(k − ℓ)2
− k

k2

]

·
−(k − x

xh
K)

(k − x
xh
K)2

. (3.13)

Finally, inserting (3.9) and (3.13) in (3.6), we find that to logarithmic accuracy, the

spectrum arises from the k⊥-domain x|K| ≪ |k| ≪ |ℓ| ∼ µ (recall that xh ∼ O (1))

and reads

x
dI(1)

dx

∣

∣

∣

∣

∣

q→qg

= κq→qg
Ncαs
π

L

λg
log

(

µ2

x2K2

)

, (3.14)

κq→qg ≡ (K − xhq)
2

(K − xhq)2 + (1− xh)2K
2 . (3.15)

In the limit L ≫ λg, we have performed the calculation of the induced spectrum

associated to q → qg to ‘all orders in opacity’, using exactly the same procedure as in [10]

for 1 → 1 processes. A straightforward but somewhat lengthy calculation yields9

x
dI

dx

∣

∣

∣

∣

q→qg

=
∞
∑

n=1

x
dI(n)

dx

∣

∣

∣

∣

∣

q→qg

= κq→qg
Ncαs
π

log

(

∆q2⊥(L)

x2K2

)

, (3.16)

where κq→qg is defined in (3.15).

To logarithmic accuracy, the radiation spectra associated to the q → qg and g → g

hard processes, given in (3.16) and (2.8), are proportional to the same logarithm (up to

the renaming of the hard scale q → K in the logarithm of (2.8)), and otherwise differ by

the overall factor κq→qg depending on the kinematical variables defining the q → qg hard

process. In the kinematical situation where |q| ≪ |K| and xh = 1/2, we recover the factor

κq→qg = 4/5 found in ref. [9].

We stress that the result (3.16) arising from the region

xK⊥ ≪ k⊥ ≪ ∆q⊥ (3.17)

was obtained using the assumption (3.7). Our derivation of (3.16) is thus strictly valid

provided the condition tf ≫ thard, or equivalently x ≫ k2⊥/K
2
⊥, holds in the whole do-

main (3.17). This implies the following validity range of (3.16),

∆q2⊥
K2

⊥

≪ x ≪ ∆q⊥
K⊥

(≪ 1) . (3.18)

9The difference between the formulae (3.14) and (3.16), corresponding to the cases L ≪ λg and L ≫ λg

respectively, can be heuristically understood as in the case of 1 → 1 processes, see footnote 4.
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Let us remark that in ref. [9] the calculation of the spectrum associated to q → qg

(done using a different kinematics, namely, small |q| and xh = 1/2 in our notations)

does not assume tf ≫ thard. Its range of validity is thus broader than the range (3.18)

and extends to x-values which are smaller than the lower bound in (3.18). Although

not proven in our present study, it is likely that the spectrum (3.16) similarly extends

beyond the domain (3.18), for any |q| and xh. However keeping track of contributions with

tf . thard would greatly complicate our calculation.

Finally, we estimate the average radiated energy ∆E associated to (3.16) as was done

in (2.9) for the spectrum (2.8),

∆E|q→qg ∼ E

∫

O

(

∆q⊥
K⊥

)

0
dxx

dI

dx
∼ κq→qgNc αs

∆q⊥(L)

K⊥
E . (3.19)

3.3 Interpretation and conjecture

Here we give a simple interpretation of the factor κq→qg (given in (3.15)), as well as of the

color factor Nc appearing in front of the logarithm in (3.16).

For Nc ≥ 3, the final quark-gluon pair produced in the hard q → qg process can be in

three different irreducible color representations,

3⊗ 8 = 3⊕ 6̄⊕ 15 , (3.20)

where the names of the representations indicate their dimensions in the particular case

Nc = 3. For general Nc the three representations have dimensions

K3 = Nc, K6 =
Nc(Nc − 2)(Nc + 1)

2
, K15 =

Nc(Nc + 2)(Nc − 1)

2
, (3.21)

and Casimir operators

C3 =
N2
c − 1

2Nc
, C6 =

(Nc − 1)(3Nc + 1)

2Nc
, C15 =

(Nc + 1)(3Nc − 1)

2Nc
. (3.22)

We observe that the diagrams of figure 5 which are suppressed in the large Nc limit

are those where the final qg pair is produced in the fundamental representation 3. This is

not surprising, since we have seen previously (in the end of section 2.2) that the coherent

induced radiation associated to the q → q process has a color factor 2CF − Nc = −1/Nc.

Thus, in figure 5 (and in figure 5 only, see the comments below) we may remove from the

beginning the ‘triplet’ component of the final qg pair (or equivalently, project the latter on

the 6̄⊕ 15 subspace). At large Nc, this is simply achieved by replacing T bT a → 0 in (3.3),

leaving T aT b unchanged. The hard production amplitude with the final quark-gluon triplet

component removed thus reads

M6̄⊕15

hard ∝ T aT b
(

K

K2 − K − q

(K − q)2

)

. (3.23)

– 15 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
1

Squaring this we find

|M6̄⊕15

hard |2 = N3
c

4

q2

K2(K − q)2
, (3.24)

and dividing by the expression (3.9) we get

|M6̄⊕15

hard |2
|Mhard|2

=
(K − xhq)

2

(K − xhq)2 + (1− xh)2K
2 = κq→qg . (3.25)

Thus, the factor κq→qg is interpreted as the probability that the quark-gluon pair produced

in q → qg is not in the ‘triplet’ color representation.

Thus, the dependence of the spectrum (3.16) on the hard process kinematical variables

q,K, xh, arises from the constraint that at largeNc, only non-triplet qg pairs can contribute

to the set C of diagrams (figure 5). This ‘selection’ of the 6̄⊕ 15 subspace is due to the

specific connection of the soft radiated gluon between initial and final state in figure 5.

In particular, it would be incorrect to attribute this effect to the smaller dimension K3 =

Nc of the triplet representation as compared to the dimension of the 6̄⊕ 15 subspace

(K6 + K15 = N3
c at large Nc). For instance, the lower dimension of 3 does not prevent

the qg pair to be produced as a triplet in the hard q → qg process (see set H of diagrams,

figure 4), even at large Nc.

The logarithmic range (3.17) can be interpreted in a similar way as the range (2.10)

for 1 → 1 processes (see section 2.2). Moreover, in the present q → qg case, the condition

xK⊥ ≪ k⊥ written as 1/k⊥ ≫ ∆r⊥ ∼ v⊥ tf ∼ (K⊥/E) · (ω/k2⊥) (similarly to (2.11)) means

that at the time of its emission, the radiated gluon does not probe the transverse size ∆r⊥
of the qg pair. From the point of view of soft radiation, the qg pair thus behaves as an

effectively pointlike system.

Finally, the color factor Nc in (3.16) can be simply understood from the rule (2.12).

Indeed, since coherent radiation arises from a kinematical domain where the qg pair is

effectively pointlike, the result should depend on its total color charge, not on the color of

its separate constituents. Since the color state of the final qg pair in figure 5 is either 6̄

or 15, and these two representations have the same Casimir operator at large Nc, namely

3Nc/2, the rule (2.12) gives (R′ = 6̄ or 15)

2T a
3
T aR′ = C3 + CR′ − C8 =

Nc

2
+

3Nc

2
−Nc = Nc . (3.26)

A conjecture. Guided by the above interpretation of our result, we conjecture the fol-

lowing simple formula for the medium-induced radiation spectrum associated to hard for-

ward 1 → n processes (where the n final-state partons have finite longitudinal momentum

fractions xi = K+
i /p

+ ∼ O (1) and transverse momenta Ki of similar magnitude ∼ |K|),

x
dI

dx

∣

∣

∣

∣

1→n

=

[

∑

R′

PR′(CR + CR′ − Ct)

]

αs
π

log

(

∆q2⊥(L)

x2K2

)

, (3.27)

with CR and Ct the color charges of the incoming parton and of the t-channel exchange,

and PR′ the probability for the (effectively pointlike) n-parton state to be produced in the
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color representation R′ in the hard process. (PR′ may depend on the kinematical variables

xi, Ki defining the hard 1 → n process, as in the q → qg case.)

As a first illustration, the spectrum associated to g → qq̄ derived in ref. [9] can be

obtained from (3.27) by setting PR′ = P8 = 1 (at large Nc the final qq̄ is color octet with

unit probability) and CR = CR′ = Ct = Nc. Not surprisingly, since the final qq̄ is effectively

pointlike, the result is the same as for the g → g process considered in refs. [5, 10].

As a second example, let us mention that we explicitly verified (3.27) in the case of

the g → gg process. Using the same theoretical setup (including the large Nc limit) and

following the same procedure as for the q → qg process, we find an expression for the

radiation spectrum similar to (3.16), but with a different overall factor κ,

x
dI

dx

∣

∣

∣

∣

g→gg

= κg→gg
Ncαs
π

log

(

∆q2⊥(L)

x2K2

)

, (3.28)

κg→gg ≡ 1 +
(K − xhq)

2

(K − xhq)2 + x2h(K − q)2 + (1− xh)2K
2 . (3.29)

(Note that κg→gg = 5/3 when |q| ≪ |K| and xh = 1/2.) To check whether (3.28), (3.29)

coincide with (3.27), we must sum in (3.27) over the different representations R′ of the

final gg pair. At large Nc, a two-gluon system can be in six color representations [22],

8⊗ 8 = 8a ⊕ 10⊕ 1⊕ 8s ⊕ 27⊕ 0 , (3.30)

where as in (3.20) the representations are labelled according to their dimensions in the

case Nc = 3. In particular 0 is a symmetric representation which is absent when Nc = 3.

For Nc > 3 the representations appearing in the r.h.s. of (3.30) have the Casimir operators

Nc, 2Nc, 0, Nc, 2(Nc + 1) and 2(Nc − 1), respectively [22]. Thus, at large Nc the bracket

in (3.27) reads

∑

R′

PR′(CR + CR′ − Ct) =
∑

R′

PR′ CR′ = (2− P8a
− P8s

)Nc , (3.31)

where we used CR = Ct = Nc, probability conservation
∑

R′ PR′ = 1, and the fact that

the probability P1 for the final gg pair to be color singlet is suppressed at large Nc. The

probability P8 ≡ P8a
+ P8s

to produce a color octet gg pair can be simply evaluated

using pictorial rules for the projection operators on specific color representations [22].

Analogously to what was done in (3.25) the calculation gives

P8 =
|M8a

g→gg|2 + |M8s

g→gg|2
|Mg→gg|2

=
x2h(K − q)2 + (1− xh)

2K2

(K − xhq)2 + x2h(K − q)2 + (1− xh)2K
2 . (3.32)

Plugging (3.32) in (3.31), we see that the expression (3.27) reproduces eqs. (3.28), (3.29).

This completes the check of the conjectured expression (3.27) in the case of the g → gg

process.

We conclude by a few remarks on the expected validity range of the conjecture (3.27).

First, we recall that the result (3.16) (and similarly (3.28)) has been derived within the

limit (3.7), resulting in the validity range (3.18). As mentioned in the end of section 3.2,

– 17 –



J
H
E
P
0
1
(
2
0
1
5
)
1
4
1

there are indications from the calculations in the dipole formalism of ref. [9] that the

expression for the spectrum may be valid also for x below the lower bound of (3.18).

We expect the same for the induced spectrum associated to 1 → n forward processes

conjectured in (3.27).

Second, in order to perform the calculation of the induced spectrum associated to

q → qg (and g → gg), we used Nc ≫ 1 as a simplifying theoretical limit. We however

expect the conjecture (3.27) to hold for any Nc. Indeed, the induced radiation associated

to q → qg ‘sees’ the final qg system as a compact object (within logarithmic accuracy),

which makes the spectrum expressible as a sum of spectra associated to 1 → 1 processes.

Using the fact that the color factor CR + CR′ − Ct associated to a general 1 → 1 process

(see (2.12)) holds for any Nc (as recalled in section 2.2), it seems clear that (3.27) should

hold beyond the large Nc limit.

Finally, we expect the conjecture (3.27) to fail beyond logarithmic accuracy, since in

this case the final partonic system does not act as a pointlike object any longer.

4 Comments on nuclear suppression phenomenology

4.1 Nuclear attenuation factor

As mentioned in section 2.1 (see paragraph after (2.2)), the definition of the medium-

induced spectrum (2.1) we have used corresponds to the conditional probability to have

soft gluon emission provided a dijet (or more generally n-jet) with specific kinematics is

produced. We stress that a sum over the possible dijet color states is performed in both

the numerator and denominator of (2.1). This is also apparent from (3.27), which can be

formally rewritten as

dI|1→n =
∑

R′

PR′ · dIR′

=
∑

R′

dσR
′

prod
∑

R′′ dσR
′′

prod

·
dσR

′

rad

dσR
′

prod

=

∑

R′ dσR
′

rad
∑

R′ dσR
′

prod

, (4.1)

where dIR
′

denotes the induced spectrum associated to dijet production in the color rep-

resentation R′,

x
dIR

′

dx
≡ (CR + CR′ − Ct)

αs
π

log

(

∆q2⊥(L)

x2K2

)

. (4.2)

Due to the color representation dependence of (4.2) the induced spectrum defined

by (2.1) cannot be directly interpreted in terms of induced energy loss applied to the

phenomenology of nuclear suppression in p–A collisions. However, the step towards phe-

nomenology is quite straightforward. The dijet nuclear attenuation factor RpA provided

by the experiment depends on p–p and p–A dijet cross sections implicitly summed over all

color representations R′ of the dijet,

RpA ≡ 1

A

dσpA
dσpp

=
1

A

∑

R′ dσR
′

pA
∑

R′′ dσR
′′

pp

=
∑

R′

dσR
′

pp
∑

R′′ dσR
′′

pp

·
1
Adσ

R′

pA

dσR′

pp

=
∑

R′

PR′ RR
′

pA . (4.3)

Here we used PR′ = dσR
′

pp/(
∑

R′′ dσR
′′

pp ). Thus, RpA can be obtained by first calculating the

attenuation factors RR
′

pA separately for each of the color states R′ and then averaging over

R′ with the probabilities PR′ .
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4.2 Dynamical color filtering

In our setup, the final compact partonic configurations are all the more suppressed that

their color charge CR′ is large, see (4.2). This resembles the color filtering idea of Brodsky

and Hoyer [23], where at sufficiently large x
F
only compact color singlet partonic states

can emerge from the nucleus, however with one important distinction. The color singlet

partonic states considered in ref. [23] are already present in the Fock expansion of the

incoming hadron wave function, and filtered by the target nucleus into the final state

due to their low interaction probability. In our setup, the outgoing n-parton system is

produced in the hard process, and may belong to a different color representation from that

of the projectile parton, the color charge difference arising from the color exchange in the

t-channel of the hard production process.

The r.h.s. of (4.3) can thus be viewed as a generalization of the color filtering idea,

which might be named dynamical color filtering: different color states produced in the

hard process emerge with different nuclear suppressions, which enter the overall nuclear

modification factor being weighed by the associated probabilities. In general the nucleus

will filter out the color state of smallest charge CR′ , corresponding to minimal energy loss.

The dependence of fully coherent induced radiation on the color charge should have

simple consequences in phenomenology, as illustrated by the following example. Suppose

some part of the phase space for dijet forward production is dominated by the qg → qg

subprocess in the center-of-mass frame (corresponding to q → qg process in the target rest

frame). Then, according to (4.3) the nuclear suppression factor due to coherent induced

radiation will be limited from below by the probability for the final qg dijet to be in the

fundamental representation for which the induced radiation is suppressed. A similar effect

is expected for single jet (or hadron) hadroproduction in p–A collisions at forward rapidities

and sufficiently high transverse momenta, since the cross section of the latter process is

derived from the integrated production cross section of back-to-back jets.
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