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1 Introduction

Interactions of massless higher-spin fields in flat space are severely constrained. Powerful
no-go theorems forbid minimal coupling to gravity in Minkowski space when the particle’s
spin exceeds the value s = 2 [1-5]. Higher-spin particles may still possess gravitational



multipoles. For bosonic fields, for example, consistent 2 — s — s trilinear vertices exist [6, 7],
albeit they may get obstructed beyond the cubic order in a local theory.

In general, one can consider s; — so — s3 cubic vertices involving massless fields of
arbitrary spins. The number of derivatives in these vertices, as the light-cone formula-
tion elucidates, is restricted, which provides a way of classifying them [8, 9]. The com-
plete list of such vertices for bosonic fields appeared already in [10, 11], but their explicit
construction may call for the Noether procedure [12-14] or the BRST-BV cohomological
methods [6, 7, 15, 16]. The tensionless limit of open string theory, on the other hand,
yields a set of cubic vertices in one-to-one correspondence with that found in the light-cone
formulation [17, 18].

This paper is devoted to the study of the cubic interactions of an arbitrary-spin massless
fermion with dynamical gravity in flat space of dimension D > 4, and is a sequel to its
electromagnetic counterpart [19]. Fermions are interesting in that they are required by
supersymmetry—a crucial ingredient of string theory that indeed incorporates an infinite
tower of higher-spin fields. Their appearance in the higher-spin literature [9, 17-21] is yet
meager; our study aims at filling some of the gaps. For totally symmetric Dirac fermions
Yy, Of sSpin s = n + %, we employ the powerful BRST deformation scheme [15, 16]
for systematic construction of covariant interaction vertices allowed by gauge symmetry.
The underlying assumptions include only locality, Poincaré invariance and conservation of
parity. The covariant 2 — s — s cubic vertices we are about to find will thus complement
their bosonic counterparts constructed in ref. [7]. We will consider only s > g, since spin %
has no consistency issues with gravity (gauge deformations of the free system indeed leads
uniquely to A/ = 1 supergravity [22] under reasonable assumptions).

The organization of the paper is as follows: in the remaining of this section we clarify
our conventions and notations, and spell out our main results. Section 2 is a brief account
of the BRST deformation scheme [15, 16] for irreducible gauge theories—a machinery to be
used in the remaining of the paper. In section 3, we consider in great detail s = %, which
serves as a prototype for arbitrary spin. Treating the gauge-algebra-deforming/preserving
cases separately, we explicitly construct all the 2 — % — % vertices, and cast them into
various off-shell forms to make some desired properties manifest. Section 4 is a straightfor-
ward arbitrary-spin generalization that mimics the spin—% case. In section 5 we show that
our non-Abelian vertices face obstructions in a local theory beyond the cubic order. We
conclude with some remarks in section 6. Three appendices supplement the main text to
provide useful technical details much required throughout the bulk of the paper.

Conventions & notations

We work with mostly positive metric in Minkowski spacetime of dimension D > 4. The
Clifford algebra is {7*,7"} = +2n*", and the y-matrices obey v#T = n/#~#, The Dirac
adjoint is defined as @Zu = @Z)L'yo. The Levi-Civita tensor, €,,u,...up, i normalized as
€01...(p—1) = +1. Totally antisymmetric product of y-matrices have unit weight: y#1-#n =
7[“17“2 .. .7“”], with [i1...4,] denoting a totally antisymmetric expression in all the in-
dices i1, ..., i, with a normalization factor % The totally symmetric expression (g ... 4,)
comes with the same normalization. The anticommutator of two antisymmetric products



of v-matrices is denoted as follows: ~H1-Hm Vi--Vn = %{7“1'"“”1,7”1'“”"}. We will use the
symbol ntlee = plullles] — peolir t6 denote the tensor % (nHPyre — nhonvP).

The spin-2 graviton field will be denoted by h,,,, while its 1-curl by a Fraktur letter:
buv)p = 20),h)p- The 2-curl of the graviton is simply the linearized Riemann tensor,
denoted by R,,p, as usual: R,,f7 = 48[M8[phl,]”]. Its trace is the linearized Ricci tensor:
Ry, = Ry,,,”, whose trace in turn is the Ricci scalar: R = RY;. The symbol R, will denote
the double ~-trace, 7*? R, s, of the Riemann tensor.! We will also use the symbols:
Rtmvaf = (anIpff + %,YWPU) Rpaocﬁ and h+W|I>\ = (nwlprf + %7W00) bpollA'

For the spin—% field, 1, we denote a 1-curl by an upright greek letter: ¥, , =
20,4y)p, and a 2-curl (curvature tensor) by an uppercase greek letter: W7
49,04,

For arbitrary spin s = n+ %, we have a totally symmetric rank-n tensor-spinor ¢, . ., ,

mv|

whose curvature is a rank-2n tensor-spinor, ¥ defined as the n-curl,

vt |peval . punvn
\IIM1V1|/L2V2|...|MnVn = [ . [[aﬂfl R aﬂnwl’lml’n - (:ul <~ Vl)] - (/’LQ A VZ)] . ] - (Mn <~ Vn)'

This is the Weinberg curvature tensor [23-26]. Its properties and relation to the equations
of motion (EoMs), along with those of the Riemann tensor, will be discussed in appendix A.
However, for s > g, one can have multiple intermediate curls. An m-curl for 0 < m < n,
will be denoted by an upright greek letter with an explicit superscript m,>

vl pmvm |[Vmt1.vn = [ ’

N0 -+ Op v — (1 1) = (2 > 12)] -] = (i > V).

The Fronsdal tensor for the fermionic field [27, 28] will be denoted by S, . p,, i-e.,

Sulmun =1 [@wmmﬂn B na(ul %ﬁ#zm#n)] ’

Finally, the symbol “=” will mean the equality of expressions up to a total derivative, while
“a” the equivalence of vertices up to field redefinitions and total derivatives.

Results

e We provide a cohomological proof of the well-known fact that in flat space a massless
spin—% field cannot have minimal coupling to gravity [3-5]. This result generalizes
easily to higher-spin fermions.

e For spin s =n+ %, we find that the possible number of derivatives in a cubic 2—s—s
vertex is restricted to only five allowed values: 2n — 2,2n — 1,2n,2n + 1 and 2n + 2,
with only one inequivalent vertex for each value. Derived independently, this is in
complete accordance with the light-cone-formulation results of Metsaev [9].

e T'wo of the vertices—those with the lowest 2n—2 and 2n—1 number of derivatives—are
non-Abelian, while the other three are Abelian.

'In all other cases “slash” will always mean a single y-trace: v Q,, = @, and “prime” a trace.
2One may extrapolate m to include the values n and 0: m = n gives nothing but the curvature tensor,
11)(”) =W, 1. |unvn» Whereas m = 0 corresponds to the original field itself, lb,(,??“l,n =Yuy.vn-

pivylepnvn T



D Vertex Abelian?  Exists in
., ,, .

2 Zw/.taRerjanVﬁ + %%MRW %)y + Zhul/ll)paH)\ ,.)/upaaﬂ,l/)\’y q)a,@H'y No D >4

3 Z’J)MV”P <h:UH/\ ,YAm/aB i ,y)\,ul/a,é’ h;,”)\) lbaﬁHU No D>5

4 ihu,,\ifpgh.)\ 7“”‘70‘6"”7 ‘Ijaﬁh)\ Yes D>5

5 ihuuHA@ln‘pa ,Y)\poaﬁ U 0g Yes D>5

6 iRy po OPO1B g1V Yes D >4

Table 1. Prototypical example of 2 — g - % vertices with p derivatives.

e Only two of these vertices exist in D = 4: the ones with the lowest 2n — 2 and highest
2n + 2 number of derivatives. All five vertices are nontrivial in D > 5.

e None of the Abelian vertices deform the gauge transformations. The highest-
derivative one can be written in a strictly gauge-invariant 3-curvature term, while
the other two can be rendered gauge invariant only up to total derivatives.

e In a local theory, with no additional dynamical degrees of freedom, the non-Abelian
vertices get obstructed beyond the cubic order.

A summary of our results, for the prototypical example of spin g, appears in table 1.

2 The BRST deformation scheme

In this section we outline the BRST deformation scheme—our tool to find gravitational
vertices of massless higher-spin fermions.® As pointed out in [15, 16], one can reformulate
the classical problem of introducing consistent interactions in a gauge theory in terms of
the BRST differential and the BRST cohomology. The advantage is that the search for
all possible consistent interactions becomes systematic, thanks to the cohomological ap-
proach. Obstructions to deforming a gauge-invariant action also become related to precise
cohomological classes of the BRST differential.

Fields and antifields

Let us consider an irreducible gauge theory of a collection of fields {¢'}, with m gauge
invariances, 6.¢' = R.e% a =1,2,...,m. Corresponding to each gauge parameter %, one
introduces a ghost field C%, with the same algebraic symmetries but opposite Grassmann
parity (€). The original fields and ghosts are collectively called fields, denoted by ®4. The
configuration space is further enlarged by introducing, for each field and ghost, an antifield

%, that has the same algebraic symmetries (in its indices when A is a multi-index) but
opposite Grassmann parity.

3This account is an almost verbatim repetition of that appearing in [19], where electromagnetic couplings
of massless higher-spin fermions were considered.



Gradings

In the algebra generated by the fields and antifields, we introduce two gradings: the pure
ghost number (pgh) and the antighost number (agh). The former is non-zero only for the
ghost fields. In particular, for irreducible gauge theories, pgh(C%) = 1, while pgh(¢’) = 0
for any original field. The antighost number, on the other hand, is non-zero only for the
antifields ®%. Explicitly, agh(®*) = pgh(®4) + 1, agh(®4) = 0 = pgh(®*). The ghost
number (gh) is another grading, defined as gh = pgh — agh.

Antibracket

One defines an odd symplectic structure — the antibracket — on the space of fields and

antifields: R . n .
0t X 6ty X oMY
X.Y)= — . 2.1
(X,Y) 5PpA 00%  6d% 5PpA (2.1)

This definition gives (@A, @j‘g) = (5@, which is real. Because a field and its antifield have
opposite Grassmann parity, it follows that if ®# is real, ®% must be purely imaginary,
and vice versa. Note that the antibracket satisfies the graded Jacobi identity.

Master action

The original gauge-invariant action S([¢"] is then extended to a new action S[®4, %],
called the master action, that includes terms involving ghosts and antifields,

S[@4, o4] = SO[¢!] + o RLCO ..., (2.2)

which, by virtue of the Noether identities and the higher-order gauge-structure equations,
satisfies the classical master equation

(Sv S) =0. (23)

In other words, the master action S incorporates compactly all the consistency conditions
pertaining to the gauge transformations.

BRST differential

The master action also plays role as the generator of the BRST differential s, which is
defined as
sX = (5, X). (2.4)

Notice that S is BRST-closed, as a simple consequence of the master equation. From the
properties of the antibracket, it also follows that s is nilpotent,

52 = 0. (2.5)

Therefore, the master action S belongs to the cohomology of s, denoted as H(s), in the
space of local functionals of the fields, antifields, and their finite number of derivatives.



Deformed master action

As we know, the existence of the master action S as a solution of the master equation is
completely equivalent to the gauge invariance of the original action S(©[¢!]. Therefore,
one can reformulate the problem of introducing consistent interactions in a gauge theory
as that of deforming the solution S of the master equation. Let S be the solution of the
deformed master equation, (S,S5) = 0. This must be a deformation of the solution Sy of
the master equation of the free gauge theory, in the deformation parameter g,

S =Sy + gS1+ ¢°S2 + O(g?). (2.6)

The master equation for S splits, up to O(g?), into

(S0, 80) = 0, (2.7)
(80, 51) = 0,
(S1,51) = —2(Sp, S2). (2.9)

Eq. (2.7) is fulfilled by assumption, and in fact Sy is the generator of the BRST differential
for the free theory, which we will denote as s. Thus, eq. (2.8) translates to

sS1 =0, (2.10)
i.e., S7 is BRST-closed.

First-order deformations

If the first-order local deformations are given by S; = [ a, where a is a top-form of ghost
number 0, then one has the cocycle condition

sa = 0. (2.11)

Non-trivial deformations therefore belong to H%(s|d)—the cohomology of the zeroth-order
BRST differential s, modulo total derivatives d(...), at ghost number 0. Now, if one makes
an antighost-number expansion of the local form a, it stops at agh = 2 [7, 29-33],

a = ag + ay + az, agh(a;) =1 = pgh(a;). (2.12)

For cubic deformations S7 = f a, it is easy to check that indeed one cannot construct an
object with agh > 2 [7]. The result, however, is more general and holds in fact also for
higher order deformations, as it follows from the results of refs. [22, 29-33].

The significance of the various terms is worth recalling: ag is the deformation of the
Lagrangian, while a; and as encode information about the deformations of the gauge trans-
formations and the gauge algebra respectively [15, 16]. Thus, if a is not trivial, the algebra
of the gauge transformations is deformed and becomes non-Abelian. On the other hand, if
az = 0 (up to redefinitions), the algebra remains Abelian to first order in the deformation
parameter. In that case, if a; is not trivial, the gauge transformations are deformed (re-
maining Abelian), while if a1 = 0 (up to redefinitions), the gauge transformations remain
the same as in the undeformed case.



Consistency cascade

The various gradings are of relevance as s decomposes into the sum of the Koszul-Tate
differential, A, and the longitudinal derivative along the gauge orbits, I':

s=A+T. (2.13)

The operator A implements the EoMs by acting only on the antifields. It decreases the
antighost number by one unit while keeping unchanged the pure ghost number. I acts
only on the original fields and produces the gauge transformations. It increases the pure
ghost number by one unit without modifying the antighost number. Accordingly, all three
A, T and s increase the ghost number by one unit, gh(A) = gh(I") = gh(s) = 1. Note that
A and I" are nilpotent and anticommuting,

I?=A*=0, TA+AI'=0. (2.14)

Given the expansion (2.12) and the decomposition (2.13), the cocycle condition (2.11)
yields the following cascade of relations, that a consistent deformation must obey:

Tay = 0, (2.15)
Aas +Tay = 0, (216)
Aay + Tag = 0. (2.17)

We will call the set of conditions (2.15)—(2.17) the consistency cascade. Note that as can
always be chosen as I'-closed, instead of I'-closed modulo d [29-32].

Second-order deformations

Finally, while the graded Jacobi identity for the antibracket renders (S, S1) BRST-closed,
the second-order consistency condition (2.9) requires that it actually be s-exact:

(Sl, Sl) = —2559. (2.18)

This condition determines whether or not, in a local theory, a consistent first-order defor-
mation gets obstructed at the second order. Such higher-order obstructions are controlled
by the local BRST cohomology group H'(s|d) [29-32].

Non-triviality of deformations

The highest-order term ay will be trivial (removable by redefinitions) iff one can get rid of
it by adding to a an s-exact term modulo d, sm + dn. Expanding m and n according to
the antighost number, and taking into account the fact that m and n also stop at agh = 2
since they are both cubic, one finds that ao is trivial iff as = I'mo + dny. We see that
the cohomology of I' modulo d plays an important role. The cubic vertex will deform the
gauge algebra if and only if as is a non-trivial element of the cohomology of I' modulo d.
If a5 is trivial, the vertex is called Abelian. In this case, one can always choose as = 0,
and I'a; = 0 [29-32]. The vertex deforms the gauge transformations unless a; is A-exact



modulo d, a; = Amg + dnq, where mg can be assumed to be invariant [22, 29-33]. In that
instance, one can remove a1, and so one can take ag to be I'-closed modulo d: the vertex
only deforms the action without deforming the gauge transformations.

Non-trivial Lagrangian deformations ag are non-trivial elements in H(A), whereas
trivial interactions are given by A-exact terms modulo total derivatives. Therefore, two
vertices are equivalent iff they differ by A-exact terms up to total derivatives.

3 Gravitational coupling of massless spin 5/2

In this section we construct parity-preserving off-shell 2 — % — % vertices by employing
the BRST-BV cohomological methods. The spin—g system is simple enough so that one

can implement the BRST-deformation scheme with ease, while it captures many non-
trivial features that will propagate along as one moves on to arbitrary spin, which will be
considered in the next section.

The starting point is the free theory, which contains a graviton field A, and a massless
spin—% tensor-spinor field v, described by the action

4 L5 v 7 v
SO, ] = / dPx [G“ o + 5 (R*™ Y — Y RM™) | (3.1)
which enjoys two Abelian gauge invariances
5)\h;w = 28(#)\1,), dﬂ/hw = 28(H5V)’ with ¢ = 0. (3.2)

For the Grassmann-even bosonic gauge parameter \,, we introduce the Grassmann-
odd bosonic ghost C,. Corresponding to the Grassmann-odd fermionic gauge parameter ¢,,,
we have the Grassmann-even fermionic ghost £, which is of course ~-traceless. Therefore,
the set of fields becomes

(I)A - {hW,Cm%mé}t}- (3'3)

For each of these fields, we introduce an antifield with the same algebraic symmetries in
its indices but opposite Grassmann parity, the set of which is

O = {PHH, O Y £ (3.4)

Now we construct the free master action Sy, which is an extension of the original
gauge-invariant action (3.1) by terms involving ghosts and antifields. Explicitly,

Sy = / dPx [GWhW + % (R — s RM™) — 20%9,C, + (Y™ 0,6, — #g‘m*W)] ,
(3.5)
which is easily seen to satisfy the master equation (Sp, Sg) = 0. Notice that the antifields
appear as sources for the “gauge” variations, with gauge parameters replaced by corre-
sponding ghosts. We spell out in table 2 the different gradings and Grassmann parity of
the various fields and antifields, along with the action of I' and A on them.



Zz  I(2) A(Z)  pgh(Z) agh(Z) gh(Z) €(Z)
b 20(,C,) 0 0 0 0 0
C, 0 0 1 0 1 1
h*H 0 GHv 0 1 -1 1
CHe 0 —20, h** 0 2 -2 0
Yuv 200, 0 0 0 0 1
£, 0 0 1 0 1 0

P 0 RHV 0 1 -1 0
Exm 0 20, Y 0 2 -2 1

Table 2. Properties of the various fields & antifields (n = 2).

For the spin—% field, the Fronsdal tensor is Sy = @ | @Y — 20,4, |, and it is related
to the original EoMs via

1
RM = SH — 7(“,5"’) — 57]‘“’8', S = S (3.6)

Note that the divergence 0, R" is not zero—unlike that of the Einstein tensor—but is
proportional to y*.4 Because of this, when A acts on the fermionic antighost £**, the
result is more than a simple divergence of the antifield 1/*** (see appendix A). Explicitly,

e - 1 TkY
AEH = 20,31, XM= — T, (3.7)

The cohomology of I' is isomorphic to the space of functions of (see appendix B)

e The undifferentiated ghosts {C}, &, }. Also the 1-curl of the bosonic ghost €, as well
as the y-traceless part of the 1-curl of the fermionic ghost &,

e The antifields {h**¥, C*# *" ¢} and their derivatives,
e The curvatures {R,,,x, ¥, |pr} and their derivatives,

e The Fronsdal tensor S, and its symmetrized derivatives.

3.1 Non-Abelian vertices

Non-Abelian vertices are those that deform the gauge algebra. They correspond to de-
formations of the master action with nontrivial terms at agh = 2. In other words, as
is a nontrivial element in H(I'|d). Notice that as is Grassmann even, hermitian and has
gh(a2) = 0. Besides, we require that as be a parity-even Lorentz scalar.

It is then clear that any as will consist of a single antighost and two ghost fields. Let
us note that two as’s are equivalent iff they differ by I'-exact terms modulo total deriva-
tives. Without loss of generality, we can thus choose the antighost to be undifferentiated.
Furthermore, any derivative acting on the ghost fields {C},,{,} can be realized as a 1-curl

4The action is still gauge invariant, thanks to the y-tracelessness of the gauge parameter Eu-



{€u, &} up to irrelevant I'-exact terms (see appendix B). Because the derivative of a
ghost-curl is I'-exact, a nontrivial as can never contain more than 2 derivatives. This
already poses an upper bound of 3 on the number of derivatives in a non-Abelian vertex.

To be more explicit, let us write down all the inequivalent as’s. In view of the actions
of I and A on various (anti)fields, given any ag, the consistency cascade (2.15)-(2.17)
unambiguously counts the number of derivatives p contained in the corresponding vertex
ag. Thus we can classify as’s based on the value of p. The set of all possible nontrivial as’s
falls into two subsets: subset-1 contains the bosonic antighost C';, while subset-2 contains
the fermionic one ;. In subset-1 we have

p=1: igC™e™éa
ag=p=2: igC*ELE +h.c. (3.8)
p=3: g C’*“Eo‘ﬁﬂméa@.

It is easy to see that this list is indeed complete. First, it follows from Lorentz invariance
that if p is odd(even), the number of v matrices is also odd(even). The latter can be chosen
simply to be 1(0). This is because if more v matrices are there, one can anti-commute them
past each other using the Clifford algebra to see that only terms with 1(0) y-matrix survive,
while other terms are either killed (§= 0) or made trivial (v*&,3 = I'-exact).

Note that the p = 1 candidate, igC*“E‘WM{a, is easily ruled out as inconsistent.
To see this, we simply take its A variation and integrate by parts to find Aay =
2igh*** 9, (f_o"yufa), which contains nontrivial elements of H(I'|d), involving the ghost-curl
&av. Therefore, the consistency condition (2.16) cannot be satisfied.

Next we consider subset-2 whose as’s contain the (undifferentiated) fermionic
antighost. Again, the as’s can be classified based on the value p of the number of derivatives
in the corresponding vertex ag. The complete list is

p=20: gf*“’yo‘fuCa + h.c.
ag={p=1: g&H (&€ + a1&uC” + ay*P€,C0p) + hoc. (3.9)
p=2: gé*waaﬂuezaﬁ + h.c.,
where a; and oy are dimensionless constants. Because both ¢and ¢* vanish, and v*&,5 =
I'-exact, any y-matrix must be contracted with the bosonic ghost or with its curl. Then one
can easily verify that the list (3.9) indeed gives all possible inequivalent Lorentz scalars.
Here it is easy to rule out the p = 0 candidate, gf*“vo‘fuca + h.c., as inconsis-
tent. Again, we simply take its A variation and integrate by parts to obtain Aay =

=29 x*" 0, (v*£,Cq) + h.c., which contains nontrivial elements of H(I'|d), involving the
ghost-curls &, and C,,. The consistency condition (2.16) cannot then be satisfied.

3.1.1 Minimal coupling and absence thereof

A possible minimal coupling would correspond to a 1-derivative vertex. The most general
ag can be written as (dropping the already-ruled-out candidate containing C7;)

az = gg*ﬂ (guet,ul/ + o ‘Z—vyuCV + OéQ’YpJg#Q:pg) + h.c. s (310)

,10,



where o1 and ap are dimensionless constants. Then we have
Aay = T-exact — g X" (£a"Cpp + 1 & €0 + 0?7 80, €0 ) + hc., (3.11)

where we recall that y*# = ¢*#® — & 9" “~*. The nontrivial elements of H(T'|d) appearing
on the right-hand side can actually be canceled by the choice a; = —1 and ag = %. The
only subtlety are the terms containing the y-trace 3" of the fermionic antifield, for which
one needs to use the identity: y#4#7 = v7~# 4 4ntle47l With the cocycle condition (2.16)
thus satisfied, the unambiguous piece in a; reads

a1 = ~2 (9 X WP, ,C” + hoc) + V0 + ..., (3.12)

where the ellipses stand for terms with the fermionic ghost £, but not C),. This gives

B = %Aal - (ngxgﬁ preld h.c.) + 278, Y], (3.13)
N

Similarly, because the ambiguity a; belongs to H(I'), we have

B = %Adl = I'-closed. (3.14)
n

Now the cocycle condition (2.17) is fulfilled if
Aday + Aay = —Tag =2C,0,T" + ..., (3.15)
for some ag = h;,, T". Taking a functional derivative w.r.t. C, then yields
B+ B = 20,TH. (3.16)
Using egs. (3.13) and (3.14), and taking a I" variation one is lead to the necessary condition
T3 = 0° [29 Axls £ + hoe] + 0, (2rAyW1> = 9, (20TH). (3.17)

In D > 4, this condition can never be satisfied, since the terms inside the brackets are not
I'-exact modulo d. Thus we conclude that there is no 1-derivative % — g — 2 vertex; i.e., a
massless spin—% field cannot have minimal coupling to gravity in flat space [3, 4].

3.1.2 The 2-derivative vertex

Having ruled out minimal coupling, we are lead to consider the next possibility—the 2-
derivative vertex, for which the corresponding as reads

as = [ig C*HE, " + h.c.] + [g Qf#yé_’;'y“””aﬁﬂa/g + h.c.] , (3.18)

where the coupling constants g and g are a priori complex, but will soon be required to be
real. Notice that, for future convenience, we wrote the term with fermionic antighost with
five y-matrices, instead of just one, as it appears in eq. (3.9). The equivalence of the two
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forms, although rather obvious, is made explicit in appendix C.1 for interested readers. To
find a possible a;, we take the A variation of eq. (3.18) and integrate by parts:

Aay =2 [ig h*uuayzu)\@ + h.c.} +2 [g Xpo 07 (Qwry#upaﬁaaﬂ) + h.c.} ) (3.19)

In view of egs. (B.8) and (B.11), the I'-exactness of the second piece on the right-hand side
is manifest, while in the first piece one can also use eq. (B.9) to extract I'-exact terms. The
contributions that are nontrivial in H(I") cancel each other only if g is real. Therefore, the
cocycle condition (2.16) is satisfied. This gives, up to an ambiguity ay,

ay = ayg + a1g + aa, (3.20)

where I'a; = 0, and the other terms are unambiguously determined to be
arg = igh™" (EM%A + 0, 8 — 28 — QJ)MA”V@) ; (3.21)
aig = 29 (inif)ﬂ“”paﬁll)amf - huy||">2f>ov“””aﬁéaﬁ) +he.. (3.22)

We will now compute the A variations of the above quantities. From eq. (3.21) one finds
Aary = ig€y 260 b = 30, (GM0,N) + 0 (M )| + e, (3.23)

which does not contain the bosonic ghost C),. Note that neither can Aa; give rise to
terms containing C',. This is because, if the ambiguity a; contains C), or its curl, it must
also contain the Fronsdal tensors® and thus be A-exact, so that Aa; = 0. This fact puts
restrictions on Aajz: it may contain C, only in the form of symmetrized derivatives,
9, Cyy, up to total-derivative terms. Otherwise, Aa; will have nontrivial pieces belonging
to H(I'|d), and the condition Aa; = —I'ayp may never be satisfied.

With the above facts in mind, we compute the following quantity, that will be useful:

5 ~ —* vpo o ~%_T, o vpo *
Be = Eﬁam = —4GAX ap T — 4G Dag TV AL X, (3.24)

The right-hand side, if non-zero, must be the divergence of a symmetric tensor: 9, X"
with X# = XY*. As shown in appendix C.1, this is possible only if § is real, and it yields

XM = 2ig 1J_)pUH/\ ’YM'DUO[B’V)W q)ozﬁﬂv + (,u A V)' (325)
Then, the bosonic ghost C), will appear in Aajz only through I'-exact pieces. Explicitly,

1 1
ACL1§ +T (2}2“1/‘)(/’“/) = §huurij —2g (huuHGAXza’YHVpaﬁaaﬁ + hC) : (326)

One can now simplify the right-hand side, which does not contain the bosonic ghost C,,
but just the fermionic one §,. The result is (see appendix C.1)

1 _
Aayg+T <2hWX"”> = —ig & (Ryurpr P 7 Py, ) + e (3.27)

Tt cannot contain only curvatures, because then there are too many derivatives in Ad; to possibly
correspond to a vertex with p = 2.
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It is easy to see that the right-hand side is a nontrivial element of H(I'|d). Only if it can
be written, up to I'-exact pieces and total derivatives, in terms of Aay plus possibly Aayg,
for some choice of g, can one fulfill the condition Aa; = —I'ag and thus obtain a vertex.
After a tedious but straightforward calculation, shown in appendix C.1, one can write

1 _ 1-
Aag+T <2h;wX/w> = —8igl <¢paR+uya’B¢yﬂ + 274%}?’“/74&1,) — Aa, (3.28)

where RT#efB = Rrves 4 %WMVPURPUO‘/B, and Aa is given in eq. (C.29). The next step is to
relate the latter quantity with Aa; and Aaiy up to total derivatives. Indeed, as we see in
appendix C.1, this feat can be achieved. We find

Aa = (899> Aalg + Aadq, (3.29)
for some ambiguity a; spelled out in eq. (C.31). Then one can choose
.1

in order to fulfill the cocycle condition (2.17). That is, eq. (3.28) takes the form:
Aalg + Aalg + Aay = —Tay, (331)

where the vertex ag is given by

- 1 _
PuB oy + o yppoeh, Xy xpaﬁ,y) : (3.32)

. - 1
ap =19 (wuaR”W%yﬁ + 3

We emphasize that it is a unique linear combination in eq. (3.18), with g = % g being
real valued, for which the as gets lifted to a vertex ag through the consistency cascade.
The 2-derivative vertex is therefore unique. While it simplifies in 4D as the last term in
eq. (3.32) vanishes, the vertex is non-zero in any D > 4.

3.1.3 The 3-derivative vertex

In this case, as we see from egs. (3.8) and (3.9), there is just one candidate for ag, namely
ag = —ig C% &y P E 5. (3.33)

Again, for future convenience, we wrote it with five y-matrices, instead of just one as it
appears in eq. (3.8). The equivalence of the two forms is made explicit in appendix C.2.
Acting with A on eq. (3.33) and integrating by parts one evidently produces only I'-exact
terms, thanks to the relations (B.11). The corresponding a; is thus easily seen to be

a1 = —2ight® (EWVWQB%B”U . h.c.) + (3.34)

for some ambiguity a; such that I'a; = 0. Now we address the problem of finding the lift
to ag. Acting on the above expression with A again, one obtains the Einstein tensor, which
can be written as G§ = 28@!}“’”,\} — %5§R. Thus one ends up having

. o o 1 o T vo ~
Aay = —2ig (8pf)p NN ”p — 25/\R> (‘EMV'YM Bl])aﬁllﬂ — h.c.) + Aay. (3.35)
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The term proportional to the Ricci scalar is simply zero because of the Bianchi identity
Plag|lo] = 0, while the term containing ) is a total derivative, thanks again to the Bianchi
identities 8[/\5;w]
5-7. Finally, the term containing 0, can be integrated by parts to give

= 0 and 0[)\1[)@5]”0 = 0, enforced by the presence of the antisymmetric

y - 1z .
Aal = 22g f)pU”)\ <8PE,#V ”y’\’“’o‘ﬁ lpa5||0 + iauy ,y)\w/aﬂ \Ila6|pa - hC> + Aal. (336)

The first term in the parentheses and its hermitian conjugate combine into a I'-exact term
modulo d, since the I' variation of the graviton curl is zero up to a total derivative, again
by the Bianchi identities 8[)\5,“,] = 0 and Ip\Pag)s = 0. In the second term, on the other
hand, one can pull a derivative out of the ghost-curl and integrate by parts to obtain

Aay+2igT (hpall 3By 7 %5“0) = igRyupo (g} SR h.c.)—|—A&1. (3.37)

As shown in appendix C.2, the right-hand side can be rendered precisely I'-exact modulo
d, with a choice of the ambiguity, given by eq. (C.39). Then eq. (3.37) reduces to

Aay +2igT’ (hp(j”)\q);wnp fVAlwa'B waﬂ”a) =—igl (hpo-”)\q)uu\\'y ,y)\,uuaﬁ, poy8 ll)a5||5> : (338)
The two I'-exact pieces then combine to have fulfilled the condition Aa; + I'ag = 0, with
ag = lg J),uunp (b;ro—”)\ ’7)\#”&6 + ,7>\/.Ll/ozﬂ h:)rUH/\) ¢cxﬁ||07 (339)

where hPolIA = prolld 4 %7’”0‘5 haﬁl\/\‘ The above 3-derivative vertex vanishes in D = 4, and
this fact is manifest from the presence of the antisymmetrized product of five v-matrices.
3.2 Abelian vertices

Having exhausted all the nontrivial as’s, we are only left to consider vertices with trivial
az. In this case, as we show in subsection 4.2 for generic spin, one can always choose to
write a vertex as the graviton field h,, contracted with a gauge-invariant® current TH,

ag =T hyy, T =0, (3.40)
where the divergence of the current is the A variation of a I'-closed object:
8,T" = AM*, ~— TM* =0. (3.41)

The gauge-invariant current T#" is a bilinear in the fermion fields, which cannot be
A-exact since otherwise the vertex (3.40) would be trivial. This leaves us with considering

only bilinears of the curvature ¥ Schematically, the current is of the form

wvpo-

™ = IMOm o (3.42)

SGauge invariance of T"" is the whole point here; one can always write a vertex as ap ~ T""hy,, but in
general, e.g., for non-Abelian vertices, T""” will not be strictly gauge invariant.
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where M, N are compound indices, and O is an operator built from derivatives, y-matrices
and the metric tensor. This immediately implies that an Abelian vertex will contain at
least four derivatives—two from both curvatures with O containing no derivative.

To find the possible tensor structure of @, let us first note that we can forego contrac-
tions of any pair of indices in the same curvature tensor since the result is always A-exact,
if not zero. It is sufficient to consider in @ no more than one y-matrix, which must carry
either the p-index or v. To see this, notice that if a y-matrix carries one of the indices of the
curvatures—any from the sets M and N—one can use the Clifford algebra to anticommute
it past other possible y-matrices to end up producing a vy-trace of the curvature, which is
A-exact. This leaves us only with v# and +”, which, however cannot appear simultaneously
because their symmetrization would eliminate them both. Similar reasonings rule out the
appearance of the operator @, and therefore of [J, in 0.

How many derivatives may O contain? If it contains one derivative, there will be
one y-matrix carrying either the index p or v, say v*. One can always choose the other
index v to appear on the derivative under consideration. In the only other nontrivial
possibility, the latter index is contracted with, and therefore appears on, a curvature on
which the derivative must act. Then one can pull out the derivative 9¥ by using the second
Bianchi identity and symmetry properties of the curvatures. Similarly, when O contains
more derivatives, one can forego the appearance of the indices u and v on the curvatures.
However, the number of derivatives cannot exceed two. To see this, let us consider the
possibility of having three derivatives or more:

_ — . —
T = UM Py 0PN,

where P is a 1- or higher-derivative operator. Then one can use the so-called 3-box rule:
20,X0°Y = 0(XY) — XOY — YOX, integrate by parts, and drop A-exact terms to write

J 1 i
agp ~ Ohy, (2\I/M73‘“’MN\IJN> ~ (26#11’ —-d- hu> Oy (\I/MP“”MN\I/N) :

where the last equivalence is due to the fact that R, = UOhy, — 29,0 - hy) + 9,0,k is a
A-exact quantity. Therefore, the vertex is trivial since the divergence of the fermion bilinear
is A-exact. The latter fact originates from 9, 7" = AMH", and that the divergence is blind

— =
to the presence of the extra derivatives 0,07 in T"”. On the other hand, if the extra

derivatives carry any indices belonging to the sets M and N, one must keep in mind that
a divergence of the curvature is A-exact. Given the hermiticity of T#", the commutativity
of covariant derivatives, the antisymmetry of paired indices in and the Bianchi identities
obeyed by the curvature, it is easy to convince ourselves that this vertex is always equivalent
to the previous one, which we already ruled out. This proves our claim that o may contain
at most two derivatives. This sets an upper bound of six on the number of derivatives in
TH  and therefore also in the vertex ag.
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3.2.1 The 4-derivative vertex

When the operator O in eq. (3.42) does not contain any derivative, the corresponding
vertex (3.40) is a 4-derivative one. The generic form of the current is

T = g (\Iﬂ“mﬁxp"waﬁ n anﬂ"@pa‘aﬁww) , (3.43)

where the parameter « is to be fixed by requiring that 0, 7" be A-exact. Now the diver-
gence of eq. (3.43) contains some nontrivial pieces in H(A), given by

1_ _
d,T" = AM" +ig (fﬂ”aﬁaﬂwmﬁ + WPl e — h.c.) : (3.44)

By using the Bianchi identity 0, W yjjo5 = %8“\11,»\‘@5, the first term in the parentheses is
rendered the same as the second one. These terms cancel each other if we set o = —%.

Thus, there is just one 4-derivative vertex, given by

. 1 = ) 1 -
ag =19 (huu - 477W/h/> \I}MMQB\PyMaﬁ ~ _59 <hul/ - 477uuh/> \I}M)\|p0'7paa'8qu\|aﬁ7 (345)

where the last equivalent form owes its existence to the identity (C.3), which can be rewrit-
ten as nrolef = —%’yp‘mﬁ + %’yp"’yaﬁ — 2ylPpllenBland to the EoMs (A.15) and (A.16).
Now let us compute the quantity AM* = 9,T* from eq. (3.45). One gets

i T
AM! = =g Uy, B9, w5+ hic. . (3.46)
Now one can use the identity (A.18), for the divergence of the curvature, to obtain

1 - 1 -
AM" = —2g TN P70 P 00 Sy + 19 A 57005010 B g + hc. (3.47)

In the first term on the right-hand side, one can use 4?78 @ = (2yP7PT _ ATyPoB) g
and then integrate by parts w.r.t. 9, noticing that the 5- piece is killed by Bianchi identity.
In the second term, on the other hand, one can integrate by parts w.r.t. dy. The result is

1 - 1 -
AMF = ig 0r (lI/HMpU’YT’YPUO{Ba[aSB])\) + Zg O (\IIHMPU’YPUQIBa[a ’$B]>

1 JrA 9 poap L g 5. poaB
_ig\Il paﬁ’y 8[0[5/3})\ — quj pga,\’}/ 8[a$5] + h.c.. (3.48)

The first line on the right-hand side is a double divergence, because one can pull out the
0, from the Fronsdal tensor, and make it a total derivative by using the Bianchi identities.

That is, the first line plus its hermitian conjugate reduces to the form 9,9;Y}'“", where

1 /(- =
=59 <\IJ“Ap07W“’°‘ﬁ Sox+ 5 Uo7 P70 8 + h-c-> ! (349)

which is both I'-closed and A-exact. On the other hand, the second line of eq. (3.48)
contains bilinears in the Fronsdal tensor by virtue of the EoMs (A.17) and (A.18). The
<+

Al

first piece contains the double curl, 8[“8[p30] , while the second one includes 8[p30]“ ?.

,16,



In the former of these, one pulls out 9, to integrate by parts, while in the latter one uses

— —

PyPoeB = 9 (27'0"""37 — ypao"B*yT) and then integrate by parts w.r.t. 9. The last step
produces @0, &), which then can be replaced, thanks to identity (A.19), by 28)‘8[06851 A
The same step also gives a total derivative: 0, (a[pgowﬂwﬁfa[a 8B ﬁ])’ which can be
turned into a double divergence by pulling out 0, and integrating by parts. When hermitian

conjugates are taken into account, the end result is that the second line of eq. (3.48) reduces
to the form 9, X ) + D007 V5T where X and ) are both I'-closed and A-exact:

aT i Q oap T
W = =59 (980" 85 — e (3.50)

v ’L = o v o vV loge]
) — —19 (3[/)50}#% B01aSa)” + 0,S0" 7" ﬁa[asﬁ]u>

i v Q lege) 1 q legteY
—i—ig nt (8[,)8(,]A7p 58[055],\ + 18[,0,80}7” Bﬁ[a,s‘ﬁ]) . (3.51)
Thus, we have shown that AM* can be rewritten as
AMH* = 9,X ) 1 9,0, (VT + YhoT). (3.52)

This, along with eqgs. (3.49)-(3.51), fulfills the sufficient condition (4.30) for the triviality of
a1. That is, the vertex does not actually deform the gauge transformations: one can make
it strictly gauge-invariant modulo d, by adding A-exact terms spelled out in eq. (4.33).

Although not manifest, this vertex actually vanishes in 4D. In fact, one can find the
following form of the vertex:

oo OB VT g o1 A, (3.53)

which makes the triviality in D = 4 manifest. To see that this is indeed equivalent to
the vertex (3.45), let is use the y-matrix identity (C.18) in the vertex (3.53) to break it
into terms containing only antisymmetric products of six «-matrices or two. The former

i _
ap ~ *gg h,uz/‘ljpah—)\ Y

kind of terms all vanish because of either the Bianchi identities or the symmetry in the
indices carried by the graviton. On the other hand, the terms containing two ~-matrices
are actually equivalent to terms containing none. This is because the symmetry in the
graviton indices requires that at least one y-matrix be contracted with a spin—% curvature;
then the Clifford algebra gives a y-trace of the curvature, which is A-exact. Thus we get

i
8
Having gotten rid of y-matrices, it is now straightforward to carry the computation. The

apg ~ —

gl W o " (120727 7 < 24 6188 7 — 120020 0 | W™,

number of possible terms are greatly reduced by the symmetry properties of the associated
fields and curvatures. One can also drop traces of the curvatures since they are A-exact.
Thus, one ends up having the first form of the vertex presented in eq. (3.45).

3.2.2 The 5-derivative vertex

When the vertex contains five derivatives, the operator Oin eq. (3.42) includes one. As we
discussed already, the form of O is much restricted. Indeed, we have just one possibility:

_ Ad
" = ig \I/p‘ﬂo‘ﬁ’y(“@”)‘l’pﬂag, (3.54)
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« — —
where the operator 0, = d, — 0, plays a crucial role in eliminating from 0, T"" terms

that are not A-exact. The vertex is given, by eq. (3.40), as
_ © _
ag = ighu, BP71PY O e —ig b, T v TP (3.55)

To see the equivalence of the second form, let us remove therein any derivative on the
graviton field by integrating it by parts. This gives a derivative of the spin—% curvatures:
the divergence is A-exact, while in the gradient one can use the second Bianchi identity
and the symmetry properties of the curvatures to pull out a derivative with an index of
the graviton field. The equivalence of the vertices then follows immediately.

We can write the second equivalent form as %UMVH)\@MT‘PU (77‘""0‘57>‘ + anpa\aﬁ) UYL as-
Then the identity nPl*? = —%vpmﬁ + %7”"70‘5 — 27ylPpllan Bl helps us drop some A-exact
pieces, thanks to eqs. (A.15)-(A.16), to be left with %(W"aﬁy}‘ —1—7)‘7’)"0‘5) = ArvoeB
Therefore, we have another equivalent form of the vertex:

i ST v
a = 39 B, AT oo YT . (3.56)

The virtue of this form is twofold. First, the presence of an antisymmetric product of five
~v-matrices manifestly renders this vertex trivial in D = 4. Second, because of the Bianchi
identities, the gauge variation of the vertex is just a total derivative, which means that it
does not deform the gauge transformations.

3.2.3 The 6-derivative vertex

There is a unique 6-derivative hermitian current whose divergence is A-exact. It reads
_ - — — PO
TH = jg proles (8“6” + otov —nto 6>\> VU solas- (3.57)

While the vertex is simply given by T#"h,,,, one can also cast it into a “geometrical” form
that involves the product of all three curvatures:

a0 R 19 R upo UP71P W 51 (3.58)

This form is strictly gauge invariant, and the vertex exists in all D > 4. To see the
equivalence of the two forms of the vertex, let us remove in the vertex (3.58) all the
derivatives from the graviton field, by integrations by parts. Dropping divergences of the
spin—% curvature, that are A-exact, we arrive at

B — = - . - o\ 2
ap ~ 4igh,, TN 989, 0Y o~ digh,,, (—\paﬁﬂaa“ + \Ifﬂﬁlp"aa> 90" 5/po

where the second equivalence results from the Bianchi identity. The first term in the
parentheses imposes the Bianchi identity 9,V g, = %6” VU opp0, Whereas the second
term enables us to use the 3-box rule: 20°X0,Y = O(XY) — XOY — YOX, so that we

can drop A-exact terms, like (W and integrate by parts to obtain

wBlpo>

_ — — B
ag & —2igh,, WP GR 9V P 4 2ig Th,,, THAPTEY 5 .
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Z I'(Z) A(Z) pgh(Z) agh(Z) gh(Z) e(Z)
huw 20,,C,) 0 0 0 0 0
C 0 0 1 0 1 1
v 0 GH 0 1 -1 1
c 0 —20,h* 0 2 —2 0
(. 101 €t i) 0 0 0 0 1
T 0 0 1 0 0
QL bn 0 b 0 1 -1 0
grpetin—1 0 20, X Hkn 0 2 —2 1

Table 3. Properties of the various fields & antifields (n arbitrary).

Now, let us replace (Jh,,, by 20,0 - h,y — 9,0,h/, since their difference is R, = A-exact.
In the resulting expression, let us remove all the derivatives from the graviton field to get

= 08 — — 1 , — 1\ —
ag & —2igh,, TPIPT g1 9V ueBlPT | 944 (h,w — 2n,wh> o (xy Aler g wt g, — h.c.) .

In the second term, we can again use the Bianchi identity OV gj,e = %8“\11 A|po PO find
that some of the resulting pieces cancel the first term. The remaining pieces add to the
form TH”hy,,, with T* given precisely by eq. (3.57). So the vertices are equivalent.

. .o - 1
4 Arbitrary spin: s =n + ;

The sets of fields and antifields for the arbitrary-spin case are given by

(I)A = {h,u,zuCuawuy..unvgul...,un_l}v (I)jl = {h*'wjaC*Ha1;*#1..‘#"75*“1.“#”71}' (41)

For n > 2, there is a triple y-trace constraint on the field and antifield, i.e.,

= */
¢2"1-~~,u‘n73 = O’ wﬂl..-ﬂnfg = 07 (42)

The rank-(n — 1) fermionic ghost and its antighost are ~y-traceless as usual:

Ly =0, Loy =0 (4.3)

The spin-s Lagrangian EoMs are given by the rank-n tensor-spinor R, .., , which is
an arbitrary-spin generalization of (3.6), and is related to the Fronsdal tensor as follows:

1 1
Ritopn = Spaeopn — 5”’7@1 Bliz.pin) = Zn(n -1 e Ls...un)' (4.4)

While an account of the cohomology of I' is given in appendix B, in table 3 we spell
out some important properties of the various fields and antifields.
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Note that the antifield xy*#*#» is given by eqs. (A.37)—(A.38). With the above table,
it is easy to construct the BRST-closed free master action for the arbitrary-spin case:

1, - _
S0 = /de [Guth t 9 (RIYH" 4y i — wuLuuan“#n)}
* UV n KL ey c KUY ..oy
+/de |:_2h " a.U‘Cfl’ + E(w Hap 8N1§N2~-Nn - 8,“15#2---an Hp ) . (45)

Now we are ready to construct the 2—s—s cubic vertices. Having worked out the spin %
case as a prototypical example, our job has become easy, since many of the statements made

for spin % go verbatim for arbitrary spin.

4.1 Non-Abelian vertices

Let us recall that any ao consists of two ghost fields and a single antighost, and that
the latter can be chosen to be undifferentiated without loss of generality. As explained
in appendix B, a single derivative acting on the ghost C,, can be realized as a 1-curl
¢, modulo irrelevant I'-exact terms, while two or more derivatives are never nontriv-
ial. For the fermionic ghost &, .4, ,, on the other hand, one can choose any m-curl:

v ] eV a1 - pin -1
[-exact terms. Clearly, a nontrivial ay cannot contain more than 2n — 2 derivatives. This

with m = 1,2,...,n — 1, and more than n — 1 derivatives give

sets an upper bound of 2n — 1 on the number of derivatives in a non-Abelian vertex given
the actions of I" and A on various (anti)fields and the consistency cascade (2.15)-(2.17).

Again, all nontrivial as’s fall into two subsets: subset-1 contains the bosonic antighost
C*#, and subset-2 the fermionic one £*#1#n=1. Subset-1 has the form: a; = C**X,, where
X, is some bilinear in the fermionic ghost-curls. Then we have: Aagy = 2h*" 9, Xy, which
must be I'-exact modulo d if the cocycle condition (2.16) is to be satisfied. Because I" does
not act on the antifields, a functional derivative w.r.t. h**" gives

9 X,y = I'exact. (4.6)
Now, the symmetrized derivative of X, can be schematically written as
X ~ O [E(ml)i(mQ) + g(m2) g (m1)
~ T-exact + E(m1+1)a(m2) + E(ml)a(m2+1) + E(m2+1)5(m1) + E(m2)g’(m1+1)‘ (4.7)

When m; and ms are equal, we have the plus sign for a nonzero X, and nontrivial elements
of H(I'") are absent only when m; = mg = n — 1. When they are unequal, let us take
my > msy, and then 0X is I'-exact with the minus sign if m; = my + 1 =n — 1. The only
ao’s that pass the condition (2.16) thus contain 2n—3 and 2n—2 derivatives. More explicitly,

p=2n—2: 4igC* égl.fl)i("’m v g2 "'EEL".TI)}

| (48)
p=2n—1: igCHEnD ”"yuci(ffl),

ag =

where the ellipses mean contracted indices. This is very similar to the Spin—% case.
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Subset-2, on the other hand, has the (undifferentiated) fermionic antighost. In this
case, the as’s have the form: ao = g*“l"'“”—lYmmﬂnfl + h.c.. Symmetry is imposed in the
indices of Y, which comprises both of the ghosts and curls thereof. Following the same
logic as presented for Spln , it is clear that as can contain at most two derivatives: one in
¢, and the other in the 1-curl &M llva.n
with the symmetry of the indices. At this point the possibilities (all to be ruled out) are:

L5 as higher-curls of the latter are incompatible

p=0: gg*“"'yo‘gu...c + h.c.
az = §pP = 1: gg*'u (é'l/ Ny + QIE,E}V)HCV -+ QQ’YQBgM..‘Caﬁ) + h.c. (49)
p=2: gg*“""ya M”...Q:aﬂ +h.c..

However, one can derive quite similarly a counterpart of condition (4.6), namely

Oty Yyg..pi) = I'-exact. (4.10)

When n > 2, it is impossible for any element in the list (4.9) to fulfill this condition because
0Y will always contain nontrivial elements of H(I"). This rules out all of them.

The (2n — 2)-derivative vertex

In this case, one can go along the same line as the 2-derivative spin—% vertex. To make the
steps go verbatim we add a trivial term to the first element of (4.8), and write

as = ig C** [Eg‘:l)a(nf@ a(n 2) - E( )] + gewj [E’%ﬁlgm,}/ul/ﬁaﬂa(n*l)'"Haﬁ _ h.C.] ,

(4.11)
which looks quite similar to the spin-3 counterpart (3.18), given the relation (3.30). To
obtain the vertex, one can simply redo the steps of subsection 3.1.2. One finds,

ag = 19 [1])( HMC)MRJFNVaﬂlpn 2)-|l w6+ = ]ﬁb(n‘j R,uuy{)n 2)-|| :|

ghij(" 1) ,upaaﬂ,u)w ll)(n_l)"'

pol| A7 (4.12)

aBlly
as the desired non-Abelian 2 — s — s vertex containing 2n — 2 derivatives. Again, let us
notice the striking similarity with its spin—g counterpart (3.32).

The (2n — 1)-derivative vertex

Here one starts with the second element of (4.8) as the starting point. We use five -
matrices, instead of one, to have a direct generalization of eq. (3.33):

as = _ZQCAE( “UZ ’y)““'a'BE” 1 |a,3. (4.13)

One can proceed in the same way as in subsection 3.1.3 to find:

. T(n—1 vo vo n—1) .- o
ao=lgll>(... ) (hpg”,\’?/)w 6‘1'7)\” /BhpU”)\)Ib( b afl s (4.14)

which is our non-Abelian 2 — s — s vertex with 2n — 1 derivatives. Comparing it with the
spin-3 counterpart (3.39) reveals that they are very similar as well.
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4.2 Abelian vertices

Abelian vertices are those that do not deform the gauge algebra. Such a vertex corresponds
to a trivial as, and therefore to an a; which can always be chosen to be I'-closed [29-32],

Ta; = 0, (4.15)
and which is related to the vertex ag through the cocycle condition (2.17):
Aay + Tag = 0. (4.16)

The 2 — s — s Abelian vertices we wish to consider do not deform the gauge transfor-
mations either. In other words, for gravitational cubic coupling of a higher-spin fermion
the gauge symmetries remain intact unless the gauge algebra is deformed.” To prove this,
first we note that it is always possible to rewrite a cubic vertex as

ap = T"hy,, (4.17)

i.e., the graviton field h,, contracted with a symmetric fermion-bilinear current T*”. If
the vertex is Abelian, we will see that the latter can be chosen to satisfy

T =0, 0, T = AM* with TM* =0. (4.18)
For s =n+ %, let us write the most general form of the a; corresponding to (4.17):
a1 = 2MHCyy + (Ppyopy EM 0 = & PPUE1) 4 df (4.19)

where M#" and P,, ., , belong to H(I') and have pgh = 0, agh = 1, and a stands for
expansion terms in the ghost-curls. The consistency condition (4.16) now reads

T (T”l’h,w) _|_2AM/LCH 4 (APM...M,1£”1“'“”*1 _ gﬂln.unilAPﬂl...ﬂnfl) —I—Aa'I = 0. (4‘20)

It is clear from the properties of P, ,, , that it may consist of two kinds of terms:
one contains the antifield A**” and its derivatives, and the other contains the antifield
*1-¥nand its derivatives. The former kind also contains (derivatives of) the Fronsdal

tensor S,,. ., or (derivatives of) the curvature ¥ Jpnvn while the latter one contains

pavil..
(derivatives of) the linearized Riemann tensor R, ,,. By using the Leibniz rule, however,

one can choose to get rid of derivatives on A**” and R, ,,. Thus one can write

_ pxuv | p(S) Vi..Un () v1p1|...|Unpn
P/Jl-“/»lfnfl =h P;w, H1-Pn—1 Sul...un + P;w, H1-eHn—1 qj”lpﬂ---\”nl’"
uvpo p(*) Ut .ln ) % m
+R Bovpo, pr ot "oy T O P s (4.21)

where I'p,, .., = 0, and the P’s are differential operators acting to the right. Notice that
in the above expression both terms in the brackets are not only I'-closed but also A-exact.®
Now, taking the A variation of P, ,,_, one finds from eq. (4.21) that

1

APu iy = ERWPOAQWPUV fiein—1 T auTLAqﬂlmﬂn? (4.22)

"The same is true for electromagnetic couplings of higher-spin fermions as well [19]. The proof for the
gravitational case is quite similar to that for the electromagnetic one.

8While the A-exactness of the first term therein is manifest, the second term contains the spin-s curva-
ture, which admits only A-exact terms like its own (7-)traces and divergences (see appendix A), thanks to
the way the indices are contracted.
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where the quantity Quup0, uy...un—, 15 [-closed and enjoys the same symmetries in its first
four indices as the Riemann tensor, and I'g,, . ., = 0. Therefore, one finds that

-
gulmun_lAPm...unfl = h"A [8aaﬁ (gul...unqQuauﬁ,mmun_l)] - gm...unq Oy, Aght -,
(4.23)
The last term on the right-hand side above is I'-closed, and can be broken into a I'-exact
piece plus terms involving the fermionic ghost-curls. The latter can always be canceled in
the cocycle condition (4.20) by appropriately choosing a}. One is thus left with

r [T‘“’hw, +A <i%1...unqm'"“" - h.c.>] +2AM*C,,
R A [aaaﬂ (Epr s Qw1 + h.c.)} = 0. (4.24)
Now, one can drop the A-exact terms added to the original vertex T#"h,,, to write

B [FTW — 0208 (B AQ a1 + h.c.)} +2(AMY — 9,T")C, = 0. (4.25)

Taking a functional derivative w.r.t. C), then yields the second condition in eq. (4.18):
8, T" = AMH, (4.26)
with 'M* = 0 by assumption. On the other hand, a functional derivative w.r.t. h,, gives
Ty = 0%0% (& 1 AQpuaws ™ "~1) + huc., (4.27)

which means, in particular, that the quantity on the right-hand side must be I'-exact. This
is possible if 80@6@,@1/5,#1...%,1 is A-closed, and the indices of @) have the interchange
symmetry « <+ u; and 8 <> p; with ¢ =1,2,...,n — 1. This enables one to conclude

3 1 B B
TIJV = T'uy + E A [2¢,u,1...,u,naaQ(uau)'ul7MQ'”un + aawuy..,un@(uau)ul’MQWM” + hC] , (428)

where FTW = 0. Therefore, one can render the current gauge invariant by field redefinitions
without affecting the form (4.26) of its divergence. This completes the proof of eq. (4.18).
Then the a;y following from eq. (4.16) reads

ay = 2M*C,,. (4.29)

We will now prove a sufficient condition for the triviality of a1, given by (4.29), and
hence of the deformation of the gauge transformations. It is

AMH* = 89,XW) 1 9,0,Y17  with X)) Y7 A exact and D-closed. (4.30)
If eq. (4.30) is true, then from eq. (4.29) we can write Aa; as

Aay =2 (9,207 +8,0,)7) €, = ~2X W9, C,.) + 2V 0,0,C,. (4.31)
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But the derivatives of the bosonic ghost are I'-exact: 29,C,) = I'hy, and 20,0,C, =
9plhyy — Ty p- Because X) and YHP are T-closed, one can write

Aay = =T [ (X024 9,90 ) by + 9928, ] (4.32)
In view of the the cocycle condition Aa; = —I'ag, one can therefore write
r [ao — ()((MV) + appr> By — yﬁwphw”p} = 0. (4.33)

Because the quantities added to ag on the left-hand side are A-exact by assumption, one
can render the vertex gauge-invariant only up to a total derivative, by field redefinitions.
This proves the triviality of a; if eq. (4.30) holds.

The arguments presented in the beginning of subsection 3.2 go verbatim for arbitrary
spin, except that now the number of derivatives in the Abelian vertex can take the val-
ues 2n,2n + 1 and 2n + 2, since the spin-s curvature tensor contains n derivatives. The
corresponding currents can be written as direct generalizations of those for spin %, given
respectively by eq. (3.43) with a = %, and by egs. (3.54) and (3.57). The explicit ver-
tices are:

1 _
p=2n: ap = ig (hW - 477Wh’> LS (4.34)
_ PN
p=2n-+1: ag =ighu, V" G 120 (4.35)
_ - = — o\
p=2n+2: ag =ighu, V' (8“8” + 09" —nto (9,\) .. (4.36)

None of these vertices deform the gauge transformations. The 2n-derivative vertex
can be shown to fulfill the sufficient condition (4.30) in order for its a; to be trivial, and
the proof follows exactly the same steps as in the spin—% case. On the other hand, one
can render the (2n + 1)-derivative vertex manifestly I'-closed modulo d by casting it into
a generalization of eq. (3.56), while the (2n + 2)-derivative one takes the 3-curvature form
like eq. (3.58). These proofs are also straightforward generalizations of the spin—% case.

Finally, direct generalizations of the prototypical spin—% example also show that the
2n- and (2n + 1)-derivative vertices are trivial in D = 4, while the (2n + 2)-derivative

3-curvature vertex exits in all D > 4.

5 Beyond cubic order
Let us recall from eq. (2.18) that consistent second-order deformations require
(Sl, Sl) - —2852 == —2FSQ - 2A52 (51)

This antibracket is zero for the Abelian vertices, which go unobstructed beyond the cubic
level. The non-Abelian vertices, on the other hand, have nontrivial a1 and as and may not
fulfill this requirement. Here we will prove by contradiction that indeed they do not.
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Notice that Ss is at most linear in the antifields ®%, on which I does not act. On the
other hand, the A variation of only an antighost C} may produce an antifield. Therefore,
the general form of the antibracket evaluated at zero antifields is

[(S1, Sl)]@g:o =I'N+AM, (52)

with N = -2 [Sg](bzzo and M = —2[S;],._. Let us also note that in the antibracket of
S1 = [(a2 + a1 + ag) with itself, among all the possibilities, only the antibracket between
f ap and f aq survives when the antifields are set to zero. Thus one is left with

(5180 o = 2 </a0,/a1> _ /b. (5.3)

It is relatively easier to compute the quantity b, which must satisfy the requirement:
b = I'-exact + A-exact, (5.4)
in view of egs. (5.2) and (5.3). For simplicity, we stick to the prototypical Spin-% case.

The 2-derivatives vertex

For the 2-derivative 2 — % — % vertex, let us write down the deformations ag and a;. First,

from eq. (3.32), one can rewrite the vertex as ag = T""hy,,. The result is

. " o|AT 1 oAT 1L o L T
T, = 4ig [apaa {wm <n” A +37" A >wm+2¢m“ 7¢’p}}+ Ell’ponW“” R %ﬂn”}

(5.5)

On the other hand, from egs. (3.20)—(3.22) and eq. (C.31), we can write
ay =g h*ﬂy <é,u)\wy)\ + QEV)\E,LL)\ - 25/\11);;)\”1/ - 211);1)\“115)\ + Fjltl/> +eee (56)
where the ellipses stand for terms containing the antifield ¢**", and j,” is some spin—%

bilinear. Then the quantity b will contain 4-fermion terms plus fermion bilinears:”

b=2igT", (Bt + 0" Eun = 280" = 20, € + TG )+ (5.7)

Note that the two kind of terms are completely different and we can treat them separately.
If eq. (5.4) is fulfilled, a functional derivative thereof w.r.t. £, has to be A-exact plus the
divergence of a symmetric tensor. This functional derivative reads:

b g [0, (T ) + Tyopeele] 4. (5.8)
08, r
Because the vertex is nontrivial, T, cannot be A-exact. Now, the right-hand side of
eq. (5.8) is trilinear in the spin—% field. Given that possible Fierz rearrangements cannot
redistribute the derivatives among the fields, let us consider, among others, the terms in
which three derivatives act on a single fermion. By inspection, it is clear that these terms
cannot be written as A-exact plus the divergence of a symmetric tensor.

Therefore, it is not possible to satisfy eq. (5.4). Then in a local theory the non-Abelian

2 — % — % vertex with two derivatives gets obstructed beyond the cubic order.

9The latter terms, which we will not write explicitly, come from the ellipses in eq. (5.6).
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The 3-derivatives vertex

The proof for the 3-derivative case is in the same spirit as the previous example. Let us
rewrite, from eq. (3.39), the vertex as ag = T""h,,,, with the current given by

T," = 2igd* (ﬂ’pouu Y77 Yagin = Voo a 17 Wagi + Voo 77 urs ‘I’aﬁll(s) - (5.9)

Now a;j is given by egs. (3.34) and (C.39); it has the form:

a1 = —2ighy” <3po’7“”"“5¢aﬁuu - ‘T’palm“p"aﬂiaﬁ) +e (5.10)

Again, the quantity b will contain 4-fermion terms and fermion bilinears:
b= —4ig T#u (Epcr'yupaaﬁq)aﬁnu _ @pg‘lyvupaaﬁaaﬂ> 4o (5.11)

Again, let us consider, in the functional derivative of b w.r.t. 5_#, the terms with three
derivatives acting on a single fermion to find that they cannot be written as A-exact plus
the divergence of a symmetric tensor. Therefore, eq. (5.4) will not be satisfied, and so in
a local theory, the 3-derivative 2 — % — % vertex is also inconsistent at the quartic order.
Let us note that there is no such obstruction for the cubic gravitational couplings of
a spin—% field, and indeed one can find a local theory consistent to all orders: N = 1
supergravity [22]. For s > %, the obstruction will hold even if one considers an arbitrary
linear combination of the non-Abelian and Abelian vertices. It is expected, however, that in
a theory consistent beyond the cubic level only a specific linear combination of the vertices
survives. This is indeed the case with the tensionless limit of open string theory [17, 18].
We emphasize that, for higher spins, the obstruction is removed if one gives up locality. The
call for non-locality may be intrinsic or may result from having integrated out additional
dynamical fields present in the consistent interacting theory or both. String theory, for

example, realizes the higher-order consistency by invoking them both [40].

6 Concluding remarks

In this paper, we have constructed parity-preserving covariant cubic vertices for arbitrary-
spin fermionic gauge fields coupled to gravity in flat space, by employing the BRST-BV

10 We have seen that gauge invariance and non-triviality of the

cohomological methods.
deformations rule out minimal coupling, and constrain the number of derivatives in a
2 — s — s vertex, in complete accordance with what the light-cone formulation reveals [9].
Two of the lowest-derivative vertices call for deformations of the gauge algebra, i.e., they
are non-Abelian. They cannot be extended in a local theory beyond the cubic order in the
absence of additional interacting dynamical fields. It turns out that none of the gauge-
algebra-preserving Abelian vertices deform the gauge transformations.

Our covariant off-shell cubic vertices must be equivalent to those inspired by open

string theory, reported in [17, 18], for an obvious reason: both results are in one-to-one

'9As has been emphasized in [34], the BRST-BV approach is very useful in general for obtaining gauge-
invariant manifestly Lorentz-invariant off-shell vertices for higher-spin fields [35-39].

— 26 —



correspondence with the light-cone-formulation ones, and for each allowed derivative value
there is a unique vertex [8, 9]. We do not present a direct demonstration of this equivalence,
which, however, was done for the electromagnetic case [19]. As we already mentioned, the
string-inspired vertices all come with a fixed known numerical coefficient, with the single
dimensionful coupling constant set to unity. The apparent freedom for each of our coupling
constants may very well be an artifact of the cubic-order analysis that disappears once
higher-order consistency is taken into account [29-32]. The more rigid structure in the
string-inspired interactions may not be surprising then, since string theory is consistent
beyond the cubic order, with non-locality necessarily creeping in [40].

Let us see how the 2 — s — s vertices differ for fermionic and bosonic higher spins.
First, a boson possesses only three such vertices: with 2s — 2, 2s and 2s + 2 derivatives,
the jump in the number of derivatives being two [6-8]. In contrast, we have seen that a
fermion has five cubic vertices; the derivatives range from 2s — 3 to 2s + 1, with a jump of
unity. In both cases, though, the number of nontrivial vertices in 4D is the same: two. In
D > 5, a fermion exceeds a boson by two vertices: one non-Abelian, another Abelian. On
the other hand, 1 — s — s electromagnetic couplings for fermions also have jump of unity
in the number of derivatives, which may take three values: 2s — 2, 2s — 1 and 2s. Again,
two vertices with the lowest and highest number of derivatives survive in 4D.

Minimal gravitational coupling of massless higher spins does exist in AdS space [20, 21].
The Fradkin-Vasiliev construction [20, 21| incorporates only the cubic non-Abelian vertices.
Although the interactions are non-analytic in the cosmological constant, one can take the
A — 0 limit judiciously to be left with the highest-derivative non-Abelian vertex [7]. It
is expected that our flat-space non-Abelian vertices are present in the Fradkin-Vasiliev
system in AdS, and a careful flat limit should pick them up. The study of gravitational
interaction vertices of a massive spin—% field in AdS was actually carried out in [41], where
it was noticed that what survives in the massless flat limit is only a 2-derivative vertex
when D = 4, or a 3-derivative one when D > 4. This must precisely be our flat-space
highest-derivative non-Abelian cubic vertex in the respective dimensions.

What connection may our vertices have with the massive theory? For a massive spin—%
field, coupled to gravity in flat space, it was noticed in ref. [42, 43] that suitable non-minimal
couplings improve the high-energy behavior of the theory by pushing higher the scale at
which tree-level unitarity is violated. The simplest of these terms has two derivatives: in
4D it reads imR*’“’o‘ﬁ 1,3 modulo on-shell terms. This is nothing but the first piece in our
2-derivative vertex (3.32)—the part surviving in 4D in the transeverse-traceless gauge. This
may not come as a surprise. After all, consistent massive theories are expected to originate
from massless ones. A similar thing happens for the spin—% electromagnetic coupling [19]:
the gauge-invariant Pauli term @MFJ“/“’ 1, does improve the tree-level unitarity of the mas-
sive theory [44], and shows up in the consistent N = 2 broken supergravity theory [45-48].

It would be interesting to extend our systematic analysis to (A)dS space. There
are certain technical difficulties, though, in extending the applicability of the BRST
deformation scheme to spaces of constant curvature. Omne may use the ambient-space
formulation [49-51] for AdS space, in particular, to avoid these issues. Then one could con-
struct covariant higher-spin vertices in AdS, and the results could be compared with those
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obtained recently in refs. [52-57]. This would help us understand better the rather intricate
structure of the Vasiliev higher-spin systems [58-60], by possibly leading us a step closer
to a yet-to-be-found standard action. We leave constructions in AdS space as future work.
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A Curvatures, identities & EoMs

In this appendix we will discuss some important properties of the curvatures and curls of
the different fields under consideration. We will also write down various forms of the EoMs
in terms of these objects, which would help us identify A-exact terms.

Spin 2

The 1-curl, b, ,, of the spin-2 field is antisymmetric in its first two indices, and obeys the
Bianchi identities,

1
Ditle) =0 & Buwle) = —50uplls Tpbugle = 0. (A1)
The linearized Riemann tensor, R upc = Rjujpe] = Rpouw, obeys the same:
R[Iul,p]g =0, 8[MRVp]a5 =0. (A.2)

The original graviton EoMs are given in terms of the linearized Einstein tensor,
1 x
G = Ry — 577WR = Ahyy,- (A.3)

Taking a trace, it follows immediately that

o * 1 */ _ 2 */
RW_A(hW 5y wh ) R= <D_2> N (A.4)

where “prime” denotes a trace, h*’ = h™},. The second one in eq. (A.2) leads to the con-
tracted Bianchi identity, which says that the divergence of the Riemann tensor is A-exact:

O’ Ruvps = 28[MRV]U = 20[MGV]U — na[uﬁy]R = A-exact. (A.5)
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A trace of the above identity shows that the Einstein tensor is divergenceless, 0"G, = 0,
while a double ~-trace gives

O Rpe = (V'Y = ") (20,Gro — NopOu R) = 29F, — Vo PR + §,R = A-exact.  (A.6)

By using the relation y¥*7 = 2y*7 — 474 and the first Bianchi identity in eq. (A.2),
+—

it is easy to see that 9 R, = — R, @. This quantity is actually A-exact:

F
DR =—Rud=49,R,, = A-exact. (A.7)
Other forms of A-exact terms, that we do not use, include v* R, and LR 50

Spin 5/2

Just like spin 2, the 1-curl of the spin-g field, B, |, is antisymmetric in its first two indices,
and obeys the Bianchi identities,

1
V) =0 & W) = =5 Wwplus Tubuglle = 0. (A.8)
The curvature tensor, ¥, ,0 = Y[u|[po] = Ypoluws Obeys the same:
Yiwlole =0, 0uWupjap = 0. (A.9)

For spin %, let us recall from section 3, that the original EoMs are given by

1 *
Ruw = Suw = YuBv) — 577“”8’ =AY, (A.10a)
_ _ _ 1 _,
RNV = SIJJ’ - 55‘(;{)/1/) - 577uu8/ - Awuu' (AlOb)
One can easily rewrite these in terms of the Fronsdal tensor,
SV1V2 =1 [@ %m - 28(1/1 ¢u2)] = A‘Prtluy (A'll)

and similarly S,,,, = Ap;, ,, for its Dirac conjugate, where

Puv = wuu - B’Y(M Zbu) - Enlww " (A'12)

From the definition of the Fronsdal tensor, one easily finds that
YW polla = 1Spa — Tatps (A.13)
whose ~-trace, in turn, gives:
YW pola = 180 — O, W =L (A.14)

Now we see that the quantity y#1W¥ is given by the 1-curl of eq. (A.13), and

that it is A-exact:

pive| pove

AP ~2id),,S,

2lv1

= A-exact. (A.15)

pivi| peve —

— 929 —



Similarly, from a 1-curl of eq. (A.14), we obtain another useful form:

YW pave = 2077 01, Sy, = A-exact. (A.16)
Taking a curl of (A.15), one finds yet another form,

purmnl, , = -4y, S, = A-exact. (A.17)

Egs. (A.15)-(A.17) also mean W# | ,, = A-exact and OV, ,, = A-exact. Finally, by using

the identity 0" = I (9" +~"1 J), we derive from egs. (A.15) and (A.17) that
MW Lo = =209 Oy Sy + 101,77 0),1, Sy = A-exact. (A.18)

Similarly, one can find the various forms of the EoMs for the Dirac conjugate spinor.
Now from the definition of the Fronsdal tensor, one can find the identity

9-8, = %a &+ %aus’. (A.19)
Taking a divergence of eq. (A.10a), and then using the above identity, one can write
0, R = —%’y“(‘% 8. (A.20)
This can be rewritten, by using egs. (A.10)-(A.12), as
A@XT) =0, Y=g (A:21)

Arbitrary spin
Let us recall that for arbitrary spin s = n + %, we have a totally symmetric rank-n

tensor-spinor v, ., , whose curvature is its n-curl, i.e., the rank-2n tensor

\I],ulz/ﬂ,ugyg\...m"un = [ .- [ [8M1 s 8ﬂn¢V1~--Vn _(/1’1 <_>V1)] —(,U,Q A VQ)] . ']_(/’LTL(—H]TL)‘ (A22)

The curvature tensor (A.22) is gauge invariant even for an unconstrained gauge parameter.
Its properties can be found in [23-26]. The curvature is antisymmetric under the
interchange of “paired” indices, e.g.,

Vi povalocdinvn = = Vorplusval.lpnvi (A.23)
but symmetric under the interchange of any two sets of paired indices, e.g.,
\I,Hll/l|N2V2|~--|,U‘nfll’n71‘,ulnl’n = ‘IJNnVn‘I-L2V2‘~-~‘Nn711/n71|lilV1' (A.24)

Another important property of the curvature is that it obeys the Bianchi identities
Yl fualvallnm = 05 Op¥prin)lwaval. i = 0- (A.25)

Actually, these properties hold good for any m-curl, m < n, that contains paired indices.
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For spin s =n + l, we recall from section 4 that the original EoMs read

1 1 *
R/Jfl-wun = Sﬂlmﬂn 2nfy J5 55‘“2 ,un) n(n - ) (M1M28;1,3 Mn) = Awul,_,u,rﬂ (A26a‘)
_ 1 — 1 Tk
Rotr.cpin = Sprrin — n,$ (11— Tpm) — Zn(n = DSy ) = Apiycpn- (A.26D)
One can reexpress the EoMs in terms of the Fronsdal tensor as follows:
Sl/1..-l/n =1 [@ 1/}1/1”-1/71 - na(ul 74[}1/2...1/”) = A@zl...ynv (A27)

and similarly S,,. ,, = Apy, ., for its Dirac conjugate, where

n(n —1)

n
* — *
Poren =V = 3o =3 Y Pon) T 30 1 D 1)

77(1/11121#:;‘.1/“)' (A28)

Taking an (n — 2)-curl of the the Fronsdal tensor (A.27), one finds the relation

I/n B (n—1) — is(”—Q) _ aynyp(”—Q) (A.29)

piv]e] pn—1vn—1llvn pivi|e] pn—2vn—2llvn—1vn pivi]e] pn—2vn—2llvn—1’

whose v-trace, in turn, gives:

ypin—tvn 1, (=) —igm? — 9, WY . (A.30)

vt pn—1vn—1llvn pivt|..| pn—2vn—2llvn pivL]..| pin—2vn—2

The arbitrary spin generalizations of eqs. (A.15)—(A.18) are rather straightforward, and
can be derived the same way. They respectively read

_ (n—1)
VU oo o, = SMW‘ lnvnlr = = A-exact, (A.31)
1
YW o i, = Z,S'EZVQ‘) Vv = A-exact, (A.32)

DY v = —zS!(“)Vl‘ pinm = = A-exact, (A.33)
_ n—1) i (n—1) _
8M1\IIH,1V1|---‘M71V7L - _lﬂSM2V2| |NnVn||V1 + 581}1 $u2y2‘~~~‘ﬂnyn — A—eX&Ct. (A.34)

Obvious consequences of the above equations include the A-exactness of nt1#2 W
and ¥
spinor.

pava || pnvn

pivt]o| - Similar forms of the EoMs can be written for the Dirac conjugate

Finally, we have the following generalization of identity (A.19):

1
9 Spr.ppn = 9 ﬁ’guu-un—l a(ﬂl H2eftn—1)" (A.35)
This, when used in the divergence of eq. (A.26a), gives
n—1 (n—1)(n—2)
9 Rysojiny = — 2 7(/116' 5#2---%4) Ty n(uluza ’ Sl/tamun—ﬂ' (A.36)

Given eqgs. (A.26)—(A.28), this can then be rewritten as
A (0" X)) = 0, (A.37)

where

n—1 (n—1)(n—2)

— /
XZl...un = w;l..‘un - m o m 7@2...%,1)“” - m T,(,U«l,uzw . . (A.38)

[T
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B The cohomology of T'

In this appendix we clarify and prove some important facts about the cohomology of I,
used throughout the main text. Let us recall that the action of I' is defined by

Thy = 29,0, (B.1)

Flpm...lm = na(ulgyg,..un)v F¢V1..,Vn = _na(ylgyg...un)- (B2)

The nontrivial elements in the cohomology of I' are nothing but gauge-invariant objects
that themselves are not gauge variations of something else. Let us consider one by one all
such elements, and also prove some useful relations involving I'-exact terms.

B.1 Curvatures

The curvatures {Ruwpos ¥y pov, } and their derivatives belong to H(I'). That the
curvatures are I'-closed is easy to see. For the linearized Riemann tensor, R, s, it follows
from the commutativity of partial derivatives as one takes the 2-curl of eq. (B.1):

PR, =T (4090),h,)7) = 4010,,0,,C7) + 497 5,,07C,) = 0. (B.3)
One can also take a 1-curl of the first equation of (B.2) to obtain

rpOmal, = (n = 1)9,£Mml (B.4)

V3...Un)s

and similarly for the Dirac conjugate. Likewise, an m-curl of eq. (B.2) gives, for m < n,

1"w(m)Mml-..\umeHVmHmyn — (n _ 771)8(Vm+1 ((—,(m)ulyl|'“"umym“l/m+2...1/n)' (B‘5)
In particular, when m = n, we have the ['-variation of the curvature; it vanishes:
L prl-lunen — . (B.6)

Note that the I'-closure of the curvature holds without requiring any constraints on the
fermionic ghost. To see that the curvatures are not I'-exact, we simply notice that these
are pgh-0 objects, whereas any I'-exact piece must have pgh > 0. Therefore, the curvatures
are nontrivial elements in the cohomology of I', and so are their derivatives.

As we have already seen, only the highest curl (n-curl) of the field 1, ,,, is I'-closed,
while no lower curls are. It is the commutativity of partial derivatives that plays a crucial
role. Clearly, an arbitrary derivative of the field will not be I'-closed in general. Yet, some
particular linear combination of such objects (or their y-traces) can be I'-closed under the
constrained ghost. The latter possibility is exhausted precisely by the Fronsdal tensor and
its derivatives, which will be discussed later.

B.2 Antifields

The antifields {h*#, C*H op*H1-#n c*pi-tn—11 and their derivatives belong to the cohomol-
ogy of I' as well. These objects are I'-closed simply because I' does not act on the antifields.
On the other hand, having pgh = 0, they cannot be I'-exact.
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B.3 Ghosts & ghost-curls

The undifferentiated ghosts {C,&,,.. 4, .} are I'-closed objects since I' does not act on
them. Moreover, they cannot be I'-exact, thanks to egs. (B.1)—(B.2), which say that any
[-exact term must contain at least one derivative of a ghost.

Any derivatives of the ghosts are also I'-closed. Some derivatives, though, will be I'-
exact, i.e., trivial in the cohomology of I'. For example, any symmetrized derivatives of the
bosonic ghost is trivial: 9,C,) = %I‘hw, but its 1-curl is not. We have

1 1
8MCV = 8@01,) + 8[#0,,] = §Fhu,, -+ 5@,“,. (B.7)
By taking a curl of eq. (B.1), one however finds that any derivative of €, is I'-exact:
0,C = - (B.8)

Derivatives of the fermionic ghost are more interesting. In the simplest case of a spin—%
field, with n = 2, we see that

1 1
v = ) + Oy = §F¢NV + g‘tﬁw- (B.9)
The 1-curl &, is a nontrivial element in the cohomology of I', but its y-trace is not:

’Yaaozﬂ - @fa - P]ﬁa, (BlO)

thanks to the y-tracelessness of the ghost. Again, a derivative of the 1-curl is trivial:

8p£p,u = Flpuz/||p7 8pé;w =-I IT);WHpa (Bll)

which is obtained directly from eq. (B.4) by setting n = 2. The n = 3 counterpart of
eq. (B.9) reads

4 2 1 2. ) 1.
Nubup = O(ubup) + ga[us]p + ga[vgp}u - ng/WP + gE'MVHp + 55 (B.12)

vpllu

The generalization to arbitrary spin is straightforward. One obtains

1
apfyl.l.unfl - a(p{yl...yn_ﬂ +2 (1 - Tl> a[pgul]uz...yn_l

n—2
m—+1
+2 Z (1 - ) a[l/mgz/erﬂp1/1...1/m,11/m+2...1/n,1

n
m=1

1 N\ .
o TYpunipins + <1 o n) E’plllHVQ---anl

2 m—+ 1 (1)
1
+ Z <1 o n ) E‘le’m+lHPV1~~~Vm71Vm+2--~Vn71. (B.13)

m=1

We conclude that any first derivative of the fermionic ghost is a linear combination of 1-
curls, up to [-exact terms. Therefore, it suffices to consider only 1-curls of the ghost in the
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cohomology of I'. More generally, for m derivatives, with m < mn — 1, one can consider only
the m-curls in the cohomology of I'. To see this, we can first take a curl of eq. (B.13) to
convince ourselves that only 2-curls of the ghost are nontrivial. Similarly, we can continue
step by step to show that for any m-derivative combination of the fermionic ghost, with

m < n — 1, it suffices to consider only m-curls thereof.

(m)

M1V1|---|/1/7VLVWLH Um+41---Un—
trivial (m + 1)-curls. Only when symmetrized w.r.t. the indices {vy41, ..., }, may this

It is clear that the derivative of an m-curl, 9,, & g contains non-

quantity be I'-exact. This fact is nothing but a restatement of eq. (B.5) for 0 < m < n—1:

1

n—m

gm)pmvr]...|pmvm| Pw(m)ullﬂ\mluml/mlly

A (B.14)

n Vm+1--~l’n71) m+1---Un*

Setting m = n — 1, it follows immediately that a derivative of the highest ghost-curl is
always I'-exact:
8, £ I (B.15)

v | pn—1vn—1 st pn—1vn—1|lvn’
which generalizes eq. (B.11) for arbitrary spin.
(m)
LAV o Vi || Vim41 o Vn—1
~-matrix carries one of the unpaired indices {41, ..., Vn—1}, this quantity vanishes since

However, the y-trace of any m-curl, & , is always I'-exact. If the

the ghost is y-traceless. Otherwise, the same constraint gives rise to the following:

~p g (m) = ggmb (B.16)

v ppmVm [Vm1 - vn—1 pove|..|pmvm [V1Vmy1 . vn—1”

But one can take a y-trace of eq. (B.14) to see that the above quantity is actually I'-exact.
Thus one finds the arbitrary-spin generalization of eq. (B.10):

nyﬂl a(m) — 1 F)(b(m_l) (B.17)

vt mvm|[Vms 1 n—1 T g oy vl pmvm |Vmg1 . vn—1”

So, one may exclude from the cohomology of I' the y-traces of the fermionic ghost-curls.

B.4 Fronsdal tensor

The Fronsdal tensor Sy, .. ., and derivatives thereof also belong to the cohomology of T'.
From the definition, one finds that its [' variation is given by

LSy =1 [ﬁrwm---un - Tla(mrﬁﬁm...un)}
= i1 [D 01, €apin) — "V O4is OpS iz i)
= —Z’I’L(TL — 1)8(.“18(#2 g,ug...,un))‘ (BlS)

This quantity vanishes since the ghost is -traceless. Sy, .. ., , being a pgh-0 object, is not
I-exact either. Therefore, the Fronsdal tensor and its derivatives belong to H(I').

In view of eq. (A.31) and (A.33), however, we see that the two highest curls of the
Fronsdal tensor boil down to objects already enlisted in subsection B.1, and therefore do
not need separate consideration. The aforementioned equations are generalizations of the
Damour-Deser relations [61-63]. Consequently, for the Spin—% case, it suffices to consider
only symmetrized derivatives of the Fronsdal tensor.
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C Proof of some technical steps

Throughout the bulk of the paper, we have omitted the proof of some cumbersome technical
steps for the sake of readability. The detailed proof of those steps appear in this appendix.
We will use a number of vy-matrix identities, which can be derived, for example, by using
the Mathematica package called Gamma [64].

C.1 2-derivative 2-5/2-5/2 vertex
In eq. (3.18), the part of as that contains the fermionic antighost is given by
azg = —g ézvaﬁp“”éwcta,g +h.c., (C.1)

which comes with five v-matrices. But it can be cast into an equivalent form that contains
just one, like that appearing in eq. (3.9). To see this, let us first use the y-matrix identity:

,Yaﬁp;w _ % (,Ya,yﬁplw + f}/ﬁpﬂ’/fya) , (02)

and then another one for the antisymmetric product of four y-matrices, namely
,751)/“’ _ _Qnﬁﬂ\/ﬂ/ + 750,}/#” _ 47[[3,7/)} [u,yV]' (C.3)
The result is
agg = —g&n” <—775p'“” + %vﬁ”v‘” — 27[577”]“’YV> EwCap
—§ g; <_77ﬁpluv + %,y/o’p,yuv _ 27[6,7/)]#71/> Y&, Cap + hec. . (C.4)

In both the first and the second lines on the right-hand side, the first term is of the desired
form with a single y-matrix, while the second and third terms give rise to the I'-exact pieces
vV & and YV, either directly or through the relations: y#/~y% = y%y#” — 4neleyvl and
Yyt = =¥ + 2nY*. Finally, on account of the ~-tracelessness of é;, one obtains

as; = —¢ g; <—2n6”|“”70‘ — 27’377”“17”0‘) &uw€ap + h.c. 4 T'-exact, (C.5)
which is indeed equivalent to the p = 2 piece presented in eq. (3.9), since more explicitly,
asg = 4§+l €5 + hc. + T-exact. # (C.6)

Now we will fill up the gaps between eqs. (3.24) and (3.25). First we use the defini-
tion (A.21) of x**¥, and eqs. (A.10) to write

" 1 1
Achr = Spo - 5'70 5$p - inp08/~ (C7)

One can take a curl of the above equation, and relate the 1-curl of the Fronsdal tensor to
the y-trace of the curvature through eq. (A.15), which yields

* Z T
2Aa[yxp]g = 5'707—)\\111/p A + no[yap]s/‘ (CS)
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When this expression is used in eq. (3.24), the S’-terms vanish because of the Bianchi
identity, IT)[QBHV], imposed by the antisymmetric 5-y. The result is

55 = 1ig \I/Vp|TA707A7MVpaﬁq)a,8||a - ig*lLaBHU’YHVpQ/BPYUT)\\I/l/p\T)\' (Cg)

Now one can take 9, out of the curvature and use Leibniz rule to find a total derivative
plus some terms that can be identified as —Bg only if g is real. With this, one obtains

B¢ = 2ig o, (ll_)pan)\ ypeTaB, vy 1|)a5||»y> : (C.10)

Note that the quantity inside the parentheses can be made symmetric under pu <> v for
free, thanks to the Bianchi identities playing role when 0, hits the 1-curls. This leads us
to eq. (3.25) under the stated condition: § is real. &

Next, we will derive eq. (3.27) from eq. (3.26). We will simply show (dropping the
quite similar proof for hermitian conjugates) that

21y T o V7P 2 gy — 20, 7 8™ PP Ax e = =167 Ryuper™ P TP Vg
(C.11)
Let us rewrite the left-hand side of eq. (C.11) as

L.H.S. = —Qihuya)\épg ,y,upaaﬁ, Xy .Ll)aﬁH'y - 2huy||aéaﬁ’y'm/pa’6szo.. (012)

In the first term on the right-hand side, let us pull out the derivative 0, off the ghost-curl
and integrate by parts. This is followed by another integration by parts w.r.t. dy. In the
second term, on the other hand, we pull out the derivative s off the ghost-curl to integrate
by parts. In these steps, we exploit the antisymmetry of the products of v-matrices, which
kills some terms by enforcing the second Bianchi identities given in eqs. (A.1) and (A.8).
Then, we are left with

LH.S. =i, (hau\w""’“ﬁ AT g 3+ Ry 7P “Mﬂ’a/ﬁm) — 4€abu) TP A X -

(C.13)
In the last term on the right-hand side above, one can again use eq. (C.8) and then drop
the &’-terms on account of the Bianchi identities. The result is

L.H.S. iigp <hau\\u70ypaﬂ,u>\7 \Ilaﬁpq+RUV)\;L’VUVPQE7H)\’Y¢O¢5H'Y) - igahuy||a’7uypa6707—>\\pﬁp\7'>\'
(C.14)
Now, in the last term on the right-hand side, the matrices v***? and 777 actually com-

O AT AN AA/T AC

1 (79™9* = 4*9747), and then noticing

mute. This can be seen by first writing 777 =

that any of these y-matrices commutes past 7**7*? on account of the identity:

,Y/U/poz,B,yo _ ,.yo,y,uupoz,é’ o 2,)/0';U/pa/3’ (C15)
and similar ones for 47 and 7, and the fact that the antisymmetric products of six ~-
matrices are always eliminated by the Bianchi identities. This enables us to rewrite the

last term on the right-hand side of eq. (C.14) as the first one, but with an opposite sign,
so that these terms actually cancel each other. Therefore, we are left only with

L.H.S. = =i\ Ruvpo " P 7 P o g1 (C.16)

This is precisely the right-hand side of eq. (C.11), which, therefore, is proved. #
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Now we will show how eq. (3.28) follows from eq. (3.27). In other words, we will prove

- ) — y 1-
—i§ 7\ Ryuper" P TP P 5, +hie. = —8ig T <me+“ *Bap,p + S Pu R ¢V>—Aa, (C.17)
for some Aa to be determined. First, let us write down a v-matrix identity:

Ay = 60 8 48] 4 158K 5y, A0, (C.18)

[T

Using this identity, one can rewrite the left-hand side of eq. (C.17) as

LH.S. = 60ig &, 6122 v R, P g™ + hec., (C.19)

where the potential terms with six y-matrices have all been eliminated by the Bianchi
identities. Whenever the index A is on a y-matrix, we will get rid of y-matrices altogether
by using the identity: 7 = 4*y® — n*®, and the 7-tracelessness of the fermionic ghost.
Otherwise, if just one of the indices o and 8 appears on a y-matrix, we will use the same
identity to obtain a single y-trace of \,g". These steps leave us with

_ 1
LH.S. = 12iG &R, (55‘5# >t + Sk P 2 ke P 4 553;;: fyaﬂ> Vyg” + hc.

~ 240G ExRyu”” ST 7" Wag) T+ 6ig €3 507 R Wag)” + hc.. (C20)

It is rather easy to see that the entire first line reduces, up to total derivatives, to a
I'-exact piece modulo A-exact terms. Although more difficult to see, the same is true for
the second line as well. Let us call the first and the second lines on the right-hand side of
eq. (C.20) respectively as 1st Line and 2nd Line. In 1st Line we can use the relation (A.14),
and carry out an explicit computation to write down

. 1
Ist Line = —8ig &, [(RWB + RMB) Dot + 2R P — ROPP 5+ inl)M”a
+6i & [z’RWW g7 — o (R#,,“”]w’)} +hec.. (C.21)

One can integrate by parts w.r.t. d, in the terms containing the Riemann tensor, and
thereby extract a I'-exact piece. The result is

Ist Line = —8igT (;ZWRW@BW)
.~ g vo o 1 167 1 (0%
+16i [EA (%RA P — RV 4 S B — R Ha> - h.c}
12iG [31'51%#”“” 87— £,0* (RY) + 26,0, (R/%’) - h.c.] , (C.22)

which is manifestly of the form I'-exact plus A-exact.
Similarly, in the first term of 2nd Line, one can use eq. (A.13). The result is

9nd Line = 24i§ £y7* [iRW[O‘)‘Sa”] e (RW”“] %ﬂ +12i§ &\ RPOap5Y +hec.. (C.23)
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The second term in the brackets contains manifestly A-exact pieces, which we separate:
ond Line = 8ig &yy" [BiRW[aASa”] + 0 (Rua ) — 0° (RMA%)} fhe
140G €y [3;23[“50&%” 2y (RW“’\ %)} the.. (C.24)

The first line on the right-hand side is now manifestly A-exact, whereas the second line
can be written as I'-exact plus A-exact modulo total derivatives, which we will now show.
To this end, we will first compute the I' variation of the following quantity:

= —4ij (Do Boo P + B, R, ) (C.25)
The I' variation gives derivatives of the ghost, but integrations by parts will yield
TZ = —2i§ &, {VAVpaRpaaﬁq’aﬁllv + PVWpURpa/\/Bll)aullﬂ}
— 4G E\YPT DRy Py 5 — iGEr D (RM%) +he.. (C.26)

Let us use the y-matrix identity: A7 = 2p o 4 3 (Y4P7 4+ 47 ) for the first
term in the brackets, and y*¥P7 = —2povleo 4 % (Y¥yPorY — A¥4P7 %) for the second one.
Furthermore, we break 7 to obtain the y-trace of either the ghost (which is zero) or the
fermion 1-curl (for which we use eq. (A.13)). The result is

rZ = 256 [ (R = F2) atps — 205 (17 R o ) | + 4i5 & R 0uis”
_2ig &y (ma RMS,s + 27”/”8&1%,)(,&5%5) +he.. (C.27)

In the first line above, for all three quantities inside the brackets, we commute the y-matrix
past the double ~-trace of the Riemann tensor. This leaves us with

PZ = 4igés 3R a5 — 209" (R ) | + 2086 (1° R Sas + B 5,,)
— —
—42?] 5)\ (f)/)\l/pgaaRpo'anVﬁ + Z’YJaaR)\ﬁao- %B + R)\a a ¢a> + h.c.. (C28)

Combining all the results, i.e., egs. (C.20), (C.22), (C.24) and (C.28), we finally arrive at
eq. (C.17), where Aa is given by

_ 1 1
Aa = —16ig &y [aaR*”a%g = BN o) + SR 5 — 4me“a]
- N N 1 1
—8ig &) [W (V' Ruap®) — 0 (7”Ru)‘ %) + 50 (R‘“w’> - ZaA (Rw’)}
_ <
—4ig &, [WW%RMWW + 29,0, RN 95 + B9 wa]

+25&, [3RWW 8" 41291 R, 100 S, + A RMS 5 + B ,sa} +he  (C.29)

This completes our proof. &
Having found Aa, we will now see how this quantity may be related to Aayg, given by
eq. (3.23). This will lead us to the desired relation (3.29). Note from eq. (3.23) that the
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graviton EoMs in Aa, appear only through the Einstein tensor G*”. Therefore, we will
rewrite all the A-exact terms in the first, second and third lines on the right-hand side of
eq. (C.29) in terms of the Einstein tensor, by making use of the relations (A.3)—(A.7). For
he antisymmetric 4-v, we use the identity (C.3) in order to kill some terms that give the
y-trace of €. We find that all the terms proportional to the trace of the Einstein tensor
(Ricci scalar) combine into I'-exact pieces. After some simplifications, the result is

Aa = 8ij &, [QGWaWW — 30, (GWW) + 9 (G”‘wﬂy)}

3
45 & |5 Ryu ™ 87+ 69 R 280 4 407 Ry S5 + 20,5 — G184

+4i§F [72}” Gudjw’ + &uv GM %V - %MGMV ¢u + 21ZJMQG“V¢VQ]

—6ig T | ' G* Py, + Uy GH)' — %@WRWV + ;J/RW] + h.c.. (C.30)

The entire first line on the right-hand side plus its hermitian conjugate is easily identified,
up to an overall factor, as Aaj,. All the remaining terms, on the other hand, are A
variations of T'-closed quantities, and can be identified as Aa;. Explicitly,

a 2e (3 *V aX _*v apo * xQ *
ay = 458 <2R,WW;/7 V4 697 Ry 0 + 427 Ry ot s + 20 0™ — GﬁAng)
P o * v 1 * LUy n *ur .. 3 - Uy
+8ig T (mmw“ =SB+ B, — S %)

4 e ! v 3 AR N

Thus we have proved the relation (3.29), where the ambiguity is given by the above ex-
pression. &

C.2 3-derivative 2-5/2-5/2 vertex

First, we will show that the as presented in eq. (3.33) is equivalent to that appearing in
the third line of eq. (3.8). Given the identities (C.2) and (C.3), we rewrite eq. (3.33) as

s 1
az = —ig CR&u* (—n‘”"’ﬁ + 57— 2y ) Eap

s v L v
~ig Cx&puw <—17“ 108 4 Sy — 2ty > 1 Eap. (C.32)
It is clear that only the first terms in both the lines on the right-hand side are nontrivial,
since the y-trace of the ghost-curl &,4 is I'-exact. This leaves us with
as = 2ig CY ZWV)‘E,“" + I'-exact, (C.33)

thereby proving the claimed equivalence. #
Now we will prove the statements that follow eq. (3.37). Let us take the first term on
the right-hand side of eq. (3.37), and use the identity (C.3) to rewrite it as

. ¢ o . - 1 ok 1 o o
ZgR,quaf)\ 7)\#”&6 \Da5|p = ZgRuupaéA ,y)\,uuaﬂ <_2’Yp 70 + §’Yp 775 - 2,}/[p77 ][776}> \Ijaﬁhlé'
(C.34)
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The first term on the right-hand side plus its hermitian conjugate is I'-exact modulo d,
while the remaining terms are A-exact. To see this, let us massage these terms. We have

First Term + h.c. = _%gRquO' (g)\’)/)\'uyaﬁ’ poyd lIlozﬁ"yﬁ o ‘I’aﬂwé ,YAHVaﬂ, PO"Y(sé-)\) 7 (035)

by virtue of the fact that the antisymmetric products of 5-v and 4-vy commute for exactly
the same reason as presented in between egs. (C.14) and (C.16). Now we can pull 9, off
the Riemann tensor to integrate by parts. Because of the Bianchi identities, we get

: . i T o NT o
First Term + h.c. = _59 bpo”)\ (awj,y)\mjaﬁ,ﬁ Y6 ‘llozﬁ\'ycS _ ‘Ilaﬁ\'ycs ,YA,U«Vaﬁ,P '}’6&“”) , (C.36)

Finally, we pull 0, off the spin—% curvature and integrate by parts to obtain a derivative
0,&, of the ghost-curl, which is I'-exact. Thus we end up having

First Term 4+ h.c. = —igT ([]WH)‘II)WM AAuval, poys ¢aﬂ||6) . (C.37)

On the other hand, it is manifest that the second and third terms appearing on the
right-hand side of eq. (3.37) are A-exact quantities. Moreover, they are A variations of
some ['-closed objects. The following choice of the ambiguity will eliminate these terms:

_ : z 1
Aal _ _ZgR'u,l/po'g)\ ,.y)\ﬂl/aﬁ (2,7/30,)/’75 _ 2,-)/[p770'][7,},5]> \I/a,é’l'yé —+ h.c.. (C38)

This choice is tantamount to

~ ¢ vo * O 1 vo T L f,k
a1 = —gRuvpo &x (47/\u B"oa[a§0m + D 'Y)\u Brp )‘baﬁ’) +h.c., (C.39)

and with this we arrive at eq. (3.38). #
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