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1 Introduction

A large part of our understanding of quantum field theory comes from perturbative expan-

sions around weakly coupled limits. This is especially true for complicated objects such as

scattering amplitudes, which depend on many kinematic variables. There is thus a gen-

eral interest in methods which remain applicable exactly at finite values of the coupling.

A prominent example is the Renormalization Group. It allows to make exact statement
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about the behavior of the amplitudes in certain regimes, effectively resumming infinitely

many terms in the perturbative series.

These sorts of resummations provide an excellent way to get a qualitative and quan-

titative grasp of the amplitudes at finite coupling. They have been worked out recently to

an exquisite level of detail in the planar N = 4 SYM theory, partly due to integrability in

this theory [1]. The hexagon amplitude in this theory, for example, admits the following

expansion [2] in the collinear (a.k.a. OPE) limit (large τ):

Whex = 1 + 2
∑
`≥1

(−1)` cos(`φ)

∫ +∞

−∞

dp

2π
µ̂`(p) e

ipσ−τE`(p) + . . . , (1.1)

whereWhex is a regularized conformal invariant amplitude [3], {τ, σ, φ} represent the confor-

mal invariant data encoded in the external momenta and the dots stand for multi-particle

excitations. The form of eq. (1.1) is largely controlled by symmetries, but what makes

this formula especially remarkable is that the functions Em(p) and µ̂m(p) are now known

exactly at all values of the ‘t Hooft coupling λ [3].

Integrability made arguably its first appearance in four-dimensional quantum field

theory through the Regge limit, where the relevant BFKL evolution kernel [4, 5] was found

to possess hidden symmetries [6–8]. In this limit, the preceding hexagon amplitude admits

an expansion of the form [9–11]:

W 	
hexe

−iπδ = −2πi

∞∑
m=−∞

(−1)meimφ
∫ +∞

−∞

dν

2π
µ̂BFKL(ν,m) ei(σ−τ)ν+(σ+τ)ω(ν,m) + . . . , (1.2)

when written in terms of our variables. Here 	 stands for the relative analytic continuation

from the kinematic regime of (1.1), δ is a known phase (see eq. (4.1)) and in the Regge

limit σ and τ are both large with a finite difference.

In spite of its historical significance, integrability of the BFKL Hamiltonian has not

yet been successfully integrated into the all-loop N = 4 story, and the building blocks

of eq. (1.2) are much less well-understood than their collinear counterparts (1.1). The

main aim of this paper will be to bridge this gap for this particular observable and obtain

expressions for ω(ν,m) and µ̂BFKL(ν,m) that are valid at all values of the coupling, extend-

ing the three-loop perturbative results of refs. [12–16] and the strong coupling results of

refs. [17, 18].

The two preceding expansions resum completely different physics. As one approaches

the Regge limit, an infinite number of higher-twist contributions to the collinear expan-

sion (1.1) become enhanced, and need to be resumed. Conversely, an infinite number of

terms in the BFKL expansion (1.2) would be required to account for just the leading term

of the collinear expansion.

Nevertheless, as we will demonstrate in this paper, following earlier suggestions from

refs. [19, 20], the leading term in the collinear expansion completely determines the leading

term in the BFKL expansion! Since the functions in the collinear expansion are known

exactly, we will be able to determine the color-adjoint BFKL eigenvalue and impact factors

exactly at all values of the coupling.
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There is a rich history of interplay between collinear and high-energy expansions. The

BFKL equation was used early on to predict the behavior of the DGLAP kernel at small

x [21–23]. Conversely, the DGLAP equations yields an infinite number of predictions

regarding the collinear limit of the BFKL Hamiltonian, which turn out to be important

to stabilize its perturbative expansion (see for instance [24, 25]). These connections have

been extended to higher orders in perturbation theory, strong coupling, and to structure

functions in conformal field theory [26–30]. Generally, one uses one expansion to predict

the leading logarithmic terms in the other expansion in a certain limit.

In this paper we will carry out, for the first time, this matching procedure exactly at

all values of the coupling.

Conceptually, the key idea exploits the existence of a physical region in which both the

expansions (1.1) and (1.2) can be simultaneously truncated to the leading term, allowing

the relevant analytic functions to be measured to arbitrary accuracy. Even though this is a

rather restricted region, their agreement in an open set will be sufficient to fully reconstruct

one from the other. This reconstruction, via analytic continuation, is fundamentally non-

perturbative and we will make full use of the finite-coupling expressions which are available

on the OPE side.

The paper is organized as follows. In section 2 we briefly review the concept of

Reggeization and its realization in gauge theory. We introduce the concept of “sister”

trajectory, whose contribution to physical scattering amplitudes cancels in all but specific

kinematic regions. In section 3 we discuss the OPE expansion of the 6-particle amplitude,

and we demonstrate that in a certain Lorentzian region it is governed not by the usual op-

erators, but by “sister” ones related in a specific way. In section 4 we analyze the “sister”

contribution in the high-energy limit and perform the necessary analytic continuation which

converts it to finite-coupling expressions for the BFKL kernel. In section 5 we analyze the

strong coupling limit of our finite coupling result. We construct a new semi-classical string

solution and make contact with existing literature. Finally, in section 6, we elaborate on

various important subtleties and in section 7 we suggest directions for future work. Four

appendices support the main text.

2 Reggeization: a brief overview

High-energy forward scattering is a way to measure the transverse structure of a target.

This structure exhibits some energy dependence, which also tells us about the excitations

of the theory. This dependence is captured by the action of a Lorentz boost between the

projectile and target. As the classic work of Regge has demonstrated, the spectrum of

the boost operator is intimately linked, by a process of analytic continuation away from

integer spin, to that of spatial rotations. This has led to a rather successful phenomenology

of the strong interactions wherein hadronic bound states are organized into “trajectories”

α(t), expressing their spin as a function of energy squared. The trajectories α(t) are then

analytically continued to the spacelike region and compared with the energy dependence of

various high-energy processes [31]. As we will see, the continuation between the collinear

and high-energy expansions is of precisely this type.
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Figure 1. (a) The most familiar continuation, away from integer spin, of the spectrum of the

superstring in flat space. (b) The familiar and sister trajectories, which both enter the partial wave

decomposition of the six-particle amplitude.

To illustrate one important subtlety we will need to deal with, it will be helpful to

first discuss a comparatively simple example involving open strings in flat space-time. This

example dates from the days where this subject was called dual resonance models. As was

the case then, we find that the dual resonance model usefully illustrates certain features of

gauge theory.

The example is 2 → 4 scattering of open strings at tree level. We consider the high-

energy limit, where three particles (2, 3 and 4) form a cluster of fast-moving particles,

separated by a large rapidity gap from the other three (see figure 2-a below). Because

of the Regge factorization built into string theory, one might naively expect an energy

dependence of the type

A6 ∝ sα(t234), with α(t) = 1 + α′t . (2.1)

The exponent is the leading open-string Regge trajectory, exchanged between the

two clusters.

Eq. (2.1) is indeed the correct answer for the 2→ 4 amplitude when the two incoming

particles are adjacent along the color trace. However it is incorrect when the two incoming

particles are 3 and 6. In keeping with the literature we will refer to the latter region as

the Mandelstam region of the 2 → 4 amplitude. We stress that it is a perfectly physical

configuration, it is just a different ordering of the same external momenta. A computation,

however, reveals that in this region the asymptotic behavior for large s and negative enough

t is controlled by a different trajectory:

Afolded
6 ∝ sα̌(t234) , α̌(t) =

1

2
+

1

2
α′t . (2.2)

This new, “sister” trajectory was first observed in the bosonic string amplitude in refs. [32–

34], and subsequently also in the superstring [35] (as well as for closed strings, where it

appears in all kinematic regions [36]). It is part of an infinite sequence of trajectories trans-

lated by half-integer spin. Figure 1 shows these trajectories, where the spin in the vertical

axis being defined with respect to some SO(2) or SO(1,1) subgroup. These trajectories
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Figure 2. (a) Sketch of the string worldsheet exchanged between two sets of highly boosted

particles (2, 3 and 4 vs. 5, 6 and 1) in the classical limit. Here, particles 1 and 2 are in-coming

while the rest are out-going. (b) In the Mandelstam region where 3 and 6 are in-coming while the

rest are out-going, the exchanged state is obtained by folding the picture in (a). These states lie

on the “sister” trajectories of figure 1.

are essential in order to correctly account for the high-energy behavior of the 6-particle

amplitude. It is important to stress that they are not associated with any new state which

would lie outside of the familiar lattice. They simply represent a different way to group

the states, away from integer spin, into analytic families.1

The interpretation of the sister trajectories is most transparent in the classical regime

α′|t234| � 1, where the exchanged string can be given a classical description à la Gross-

Mende-Manes [39, 40]. To see this we have evaluated this classical solution for a sample

choice of external momenta taken both in the planar and Mandelstam kinematics. A sketch

of some representative solutions are shown in figure 2. One sees that in the Mandelstam

region the exchanged string can be “folded”. This naturally doubles its tension, explaining

the unusual slope in eq. (2.2).

Although sufficiently simple to be worked out in full detail, this example turns out

to be a good model for a certain gauge theory phenomenon. In this case the elementary

trajectory will be provided by the Reggeized gluon, while composite states containing

several Reggeized gluons will be the analog of the higher-tension or “sister” trajectories.

Exchanges of multiple Reggeized gluons are suppressed in perturbation theory by pow-

ers of the coupling, but are necessarily important in precision calculations. Most impor-

tantly, the amplitude for exchanging the Pomeron (a color-singlet pair of Reggeized gluons)

has the property that it increases with energy. Hence for high enough energies, multi-

Reggeon exchange in principle dominates, regardless of the value of the coupling. It is

possible to consider situations where this phenomenon is present, yet is kept under con-

1The need for this alternative grouping may be seen from the multiplicities of SO(N) representations

which occur at a given mass level [37, 38]. In particular, we have used table 6c of ref. [38] in order to obtain

eq. (2.2) for the superstring, since the original amplitude calculation in ref. [36] did not implement the GSO

projection (which was invented later).
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trol by an adjustable parameter. This happens, for example, when either the projectile or

target is a color-singlet with a sufficiently small size. In this case one will always be in

the so-called linear or dilute regime (a phenomenon sometimes referred to as “color trans-

parency”).2 Another possibility is to consider theoretical limits such as large Nc, which we

will do in this paper.

The large-Nc suppression of multiple Reggeized gluons exchange (not only multi-

Pomeron) is a nontrivial aspect of BFKL dynamics. It was (we presume) understood

already in the early days of the BFKL approach. It can be seen rather explicitly, for

example, in the multi-Regge limit, where one has several rapidity gaps. Technically, the

formalism contains both a signature-odd and a signature-even Reggeized gluon, with oth-

erwise the same quantum numbers (“signature” is the eigenvalue under the flip in figure 2).

Depending upon the kinematic region, these can thus interfere constructively or destruc-

tively when exchanged in a peripheral channel (t23). When one computes the contribution

from two Reggeized gluons in the central channels (t234), one finds that the color factors

cancel out exactly in the planar limit due to such interference, in all regions except for the

Mandelstam region. This in close analogy to what we have just discussed for tree-level open

strings. This two-Reggeon contribution was brought to attention in a remarkable series of

paper starting from [12, 13], on which we will build. It is worth mentioning however that,

as far as we know, the fundamental ingredients have been around for a long time (see, for

example, the first, third and fourth diagram of figure 17 in ref. [41]).

A conceptually distinct approach to high-energy scattering exploits, in gauge theory,

the dynamics of null Wilson lines. This was pioneered notably in the work of Balitsky [42].

The Wilson lines track the color charges of fast partons in the projectile. In this formalism

the Reggeized gluon can be identified with the logarithm of a null infinite Wilson line. For

more details, we refer to ref. [43]. In the planar limit the formalism simplifies dramatically:

as argued in the last reference, the number of Wilson lines required to describe a given

process, regardless of the value of the t‘ Hooft coupling, should be a fixed number which

depends only on the kinematics, and determined through simple rules. For planar scattering

amplitudes, by considering the available color charges during the (effectively instantaneous)

scattering process, one easily sees that the six-particle amplitude in the Mandelstam region

is the first time where dipole-dipole scattering can occur (see figure 3).

One may think that these subtleties are of a rather technical nature, affecting mainly

high-point amplitudes in the planar limit. Our point of view is that exchange of multiple

Reggeons is a general phenomenon which affects all amplitudes away from the planar limit.

Planar high-point amplitudes allow us to study it in a controlled way.

3 Continuation of collinear expansion and sister dispersion relation

We consider the collinear expansion for the process of 3 → 3 scattering in the kinematics

shown through the dual null polygon in figure 4-b. This region contains the same informa-

2This can be seen as analogous to the large impact parameter limit in classical Regge theory, which is

similarly invoked to justify a picture based on exchanging a small number of reggeons, irrespective of their

coupling — in a gapped theory, interactions are exponentially suppressed at large distances. This analogy

is made very precise in the AdS/CFT correspondence, see ref. [27].
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Figure 3. (a) Gluon Reggeization in the planar limit. The multiple gluons exchanged between

the target and projectile are sourced by a single color source on each side (heavy blue line), whose

location in the transverse plane is the dynamical variable in the BFKL evolution equation. This

equation originates from (factorized) high-energy sub-loops as shown for example on the left. (b)

The amplitude in the Mandelstam region (compare with figure 2(b)). At high energies it factorizes

into dipole-dipole scattering.

tion as the 2→ 4 Mandelstam region that we have discussed so far, but it will turn out to

be more convenient for our analysis.

The 6-particle amplitude depends a-priori on 9 Mandelstam invariants, but in the

theory we will consider, planar N = 4 super Yang-Mills (SYM), dual conformal symmetry

ensures that the nontrivial dependence factors through 3 conformal cross-ratios:

u1 =
s12s45

s345s456
≈ 1

1 + e−2σ
, u2 =

s23s56

s234s456
≈ e−2τ , u3 =

s34s61

s345s234
≈ 1

1 + e2σ
.

(3.1)

These expressions are accurate up to corrections suppressed by powers of e−τ , which will

not be important in the regimes we will consider.

The collinear limit τ →∞ is now extremely well-understood. In this limit the ampli-

tude organizes in a convergent OPE series, whose relevant anomalous dimensions as well as

the vacuum energy are known exactly from integrability [44, 45]. Furthermore, a conjecture

for the form factors at finite value of the coupling has been recently constructed [46]. This

data govern the 6-particle amplitude (more precisely, an infrared-finite combination of it

and known four- and five-point amplitudes), through an expansion of the form3

Whex − 1 = 2
∑
`≥1

(−1)` cos(`φ)

∫ +∞

−∞

dp

2π
µ̂`(p)e

iσp−τE`(p) + . . .

≡ 2
∑
`≥1

(−1)` cos(`φ)F`(σ, τ) + . . . (3.2)

3Relative to ref. [46] we have moved a factor (−1)` from the measure to the outside.
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Figure 4. (a). The hexagon representing the six-gluon amplitude in Euclidean kinematic, where

all non-adjacent cusps are space-like separated. Cusps 5-6 and 2-3 in this figure are extended

in the transverse space while all other cusps stand in the plotted R1,1 plane. In the collinear

limit, these two cusps are flattened along the red square. After the analytic continuation {σ, τ} →
{σ + iπ/2, τ − iπ/2} we arrive at the 3 → 3 kinematical configuration in (b). To be more precise,

for the momentum transfers s345 and s456 to become time-like (while all other kept space-like), we

also have to drag the cusp 5-6 to its antipodal point (at the top in (b)). This flip is not seen at the

level of the conformal cross ratios (3.1). In the multi-Regge limit, cusp 5-6 (2-3) approaches the

antipodal point of cusp 1-6 (3-4).

Here, we have retained only the leading-twist single-particle contribution for each angular

momentum ` ≥ 1, for reasons which will be explained below. These contributions as well

as their multi-particle states were recently constructed in [47, 48].

Importantly, the expansion (3.2) is derived in the so-called Euclidean region, where all

invariants in eq. (3.1) are spacelike and σ, τ are real. We are interested in a Lorentzian

region where the invariants s345 and s456 are time-like while all other invariants are space-

like. This requires an analytic continuation, under which the conformal cross ratios in (3.1)

transform as u1 → e2πi|u1| and u2,3 → eiπ|u2,3|, see [11]. We will thus require a nontrivial

continuation of the σ and τ variables:

τ → τ − iπ/2 , σ −→
γ
σ + iπ/2+i0 , cosφ→ cosφ . (3.3)

The contour γ amounts for taking σ large and negative, then shifting it by iπ2 and finally

taking its real part back to its original positive value. We keep φ unchanged through the

continuation.4 As depicted in figure 4, the cusp whose location is labeled by σ (2-3) needs

to be dragged around another cusp (1-2), which corresponds to adding the imaginary part

to σ while its real part is large and negative.

4The continuation path γ differs from the one used in e.g. ref. [11] in that the norms |ui| are not kept

constant. As far as we can tell the two paths are nevertheless physically equivalent.
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To see the effect of the continuation on eq. (3.2), it is useful to record the leading order

expressions at weak coupling for the ` = 1 mode,

µ̂1(p) = 2πg2 1

cosh(πp2 )(p2 + 1)
+O(g4) ,

E1(p) = 1 + 2g2

[
ψ

(
3

2
+
ip

2

)
+ ψ

(
3

2
− ip

2

)
− 2ψ(1)

]
+O(g4) ,

(3.4)

where g2 = λ/(4π)2. We see that when Imσ = π/2 the Fourier transform becomes

marginally convergent. This reflects the presence of a branch point at σ = iπ/2, cor-

responding to the point where the cusp (2-3) becomes null separated from cusp (5-6) in

figure 4-a, so that u3 = ∞. Depending on which side of the branch cut one is, one can

get two different functions. Let us thus define the analytic continuation of the function

Fl(σ, τ) in (3.2) below the cut, and its discontinuity by:

F ↓` (σ, τ) ≡ F`
(
σ + i

π

2
− i0, τ − iπ

2

)
,

F
l
` (σ, τ) ≡ F`

(
σ + i

π

2
+ i0, τ − iπ

2

)
− F ↓` (σ, τ) .

(3.5)

From now on we will absorb the imaginary shifts in the definitions of F ↓` and F
l
` , so

that their arguments will be real. The first function is defined directly by its Fourier

representation, while the function we will be interested in is the second one, which is

defined only by analytic continuation. Physically, F
l
` represents the discontinuity of the

amplitude in the s345 channel. It vanishes, by construction, for σ < 0.

At leading order, for example,

F ↓1 (σ, τ) = 2πg2

∫ +∞

−∞

dp

2π

ie−πp/2 eiσp−τ

cosh(πp2 )(p2 + 1)
+O(g4) (3.6)

= g2e−τ
{

2eσσ + iπeσ −
(
eσ − e−σ

)
log
(
1− e2σ + i0

)}
+O(g4) . (3.7)

The discontinuity comes just from the logarithm,

F
l
1 (σ, τ) = 2πig2e−τ

(
eσ − e−σ

)
θ(σ) +O(g4) . (3.8)

A crucial feature is that the two functions have dramatically different behavior in the

Regge limit σ, τ → ∞: F ↓1 vanishes like e−τ−σ, while F
l
1 goes like eσ−τ and thus survives

in the Regge limit, as expected. We stress, that our analytic continuation path is such

that the OPE twist expansion does not need to be resummed (not until σ becomes so large

that one enters the BFKL regime so deeply that eσ−τ � 1 no longer holds, which we will

not need to do in our calculations), so that the continuation can be performed for each

F` independently.

It is possible to calculate such discontinuities to rather high orders in perturbation the-

ory, as initiated in ref. [19] and pursued further in ref. [20]. These references considered the

2→ 4 kinematics but our discussion so far has been essentially equivalent. The expressions

– 9 –
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for µ̂`(p) and E`(p) are such that, to any loop order, F ↓` (σ) can be expressed in terms of

harmonic polylogarithms with argument e−2σ [49]; this allows for a systematic treatment.

We found a simple systematic procedure to organize the result, which will allow us

to pass directly to finite coupling. In this procedure a “sister” dispersion relation will

naturally appear.

3.1 Analytic continuation of Fourier transform: general framework

We illustrate the idea by working to leading-logarithm accuracy, e.g. we compute F1 in

eq. (3.2) exactly in g2 but using the functions µ̂(p) and E(p) truncated to order g2. For

conciseness in this subsection we discuss the mode ` = 1 and temporarily omit the subscript.

The generalization to higher orders and to other values of ` will be immediate.

We begin by writing the evolution in τ as a convolution in σ-space, omitting temporar-

ily the trivial O(g0) piece:

− d

dτ
F ↓(σ, τ) =

∫ ∞
−∞

dtK(t)F ↓(σ − t, τ) , K(t) = −4g2 e−|t|

(e2|t| − 1)+
+O(g4) . (3.9)

The kernel K(t) is the Fourier transform of the dispersion relation in eq. (3.4). The first

observation is that it is not analytic, because of the absolute value.5 This is a problem

because to analytically continue σ we also need to continue t, in order to prevent σ− t from

hitting the cut of F ↓ starting at t = σ. To remedy this, we split the kernel into two analytic

pieces K±, which agree with K respectively for positive and negative arguments. Then

− d

dτ
F ↓(σ, τ) =

∫ 0

−∞
dtK−(t)F ↓(σ − t, τ) +

∫ ∞
0

dtK+(t)F ↓(σ − t, τ) . (3.10)

Both integrals now define analytic functions of σ.

The crucial step in our procedure is to properly drag the contour of integration around

the cut as we analytically continue the evolution equation, as a function of the argument

σ on the left-hand side. By collecting the various pieces of the contour shown in figure 5,

and using the appropriate kernel in each component, we obtain a simple closed evolution

equation for the discontinuity:

− d

dτ
F l(σ, τ) =

∫ ∞
0

dt
(
K+(t)−K−(t+ i0)

)
F l(σ − t, τ) . (3.11)

This is much like the original kernel except that the piece K− has been analytically con-

tinued clockwise to positive t.

The interest of eq. (3.11) is that it disentangles the continuation of the form fac-

tor from that of the energy; more generally this trick would help analytically continue

any convolution.

At the lowest order, one can compute from eq. (3.9) that

K+(t)−K−(t+ i0) = −4g2

(
e−t + e3t

(e2t − 1)+
− iπ

2
δ(t)

)
. (3.12)

5For any test function G(t), the + prescription is defined as:
∫∞

0
dt

(e2t−1)+
G(t) ≡

∫∞
0

dt
e2t−1

(G(t)−G(0))

and in (3.9) we have G(t) = e−|t|F ↓(σ − t, τ) .
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σ − t

σ − i0
0

K−K+

σ − t
σ + i0

0K−

K+

(a) (b)

Figure 5. (a) The function F ↓ is originally defined on a real line below the cut. (b) Contour for

(σ − t) in the convolution (3.10) after σ has been continued above the cut, passing to the left of

the branch point. Only the range of integration between the two dashed lines contributes to the

discontinuity [(b)-(a)].

The first term arises trivially but the iπ term is a slightly subtle anomaly which originates

from the continuation of the + prescription. It will be important below so let us elaborate

on it. It can be derived simply by expanding out the action of K− on a test function:∫ 0

−∞

dtG(t)

(e−2t − 1)+
≡
∫ −ε
−∞

dtG(t)

e−2t − 1
−G(0)

∫ −ε
−∞

dt

e−2t − 1
.

The second integral is just a constant and so does not participate in the analytic continu-

ation. The first integral continues nontrivially when the t contour is rotated clockwise to

positive t: ∫ −ε
−∞

dtG(t)

e−2t − 1
−→

∫ ∞
−ε

−dtG(t)

e−2t − 1− i0
= − iπ

2
G(0) +

∫ ∞
ε

−dtG(t)

e−2t − 1
. (3.13)

The integral re-combines with the constant to form the + prescription, leaving the addi-

tional anomaly.

Performing the Fourier transform of (3.12) and reinstating theO(g0) term in the energy

yields a new dispersion relation, which we will call “sister”:

Ě1(p) = 1 + 2g2

[
ψ

(
3

2
+
ip

2

)
+ ψ

(
−1

2
+
ip

2

)
− 2ψ(1) + iπ

]
+O(g4) . (3.14)

It essentially differs from (3.4) by the flipping of the argument of the second ψ-function,

which makes it analytic for Im p < −1. The discontinuity defined in (3.5) can now be

written in the form (when ` = 1)

F
l
` (σ, τ) =

∫ ∞
−∞

dp

2π
µ̂
l
` (p)e

ipσe−τĚ`(p) , (3.15)

where the p contour in the integral runs below all singularities, in accordance with the

vanishing of the discontinuity for σ < 0. Equation (3.15) is the main result of this sub-

section. It expresses that the discontinuity in the Mandelstam region is not controlled by

the original dispersion relation, but rather by a sister one. This is quite reminiscent of our

earlier discussion of strings in flat space.

The lowest order “sister” form factor can be obtained by Fourier transforming eq. (3.8):

µ̂
l
1(p) = −4πig2 1

p2 + 1
+O(g4) . (3.16)
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Substituting into eq. (3.15) yields a prediction for the discontinuity to leading-log accu-

racy and to any loop order. With the help of the HPL package [50], we have verified

this prediction against the direct analytic continuation of F ↓ up to order g10, and found

perfect agreement.

3.2 Sister dispersion relation at finite coupling

We are ready to go directly to finite coupling. The dispersion relations E`(p), for ` ≥ 1,

have been obtained in ref. [44]. They are expressed in terms of an auxiliary spectral

parameter u:

E`(u) = `+

∫ ∞
0

dt

t
K(t)

(
cos(ut)e−`t/2 − 1

)
,

p`(u) = 2u+

∫ ∞
0

dt

t
K(−t) sin(ut)e−`t/2 .

(3.17)

The function K(t) admits the convergent expansion6

K(t) =
1

1− e−t
∑
n≥1

2(2n)γ2nJ2n(2gt)− 1

et − 1

∑
n≥1

2(2n− 1)γ2n−1J2n−1(2gt) . (3.18)

Assuming this expansion, the BES equation, which determines the coefficients γi, takes the

simple form

E0(u) = p0(u) = 0 for u ∈ [−2g, 2g] . (3.19)

Importantly, the t→ 0 limit of K(t) is controlled by γ1, which, up to a factor, is the cusp

anomalous dimension.

−K(0) = 2gγ1 = 4g2

{
1− π2

3
g2 +

11π4

45
g4 − g6

(
73π6

315
+ 8ζ2

3

)}
+O(g10) ≡ Γcusp . (3.20)

Further coefficients are recorded in appendix B.

In principle we should now try to apply the preceding analytic continuation procedure

to the functions E`(p). However, because the procedure applies to any convolution, it is

easy to see that we can simply treat E`(u) and p`(u) separately. The procedure is then

straightforward: we take all the terms in (3.17) which contain eiut (these are the terms

which would go into K−), and we rotate the t contour clockwise 180◦ in them. This yields

Ě`(u) = `+
iπ

2
Γcusp +

∫ ∞
0

dt

t

[
K(t)

e−iut−`t/2 − 2

2
+K(−t)e

−iut+`t/2

2

]

p̌`(u) = 2u+
π

2
Γcusp − i

∫ ∞
0

dt

t

[
K(t)

e−iut+`t/2

2
−K(−t)e

−iut−`t/2

2

] (3.21)

The Γcusp terms originate from the pole at t = 0, precisely as in eq. (3.13); this pole is

controlled by the cusp anomalous dimension thanks to eq. (3.20). The integrals define

analytic functions of u in the lower-half plane Imu < −`/2.

6In the notation of ref. [44], K(t) =
γ+(2gt)

1−e−t −
γ−(2gt)

et−1
.

– 12 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
7

The analytic continuation of the form factor is similar and is discussed in appendix A.

Using the analytic expressions in ref. [49] together with the HPL package, we have verified

that eq. (3.21) reproduces the correct discontinuity up to four loops. We stress, however,

that the correctness of eq. (3.21) can be tested without knowledge of the correct form

factor. The concept of the sister dispersion relation allows to completely disentangle the

continuation of the energy from that of the form factor.

Finally, let us comment on the amplitude in the 2 → 4 region, as was previously

considered in refs. [19, 20]. The relevant continuation is then σ → σ − iπ, passing again

to the left of the cut at −iπ/2. Our derivation of Ěl(p̌l) (3.21) will not be effected by

this change. However, the prediction for F 2→4
l is more involved. It can be obtained by

adding, to the original amplitude, our result for the discontinuity. Considering that this

continuation is the complex conjugate of the case σ → σ + iπ, which is closer to our

definitions, the prediction can be written:(
F 2→4
`

)∗
=

∫ ∞
−∞

dp

2π
eiσp

[
µ̂`(p)e

−τE`(p)−πp + µ̂
l
`e
−τĚ`(p)−πp/2

]
+

∮
C

dp

2π
eiσp−πp/2µ̂

l
`e
−τĚ`(p) .

(3.22)

This formula should be compared against eq. (3.15), which expresses the discontinuity of

the OPE in the 3 → 3 region. The first integral runs along the real axis while C encloses

all lower-half plane singularities of the second integrand. The first integral is convergent

as the behavior of µ̂l is such that the square bracket behaves at large negative p like

eπ|p|µ̂`(p)
[
e−τE`(p) − e−τĚ`(p)

]
. However (E`(p) − Ě`(p)) ∼ e−π|p|/2 in this region. In the

Regge limit σ →∞ the second integral dominates and we reproduce the leading-log formula

proposed in ref. (3.15). More generally, we have also verified eq. (3.22) against the analytic

expressions of ref. [49] up to order g10.

4 Going through the cut: finite coupling BFKL eigenvalue

Before we identify the sister dispersion relation (3.21) with the leading Regge trajectory

in the adjoint-dipole sector with transverse angular momentum |m| = ` ≥ 1, let us briefly

discuss the identification of the quantum numbers between the two expansions. The Regge

factorization formula of ref. [10, 11] gives the BDS remainder function in the form7

R3→3
hex e

−iπδ = −2πi

+∞∑
m=−∞

(−1)meimφ
∫ +∞

−∞

dν

2π
µ̂BFKL(ν,m)ei(σ−τ)νe(σ+τ)ω(m,ν) . (4.1)

The phase δ =
Γcusp

2 log |w|
|1+w|2 , where w = eσ−τ+iφ, essentially cancels a non-factorizing

phase present in the BDS Ansatz. On the other hand, the OPE prediction (3.2) is given for

the ratio Whex, which is associated with a specific propagation channel. The conversion,

in the multi-Regge limit, can be obtained readily using eq. (119) of ref. [46]: W3→3
hex =

7This formula of refs. [10, 11] is expressed in terms of variables which are related to our variables through:(
w
w∗

) 1
2 7→ eiφ; |w| 7→ eσ−τ ; 1√

|u2u3|
7→ eτ+σ; νhere = 2νthere. Also we have omitted a “cosωab” term as a

consequence using a slightly different contour of integration to avoid real-axis poles, as discussed at the end

of subsection A.4.
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R3→3
hex e

−iπ Γcusp
2

log |1+w|2 . This extra phase will turn out to be irrelevant in the saddle point

region that we will consider shortly, but we find pleasing that it neatly cancels a piece of

the phase −iπδ. The part which remains, however, is the one which will be important for

the analysis. It gives that

W3→3
hex e−

1
2
iπ(σ−τ)Γcusp = right-hand side of eq. (4.1). (4.2)

Comparing with the collinear expansion (3.2) and (3.15) then leads to the following iden-

tification of quantum numbers:

ν =
1

2
(p̌− iĚ)− π

2
Γcusp , −ω =

1

2
(Ě − ip̌) . (4.3)

The physical interpretation of these formulas is simple: the OPE and BFKL expansions

resum the exchanged states in the same s234 channel, both organized in terms of the

symmetries of the same associated null square, see figure 4. However, for the two limits

one chooses to diagonalize different symmetries (dilatations and boosts, as opposed to

σ-translations and twist), which differ by a 45◦ rotation.

It seems likely that the simple form of eq. (4.2) can be generalized to higher-point

amplitudes, using a sequence of null squares and pentagons appropriate to the multi-Regge

limit; we also believe that the extra phases, responsible for the Γcusp shift in ν, can be

predicted in a simple and systematic way using the anomalous Ward identities for dual

conformal symmetry as done in ref. [43]. We hope to discuss this in a future publication.

Returning to the interplay between the collinear and Regge limits, we must address

the question of whether there exists some physical observable for which we can simultane-

ously apply (3.2) and (4.2), thereby justifying equating them. Clearly this observable will

involve complex momenta, due to the map (4.3). This arises naturally when evaluating

real configuration space amplitudes using the saddle point method.

If we take both σ and τ sufficiently large, regardless of the value of the coupling, the

integrals will develop narrow saddle points at the points p∗ and ν∗:

σ

τ
=

1

i

dĚ

dp
(p∗) and

τ − σ
τ + σ

=
1

i

dω

dν
(ν∗) . (4.4)

For physical observables the left-hand sides are real. As can be seen by taking u to be pure

imaginary in eq. (3.21), the saddle point will then be at pure imaginary u∗, corresponding

to (ν∗, ω∗) pure imaginary and real, respectively, and (p̌∗, Ě∗) also pure imaginary and real

(up to the Γcusp shifts).

As we begin from σ/τ = 0 and increase it, the OPE saddle point will move upward

from u = −i∞ along the imaginary axis, eventually approaching the first branch cut at

u = −i`/2 ± 2g. A natural hypothesis is that if we keep increasing σ/τ , the saddle point

u∗ will traverse the cut where it will meet with the BFKL saddle point. As we further

increase σ/τ towards unity, corresponding to the Regge limit with fixed transverse size, the

BFKL ν∗ will approach its final value of zero, where we will make contact with the usual

BFKL eigenvalue in which ν is real.
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This hypothesis will indeed turn out to be correct. We will justify it in the discussion

section by showing that the two expansions have a non-empty overlapping regime of validity,

in some open neighborhood of the cut, where the corresponding analytic functions can be

matched with each other to arbitrary precision. For the moment, we will simply proceed

assuming the hypothesis, for which there will be several nontrivial checks.

4.1 Going through the cut

Let us now explain how one can perform the analytic continuation across the cut at Imu =

−`/2, where the integral representation (3.21) diverges. Since the cut is very narrow at

weak coupling, this is the one fundamentally nonperturbative step in our procedure.

The necessary input is that K(t) solves the BES equations (3.19). These equations

hold exactly on the cut. Thus, depending on whether it is the term with K(t) or K(−t)
which becomes singular on the cut, we add one or the other of the BES equations. In

this way, right inside the cut at Imu = −`/2 + i0, the dispersion relations (3.21) are also

equal to

Ě`(u) = Ě`(u) + ip0(u+ i`/2)

= 2iu+ i
π

2
Γcusp +

∫ ∞
0

dt

t

[
K(t)

e−iut−`t/2 − 2

2
+K(−t)e

iut−`t/2

2

]
,

p̌`(u) = p̌`(u) + iE0(u+ i`/2)

= 2u+
π

2
Γcusp + i

∫ ∞
0

dt

t

[
K(t)

eiut−`t/2 − 2

2
+K(−t)e

−iut−`t/2

2

]
.

(4.5)

The integrals now converge throughout the strip |Imu| < `/2, providing the desired an-

alytic continuation. Using the identification (4.3) and setting ` = |m|, we obtain the

desired result:

−ω(u,m) =

∫ ∞
0

dt

t

(
K(−t) +K(t)

2
cos(ut)e−|m|t/2 −K(t)

)
ν(u,m) = 2u+

∫ ∞
0

dt

t

K(−t)−K(t)

2
sin(ut)e−|m|t/2

(4.6)

This formula is our main result: the color-adjoint BFKL eigenvalue, expressed to all loop

orders in the planar limit in terms of the solution K(t) to the BES integral equation (3.19).

It is extremely nontrivial that for real u the combinations ω and ν are both real and de-

fine a symmetric trajectory ω(ν) = ω(−ν), let alone that they reproduce the known pertur-

bative expansion. For example, at leading order we have u ≈ ν/2 and K ≈ −4g2t/(et− 1),

and the Fourier transform easily produces

− ω(ν,m) = 2g2

{
− 2|m|
ν2 +m2

+ ψ

(
1 +
|m|+ iν

2

)
+ ψ

(
1 +
|m| − iν

2

)
− 2ψ(1)

}
+O(g4) .

(4.7)

This is precisely the standard BFKL result.8

8We recall that our normalization for ν, which agrees with refs. [27, 30] and is such that iν has the

physical interpretation of dimension, departs from that of refs. [12–16]: νhere = 2νthere.
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The trajectory (4.6) can be easily expanded out to any desired order at weak coupling;

the expansion involves always the same building blocks: ψ functions or their derivatives,

or rational factors. This is detailed in appendix B, where the reader will find a comparison

against the three-loop results of refs. [12–16] as well as our four-loop prediction.

4.2 Comments on the m = 0 mode

Our main result (4.6) was derived for allm 6= 0. Them = 0 case is in principle more difficult

for us because the flux tube, which underpins the collinear expansion (3.2), does not have

any elementary excitation with m = 0 and vanishing R-charge. From the perspective of

how integrability organizes the states of the theory, this means that the m = 0 states which

dominate in the Regge limit must be composites. This was analyzed in ref. [20] where these

composites were identified as a pair of scalar flux tube excitations. In principle, to obtain

the BFKL eigenvalue with m = 0 one should thus study the energy of this scalars pair.

The formula (4.6), however, displays such a compellingly simple dependence on m that

it is very tempting to simply set m = 0 into it. Evidence that this procedure yields the

correct eigenvalue can be found by specializing to the points ν = ±π
2 Γcusp. At these points

the m = 0 eigenvalue was predicted in ref. [43] to vanish identically

ω

(
ν = ±π

2
Γcusp,m = 0

)
= 0 , (4.8)

giving us a sharp test for our exact formula (4.6). There is not much to verify to three

loops, actually, since our formula reproduces all known results to this order, which were

shown in ref. [43] to obey eq. (4.8). The representation (4.6), however, does not make

eq. (4.8) obvious at finite coupling. A careful analysis, carried in appendix C, reveals that

this is nonetheless true. This particular but nontrivial check makes us confident that the

formula (4.6) works properly in the special case m = 0 as well.

5 Strong coupling and string theory

The integral representation (4.6) determines the color-adjoint BFKL eigenvalues all the

way from weak to strong coupling. In the latter regime we should therefore be able to

make contact with the semiclassical string description and, most notably, with the analysis

of refs. [17, 18]. These papers studied the Regge limit of scattering amplitudes using the

Thermodynamical Bethe Ansatz (TBA) equations derived in [51, 52]. This is what we shall

do in this section.

5.1 Strong coupling intercept

Expanding our integrals at strong coupling is relatively easy since the latter are expressed

in terms of the solution to the BES equation and thus already constructed, see [53–55].

For convenience, the required expressions are reproduced in appendix D. To the leading

order at strong coupling
√
λ� 1, for instance, we immediately find that

ω(ν) =

√
λ

2π
(
√

2− log(1 +
√

2)) +O(1) , (5.1)
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|m|=1

−0.1

−0.2

−0.3

0
2 4 ν

ω(ν)

m=0|m|=2

|m|=3

g = 1
4

−1

−2

−3

1

2

ω(ν)

0
2 4 6 8 10 12 14 ν

g = 3

Figure 6. Plots of the eigenvalues ωm(ν) for m = 0 (in red) and |m| = 1, 2, 3 (in blue and from

top to bottom) at weak coupling g = 1/4 (left) and strong coupling g = 3 (right). The red dot

indicates the point (ω, ν) = (0, π2 Γcusp) which lies on the m = 0 trajectory. The trajectories are

sparse in appropriate unit and mostly negative at weak coupling. They get closer and wider at

strong coupling where they approach some universal curve. The latter is given parametrically in

eq. (5.3) for |ν| < π
2 Γcusp.

which applies to all values of m and ν — as long as these are not of order O(g). The

BFKL trajectories are thus becoming flat and identical at strong coupling, as illustrated

in figure 6. Their intercept (5.1) turns into a prediction for the energy growth of the

remainder function at strong coupling which is in perfect agreement with the string theory

results derived in refs. [17, 18].

It is important here to recall that this growth is only relative to a background which

is itself exponentially small; ω is really the dipole Regge trajectory minus the gluon one,

which is infinitely large and negative due to infrared divergences.

It is quite remarkable that all trajectories share the same positive intercept (5.1) at

strong coupling. It hints at the fact that they all pertain to the same semiclassical string

saddle point, on which we shall come back shortly. The situation contrasts, however, with

weak coupling where the intercepts are mostly negative and sparse in appropriate unit.

As we crank up the coupling all the negative intercepts eventually turn around and start

growing as depicted in figure 7. The observed degeneracy among levels is of course an

artifact of the strict strong coupling limit and, with a little more work, one could actually

demonstrates that for |m| > 0

ωm(0) = ω0(0)− |m| − 1√
2

+O(1/
√
λ) . (5.2)

This is showing, in agreement with figure 7, that trajectories with |m| > 1 have remained

below the m = 0 and m = |1| ones, while the degeneracy among the latter is not yet

resolved at this loop order.

5.2 Giant hole, giant fold and Wilson lines

The strong coupling eigenvalue becomes more interesting if we scale both ω and ν with√
λ. In this regime we find that

ω(θ) =

√
λ

4π

[
2
√

2 cosh θ

cosh (2θ)
− log

(√
2 cosh θ + 1√
2 cosh θ − 1

)]
, (5.3)
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√
λ

4π

ω(ν=0)

|m|
=1

m=0

|m|
=2

|m|
=3

|m|
=4

−0.5

0

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5

Figure 7. Plot of the intercept ω(ν = 0,m) as function of the coupling g ≡
√
λ/(4π) for trajectories

|m| = 1, 2, 3, 4 (in blue) and m = 0 (in red). The upper curve corresponds to |m| = 1 and it

dominates the Regge limit at all couplings. The following one is associated to the m = 0 trajectory.

Its intercept is extremely small at weak coupling (it kicks in at three loops, ω(0, 0) = 4π2ζ3g
6 + . . .)

but is stricly positive at finite λ. We note that the m = |1| and m = 0 curves gets closer to one

another as the coupling grows, with the splitting among them being o(1) at strong coupling. The

remaining curves correspond to |m| = 2, 3, 4. (The |m| > 4 trajectories are not represented but

would be sitting below them.) The spacing among the |m| = 1, 2, 3, 4, . . . curves is of order O(1) at

strong coupling.

ν(θ) =

√
λ

4π

[
2
√

2 sinh θ

cosh (2θ)
− i log

(
1 + i

√
2 sinh θ

1− i
√

2 sinh θ

)]
,

as explained in appendix D. The large value of the intercept (5.1) as well as the non-trivial

dispersion relation of the rescaled charges (5.3) indicate that there should exist a corre-

sponding semi-classical string worldsheet. We can construct it via analytic continuation

as follows.

First, we note that the eigenvalue (5.3) is reminiscent of the dispersion relation of

the so-called giant hole, which represents a classical macroscopic spike on top of the GKP

string: see equation (1) in ref. [56] with vthere = tanh θhere. In fact, the two are related as9

−ω(θ) =
1

2
[Egiant(θ + iπ/4)− iPgiant(θ + iπ/4)] ,

ν(θ) =
1

2
[Pgiant(θ + iπ/4)− iEgiant(θ + iπ/4)]−

√
λ

4
.

(5.4)

This is precisely of the form (4.3), revealing that in addition to being analytically related

to BFKL the giant hole is nothing but the “sister” of the usual gluonic excitation.

We can be more precise. The gluonic excitation at strong coupling admits a relativistic

form E =
√
p2 + 2 up to momenta p ∼

√
λ, where it flattens out and becomes Egiant(Pgiant).

This means that the saddle-point equation dE/dp = iστ , for small σ/τ , has two solutions:

9This particular analytic continuation proceeds to the left of the θ = 0 cut in the giant hole dispersion

relation.
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fold

(a) (b)

1

2

3

4

5

6

s
+
t

Figure 8. (a) The strong coupling sister solution (5.5) or, equivalently, the BFKL solution with

imaginary momenta v = 1/20. The classical open string extends in AdS3, represented by the solid

cylinder. It ends on a boundary null polygon curve made of six edges (b). The solution has a

single fold in the bulk that is extended between cusps 3 and 6 at the boundary. Remarkably the

worldsheet is real and Euclidean. The four short edges can be viewed as part of the reference square,

see figure 4. The two long edges, 5-6 and 2-3, connects antipodal points on the cylinder.

one with p → 0 and one with p → ∞. For the amplitude in the Euclidean region only

the first saddle point contributes, while the identification with the sister trajectory shows

that in the Mandelstam region for 3→ 3 scattering it is the giant hole saddle point which

takes over.

The shift of θ by iπ/4 also has a simple physical interpretation. It is closely related to

the so-called mirror transformation, θ → θ+ iπ/2, which is known to rotate the giant hole

solution by 90◦. This transformation amounts to moving the excitation from one side of the

square in figure 4 to the next. The shift by iπ/4 may thus be interpreted as a 45◦ rotation

or “half mirror transformation,” reflecting the fact that the BFKL time runs diagonally

within the square (cf. eq. (4.3)).

Since the giant hole classical string solution is known explicitly [56], the analytic con-

tinuation in θ provides us with a simple way of constructing the sister classical solution (or

equivalently, the BFKL solution at complex momentum). We simply take θ imaginary and

analytically continue the solution from Lorentzian to Euclidean worldsheet. In this way we

arrive at the solution [57, 58]

X−1 ±X2 = ±e±t e
Σ(
√

1 + v2 sinh s− cosh s) + e−Σ(v ∓
√

1 + v2) cosh s

v eΣ + e−Σ

X1 ±X0 = ±e±t e
Σ(
√

1 + v2 cosh s− sinh s) + e−Σ(v ∓
√

1 + v2) sinh s

v eΣ + e−Σ

(5.5)

where X2
−1 + X2

0 − X2
1 − X2

2 = 1 are the AdS3 embedding coordinates, Σ = s−v t√
1+v2

and

v = −i∂Egiant

∂Pgiant
= −i tanh θ is the (complexified) velocity which we take to be real. (Note
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that v → −1/v is the mirror transformation prescribed above.) This solution is plotted

in figure 8 a. It is an Euclidean surface in AdS3 that ends on the boundary null polygon

potted in figure 8 b. The string has a fold in the bulk, which reminds of the flat space

solution shown already in figure 2 b. The BFKL time (s + t ) translates points between

cusps 2 and 5, indicated in figure 8 b. At any fixed BFKL time, the open string stretches

between cusps 1 and 4 while going through the fold in between. One manifestation of the

fold is the phase shift − i
2π(σ − τ)Γcusp in (4.2). Here, Γcusp is the string tension pushing

the fold in the (s − t ) direction. In accordance with that factor, we expect the fold to

persist at the quantum level, meaning at any value of λ.

The reader may wonder in what sense this solution describes the expected dipole-

dipole scattering: after all the boundary curve contains only a single null-infinite Wilson

line going in each direction (such as the one between cusps 2 and 3). The resolution is

simply that we are working on the Wilson loop side of the scattering amplitude — Wilson

loop duality. In fact the boundary curve has precisely the expected structure shown in

figure 12 b of ref. [43] for that side of the duality, where two semi-infinite Wilson lines

border each infinite one. We thus expect that the T-dual solution to (5.5) will describe

precisely the scattering of two null-infinite adjoint dipoles.

Another surprising feature is that the semi-classical solution resides within an AdS3

subspace associated with the gauge theory x± plane. The transverse plane, whose dynamics

BFKL is concerned with, appears to be invisible! The explanation is simply that solutions

with imaginary ν 6= 0 and m ∼ 1 (as we are plotting) arise physically from a saddle point

evaluation of the amplitude with fixed τ−σ
τ+σ = v ∼ −iν/

√
λ (see eq. (4.4)). The scaling

limit thus implies that τ − σ � 1 so that the solution unavoidably describes a collinear

configuration. Therefore, the transverse plane is still present, but only as an infinitesimal

perturbation of the classical solution.

This interpretation is further supported by the fact that for Im ν > 0, the line 5-6

turns out to become collinear with 4-5 instead of 6-1, reflecting collinearity in a different

channel. At the special point ν = 0, the solution “cannot know” where it should end at the

boundary. Instead of spontaneously breaking the symmetry we find that eq. (5.5) develops

a line of singularity inside the bulk, but, as far as we can tell, this is not associated with

any singularity in any observable quantity. Another interesting locus is when ν diverge

(corresponding to v = θ = 0). At this point the fold reach the AdS boundary and the

solution factorize into two squares overlapping along one edge — corresponding to the fold.

A classical solution related to BFKL in the color-singlet sector (that is, the Pomeron

with large Mellin moment ν ∼
√
λ) was described in ref. [59]. In that reference the case of

real ν was considered, and the solutions are correspondingly complex. The same would be

true in our case; but as the saddle-point equation τ−σ
τ+σ = −idωdν shows, it is the the classical

wordsheets with imaginary ν which correspond to physically observable amplitudes. This

is why we have plotted in figure 8 the (real) solution for imaginary ν. One similarity with

ref. [59] is that for ν real and large enough the solution changes non-analytically. For us

the transition occurs at θ = ±∞ where ν = ±πΓcusp

2 and eq. (5.3) ceases to apply. For

larger values |ν| > πΓcusp

2 , the trajectory defined by eq. (4.6) is negative and made of two

disconnected branches whose form is identical to (minus) the energy Egiant of a giant hole,
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− ν2

4g2

ω
2g

10 20−10−20

1

2

−1

Figure 9. Chew-Frautschi plot of the universal BFKL/sister trajectory at strong coupling for

ν ∝
√
λ = 4πg. The sister trajectory (dashed red line) is defined for ν2 < 0 and stands on the right

of this plot. At strong coupling it is described by the giant hole dispersion relation with imaginary θ

between 0 and iπ4 . The continuation of the sister curve to positive ν2 defines the BFKL trajectory

(solid line). The region that dominates in the Regge limit is described by the positive branch

(solid red line) which ends at ν2/(4g2) = π2/4 ' 2.47. Outside of this domain the trajectory is

negative (solid blue line) and happens to coincide with (minus) the energy E of a giant hole with

momentum p = ν ± π
2 Γcusp. The color-adjoint trajectory shares three qualitative features with the

BFKL Pomeron (a.k.a Reggeized graviton): a linear behavior at small ν2, a logarithmic behavior

ω ∼ −Γcusp log ν at large positive ν2, and a square root scaling ω2 ∼ −ν2 at large negative ν2.

see equation (D.6). It is depicted in figure 9 together with the BFKL/sister branch in the

form of the Chew-Frautschi plot.

It is interesting to ask what the solution of ref. [59], itself an analytic continuation of

the GKP string, would look like for imaginary ν. In fact this was plotted already in figure 11

of ref. [2], where the connection with BFKL was however not discussed. With hindsight,

we can give a simple interpretation to that solution: in the gauge theory it represents the

scattering of two fast dipoles, exactly as one would expect by naively extrapolating the

weak coupling description of BFKL. More precisely, the classical solution with ν ∼
√
λ

describes the scattering of one very small dipole against a very large one.

6 Discussion

In this paper we have related the collinear OPE and Regge expansion of the 6-particle

amplitude through a sequence of two analytic continuations. Using known expressions

for the collinear expansion this allowed us to derive all-loop expressions for the BFKL

eigenvalue (4.6) and impact factor (A.12).

The first continuation, described in section 3, takes place in the momentum space of the

gauge theory scattering amplitude. Its role is to reach a specific Lorentzian region of high-

energy scattering, in which color dipoles can be exchanged (the “Mandelstam region”). This

continuation has a rather radical effect on the OPE: it replaces the anomalous dimensions

which control it E(p), with new, “sister” versions Ě(p).
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The second continuation, carried out in section 4, is somewhat more magical. It takes

place in the momentum space of the flux tube, which is essentially the Mellin space of the

gauge theory. It involves passing through a cut, where the collinear OPE resides on one

side and the BFKL expansion resides on the other side. We would like to elaborate on this

step here.

We should stress that this step is fundamentally nonperturbative. At weak coupling,

the cut gets very narrow, and passing through it entails a resummation of perturbation

theory. It could be carried out explicitly because E(p) and Ě(p) are governed by the BES

equation, which as a matter of fact does resum all orders in perturbation theory.

A good way to phrase the discussion is in terms of the Chew-Frautschi plot shown in

figure 10. On the real axis we place “energy” squared, which in conformal field theory is

identified with dimension squared: ∆2 ≡ (iν)2 = −ν2. On the vertical axis we place the

spin ω. The far right of figure 10 then shows the sister trajectory ω(ν = −i∆, |m| = 1),

which is just the function (3.21) for ` = 1 and with the change of variables (4.3). In the

left-hand side of the plot, the “momentum transfer” ν = −i∆ is real and the figure shows

the BFKL eigenvalue in its natural domain.10

The two branches meet near the point ∆ ≈ |m|, see inset of figure 10. It turns

out that one can reliably describe the curve near this point using perturbation theory,

without knowing anything about integrability. This becomes apparent upon rewriting the

perturbation theory for the sister dispersion relation Ě(p), in the form of a spin-dependent

dimension ∆(ω). These are the variables one conventionally uses to discuss twist operators.

The perturbative expansion develops singularities as ω → 0, but with only a single pole

(g2/ω) at each loop order. For example,

∆(ω) = |m|+ ω − 2g2

ω
+O(g2ω0, g4/ω2, g6/ω3, . . .) . (6.1)

This property can be verified from the explicit expressions in sections 3.2 and 4. Here

we would just like to mention that it is analogous to the familiar single-log behavior of

color-singlet twist-two operators near j → 1, which controls small-x parton distribution

functions, see for example [21, 22]. In that context it is well-known that one gets at most

one additional power of log x for each loop order. For this reason we expect the discussion

to be presented here to apply almost unchanged to the color-singlet sector as well.

The implication of eq. (6.1) is that the joint series in g2 and 1/ω is reliable throughout

the region g2 � ω � 1. This is interesting because this region includes the cusp where the

two curves meet. The omitted terms in (6.1) are then subdominant, and the relation can

be inverted to obtain [60]11

ω(∆) =
∆− |m|+

√
(∆− |m|)2 + 8g2

2
+O(g2) . (6.2)

10The right-hand-side of a Chew-Frautschi plot normally shows discrete physical states located at positive

integer values of the spin. This discreteness is lost here as a result of the subtraction of the gluon Regge

trajectory, which adds a large negative offset to ω.
11The paper [60] did not explicitly consider the BFKL trajectory ω(∆) but rather the essentially equivalent

time-like anomalous dimension γT (∆) ≡ ∆− ω(∆).
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10
∆2

ω(ν)

20−10

−0.5

0.5

1

1.5

2

Figure 10. Chew-Frautschi plot of the BFLK eigenvalue |m| = 1 and its daughter branches at

weak coupling (g = 1/20). The leftmost curve (painted in blue) is the principal branch of the

BFKL eigenvalue. It is of order O(g2) on the BFKL side (left) and approximated by ω ≈ ∆− |m|
for ∆ > |m|. In the cross-over region, which is magnified in the top left corner, the eigenvalue is

controlled (to leading order at weak coupling) by the square-root formula (6.2). The second curve

(painted in purple) is the first of an infinite sequence of daughter branches, which represent the same

trajectory but evaluated on different Riemann sheets. It is related to energy- or twist-suppressed

contributions (see eq. (6.4)).

The error remains under control for all real ∆ in the range |∆−|m|| � 1, and, in particular,

the conclusion that the branch point is of the square-root type is robust. For ∆ < |m| the

two terms mostly cancel and the trajectory is perturbatively small, ω(∆) ≈ 2g2/(|m|−∆).

This is in perfect agreement with the first pole of the one-loop BFKL result (see eq. (4.7)).

This well-known perturbative matching is, strictly speaking, sufficient to unambigu-

ously identify the two trajectories Ě(p) and ωBFKL as being one and the same. For a more

detailed discussion along these lines we refer to [21, 61–63].

To better understand the matching at the nonperturbative level, we find it useful to

consider a physical observable which can probe the trajectory. Schematically, the BFKL

and OPE expansions of the hexagon can be written in a similar form

W 	
hex ∼

∫
COPE

d∆ FOPE(∆) e(τ+σ)ωOPE(∆)+(σ−τ)∆ + . . .

and W 	
hex ∼

∫
CBFKL

d∆ FBFKL(∆) e(τ+σ)ωBFKL(∆)+(σ−τ)∆ + . . . .

(6.3)

The essence of what we have done is that we have equated the two integrands. This

requires explanation: the integration contours and omitted terms are certainly different.

The OPE contour runs vertically to the right of the large cut at ∆ ≈ |m|, as described

below eq. (3.15) The BFKL contour runs vertically also but in a different sheet of the same
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function. Therefore the two contours differ by a cut contribution. A useful way to rewrite

the difference is to exploit the fact that the cut is of the square-root type. This leads to

the following identity among integration contours:

OPE BFKL energy suppressed twist suppressed

(6.4)

Here each term can be associated with one of the four semi-infinite segments appearing in

the inset of figure 10, the two terms on the left-hand-side belonging to the blue curve and

the other two to the purple curve. The first integral on the right-hand side is the OPE

integral after we move it to the left of the ∆-plane cut; because the next singularity on

this trajectory is displaced by an amount δω = δ∆ ≈ −1 (see figure 10), this contribution

is suppressed in the high-energy limit by ∼ e−2σ. The second term is the BFKL integral

after moving it to the right of the cut; since the next singularity occurs two units to the

right, δ∆ ≈ 2, this term is suppressed by e2σ−2τ . (These estimates hold for small coupling,

in general the exponents will vary with the coupling.) The identity (6.4) together with

the Chew-Frautschi plot thus make explicit that the difference between the two integration

contours in eq. (6.3) is of the same order as the expected size of the omitted terms.

To show that the integrands agree exactly, it thus suffices to show that the omitted

terms can be made arbitrarily small. This is done simply by taking σ, τ → ∞ where the

integral will be saturated by a saddle point, as discussed around eq. (4.4). As long as

g2 � τ−σ
τ+σ < 1, at weak coupling for example, one can check both that the saddle point

will not cross other singularities and that the error terms will be small. Since the position

of the saddle point can be varied freely within an open set, this ensures that the analytic

functions entering (6.3) agree within that set, hence that they are analytic continuations

of each other.

We wish to stress that this argument does not constitute a derivation of the BFKL

expansion (4.1) starting from the OPE expansion (3.2). What we derived is the integrand

of eq. (4.1), assuming that the high-energy expansion indeed takes this form. We can

see however what would constitute a derivation of BFKL from the OPE. For the BFKL

formula (4.1) to be correct, as we expect to be the case, the second integral in eq. (6.4)

(suppressed by e2σ−2τ ) must approximately cancel against the first subleading twist cor-

rection to the OPE, that is the next branch to the right in the Chew-Frautschi plot in

figure 10. The remaining ∼ e4σ−4τ error must then cancel against the next twist, and so

on. Demonstrating this sequence of cancelations would constitute, in our view, a rigorous

derivation of the BFKL formula from the OPE. It would also be an extremely nontrivial

cross-check on the OPE predictions. Given recent progress on the OPE side, this would

appear to be realistically feasible.

We would like to comment also on so-called wrapping corrections, which are known

to play a crucial role in the relation between color-singlet twist-two operators and the

BFKL Pomeron [26]. These arise from (planar) Feynman diagrams with the topology of
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the cylinder, and complicate considerably the integrability approach, although powerful

methods are being developed to deal with this, see refs. [64, 65]. These effects are known

to disappear in the asymptotic limit of large spin,

lim
ωs→∞

Etwist-two(ωs) = 2Γcusp logωs + C +O(1/ωs) . (6.5)

This is true as well for small excitations of this background. For example, the dispersion

relation E(p) originates from the anomalous dimension of local twist-three operators, which

are low-lying excitations of the background (6.5):

lim
ωs→∞

Etwist-three
p (ωs) = 2Γcusp logωs + C + E(p) +O(1/ωs) . (6.6)

All the objects discussed in this paper arise implicitly from this limit. The quantum number

p is related to the discrete mode number of the excitations, which becomes dense in the

large spin limit (see [66] for a one-loop discussion); we use the subscript s to distinguish

the color-singlet quantum numbers from the background-subtracted ones used elsewhere

in this paper.

We wish to argue that a similar embedding into gauge invariant operators can be

made on the BFKL side. We begin with the reggeized gluon, which in the planar limit is

a single null infinite Wilson line. This can be naturally viewed as a limit of a very large

dipole, wherein a “spectator” Wilson line is inserted far away in order to cancel the charge.

Identifying this distance with the infrared cutoff of the theory, µIR ∼ 1/L, and using the

simple form of dipole eigenfunctions in Mellin space, (L+δL)iνs ≈ LiνseiδL
νs
L , we obtain the

map between the plane wave momentum q of the reggeized gluon and the dipole quantum

number: νs ≈ q
µIR

. Now the gluon Regge trajectory in conformal field theory is universally

controlled by the cusp anomalous dimension [67]: ωg(q) ∼ −Γcusp

2 log(q2/µ2
IR). Viewing the

large dipole as two independent Reggeized gluons thus yields the prediction:

lim
νs→∞
m fixed

ωPomeron(νs,m) = −2Γcusp log
|νs|
2
− C ′ +O(1/νs) . (6.7)

This can be verified against the two-loop expressions of [61, 68]. (The constant term in

the logarithm is somewhat arbitrary, but, curiously, with this choice the finite terms agree

to two-loops: C = C ′.) By the same argument, a color-adjoint dipole should arise as a

low-lying excited state of the Odderon12 at large-νs:

lim
νs→∞

ωOdderon
ν (νs,m)

?
= −2Γcusp log

|νs|
2
− C ′ + ω(ν,m) +O(1/νs) . (6.8)

The Odderon is known to have a discrete spectrum of excitations [62, 69, 70], with spacing

∼ g2 at weak coupling, which we expect to become dense at large νs. The adjoint-dipole

quantum number ν used in the main text should presumably arise as the mode number of

12In the traditional BFKL language the Odderon is a (CPT-odd) composite state of three Reggeized

gluons. In the Wilson line description, the Odderon ground state is a color dipole with odd angular

momentum, while its excited states are realized as special states of the “zig-zag” quadrupoles described in

ref. [43].
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the excitations, in analogy with how p arises in the twist-three case. We leave the precise

identification to future work.

What we have demonstrated in this paper is that there exists a direct connection be-

tween the respective asymptotic limits of twist operators and BFKL, which by-passes wrap-

ping corrections altogether. This might prove helpful for constructing the finite-coupling

version of BFKL away from the asymptotic limit, including states with any number of

Reggeized gluons.

In this respect, we wish to stress the importance of the first step in our procedure,

which was the analytic continuation in the gauge theory momenta. No amount of analytic

continuation in the spin chain quantum numbers (spin, dimension, mode number, etc.)

could have produced the Odderon excited states out of the twist-3 data E(p). Rather, we

needed to go through the first step, which replaced E(p) by its “sister” version Ě(p). We

believe that something similar will also be required away from the asymptotic limit.

More precisely, the analogy with flat space string theory discussed in section 2 leads

us to expect that there should exist distinct, but equally useful, analytic continuations of

twist 3 gauge-invariant operators (see figure 5 of ref. [71] for a closely related observation).

Furthermore, taking the analogy seriously, one should not expect the continuation(s) con-

tributing to four-point correlation functions of local operators to connect with any excited

states of the Odderon in the planar limit, in order to be consistent with the selection rules

of ref. [43]. Excited states, rather, may lie on “sister” trajectories, which have nonzero

OPE coefficients only starting from the 6-point function. We hope to see in the future

whether these predictions are correct or not. The problem of organizing local operators

into analytic trajectories, remains, at the moment, open.

7 Conclusion

The main result of this paper are explicit expressions to all loop orders and strong coupling,

for the BFKL eigenvalues and impact factors in the color-adjoint sector, in planar SYM

theory. Let us summarize the two key ideas of our derivation, which are not specific to this

theory, and briefly comment on the physical interpretation of our result.

A first important observation is that scattering amplitude sometimes exhibit very

different high-energy behavior in different kinematic configurations. We have seen that

this is reflected in the existence of qualitatively distinct Regge trajectories, some of which

having vanishing coefficient in some kinematic regions. We noted the analogy with similar

phenomenon in the tree-level scattering of open strings in section 2, and also noted in the

end of section 6 its possible connection with known features of local twist three operators.

In perturbation theory, we thus found “sister” trajectories related to the canonical ones by

a rather simple mathematical transformation, which effectively reverses the argument of ψ-

functions (compare eqs. (3.4) and (3.14)). We could also extend that map to finite coupling.

A second important ingredient is the use of analyticity as a means of solving crossing

equations. The relation between the collinear OPE expansion and BFKL (see (1.1)–(1.2)) is

an archetypical example of a crossing equation: we have two expansions with an overlapping

radius of convergence but which resum different physics. This is formally similar to what
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one deals with, for example, in the modern conformal bootstrap program [72]. Naively,

one may think that in order to obtain the leading term of one expansion, for example, it

is necessary to “resum” infinite towers of terms in the other expansion. Analyticity offers

an alternative way to proceed.

An important way in which the OPE and BFKL expansions differ from other, more

Euclidean, expansions, is that they are both controlled by analytic functions. When taking

an appropriate double scaling limit, where both expansions can be truncated to their

leading term, the crossing equation reduces to the statement that the two analytic functions

agree in a certain open set. This gives rise to the possibility of obtaining the leading

term of one expansion from just the leading term of the other, via analytic continuation.

This continuation effectively resums infinitely many terms, without explicitly resumming

anything! The results of this paper demonstrate the feasibility of such an approach. We

hope that it will find applications in other problems.

In this work we started from known analytic expressions on one side (the collinear

OPE), and we used the crossing equation to obtain the integrand of the BFKL expansion.

But it is interesting to ask how much can be done when one is in the situation of not

knowing either side. The analytic continuation step is intrinsically nonperturbative, and

to carry it out we relied heavily on the BES equations. The detailed structure of the BES

equations was critical in order for the result to even make sense at all: for example the

obtained BFKL eigenvalue had to satisfy appropriate reality, symmetry and analyticity

properties. This is sufficiently nontrivial that one may speculate about the possibility to

derive the BES equations, or maybe some part of them, from just this requirement. Since

these requirements should hold in any (at least, planar) gauge theory, one may speculate

about the existence of a “universal core” of the BES equation which would possibly lead

to powerful constraints on twist operators in other gauge theories.

We have discussed only the leading term in the Regge limit, neglecting corrections

suppressed by powers of the energy. We expect however that there should exist a systematic

high-energy expansion with a finite radius of convergence. There are many questions which

remain open in this respect. For example, do subleading Regge trajectories organize into a

discrete or continuous spectrum (Regge cuts)? How are they related to the collinear OPE?

By how much are they suppressed at strong coupling (e.g. what is the gap)? Another

direction is higher-point amplitudes. While the seven-point amplitude should be accessible

by a straightforward extension of our methods (only dipoles can be exchanged), beginning

with eight-point one can exchange states with three Wilson lines, so-called BKP states.

Understanding these states would be an important step towards exposing the integrable

system which underlies BFKL at finite coupling.

Finally, we would like to conclude with what we find to be a rather remarkable corol-

lary of our results: that a partonic description of high-energy processes, e.g. involving a

finite number of point-like constituents, appears to be justified even in strongly coupled

holographic gauge theories. This is the physical basis for factorizing the 6-particle am-

plitude in terms of dipole-dipole scattering: we find it very difficult to conceive how such

a factorization could hold if the transverse coordinates of these dipoles did not literally

correspond to the transverse positions of individual charge carriers. This identification is
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further supported by the classical string solution described in section 5.2, which ends on

the expected boundary Wilson lines. Such a partonic interpretation does not contradict

the results of ref. [73] for example, wherein individual point-like partons were not observed

in deep-inelastic scattering type experiments; the essential point is that in the Regge limit

one is not attempting to separate the partons away from each other. One might simply

say that partons at strong coupling are strongly correlated with each others hence difficult

to separate. We look forward to see if such a partonic picture at strong coupling, in the

restricted sense advocated here, can be usefully applied to other situations.
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A The impact factor and its derivation

Here we describe our prediction for the BFKL impact factor to all loop orders, and its

derivation. We proceed in two steps, as for the eigenvalue in the main text. First, we

perform the analytic continuation in σ which leads to the “sister” form factor as defined in

eq. (3.15). Then we analytically continue in u through the cut at Imu = −`/2. The reader

not interested in these steps may skip to our final result which is recorded in subsection A.4.

A.1 Original measure in the Euclidean region

We begin with the one-particle contribution obtained in refs. [46–48] in the form

F`(σ, τ) =

∫ +∞

−∞

du

2π
µ`(u) eiσp`(u)−τE`(u) , (A.1)

with

µ`(u) =
g2Γ(1 + `

2 + iu)Γ(1 + `
2 − iu)

Γ(`)(x[+`]x[−`] − g2)
√

(x[+`]x[+`] − g2)(x[−`]x[−`] − g2)

× exp

[∫ ∞
0

dt

t

(
J0(2gt)− 1

)2 cos(ut)e−`t/2 − J0(2gt)− 1

et − 1
+ f `3(u)− f `4(u)

]
.

(A.2)
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Here x(u) = 1
2

(
u+

√
u2 − 4g2

)
and x[±`](u) = x(u± i

2`). To describe the functions f `3,4 we

introduce the matrices:

Kij = 2j(−1)j(i+1)

∫ ∞
0

dt

t

Ji(2gt)Jj(2gt)

et − 1
, M = (1 + K)−1 , Qij = δij(−1)i+1i .

(A.3)

We then form the vectors

κ`j ≡ −
∫ ∞

0

dt

t

Jj(2gt)
(
etδ

even
j cos(ut)e−`t/2 − J0(2gt)

)
et − 1

,

κ̃`j ≡ (−1)j+1

∫ ∞
0

dt

t

Jj(2gt)e
tδodd
j sin(ut)e−`t/2

et − 1
,

(A.4)

where δeven,odd
i ≡ 1

2 [1 ± (−1)i]. The symmetrical matrix Q ·M, loosely speaking, inverts

the BES kernel. Although infinite-dimensional, in practice its coefficients are suppressed

at large order (for example, Kij ∝ gi+j at weak coupling), allowing it to be truncated to a

finite size. The functions f `3,4 are then given as

f `3(u) = 2κ̃`(u) ·Q ·M · κ̃`(u) , f `4(u) = 2κ`(u) ·Q ·M · κ`(u) . (A.5)

It will be useful to note that Γcusp = 4g2(Q ·M)11 and that

E`(u) = `+ 4g
(
Q ·M · κ`(u)

)
1
, p`(u) = 2u− 4g

(
Q ·M · κ̃`(u)

)
1
. (A.6)

A.2 Continuation in σ and the sister measure

To obtain the “sister” measure which governs the σ-space discontinuity, we follow the

procedure of section 3. Since the procedure is friendly with σ-space convolutions, it can

be applied to each factor separately. It amounts to the following: for each factor which

has an infinite sequence of singularities in the lower-half u-plane, we flip the sign of the

Fourier-conjugate t variable. For the Γ-functions the result can be deduced using that

ψ(x) = ∂x log Γ(x), together with the known rule for the ψ function in eq. (3.14): ψ(a −
iu) 7→ ψ(1− a+ iu) + iπ. This gives

Γ(1 + `/2− iu) 7→ Ceπu

Γ (−`/2 + iu)
= Γ(1 + `/2− iu)×−2eπu+iπ`/2 sinh(πu+ iπ`/2) . (A.7)

The u-independent constant C was fixed by requiring that the function be unmodified at

large negative u, see comment below eq. (3.22). Rational factors represent convolutions

against pure power laws and thus go simply to themselves, and thus so do the algebraic

factors in eq. (A.2) (as is clear from e.g. series expanding them at weak coupling).

For the more complicated functions f3,4, we proceed by flipping the sign of t in the

e+iut terms in eqs. (A.4):

κ̌`j ≡ −
∫ ∞

0

dt

t

Jj(2gt)

2(et − 1)

[
etδ

even
j e−iut−`t/2 − (−1)jetδ

odd
j e−iut+`t/2 − 2J0(2gt)

]
,

ˇ̃κ`j ≡
∫ ∞

0

dt

t

Jj(2gt)

2i(et − 1)

[
etδ

even
j e−iut+`t/2 + (−1)jetδ

odd
j e−iut−`t/2

]
.

(A.8)
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In defining these “sister” sources we have omitted the anomalies (3.13), which affect only

the j = 1 terms: δκ̌`1 = iπg/2, δ ˇ̃κ`1 = −πg/2. These anomalies are simple to deal with

thanks to the identities (A.6). Including them, we find that f `3,4 continue to the same ex-

pressions (A.5) with the κ’s replaced by their sister versions (A.8), plus some simple shifts:

f `3(u) 7→ f̌ `3(u) +
π

2
(p̌`(u)− 2u)− π2

8
Γcusp , f `4(u) 7→ f̌ `4(u) +

iπ

2
(Ě`(u)− `) +

π2

8
Γcusp .

These shifts neatly cancel various phases coming from the shifts σ → σ + iπ/2 and τ →
τ − iπ/2. Collecting these ingredients, we obtain the discontinuity of the amplitude in the

3→ 3 region in the form (3.15), with the “sister” measure:

µ
l
` (u) =

−2πi(−1)`g2Γ(1 + `
2 + iu)

Γ(`)Γ(− `
2 + iu)(x[+`]x[−`] − g2)

√
(x[+`]x[+`] − g2)(x[−`]x[−`] − g2)

e−
π2

4
Γcusp

×exp

[∫ ∞
0

dt

t

(
J0(2gt)−1

)e−iut(e−`t/2−e(`/2+1)t)−J0(2gt)−1

et − 1
+ f̌ `3(u)− f̌ `4(u)

]
.

(A.9)

This is defined for Imu < −`/2. For ` = 1, we have compared this extensively against the

discontinuity of the analytic expressions given in refs. [46, 49].

A.3 Passing through the cut

The form factor (A.9) describes the hexagon amplitude after the analytic continuation in

σ which takes us to the 3→ 3 region, but we have not yet taken the Regge limit. To reach

the BFKL region it remains to analytically continue through the cut at u = −i`/2 ± 2g.

The identities which allow us to do so are a simple generalization of eq. (3.19):{(
Q ·M · κ0(u)

)
j(

Q ·M · κ̃0(u)
)
j

}
=

1

2

[(
x

g

)j
+

(
x

g

)−j]
×

{
(−1)j/2δeven

j

(−1)
j−1

2 δodd
j

}
, (A.10)

which again hold precisely on the cut, −2g < u < 2g. By adding suitable multiples of

κ0(u+ i`/2) or κ̃0(u+ i`/2) to eqs. (A.8) as done in eqs. (4.5), all functions can be easily

continued across the cut. The comparatively simpler terms produced by the right-hand

sides may then be dealt with using the identities

∞∑
j=1

Jj(2gt)

[(
x

g

)j
+

(
x

g

)−j]
×

{
(−1)j/2δeven

j

(−1)
j−1

2 δodd
j

}
=

{
cos(ut)− J0(2gt)

sin(ut)

}
. (A.11)

The resulting integrals may then be done analytically, the point being that they do not

involve the complicated matrix Q ·M. After some straightforward algebra we get to use

the following representation of unity:

1 =
−Γ(1 + `

2 + iu)

gΓ(1 + `)Γ(− `
2 + iu)

×

(
u+ i

√
4g2 − u2

u− i
√

4g2 − u2

)[+`]

×exp

[∫ ∞
0

dt

t

{
e−iut+`t/2

(
1−2J0(2gt)

)
+ J0(2gt)+

e−`t+e−iut+`t/2−e−iut−`t/2−1

et − 1

}]
.

– 30 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
7

The parenthesis with the [+`] superscript is evaluated with u shifted by i`/2. The identity

is valid inside the cut and using the positive branch for the square root, e.g. for u + i`/2

real and smaller in absolute value than 2g; it is similar to the algebraic identities used in

appendix C.4 of ref. [47]. Thanks to it, the Γ functions disappear from eq. (A.9) and the

expression simplifies dramatically after going through the cut.

A.4 Final result

Our finite-coupling prediction for the measure is:

µBFKL
m (u) =

g2(x[+m]x[−m] − g2)

x[+m]x[−m]
√(

x[+m]x[+m] − g2
)(
x[−m]x[−m] − g2

) × eA+2fm,3(u)−2fm,4(u) .

(A.12)

As before, x[±m] = x(u ± im2 ) and x(u) = 1
2(u +

√
u2 − 4g2). This measure enters the

remainder function in the 3→ 3 kinematics through

R3→3
hex e

−iδ = −2πi
∞∑

m=−∞
(−1)m

( w
w∗

)m
2

∫ ∞
−∞

du

2π
µBFKL
m (u) |w|iνm(u)

(√
|u2u3|

)−ωm(u)
,

(A.13)

with δ =
πΓcusp

2 log |w|
|1+w|2 . In the Regge limit the finite cross-ratio w is related to the

Mandelstam invariants through ww∗ = u3/u2 and (1 +w)(1 +w∗) = (1− u1)/u2, with the

ui defined in eq. (3.1).

The most complicated quantities involve the source terms κm(u), κ̃m(u) for the BFKL

mode (u,m):

κm,j = −
∫ ∞

0

dt

t

Ji(2gt)

et − 1

(
etδ

even
j − (−1)jetδ

odd
j

2
cos(ut)e−mt/2 − J0(2gt)

)
,

κ̃m,j = −
∫ ∞

0

dt

t

Ji(2gt)

et − 1

etδ
even
j + (−1)jetδ

odd
j

2
sin(ut)e−mt/2 .

(A.14)

Then

fm,3(u) = 2κ̃m(u) ·Q ·M · κ̃m(u) , fm,4(u) = 2κm(u) ·Q ·M · κm(u) , (A.15)

with the Q and M matrices as defined in eq. (A.3). Finally, the constant A (independent

on (u,m)) is given as

A = 2

∫ ∞
0

dt

t

1− J0(2gt)2

et − 1
− π2

4
Γcusp . (A.16)

For completeness, we record the corresponding prediction for the 2 → 4 region, which

differs by a simple phase [11]:

R2→4
hex e

iδ = 2πi
∞∑

m=−∞
(−1)m

(
w

w∗

)m
2
∫ ∞
−∞

du

2π
µBFKL
m (u) |w|iνm(u)e−iπωm(u)

(√
|u2u3|

)−ωm(u)
.

One can also show that the BFKL eigenvalues (4.6) can be expressed in terms of the

same sources,

− ωm(u) = 4g
(
Q ·M · κm(u)

)
1
, νm(`) = 2u− 4g

(
Q ·M · κ̃m(u)

)
1
. (A.17)

This completes the description of our predictions for the BFKL expansion.
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Its expansions at weak and strong coupling are described in the next appendices. As

argued in the main text, even though our derivations are performed for all m 6= 0, there

is good evidence that the same formula applies to the m = 0 case as well. The u-plane

contour is more subtle in this case, and is described in appendix C. This contour implements

a prescription 1/(ν2− π2

4 Γ2
cusp∓ i0) for the real-axis poles at (ν,m) = (±πΓcusp

2 , 0), the sign

depending on whether one considers the 3 → 3 or 2 → 4 region, and which fully accounts

for the omitted “cosωab” term between our formulas and those of ref. [11].

A.5 NMHV form factor

The measure (or impact factor) for the NMHV 6-gluon amplitude can also be straightfor-

wardly obtained from its collinear cousin.13 On the OPE side, the prescription for passing

from the MHV to the NMHV amplitude is to multiply the measure for the gluonic flux

tube excitation by the so called NMHV form factor [46, 48]14

h`(u) =

(
x[+`](u)x[−`](u)

g2

)sign `

, (A.18)

whose effect at weak coupling is to suppress the contribution from the modes with ` < 0

and, simultaneously, enhance the role of the positive modes.

The transformation of the form factor (A.18) to its BFKL counterpart is easily

achieved. The first step of the procedure is just trivial; the sister version of (A.18) be-

ing precisely itself, since it only involves algebraic quantities at weak coupling which map

to themselves, as mentioned earlier. Only the second step does something to (A.18). Be-

cause this one corresponds to crossing the cut in the lower half plane, it turns x[+|`|] into

g2/x[+|`|] and leaves x[−|`|] invariant. The BFKL measure for the NMHV amplitude is

therefore given by

µNMHV
m (u) =

x(u− im
2 )

x(u+ im
2 )
× µMHV

m (u) , (A.19)

where µMHV
m (u) is the BFKL measure constructed in the previous subsection. We immedi-

ately notice that the BFKL outcome (A.19) is more analytic as a function of the angular

momentum m than its collinear relative (A.18) was as a function of `. This feature supports

that our above analysis of the m 6= 0 cases can be lifted to m = 0 by simply setting m = 0

in (A.19). Interestingly, the NMHV and MHV measures are then predicted to be identical

when m = 0.

Our finding (A.19) is easily seen to reproduce the recipe of ref. [74] for converting

among MHV and NMHV amplitudes (in the BFKL regime) to leading order at weak

coupling (i.e. when x(u)→ u). It also reproduces the higher-loop results obtained through

the hexagon function bootstrap up to 3 loops in ref. [75].15

13The 6-gluon amplitude of interest here is dual to the “gluonic” NMHV super-Wilson-loop component

considered in [46, 48].
14One should distinguish between positive and negative angular momenta in the sum (3.2) by writing∑
`=±1,... e

i`φ × (. . .) in place of
∑
`>1 2 cos (`φ)× (. . .).

15We are very thankful to Lance Dixon and Matt von Hippel for sharing their findings with us prior to

publication.
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B Expansion at weak coupling

The leading order expression for the eigenvalues at weak coupling was given in (4.7). It

is given in terms of the function K(t), to be obtained by solving the BES equation. The

solution, to order g6, is given by the Bessel expansion (3.18) with the coefficients

γ2 = 4g4ζ3 − g6 (8ζ2ζ3 + 40ζ5) +O(g8) , γ3 = −4ζ4g
5 +O(g7) , γ4 = 4g6ζ5 +O(g8) ,

(B.1)

with γ1 given already in eq. (3.20). Using the integrals16

∫ ∞
0

tndt

et − 1
eiut = (−1)n+1ψ(n)(1− iu) ,

∫ ∞
0

tn dt

et − 1
= n! ζn+1 , (B.2)

one can then readily evaluate the eigenvalue (4.7) to order g6.

An equivalent, but perhaps more systematic, way to proceed is to use the Q ·M matrix

defined in eq. (A.3), together with eqs. (A.17). This is the method implemented in the

attached notebook. Its main advantage is that it applies uniformly both to the eigenvalue

and impact factor (A.17).

We simplify the notation by introducing the E, V,N,D alphabet as in ref. [15]:

E = −1

2

|m|
u2 + m2

4

+ ψ

(
1 + iu+

|m|
2

)
+ ψ

(
1− iu+

|m|
2

)
− 2ψ(1) ,

V ≡ iu

u2 + m2

4

, N =
m

u2 + m2

4

, Du = −i∂/∂u .
(B.3)

Then our result for ν and ω, up to order g6, can be written

ν = 2u+ 2ig2V − ig4
(
D2V + 4ζ2V

)
+ ig6

(
1

6
D4V + 2ζ2D

2V − 4ζ3DE + 44ζ4V

)
+O(g8) ,

−ω = 2g2E − g4
(
D2E + 4ζ2E + 12ζ3

)
+ g6

(
1

6
D4E + 2ζ2D

2E + 4ζ3DV + 44ζ4E + 80ζ5 + 16ζ2ζ3

)
+O(g8) .

(B.4)

Here all functions are evaluated at rapidity u and angular momentum m (as specified

in (B.3)). One would notice the parallelism between these two expressions upon exchanging

the role of E and V , up to (u-independent) constants. It is observed to work at any loop

order. The expressions are always linear combinations of V and E and derivatives thereof

with overall weight fixed by the loop order (with E, V,N,D having weight 1 by definition).

All coefficients are products of simple Riemann ζ values, ζz = ζ(z), to any loop order.

16These formulas will give the correct result for convergent combinations of integrals when n = 0 provided

one sets ζ1 → −ψ(1).
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Equipped with (B.4) it is now straightforward to derive the eigenvalues ω as a function

of ν. Eliminating the Bethe rapidity u we obtain

−ω = 2g2E − g4
(
D2E − 2V DE + 4ζ2E + 12ζ3

)
+ g6

(
1

6
D4E − V D3E + (V 2 + 2ζ2)D2E − (N2 + 8ζ2)V DE

+ (4V 2 +N2)ζ3 + 44ζ4E + 16(ζ2ζ3 + 5ζ5)

)
+ g8EN3LLA +O(g10) .

(B.5)

The terms up to order g6 follow from the preceding equations, while the N3LLA term,

which we obtained by working out the expansion for ω to one order higher, is:

EN3LLA = − 1

72
D6E +

1

6
V D5E −

(
1

2
V 2 +

1

3
ζ2

)
D4E +

(
1

3
V 2 +

1

2
N2 + 4ζ2

)
V D3E

−
(
N2V 2 + 6ζ2V

2 + 24ζ4

)
D2E − 4ζ3(DE)2 −

(
438ζ6 + 16ζ2

3

)
E

+

(
5

8
N4 +

3

2
N2V 2 +

(
3N2 − 4V 2

)
ζ2 + 108ζ4

)
V DE

− ζ3N
2

(
1

2
N2 + 6V 2

)
− (10ζ5 + 2ζ2ζ3)(N2 + 4V 2)−168ζ4ζ3−80ζ2ζ5−700ζ7 .

(B.6)

All functions are now evaluated at ν/2 (which is often referred to as ν in the literature). It

is easy to see that our result (B.5) precisely matches the known expressions for the BFKL

eigenvalues up to N2LLA, see [12–16]. The formula (B.6) is a prediction for the next order.

In order to compare the measure (A.12) with the literature, one needs to convert the

u integral to a ν-integral, which comes at the cost of a Jacobian. Furthermore, the ν-space

version of the lowest order result, µBFKL
m (u) = g2

u2+m2

4

+ O(g4) with ν = 2u + O(g2), is

usually factored out. To compare with the literature we thus define the function Φ through

µBFKL
m (u) = 2g2 dν

du

Φ(ν,m)

ν2 +m2
, Φ(ν,m) = 1 +O(g2) . (B.7)

Apart from our different convention for the variable ν, our function Φ is the same as Φreg

in refs. [15]: Φreg(ν,m) = Φ(2ν,m). At the lowest nontrivial order,

Φ(ν,m) = 1− g2

(
E2 +

3

4
N2 + 2ζ2

)
+O(g4) . (B.8)

This agrees with ref. [15] (see also ref. [10]). We have performed the expansion to higher

orders and found perfect agreement with the four-loop (i.e., O(g6)) result of ref. [15, 16].

Since the formulas are somewhat lengthy we do not reproduce them here. We have also

obtained new predictions to order g8 and g10. These are attached in an ancillary file

with the arXiv submission of this paper, together with a Mathematica notebook which

implements the formula to arbitrary loop order.
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C BFKL eigenvalue at m = 0

A peculiarity of the m = 0 eigenvalue (4.6) is that it displays square-root singularities at

u = ±2g in rapidity space. This contrasts with the |m| > 0 eigenvalues which are analytical

within the strip |Imu| < 1
2 |m| and for which the full real u line maps into the full real ν line.

What happens for m = 0 is that the integral representation (4.6) only holds for u2 > (2g)2

and then only covers the domain |ν| > ν0 with ν0 = ν(u = 2g). The eigenvalue ω(ν,m = 0)

itself is smooth at ν = ν0 — and more generally for any real ν — but in order to explore

the region where |ν| < ν0 we should analytically continue our representation to the second

rapidity sheet by going through the cut. This is what is explained in this appendix.

We start by noting that our formula (4.6) for the m = 0 eigenvalue can be equivalently

written as

ω =

∫ ∞
0

dt

t

(
γ−(2gt) cos (ut)

et − 1
+K(t)

)
− 1

2

∫ ∞
0

dt

t
γ+(2gt)e±iut ,

ν = 2u−
∫ ∞

0

dt

t

γ+(2gt) sin (ut)

et − 1
± i

2

∫ ∞
0

dt

t
γ−(2gt)e±iut ,

(C.1)

where the functions γ±(2gt) re-sum the series over the Bessels in (3.18), see footnote 6.

The two representations in (C.1) converge for 0 < Imu < 1 and −1 < Imu < 0 in the ±
case respectively. They merge along the real line if u2 > (2g)2 where they both equate (4.6)

with m = 0. This is because the Fourier transform of the even/odd function γ+/−(2gt)

vanishes outside this interval,∫ ∞
0

dt

t
γ−(2gt) cos (ut) =

∫ ∞
0

dt

t
γ+(2gt) sin (ut) = 0 , u2 > (2g)2 . (C.2)

The two representations (C.1) would, however, disagree if evaluated inside the interval

u2 < (2g)2. This is a manifestation of the presence of the aforementioned square-root cut:

one representation is approaching the cut from above and the other one from below. As a

result neither ω nor ν are real for u within this interval. Instead, if we want to decrease

further the value of |ν|, we should continue through this cut and enter the second sheet.

This analytical continuation is elementary and only makes use of the BES equation.

Essentially, once sitting on the cut (that is for u2 < (2g)2 with a small positive or negative

imaginary value), we can add the BES equation (3.19) and flip the± sign in the exponentials

in (C.1). This allows us to pass through the cut and obtain a representation on the second

sheet. We immediately find

ω =

∫ ∞
0

dt

t

γ+(2gt) cos (ut)

et − 1
+

1

2

∫ ∞
0

dt

t
γ+(2gt)e∓iut ,

ν =

∫ ∞
0

dt

t

γ−(2gt) sin (ut)

et − 1
± i

2

∫ ∞
0

dt

t
γ−(2gt)e∓iut ,

(C.3)

which holds within a strip in the lower/upper half plane, respectively. Using the formu-

lae (C.2) one verifies that the two representations (C.3) agree for u2 > (2g)2. It means

that crossing the cut from above or from below boil down to the same operation and lead

to the same sheet, as expected.
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2g
−2g u

a)

b)

ν
−π

2 Γcusp

π
2 Γcusp

Figure 11. Contour of integration for the BFKL mode m = 0 in ν space a) and in u space b).

The contour implements the Feynman-like iε-prescription [43] for integrating around the poles of

the m = 0 impact factor at ν = ±π2 Γcusp. Two copies of the rapidity plane are needed to cover the

full integration range. They are depicted by the lower and upper sheet in figure b). The former

sheet, which is associated to the parametric representation (4.6) of the m = 0 eigenvalue, only

accommodates for ν in the real intervals |ν| > ν0 = ν(u = 2g). To access to the inner interval

|ν| < ν0, one should analytically continue eqs. (4.6) to the upper sheet, by passing through the cut

stretching between u = ±2g. On this sheet the function ω(u) and ν(u) are invariant under u→ u±i.
This periodicity allows us to wrap this u plane into a cylinder of radius i, as done in figure b). The

ends of this cylinder map to the points (ω, ν) = (0,±π2 Γcusp), respectively. The (red) line, which

stands ‘ i2 ’ away from the cut, covers the interval |ν| < π
2 Γcusp through the representation (C.6).

We succeeded, therefore, in obtaining a representation of the eigenvalue for |ν| < ν0.

What is not patent, however, is that it allows us to lower |ν| all the way down to ν = 0.

If we try to lower ν, assumed positive for definiteness, by cranking up the value of u away

from u = 2g, what we get at its extreme, that is for u→∞, is

ν = πgγ1 +O(e−2πu) =
π

2
Γcusp +O(e−2πu) , (C.4)

where we used the fact that the large rapidity regime of (C.3) is controlled by the small t

limit of γ−(2gt) ∼ 2gγ1t. In the very same limit we find that ω → 0, as a consequence of

γ+ ∝ t2 at small t. It means that the point u =∞ is the locus of

ω(ν =
π

2
Γcusp,m = 0) = 0 . (C.5)

This is precisely the prediction of [43]. (By parity a similar equation holds for ν → −ν.)

The interval 2g < u < ∞ on the second sheet therefore covers the range ν0 < ν < π
2 Γcusp

(assuming ν is a monotonic function of u along this interval).
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To enter inside the interval |ν| < π
2 Γcusp we can move along a semi-circle around

ν = π
2 Γcusp in the lower half ν plane. As we shall see shortly, this is done by shifting the

rapidity by u → u + i/2. The latter operation can be performed immediately in (C.3) —

picking the representation which is valid in the upper half plane — and yields

ω =

∫ ∞
0

dt

t

γ+(2gt)et/2 cos (ut)

et − 1
, ν =

∫ ∞
0

dt

t

γ−(2gt)et/2 sin (ut)

et − 1
. (C.6)

This is the sought representation, which covers all values |ν| < π
2 Γcusp as we vary u from

−∞ to ∞.

The property we used to arrive at eqs. (C.6) is that the functions in (C.3), or equiva-

lently (C.6), are i-periodic for |Reu| > 2g. This is easily seen in (C.6) after recalling that

in the latter domain we can evaluate the integrals by closing the contour at infinity and

taking residues. Namely,

ω =
1

4

∫
R

dt

t

γ+(2gt)eiut

sinh t
2

=
∑
k>1

(−1)k

2k
γ+(4iπkg)e−2πku , (C.7)

where here we restricted ourselves to Reu > 2g. The latter requirement is essential to the

convergence of the series, since the function γ+(4iπkg) ∼ e4πkg at large k. Now from the

above representation it is obvious that ω(u + i) = ω(u) and also that ω → 0 at u → ∞.

The integral for ν can be handled similarly, though with a bit more care. We get

ν =
1

8i

∮
dt

t

γ−(2gt)eiut

sinh t
2

+
1

4i

∫
R+i0

dt

t

γ−(2gt)eiut

sinh t
2

=
π

2
Γcusp +

∑
k>1

(−1)k

2ik
γ−(4iπkg)e−2πku ,

(C.8)

after using that the contour integral around t = 0 gives πgγ1 = π
2 Γcusp. We conclude that

ν(u + i) = ν(u) and, more interestingly, that ν → π
2 Γcusp for u → ∞, bringing us back

to (C.5).

One particular application of the representation (C.6) is found for the intercept, ob-

tained by specifying to u = 0,

ω(ν = 0) =

∫ ∞
0

dt

t

γ+(2gt)et/2

et − 1
. (C.9)

Since γ+(2gt) =
∑

k>1 2(2k)γ2kJ2k(2gt) and γ2k ∼ g2k+2 at weak coupling, we verify from

it that ω(ν = 0) vanishes to two loops. Using the previously reported weak coupling

expression for the leading coefficient γ2, see eq. (B.1), we easily derive that

ω(ν = 0) = 4π2ζ3g
6 − (4π4ζ3 + 40π2ζ5)g8 +O(g10) , (C.10)

which agrees with our general result in eqs. (B.5) and (B.6); thus confirming that the

analytical continuation was properly done.

A similar analysis can be applied to the measure (i.e. impact factor). The algebra

is straightforward, though a bit more tedious than for the dispersion relation. Starting

from the expression (A.12) with m = 0, which defines the measure on the bottom sheet in
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figure 11 b), one should then pass through the cut, sitting along the interval u2 < (2g)2,

to get to the top sheet in the same figure. The technical tools to perform this step can

be adapted from the ones presented in appendix (A.3). Once done with this analytical

continuation, it is elementary to reach the red line in figure 11 b) by simply shifing the

rapidity as u→ u+ i/2. We find in the end that the measure takes the form

µ(u)2nd sheet = − exp

[
− π2

4
Γcusp + 2f ′3(u)− 2f ′4(u)

]
, (C.11)

where the functions f ′3,4(u) are built as in (A.15) but with the sources

κ′(u)2j =

∫ ∞
0

dt

t

J2j(2gt)e
t/2 cos (ut)

et − 1
, κ̃′(u)2j−1 = −

∫ ∞
0

dt

t

J2j−1(2gt)et/2 sin (ut)

et − 1
,

(C.12)

and κ′(u)2j−1 = κ̃′(u)2j = 0. The dispersion relation (C.6) can also be re-written in these

terms, through

ω(u)2nd sheet = −4g
(
Q ·M · κ′(u)

)
1
, ν(u)2nd sheet = −4g

(
Q ·M · κ̃′(u)

)
1
. (C.13)

We note that all the above quantities are i-periodic functions of the rapidity, outside

the strip |Reu| < 2g, since this is the case for the sources, i.e. κ′(u + i) = κ′(u) and

κ̃′(u+ i) = κ̃′(u).

The important property of the measure (C.11), which we would like to stress here,

concerns its behavior at large rapidity. Namely, we observe that

µ(u)2nd sheet → −1 , for u→ ±∞ . (C.14)

This immediately follows from the fact that all sources are (exponentially) suppressed at

large u, except the leading one that goes like κ̃′(u)1 → ±πg/2. It implies that

f ′4(u)→ 0 , f ′3(u) ∼ 2κ̃′(u)1M11κ̃
′(u)1 →

π2

8
Γcusp , (C.15)

after using that M11 = Γcusp/(4g
2), and eventually yields to eq. (C.14). Since at large u

ν = ±π
2

Γcusp ∓ c e∓2πu + . . . , (C.16)

where c is a coupling dependent constant, we obtain

duµ(u)2nd sheet ∼ ±
dν

2π

1

ν ∓ π
2 Γcusp

, (C.17)

when ν ∼ ±π
2 Γcusp. This behavior is in perfect agreement with the general predictions of

ref. [43] and constitutes a non-trivial test of our expressions for m = 0.
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D Leading behavior at strong coupling

To the leading order at strong coupling g =
√
λ/(4π) � 1, the solution to the BES

equation [53] reads, in our notations (see [44] for further detail), as

K(t) =
2gt
√

2

π(1− e−t)

∫ 1

−1
dξ

(
1 + ξ

1− ξ

)1
4

sin (2gξt)− 2gt
√

2

π(et − 1)

∫ 1

−1
dξ

(
1 + ξ

1− ξ

)1
4

cos (2gξt) .

(D.1)

As a consequence the integrands in (4.6) oscillate rapidly, meaning that the integrals are

dominated by t ∼ 1/g. Upon rescaling t→ t/(2g) and expanding at large g, it is straight-

forward to perform the t integrals since the dependence is only through the sin and cos

terms. Taking ũ = u/(2g) fixed, but m ∼ 1, and performing the t integrals yields

ω =
g
√

2

π

∫ 1

−1
dξ

(
1 + ξ

1− ξ

)1
4
[
π sign(ξ)− log

∣∣ξ2 − ũ2
∣∣

ξ2

]
+O(g0) ,

ν = 4gũ+
g
√

2

π

∫ 1

−1
dξ

(
1 + ξ

1− ξ

)1
4

log
|ξ − ũ|
|ξ + ũ|

+O(g0) .

(D.2)

We observe that all dependence on m dropped out of ω. This is a manifestation of the

universality of the (leading) strong coupling limit. A simple way to evaluate these integrals

is to take a derivative with respect to ũ, after which the integrals can be readily performed

via contour integration. The result, however, takes different form depending on whether

ũ2 ≷ 1. As we will see shortly, the inner/outer domain corresponds to |ν| ≷ πg, or, as this

turns out to be equivalent, to ω ≷ 0. In the inner region (ũ2 < 1), after re-integrating with

respect to ũ with the appropriate boundary conditions, we obtain

ω =
√

2g

∫ 1

ũ
dξ

[(
1 + ξ

1− ξ

)1
4
−
(

1− ξ
1 + ξ

)1
4
]

+O(g0) ,

ν =
√

2g

∫ ũ

0
dξ

[(
1 + ξ

1− ξ

)1
4

+

(
1− ξ
1 + ξ

)1
4
]

+O(g0) ,

(D.3)

and immediately verify that |ν| remains smaller than πg and ω positive as we vary ũ2

from 0 to 1. We note that the fact that the derivative with respect to ũ has removed the

integrals is essentially the content of the strong-coupling BES equation, which could have

been used to directly write down (D.3). Introducing the parametrization ũ = tanh(2θ),

we find the formula quoted in the main text (5.3). In the complementary region, picking

ũ > 1 for definiteness, we get instead that

ω = 2g

∫ ũ

1
dξ

[(
ξ − 1

ξ + 1

)1
4
−
(
ξ + 1

ξ − 1

)1
4
]

+O(g0) ,

ν − πg = 2g

∫ ũ

1
dξ

[(
ξ − 1

ξ + 1

)1
4

+

(
ξ + 1

ξ − 1

)1
4
]

+O(g0) ,

(D.4)
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Figure 12. The BFKL eigenvalue at strong coupling. The inner part (in red) is controlled by (5.3)

and the outer one (in blue) by (D.5). The former is maximal at ν = 0 and minimal at |ν| = πg

while the latter is unbounded from below, scaling like ω ∼ −2g log |ν| at large ν.

which shows that ω > 0 and ν > πg for all ũ > 1. Upon the reparameterization ũ =

coth(2θ), this representation could be re-written equivalently as

ω =

√
λ

2π

[
1

cosh θ
− 1

2
log

(
cosh θ + 1

cosh θ − 1

)]
,

ν −
√
λ

4
=

√
λ

2π

[
1

sinh θ
+
i

2
log

(
sinh θ + i

sinh θ − i

)]
.

(D.5)

It displays a logarithmic scaling ω ∼ −
√
λ

2π log ν at large ν (corresponding to small θ), which

persists at any coupling upon
√
λ

2π → Γcusp.

In short, at strong coupling, the BFKL eigenvalue is described by two (analytical)

functions, which are continuously (but not smoothly) connected to each other at ν = ±πg,

as depicted in figure 12. Their expressions, given in eqs. (5.4) and (D.5) respectively, are

mathematically similar and can both be related to the giant hole dispersion relation, as

mentioned in section 5.2. Namely, we have

ω(θ) = −Egiant(θ) , ν(θ) =

√
λ

4
sign ν + Pgiant(θ) , (D.6)

in the outer region, and (5.4) in the inner one.

The analysis we carried out for ũ2 < 1 does not apply, strictly speaking, to the par-

ticular case m = 0. This point is easily understood after recalling the observation made

in appendix C that this eigenvalue has a branch cut along this interval. To obtain the

strong coupling eigenvalue for m = 0 in the regime where ω > 0, we should place ourself

on the second sheet and analyze the integral representation (C.6) instead. This one, we

have seen, covers the domain |ν| < π
2 Γcusp for |u| < ∞, which is precisely the range of

interest here. In fact, at strong coupling, we reach |ν| = π
2 Γcusp at |u| = 2g already (up

to exponentially small corrections). We can therefore focus our attention on the interval

ũ2 < 1. The relevant integrals are easily done and the end result found to be exactly the
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same as in eq. (5.3). This shows that the universality observed before extends to m = 0 as

well, to leading order at strong coupling.

The impact factor (A.12) at strong coupling requires more work and will not be dis-

cussed here, but is in principle straightforward.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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