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1 Introduction

The study of the soft graviton amplitudes dates back to Weinberg [1, 2] where the lead-
ing soft behavior was obtained. In [3-5] a new soft graviton theorem, conjectured to be
the Ward identities of a new symmetry of the quantum gravity S-matrix,! was proposed.
Cachazo and Strominger [8] have recently shown that the new conjectured soft behavior,
through subleading and next-to-subleading orders in the soft expansion, has a universal
form in four spacetime dimensions at tree level.?2 An extension to gluons for the first sub-
leading soft behavior at tree level was reported in [15] and in [16] it was demonstrated that
the conformal invariance of tree level gauge theory amplitudes in four spacetime dimensions
determines the form of the first subleading theorem.

Very recently it has been shown that the form of the subleading and next-to-subleading
terms in the soft expansion in D dimensions — for both gauge theory and gravity —
is greatly constrained by the requirements from Poincaré symmetry, gauge invariance,
and a self consistency condition originating from the distributional nature of scattering
amplitudes [17]. Moreover, the subleading and next-to-subleading terms were determined
up to a numerical constant for each external leg.®> Using Feynman diagram techniques
the first subleading theorem for soft gluons and gravitons was also confirmed in [18]. The

!This new proposed symmetry is an extension of the Bondi, van der Burg, Metzner and Sachs (BMS)
symmetry [6, 7].

*Barly results for soft photons at subleading order were obtained in [9-12]. Gross and Jackiw, using
dispersion relation methods, derived the subleading soft factor for graviton scattering off scalars in [13],
and White revised the subject in [14] using path integral resummation techniques.

3However, the authors also point out that these numerical factors are completely fixed when specializing
to four spacetime dimensions.



authors of [19] have shown that on-shell gauge invariance determines the complete form of
the first subleading soft theorem in gauge theory and the first two subleading soft theorems
for gravity. Using the Cachazo, He, Yuan (CHY) formula [20], the tree level universality of
the soft behavior to first subleading order has been shown to hold in D dimensions [21, 22].
The purpose of the present note is to use the CHY formula to prove the universal nature
of the next-to-subleading soft graviton theorem at tree level in arbitrary dimensions.

Studies on loop corrections to subleading soft theorems have been presented in [23-25].
Progress in the context of string theory has been reported in [26, 27] and also in [28, 29]
relevant for recent twistor constructions. More recent progress on soft theorems in the
context of massless QED has appeared in [30, 31].

The conjecture of [8] states, for an on-shell tree level n-graviton amplitude M,,, that

AQ::<iSm)+Su)+AS@)+CXA%>Aﬁ/b (1.1)

where n is taken to be the soft particle with momentum k,, and we scale the momentum
k, — Ak, and take the limit when A approaches zero. In the above,

n—1
kY
SO =y~ fwtalta (1.2)
a=1 kn‘ka

is Weinberg’s soft theorem with €., denoting the polarization tensor of the soft graviton
and the gravitational constant has been set to 1. The conjectured forms of the subleading
and next-to-subleading theorems are

n—1 n—1
kb ko J 1 €k, JE kpnJN
s :_iZM7 §® = N wtnesa tndta (1.3)
a=1 kn.ka 2 a=1 kn.ka

In order to treat gluon and graviton polarizations on an equal footing one can choose to
write the graviton polarization for the o' particle as

€apv = Eapa (1.4)

where a = 1,...,n — 1. Tracelessness and orthogonality to k, translate into €,-¢, = 0 and
€aks =0 1"es.pectively.4

The subleading contributions to the soft theorem depend on the total angular momen-
tum operator, which is®

Jy’:i<ky8£)}+eka§]> (1.5)

for the a*® particle. Note that in using this formula one should consider the polarization
vectors €4, to be independent of the momenta k.

This paper is organized as follows. In section 2 we review the CHY formalism [20] for
tree level graviton amplitudes which is valid in arbitrary dimensions and, in this language,

4We do not use any other gauge condition in this work.
*We follow the convention A, B,) = A,B, + A, B, and A, B,; = A,B, — A,B,.



we set up the computation for the expansion of the amplitude up to next-to-subleading
order in the soft parameter. We finish this section by stating the new soft theorem extended
to D dimensions. In section 3 we explicitly evaluate the tree level n-graviton amplitude
at next-to-subleading order in the soft expansion. In section 4 we compute the action of
the conjectured S operator (1.3) onto the (n — 1)-graviton amplitude, as stated in (1.1),
and show that it perfectly matches with the next-to-subleading amplitude M) of section
3, thus proving the theorem.

2 Review and setup of the problem

In this section we briefly review the CHY construction [20] for tree level graviton ampli-
tudes. A key object is the scattering equations

n

keo'k

S =0, ab=1,....n (2.1)
Oab

b#a

with o4, = 0, — 0, where the o, are in general complex valued quantities. Due to the
SL(2,C) symmetry of (2.1), these constitute a system of n — 3 independent equations for
the set {0, } and one can arbitrarily fix three of the o, variables. We will call 05, 0}, o), the
three fixed os. The gauge fixed amplitude is

M, — / (do)sdon T () En, (2.2)

ai,jk
where we have employed the useful short notation

n n—1

n ka'k
fo= Z . bb, [do]n—4 = (0pq0gror)(0ij0;Kk0k:) H do,. (2.3)
bta ¢ cEpa,r

In the above, E,, is defined to be

E, = 4det(V3¥) /02, (2.4)
where \Ilizz, is obtained from the 2n x 2n antisymmetric matrix ¥ after removing rows
x,Y,2,... and columns z,y,2/,... with 1 < x < y < n. The explicit expression of ¥ is
given by

A -CT
U = 2.5
(5 25)
with the n x n matrices A, B, C' given by

kq-ky €q-€D €a-kp " ek
= —80sp, Bapy= 80z, Cop= ;75(17&1;—5@2 —

Oab Tab ab Fa Oac

Aab

(2.6)

where we use 0,2, = 1 —Jgp in order to avoid cluttering our equations. In [20] it was shown
that the quantity F, is independent of the choice of z and y.



In order to expand the delta function appearing in (2.2) in powers of \ we separate it
into two parts

n n—1 n—1 n—1
[T s =5 (Z k”’“’) R

ik bm1 O ) aziik \bza 790 Tan (2.7)
=35(fr ) </\ 5O 460 4 /\5<2)> +O(N?),
where we define
n—1 n—1 klk n—1
0) _ n—1 1 _ 1 pn—1 n—1
II otsah, o= 3 —=a(h | 11 s hf, @8
a#i,j,k l#1,5,k a#i,j,k,l
n—1 n—1
1 ky-k kmkn k:
(2 _ I'nocr e pn—1
= 2 Z Oln ’ (fl )Z Umn H 5
1#£1,5,k m##i,j,k,l b#zyklm
+3 Z < ") 8" ( H5 . (2.9)
l;éz,] k b#1,7,k,l
We also need to expand E, in (2.2) to second order in A
E,=EY £ \EY + N2E® + 0(\?). (2.10)
Plugging (2.7) and (2.10) into (2.2) we get
Lar o (2) 2
M, = XM” + My + MM + O(N), (2.11)
where
MO = [ldol-sdons( sy 5B,
M = / (dol—s dond(f2 )6V EQ) + 50 ED), (2.12)
M2 = / [do]y—4do,5(f2 (P EL 4+ sWED 4+ 5O g2,
The soft theorem conjectures that the following equality should hold
MO =8Onr, 1 i=0,1,2. (2.13)

Weinberg’s soft theorem, i.e., My - SOM,_1, can be derived as follows. To evaluate
VAR n (2.12) we also need E( ) , the leading contribution to the determinant (2.4), which
is E(O) 02 E,_1. In order to see that, we can set A = 0 in E,,. Then all the elements of
the (n — 2)th row vanish apart from the last one which equals —C),,,. Similarly all elements
of the (n — 2)"" column are zero apart from the last one which is Cp,,. Expansion of the
determinant along the aforementioned row and column will yield another extra sign which
completes the proof.



Separating all the dependence on o, in ng,o), ie.,

MO = [1dr)15O B [ dons(si)C, (2.14)

we can explicitly evaluate the integral over o,. Due to the absence of branch-cuts and
the regularity of the integrand when o,, — 0o, we may treat the delta function as a pole
and we can evaluate the integral by deforming the contour and using the residue theorem.

Performing this one obtains

1

/dan n-ho? Z (2.15)
—1 ’fL
Putting everything together into (2.14) yields
n—1 n—1
n'ka 2
MO =3 (ek k) /[da]n_4H s(ft
o=t Sl (2.16)

From (1.2) one can easily see that S(°) M,,_; is precisely the last line of (2.16), thus proving
Weinberg’s leading soft-graviton theorem.

The computation of (2.13) for ¢ = 1 in arbitrary dimensions was performed in [21, 22].
In the next section we start the computation of the next to subleading soft contribution
(1 = 2) by evaluating M? in (2.12). Then, in section 4, we will evaluate the action of
S on M,_;. We will compare both sides of (2.13) by matching terms that contain the
same support from the d-distributions and we will find perfect matching, thus, proving
the theorem.

3 Evaluation of M(?
We split the evaluation of M7(12) into three parts
M :/[da]n_4 (mi+ma+ms),  m= /dan St pli-b, (3.1)

3.1 Evaluation of m;

Using (2.9), the first contribution, m1, to MT(L2) is

1 n—1 n—1 n—1
m1 = 5By oS YD dunh II styrh n
1.,k m#ijk,l b, jik.m
1 v (3.2)
+ 5B ), (T H S(fph I,

11,4,k b#i,jikl



where we have isolated the integration over o, to the following integral

02
I = kyky kpokn / dops(frt)y—"1n (3.3)

OnlOnm

Therefore, in (3.2), we have Iy = I|, and Iy = I|,—.
We now move on to compute the integral (3.3). We find

n—1 n—1
B kb enky [ €nky knke enke (€nky)?kmkn
I_{[ (knklz Tle QZ Ole ) o2

Omi mi

+ (I < m)

ke, ek, 5,
e c;ézl: Ulco-mck k } 7

n—1 n—1
(€nke)? enkr knke — 2 enke knky
+ {(k?l'k?n)2 Z PR (€nki) Z >
c#l e e el le

(3.4)

n—1 n—1 2
enke €n-ki ko ke
ke _ 5o
T (; Olc kn'kl; O’zc) } l

The first line in (3.4) is the contribution of a double pole at o, = 0; and a double pole at
On = Om, whereas the second line in (3.4) comes from the contribution of a single pole of
the integrand at o,, = o, for all ¢ # [,m,n. The first term in the third line comes from a
single pole at o, = o, for all ¢ # [,n and the remaining of (3.4) comes from a third order
pole at o, = 0.

3.2 Evaluation of mo

For the evaluation of my we need to expand (2.4) to order A. The derivative of the
determinant of a n x n matrix with entries 7T,; can be obtained from the formula

A ger(r) = 303 (-1 e g (35)
a=1 b=1

where M;' denotes the determinant of the matrix obtained by removing the a'™ row and
the b*™® column of T. Applying it onto E,, in equation (2.4) yields

a dAa a ndCa n a dBtl n
ZZ( G 4 (1)t S gue 1 (1) +"0Mb¢niz)-
a=1 b=1

(3.6)
Here we have used the short notation
~, 4 det yl2a
Yy = #%#{1,2}5#{13}- (3.7)

0712

For convenience and without loss of generality we have chosen to remove the first two rows
and the first two columns in (2.4). In (3.6) we have also used the identity ¢ = —%. The



derivatives of the different matrix elements are

dAap - 1 dBap o
X — Uiab (6ankn kb + 5bnka kn) 5a;éb 5 W — 07 (3 8)
dCyp €akn €akn '
= —9 n5a - 5(1 7611 n.
dA Oab bnSar ’ Oan .
Putting this into (3.6) yields
dE, "= 1
n a+n _1\yn—1_ . Ta
=20 g (U b U+ (P B+ (1 ek ) (39)

Note that all the dependence in X is now contained in the ¢ determinants only, which also
need to be evaluated at A = 0 at the end. We further need to isolate any encounter of o,
n (3.9), since we eventually want to integrate over that variable. We find

o €nk €n€
Cnnz < i b% - ( 1)b bwn—l-b 1)

Onb On
- €nkp €n€p _ 3.10
Z+a=—0m2( m byt ) G
b—1 Onb Onb
7 2
1/’fi+a = 7Cnn¢g+a—lv

where we have dropped the tilde sign to denote the further removal of the rows and columns
that contain the variable o, that is 1§ denotes the determinant £, 1 after the removal of
the a' row and the ™ column. Then

n—1n— 1 a+b

AR 3 D=

a=1 b=1

—1
<kn'ka €nkp Q;Z)g — kn€p €n-€q ¢Zig_1

OnaOnb

+ (=1)" (€nka kn-ey — knkq €nep) w?wrb—l) (3.11)

=N
+2072an €a nwn—&—a 1

(o2
a=1 na

We recall that mso takes the form

n—1

knk
_ n—1 l n— 1
e fanatin 8 sy T s o
l#1,5,k m#i,j,k,l
thus, we will need the following integrals
C
Is= —kpky [ dopo(fr—H—22 1
’ l/ 7 ( " )O'nl(fnaanb (3 3)
CQ
I = —kyk / do,o(frt)y—"n (3.14)
OnlOna



The integral I, is directly obtained from (3.4) since Iy = —(kp-kq) 1 |;m=q. For I3 we find

nke 1
knka 0aoab

n—1
ke 1 1 enke  kpke enk; 1 enke 1
- . - Lt s,
* l[(k: o 0l g <en-k:a k:nk> T Rk 0Z  Fuke agl) ta0ab

I3 = kyky [ + (a 1)+ (a R b):| (5[7,5(1(517,5(,5&751)

+ (L a)+ ({a,1,b} = {1, a})] (3.15)

n—1ln—1

n—1
1 €nke kp-keenkq
+€n.k —
l[ En'kl; ot ky k‘len ky ;; 01c01d
1 2 kk 1 ek
n've n've 5(1 5 )
+kn-klc§ oh <kn-kz>2<c§ e ) ] o

As a check, note that from this expression the quantity I3/(k,-k;) is symmetric under the

exchange of any two pairs of (I, a,b) which is evident from the original definition in (3.13).
We now write mo making explicit the linear combination of the different types of

minors we have, i.e.,

n—1
my=2 % &7 H 3(fm 1D, (3.16)
1#i,5,k m#i,j,k,l
where
n—1 n—1
D= Z Z (crtf + ol io =) + sty 1) Isqiza, 16, arb}
a#l b#l,a
- N (3.17)
+ Z 4yt Z (Cwla +oa T+ ey + 08¢£L+a—1> I3gimp, 120y
a#l a#l

The coefficients ¢; are

c] = (—1)“+bkn-ka enky; co = —(—1)a+beb~kn €n€q; €3 = (—1)" (enkq €pkn — knka€nep);
= (=1)" (enka kn'€a — kn'ka €n-ea) I3{a=p, 120y + (—1)"€akn Lagi£a);
= (- 1)a+l (knkq €nky — knkyenka) ; c6 = (—1)““ (€qkn €n-€l — €1k €n-€q) ;
= (- 1)a+l+n (enka€rkn — knkq ene) ; cs = (—1)a+l+n (enki €akn, — knky€neq);
= (=1)" (en'ki kn-er — knki ener) Isi—a—py + (—1)"€rkn Lagi—ay-

(3.18)
In the above we have used the identity ¢y = —wg
3.3 Evaluation of mg

We define @Z; and @ZJ to be respectively the determinants F,, and F,,_1 after the removal
of the rows a, b and the columns c, d.



For the evaluation of mj3 we need to take the second derivative of (2.4) with respect
to A. From (3.9) we have

d’E o dw dyn e
n _ 2 (Z—'rTLk k; 1 a a'kn n+a _1 n—1 a'kn n+a
e ;am<( D ax D ks = A (G ek =3
(3.19)
With the definition 60;; to be 0 when 7 > j and —1 when 7 < j we find
7 n—1
d@[)g _ 1 n+b—1 n—1 Jbn b Tn,n+b
N et Uibn (( 1) Kk, an+( 1) €b knwa,n—o—b_'_( 1) €bkin an )
n—1
‘kn Tn,n
+ (_1)n+0ab60b—7wal; +b’
ba bn
dl/;ZJra o — 1 n+b nn+b n n,n+b
TN — Con (( 1" ky: kn¢n niat (=1 )" ey kntpintat(—1) fb'kn¢b,n+a>
n—1
140, €0k (3.20)
=+ ( 1) Hbab p wn—&—a n+b
bta bn
dwn—l—a — 1 n+b an+b b—1 Ta,n+b
d\ = ot z (( ) kb knf‘/}b n+a ( ) €b kn% n+a (_1) eb‘knwn,n—i—a)
n—1 0
_1 ab
+ ( 0_> (( )n+bkb k wn ot
b£a bn

+ ( 1)n+9abeb knwn+a b + ( )beb'knqﬁgza,n—i—b) .

We can further expand the n and 2n rows and columns of the minors appearing in (3.20).
With the help of the identity wgb = gg we arrive at the following result

EQ) = C2 Ay + CppAs + As, (3.21)
where
n—1n—1 i c k n—1n—1 c c k
b +b—1 b’
A= Z 6;”0 Uinta-1 +ZZ C;na o Ln+b—1s (3.22)
a=1 b=1 na®nb a=1 bta na9nb
n—1n—1n—1 b+c o
4 =2 3 E ok abaenke — kenaen i)
a—1 b=1 =1 Unaanbanc
n—1ln—1n— 1 b+C+n+9ab
5 ) D) Phe. S
a=1 c=1 bta OnaOnbOnc
1
{(kb.knen'kc Ficknen ko), a1 T (€rknécen — GC'knfb'EnWZf:an%—l]
n—1ln—1n— 1 b+0+‘9ab+9ac .
+2 Z Z Z €akn(€chnenky — kb'knﬁcfn)wg-&-a—lm-i-c—la (3'23)
a=1 b#a cta Ona0nbOnc



n—ln—1n—1n-—1 a+b+c+d

T D) B D

(en-kaen-kbec-kned-kn + ko knkpkp€c€ncaen
a=1b=1 c=1 d=1

0na0nbOncind

bn+c—1
= 2kgkp, 6n'kfbec‘knEd"fn) 1/)a7n+d,1

n—ln—1n—1n— 1 a+b+c+d+n+9ad

Yy Y36

a=1 b=1 c=1 d#a

(ka-k’nﬁn‘kd (kbk?n €c€n — En'kbEC'kn)¢g,?l+c— 1

Ona0nbOncOnd
bn+c—1

+ egknegen(kpknecen — en'kbGC.kn>wn+a—l,n+d—l>

n—ln—ln—ln— 1 a+b+c+d+9ad+9cb

DD NI I

a=1 c=1 b#c d#a

2kqkn 6b'enec'knfn'k‘dwad
n+b—1,n+c—1
OnaOnbOncOnd <

b n+b—1n+c—1
+ ka'knen'kbkc'knen’kd¢a§ + ea'kneb'enec'kned'€n¢n+a_17n+d_1) .

(3.24)
In order to finish the calculation of mg the only new integral we need to evaluate is

1
Is = /dané(fg—l) (3.25)
Ona0nb0ncOnd
for which we obtain
2

n—1 n—1
1 kn-ky 1 kn-ky
Is = OabOpcOc
° 7 (knka)? ; o2 " ke ; Tal pbeted
1

1 1 < ki 1
Oab . 60’ 5 c(sc li ) b7 ) d
knky oap | knke ; OBy Oub #b0bc0cd + cyclic {a c }}

(3.26)

1 1 1
<kn'/€a + - ) —0abOcddac + cyclic{b, ¢ d}}
1

1
OacOad knka

g
g
g

1 1
+ { ——0beOa£dOb+a,d + cyclic{b, d}}

——0abOctdOate,d + cyclic{b, c d}}

Oba0bd knkp

4 Action of §® on the amplitude

From (1.3), the complete expression for S ) including the spin contribution can be writ-
ten as

S =55+ 58 + S5 (4.1)
where the orbital, spin-orbit and spin parts are respectively given by
1= H? ) 1 n—1 . 52
5(2) - Korb Kso S( ) _ Jspin
(4.2)

,10,



with

orb (En'ka)Q
Kauu = I{,’n-k’a Enpu€ny — en-k‘a €n(uk’ny) + k‘ikn#kny 5
n'fva
KZC;LV = Ea'kn Enp€ny — En€q Gnukny — MEnykn“ + mknukny, (43)
knkq knkq
 (eakn)? €akn €n-€ (€n-€a)?
Kibin = ]:n ]: Enp€ny — %enm ) T ]; k Kok -

Then the action of S on the amplitude is

n—1
S(2)Mn—1 — 5(2) /[do.]n_4 H 5(fln—1

1,5,k (4.4)
= /[da]n_4 (81 + 8o + 83 + 84) ,

where we have separated the calculation into the following four parts

n—
OF,
o= Bras T30, e S w2 0 Totse)
8ka,u, al/
1#1,7,k = l#1,7,k 45
n—1 OF ( . )
83:2[(2?“/ 8nl H(S ), H(S nlS(z
a=1 €av Okay I£ik Iijk
In the subsequent computations we will make use of the identities
of k' o 02 fr
= b + 0 Z . L=, (4.6)

8kau Ola ald 6kau8kau

d£l

and also

8En— a a a n a n
o L 22 ( 1) by ap 4 (—1) Tt gl + (—1) ebuwi&bfl) )
ar b;éa

n—1

OF, _ 1 _
0 - =2 Z . <( 1)a+b+nk uwn-i-a 1 + ( )n+1kb“¢3+a—1 + (_1>a+b€bu¢;tig_11> '
€ap brta Oab

(4.7)
In the following we omit the upper index of the scattering equations fl"_1 and we simply
write them as fj.

4.1 Evaluation of s;

We find

n—1 n—1
w-brn S 8 s T S i ik

l#i,5,k m#i,j,k,l b;él,j kJlm a=1
11 b l l
+§En_125 (f1) H 5(f) ZKg;Vak e
1#i,5.k b#i,5,k,1 a=1

— 11 —



After some straightforward algebra and using (4.3) and (4.6) we obtain

afm 8fl
orb
Z Ka,uz/ akau Okyy = Opu L2 + 5m7f$l h. (49)

thus, comparing with (3.2), we obtain the desired result s; = m;.

4.2 Evaluation of s; and s3

The combination ss + s3 has the same delta function support as mo, thus, we will compare
these two expressions. For so we obtain

n—1
or OEn—1 afl
S IRA) II 3(fm) j{jfcub TS (4.10)
1#£i,5,k m#i,k,j,l ajp av
and for s3 we get
n—1 n—1 n—1
so OEn—1 8fl
= >0 I oUm) D K55 (4.11)
I#i,j:k m£i,k,j,l a=1 av. g

After some tedious but straightforward algebra and using (4.3), (4.6) and (4.7) we can
expand s + s3 in the same form of mgy as shown in (3.16) and (3.17). We have explicitly
computed each of the coefficients of the corresponding expansion for so + s3 and see that
they all precisely match those of (3.18), thus, arriving at sg 4+ s3 = mg as expected.

4.3 Evaluation of s4

Having matched all the previous terms on both sides, our last task is to show that s4 = ms.
From (4.5), (4.1) and (4.2) we have

n—1 n—1

1 0’E, 0?Ey,_q O?En_y

_ 6 n—1 7K0rb . —n—1 KSO o —n—1 7KSpln n- . 4.12

H (fl ) Z [2 apy 8kauakau + apv 8€auakau + 2 apy 86(1,/86au ( )
I#i,5.k a=1

Appropriately differentiating (4.7) we find

82E ) n—1ln—1
n— —9 < b+c+0b“+9“kjb‘uk v ac
@ka,,akrw ; 27&: OabOca

+(_1)a+b+n+9ac (k,buecu + Ecukby)wl?ﬁwrcfl + (_1)b+c+n+9ba (kb“6 + fcukb ) a n+c 0

1 bnte—1 -1
+(—=1)" (el e + ec“eb”)¢z’gi§_1 —ele (Y. ZIZ (= )b+C¢Z:ZIZ—1))

n—1 n—1
+2 Z Z - ( )a+b+n+9cb (kb'u6 + Ecukby)wZ?nJrcfl
b#a c#a,b ab%ca
b+6pc+0ac b
(=) e (e e + e e )R 1 et — 6" 6e”¢nib_1,n+c—1) ; (4.13)

n—1n—1
8 En 1 1 n v c ac a
A a3 S [ R R (1) oy + () )
avURqp
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H(=D)P (ke — e Ry Yt el = (1) ke )

b Oap+0a b
+6buk (( )+C+ vbac n+a 1,n+b—1 ¢g+a71,n+b71)

1 bnta—1 bnta—1
+€b“kcy((_1)a+bq/}g Zig 1 +( )a+c¢c,Zig—1 - wa,ﬁj—z—l)

+n—+0, b a,n+c—1 bn+c—1
‘|‘€bﬂecy(_1)c " b((_l) ¢n+a_1,n+b_1 - (_1)a¢n+a—l,n+b—1)
n—1 n—1
23 3 [
b#a c#a,b GabTac
+c+n+0, bn+a—1 b+cH+n+0p. a,n+a—1
+(_1)a o bebﬂechn+b 1,n+c—1 +( 1) e 6blu€cywn—&-b—l,n—‘rc—l
Opa+6 b
+(_1)a+c+ ba+ bcebukcywnc«kafl,n%»bfl] , (4.14)
In—1
a En 1 - b+ bn+a 1 a,n+a—1
e D I [ (BU e R )
avYCap bta cta abYac
b Opa+0ca +a—1,n+b—1 b n+a—1
+(—1)7F et et fbufcyw2+g—1,2+c—1 — (=) (Kt ke + kcukby)zﬂg,&r:q

- v v b: - 3 -
(D (e + e hy) (— DM ey — (CD T e )] - (415)

We now have all the ingredients to perform the comparison of s; with mg. The algebra
is tedious but straightforward since it only involves changes of the summation order and
renaming dummy indices. We have performed the analysis and found agreement of the two
expressions which completes the proof of the soft-graviton theorem.

Acknowledgments

We thank Wei He for useful discussions. We also thank Anastasia Volovich and Michael
Zlotnikov for correspondence. In the final stages of the writing of this paper we learned
of the work of Michael Zlotnikov [32] who was also embarked on our same computations.
C.K. would like to thank the organizers of the Simons workshop during which this project
was completed. The work of C.K. is supported by the Sao Paulo Research Foundation
(FAPESP) under grants 2011/11973-4 and 2012/00756-5. The work of F.R is supported
by FAPESP grant 2012/05451-8.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] S. Weinberg, Photons and gravitons in s matriz theory: derivation of charge conservation
and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049 [INSPIRE].

[2] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [INSPIRE].

,13,


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRev.135.B1049
http://inspirehep.net/search?p=find+J+PHRVA,135,B1049
http://dx.doi.org/10.1103/PhysRev.140.B516
http://inspirehep.net/search?p=find+J+PHRVA,140,B516

3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152
[arXiv:1312.2229] INSPIRE].

T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft
graviton theorem, arXiv:1401.7026 INSPIRE].

D. Kapec, V. Lysov, S. Pasterski and A. Strominger, Semiclassical Virasoro symmetry of the
quantum gravity S-matriz, JHEP 08 (2014) 058 [arXiv:1406.3312] [INSPIRE].

H. Bondi, M. van der Burg and A. Metzner, Gravitational waves in general relativity. 7.
Waves from azisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.

R. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat
space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.

F. Cachazo and A. Strominger, Fvidence for a new soft graviton theorem, arXiv:1404.4091
[INSPIRE].

F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions,
Phys. Rev. 110 (1958) 974 [INSPIRE].

T.H. Burnett and N.M. Kroll, Eztension of the low soft photon theorem,
Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

J.S. Bell and R. Van Royen, On the low-Burnett-Kroll theorem for soft-photon emission,
Nuovo Cim. A 60 (1969) 62 [INSPIRE].

V. Del Duca, High-energy bremsstrahlung theorems for soft photons,
Nucl. Phys. B 345 (1990) 369 [iNnSPIRE].

D.J. Gross and R. Jackiw, Low-energy theorem for graviton scattering,
Phys. Rev. 166 (1968) 1287 [INSPIRE].

C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060
[arXiv:1103.2981] [INSPIRE].

E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, arXiv:1404.5551
[INSPIRE].

A.J. Larkoski, Conformal invariance of the subleading soft theorem in gauge theory,
Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].

J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and
graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] INSPIRE].

C.D. White, Diagrammatic insights into next-to-soft corrections,
Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].

Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-energy behavior of gluons and gravitons
from gauge invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] INSPIRE].

F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions,
Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [InSPIRE].

B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from
scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].

N. Afkhami-Jeddi, Soft graviton theorem in arbitrary dimensions, arXiv:1405.3533
[INSPIRE].

— 14 —


http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2229
http://arxiv.org/abs/1401.7026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7026
http://dx.doi.org/10.1007/JHEP08(2014)058
http://arxiv.org/abs/1406.3312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3312
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
http://arxiv.org/abs/1404.4091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4091
http://dx.doi.org/10.1103/PhysRev.110.974
http://inspirehep.net/search?p=find+J+Phys.Rev.,110,974
http://dx.doi.org/10.1103/PhysRevLett.20.86
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,20,86
http://dx.doi.org/10.1007/BF02823297
http://inspirehep.net/search?p=find+J+NuovoCim.,A60,62
http://dx.doi.org/10.1016/0550-3213(90)90392-Q
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B345,369
http://dx.doi.org/10.1103/PhysRev.166.1287
http://inspirehep.net/search?p=find+J+Phys.Rev.,166,1287
http://dx.doi.org/10.1007/JHEP05(2011)060
http://arxiv.org/abs/1103.2981
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2981
http://arxiv.org/abs/1404.5551
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5551
http://dx.doi.org/10.1103/PhysRevD.90.087701
http://arxiv.org/abs/1405.2346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2346
http://dx.doi.org/10.1103/PhysRevD.90.065024
http://arxiv.org/abs/1406.6574
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6574
http://dx.doi.org/10.1016/j.physletb.2014.08.041
http://arxiv.org/abs/1406.7184
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.7184
http://dx.doi.org/10.1103/PhysRevD.90.084035
http://arxiv.org/abs/1406.6987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6987
http://dx.doi.org/10.1103/PhysRevLett.113.171601
http://arxiv.org/abs/1307.2199
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2199
http://dx.doi.org/10.1103/PhysRevLett.113.101601
http://arxiv.org/abs/1404.7749
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7749
http://arxiv.org/abs/1405.3533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3533

[23] Z. Bern, S. Davies and J. Nohle, On loop corrections to subleading soft behavior of gluons
and gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].

[24] S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and
gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

[25] F. Cachazo and E.Y. Yuan, Are soft theorems renormalized?, arXiv:1405.3413 [InSPIRE].

[26] B.U.W. Schwab, Subleading soft factor for string disk amplitudes, JHEP 08 (2014) 062
[arXiv:1406.4172] [INSPIRE].

[27] M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on soft theorems: trees, loops and strings,
arXiv:1406.5155 [INSPIRE].

[28] T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity,
Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] INSPIRE].

[29] Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and subleading
soft limits, arXiv:1406.1462 INSPIRE].

[30] T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED,
JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

[31] V. Lysov, S. Pasterski and A. Strominger, Low’s subleading soft theorem as a symmetry of
QED, Phys. Rev. Lett. 113 (2014) 111601 [arXiv:1407.3814] [INSPIRE].

[32] M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension,
JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].

,15,


http://dx.doi.org/10.1103/PhysRevD.90.085015
http://arxiv.org/abs/1405.1015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1015
http://dx.doi.org/10.1007/JHEP12(2014)115
http://arxiv.org/abs/1405.1410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1410
http://arxiv.org/abs/1405.3413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3413
http://dx.doi.org/10.1007/JHEP08(2014)062
http://arxiv.org/abs/1406.4172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4172
http://arxiv.org/abs/1406.5155
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.5155
http://dx.doi.org/10.1088/0264-9381/31/22/225008
http://arxiv.org/abs/1405.5122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5122
http://arxiv.org/abs/1406.1462
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1462
http://dx.doi.org/10.1007/JHEP10(2014)112
http://arxiv.org/abs/1407.3789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3789
http://dx.doi.org/10.1103/PhysRevLett.113.111601
http://arxiv.org/abs/1407.3814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3814
http://dx.doi.org/10.1007/JHEP10(2014)148
http://arxiv.org/abs/1407.5936
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.5936

	Introduction
	Review and setup of the problem
	Evaluation of M(n)**(2)
	Evaluation of m(1)
	Evaluation of m(2)
	Evaluation of m(3)

	Action of S**(2) on the amplitude
	Evaluation of s(1)
	Evaluation of s(2) and s(3)
	Evaluation of s(4)


