
J
H
E
P
0
1
(
2
0
1
4
)
0
4
1

Published for SISSA by Springer

Received: July 19, 2013

Revised: December 13, 2013

Accepted: December 13, 2013

Published: January 9, 2014

LHC data and aspects of new physics

Tommi Alanne,a,b Stefano Di Chiaraa and Kimmo Tuominena,b

aHelsinki Institute of Physics, Univ. of Helsinki,

P.O. Box 64, FI-000140 Helsinki, Finland
bDepartment of Physics, Univ. of Jyväskylä,
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1 Introduction

The recent discovery of a light scalar with properties compatible with those of the Stan-

dard Model (SM) Higgs boson, h0, imposes new experimental tests on previously viable

beyond the Standard Model (BSM) theory frameworks. Fervent activity in this direction

has focused mostly on the possibility that a new charged particle could enhance the Higgs

decay rate to two photons [1–13]. This is measured at LHC and Tevatron, with the full

dataset, to be slightly enhanced compared to the SM prediction [14–17], with the diphoton

signal strength equal to 1.55 ± 0.31 at ATLAS and 0.78 ± 0.28 at CMS. While most of

the efforts were focused on the Higgs physics associated with a new charged scalar or a

vector fermion, both of which naturally arise in supersymmetry [18–24] or composite Higgs

frameworks [25–28], less extensive research has been conducted recently on the possibility

that a heavy charged vector boson be responsible for the observed deviations of the Higgs

couplings from the corresponding SM predictions [9, 29–31].

A heavy charged vector boson is naturally predicted by phenomenological theories

featuring additional gauge groups, like Technicolor, Little Higgs, and Kaluza-Klein mod-

els [32–37]. In this paper we want to explore the effect of couplings of a heavy W ′ boson to

the Higgs on LHC and Tevatron observables. To approach this task we first, in section 2,

perform a fit with the parameters of a simple effective Lagrangian featuring rescaled Higgs

couplings to SM particles as well as to a heavy charged scalar and a heavy charged vector

boson. To have a concrete model to test against the results of the general fit, in section 3

we introduce a low energy effective Lagrangian for a simple bosonic technicolor model, the

bosonic Next to Minimal Walking Technicolor (bNMWT) [38–41]. The low energy effective

Lagrangian for the scalar sector of bNMWT corresponds to a Type-I Two Higgs Doublet
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ij ATLAS CMS Tevatron

ZZ 1.43± 0.38 0.91± 0.28

γγ 1.55± 0.31 0.78± 0.28 6.0± 3.30

WW 0.99± 0.30 0.76± 0.21 0.94± 0.84

ττ 0.70± 0.70 1.10± 0.41

bb 0.2± 0.7 1.00± 0.49 1.59± 0.71

Table 1. Data on inclusive channels from LHC and Tevatron experiments.

Model (2HDM) [42]. We scan the allowed parameter space of this model for data points

viable under direct search constraints and electroweak (EW) precision tests, compare the

data points to the measured Higgs physics observables, and find the optimal fit of the

model. In section 4 we introduce two composite vector boson triplets in the low energy

Lagrangian, while conserving gauge invariance at the microscopic level, which both mix

with the SM W± and directly couple to h0, and repeat the goodness of fit analysis above to

determine the optimal values of the W ′ and W ′′ couplings to h0. We illustrate separately

the features which originate from the mixing and from the direct coupling. Our essential

conclusion is that mixing alone produces a negligible change of the fit to the current data,

while a direct interaction gives a more relevant improvement of the fit, at a level of goodness

comparable to that of the SM.

2 LHC and Tevatron data fit

In this section we perform a fit to LHC and Tevatron data to determine the values of the

Higgs couplings favored by the experiment. We follow the methods of previous similar anal-

yses [1–13] while updating their results with the latest experimental data, featuring up to

8 fb−1 of additional integrated luminosity relatively to the previous datasets. The following

model-independent analysis serves as a comparison with the model-specific goodness of fit

study we perform in sections 3, 4.

The experimental results are expressed in terms of the signal strengths, defined as

µ̂ij =
σtotBrij

σSM
tot BrSM

ij

, σtot =
∑

Ω=h,qqh,...

εΩσω→Ω , ω = pp, pp̄ , (2.1)

where εΩ is the efficiency associated with the given final state Ω in an exclusive search,

while for inclusive searches one simply has σtot = σpp→h(X), the h production total cross

section. The signal strengths from ATLAS, CMS, and Tevatron are given in table 1. All

results above for Higgs decays at ATLAS [43, 44] and CMS [15, 45], as well as those at

the Tevatron [16, 17], use the full respective dataset, with the only exception being the

coupling strength for the decay to τ τ̄ at ATLAS [46] which uses 13 fb−1 of integrated

luminosity at 8 TeV and 5 fb−1 at 7 TeV. The bb̄ quark pair is produced in association

with a vector boson, with an efficiency assumed equal to one, while the other searches are
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ATLAS 7TeV ATLAS 8TeV CMS 7TeV CMS 8TeV

γγJJ 2.7± 1.9 2.8± 1.6 4.2± 2.0 0.8± 1.0

pp→ h 22.5% 45.0% 26.8% 46.8%

pp→ qqh 76.7% 54.1% 72.5% 51.1%

pp→ tt̄h 0.6% 0.8% 0.6% 1.7%

pp→ V h 0.1% 0.1% 0% 0.5%

Table 2. Data on exclusive channels from LHC experiments.

inclusive. We also include in our analysis the dijet associated γγ production based on the

full dataset [14, 15], with signal strengths and efficiencies1 listed in table 2.

Within the class of models we will study, the part of the Lagrangian relevant for the

recent LHC data is of the form

Leff = aV
2m2

W

vw
hW+

µ W
−µ + aV

m2
Z

vw
hZµZ

µ − af
∑

ψ=t,b,τ

mψ

vw
hψ̄ψ

+aV ′
2m2

W ′

vw
hW ′+µ W ′−µ − aS

2m2
S

vw
hS+S−, (2.2)

where the fourth and fifth terms involve, respectively, charged (but color singlet) vector

and scalar bosons. We fix the mass parameters to the physical mass of the corresponding

particle and vw to the EW vacuum expectation value (vev), vw = 246 GeV.

Application of the Lagrangian in eq. (2.2) in our study requires on one hand that the

dimensionless couplings, i.e. the Yukawas, are sufficiently small. Practically one needs only

worry about the coupling of the top quark, and in our numerical analysis we demonstrate

explicitly that on the average over the viable part of the parameter space we have yt =√
2afmt/vw ∼ 1. On the other hand, we must require that the masses of the composite vec-

tors and charged scalars are smaller than the cutoff scale below which the effective descrip-

tion is expected to be valid. In our analysis we choose the cutoff scale to be ΛTC ∼ 4πvw ∼
3 TeV. The effects of composite vectors and charged scalars in our results are parametrized

only in terms of the dimensionless coefficients aV ′ and aS provided that the states W ′ and

S± are sufficiently heavy; see the discussion around eqs. (2.5)–(2.8). In the model consid-

ered in section III and IV this requirement is satisfied since the composite states originating

from a new strongly interacting sector naturally have their masses in the TeV range.

Consequently to eq. (2.2), the cross sections and branching rates relevant for Higgs

physics are related to the corresponding quantities of the SM in a simple way. We define

Γ̂ij ≡
Γh→ij

ΓSM
hSM→ij

, σ̂Ω ≡
σω→Ω

σSM
ω→Ω

, (2.3)

and then, in terms of the coupling coefficients in eq. (2.2), we have

σ̂hqq = σ̂hA = Γ̂AA = |aV |2 , σ̂ht̄t = σ̂h = Γ̂gg = Γ̂ψψ = |af |2 ,
A = W,Z ; ψ = b, τ, c, . . . (2.4)

1We include only the loose categories from the ATLAS and CMS dataset at 8 TeV.
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where the gg and h final states are produced through a loop triangle diagram with only

quarks as virtual particles.

The calculation of the Higgs decay rate to two photons is more involved. By using the

formulas given in [47], we can write

Γh→γγ =
α2
em

3
h

256π3v2
w

∣∣∣∣∣∑
i

Nie
2
iFi

∣∣∣∣∣
2

, (2.5)

where the index i is summed over the SM charged particles as well as S± and W ′±, Ni is

the number of colors, ei the electric charge in units of the electron charge, and the factors

Fi are defined by

FA = [2 + 3τA + 3τA (2− τA) f(τA)] aV , A = W,W ′ ;

Fψ = −2τψ [1 + (1− τψ) f(τψ)] af , ψ = t, b, τ, . . . ;

FS = τS [1− τSf(τS)] aS , τi =
4m2

i

m2
h

, (2.6)

with

f(τi) =


arcsin2

√
1/τi τi ≥ 1

−1

4

[
log

1 +
√

1− τi
1−√1− τi

− iπ
]2

τi < 1
. (2.7)

In the limit of heavy W ′± and S±, one finds

FW ′ = 7aV ′ , FS = −1

3
aS . (2.8)

Given the experimental lower bounds on mW ′ and mS [48, 49], the error on FW ′ is irrelevant

while |FS | gets enhanced by about 10% for mS = 150 GeV: since the experimental error on

µ̂γγ is large and constructive interference of the S± and W± is favored by the experiment,

we also assume the error involved by the above approximation for FS to be negligible.

We notice also that in the limit of heavy masses for the charged scalar and vector bosons

the light Higgs decay to such (virtual) states is highly suppressed by kinematics, and there-

fore no additional decay channels have to be taken into account besides those of the SM.

To evaluate the theoretical predictions for the measured observables, we need the SM

production cross sections for the Higgs boson and the SM branching ratios for its decay.

The production cross sections of a Higgs boson with a 125 GeV mass at the LHC and

Tevatron for the final state Ω are given [50] in table 3.

The SM branching fractions are defined in terms of the decay rates, ΓSM
h→ij , as

BrSM
ij =

ΓSM
h→ij

ΓSM
tot

, ΓSM
tot =

∑
ij=b̄b,gg,WW,...

ΓSM
h→ij = 4.03MeV. (2.9)

These are given [51] by

BrSM
bb̄ = 0.578, BrSM

τ τ̄ = 0.0637, BrSM
cc̄ = 0.0268, BrSM

gg = 0.0856, (2.10)

BrSM
γγ = 0.0023, BrSM

γZ = 0.00155, BrSM
WW = 0.216, BrSM

ZZ = 0.0267. (2.11)
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Ω h qqh tt̄h Wh Zh h(X)

7 TeV 15.31 1.211 0.08634 0.5729 0.3158 17.50

8 TeV 19.52 1.578 0.1302 0.6966 0.3943 22.32

1 TeV 0.9493 0.0653 0.0043 0.1295 0.0785 1.227

Table 3. Standard Model Higgs production cross sections in units of pb.

To determine the experimentally favored values of the free parameters af , aV , aV ′ , aS ,

we minimize the quantity

χ2 =
∑
i

(Oexp
i −Oth

i

σexp
i

)2

, (2.12)

where the measured values and errors of the observables are given in tables 1, 2, while the

numerical predictions of the theory are easily determined from eqs. (2.3)–(2.8), with the

SM input values given in table 3. In defining χ2 above, we assumed the correlation matrix

to be simply the identity matrix. We note that it is not possible to constrain both aS and

aV ′ since they both contribute only to the diphoton decay. The optimal values given below

then refer to either of the two taken equal to zero:

aV = 0.96+0.10
−0.11 , af = 1.01+0.25

−0.33,

{
aV ′ = 0.21+0.16

−0.18 and aS = 0

aV ′ = 0 and aS = −2.7+3.9
−3.3

, (2.13)

with

χ2
min/d.o.f. = 1.04 , P

(
χ2 > χ2

min

)
= 41% , d.o.f. = 14. (2.14)

The results above are derived in the limit of heavy S± and W ′±. For masses of the same

order of mh the optimal aS and aV ′ can be straightforwardly derived by dividing the corre-

sponding values in eqs. (2.13) by the ratio of the decay amplitudes FW ′ and FS , eqs.(2.6),

divided each by their respective heavy particle limits given in eqs. (2.8). We stress that

because of the limited number of observables used in the analysis and the fact that possible

systematic errors are unaccounted for, the P -value quoted above (and also the ones evalu-

ated in the subsequent section) should be used exclusively to compare the models studied

in this work with the SM.

The SM produces

χ2
min/d.o.f. = 0.92 , P

(
χ2 > χ2

min

)
= 55% , d.o.f. = 17 , (2.15)

for only the Higgs physics data, which indeed is a rather ideal result. The inclusion of the

EW parameters S and T (S = T = 0 for SM) [52–54] in the fit improves further the quality

of the fit:

χ2
min/d.o.f. = 0.89 , P

(
χ2 > χ2

min

)
= 60% , d.o.f. = 19, (2.16)

which shows that the SM is still perfectly viable in light of current collider data.

In the next section we use the Higgs physics constraints derived here to test the viability

of a simple bosonic walking technicolor model [41] whose low energy effective Lagrangian

belongs to the class specified by the generic Lagrangian of eq. (2.2).
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3 Model and constraints

In Technicolor (TC) an additional, confining gauge interaction causes techniquarks, charged

under TC and the EW interaction, to condense and break spontaneously the EW symme-

try [32, 33]. This mechanism allows the W and Z bosons, and the composite states of the

strongly coupled TC sector to acquire mass, while the SM fermions remain massless.

The TC sector we consider has SU(2)L×SU(2)R chiral symmetry and is described in

terms of the complex composite meson field MT = (φ+, φ0) by an effective Lagrangian

LTC = DµM
†DµM −m2

MM
†M − λM

3!

(
M †M

)2
. (3.1)

To provide mass for ordinary matter fermions, an additional interaction linking them to the

TC condensate has to be provided. In bosonic TC models, this link is provided by one (or

more) elementary scalar(s) [55–59]. While in this paper we consider nonsupersymmetric

theories, bosonic technicolor effective Lagrangians also arise as low energy realizations of

supersymmetric technicolor theories [60–62]. In the context of bosonic TC, it is therefore

the techniquark condensate that breaks EW symmetry, while the scalar plays the role of

“spectator”. The Higgs Lagrangian is written in terms of the usual complex doublet H as

LHiggs = DµH
†DµH −m2

HH
†H − λH

3!

(
H†H

)2
. (3.2)

The link between the technicolor and the SM matter fields obtained at the effective La-

grangian level is due to the Yukawa couplings of the Higgs field H. In addition to the usual

couplings to the SM matter fields,

LYuk = (yu)ijHQ̄iUj + (yd)ijH
†Q̄iDj + (y`)ijH

†L̄iEj + h.c. , (3.3)

these include also the couplings to techniquarks, yTCΨ̄LHΨR. When constructing the

effective Lagrangian for the composite sector of the theory, this coupling generates further

terms in the effective TC Lagrangian so that the technicolor sector is described by [41]2

LbTC = DµM
†DµM −m2

MM
†M − λM

3!

(
M †M

)2

+
[
c3yTCDµM

†DµH + c1yTCf
2M †H +

c2yTC
3!

(M †M)(M †H)

+
c4yTC

3!
λH(H†H)(M †H) + h.c.

]
, (3.4)

where ci are unknown parameters and f is the vev of M . Since eq. (3.4) is an effective

Lagrangian description, its parameters are supposed to encode higher order and nonpertur-

bative corrections from the underlying theory. This justifies the application of the model

at tree level in our study.

The model that we consider is therefore specified by the effective Lagrangian

L = LSM + LbTC, (3.5)

2Compared to the potential presented in [41], expressed in terms of matrix fields rather than EW

doublets, we absorbed the ω factors in the ci coefficients and pulled out a factor λH in front of c4, as

suggested by naive dimensional analysis.
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where LSM is the usual SM Lagrangian containing the sectors LHiggs and LYuk. The

coefficients ci in eq. (3.4) are estimated by naive dimensional analysis [63, 64] to be

c1 ∼ ω , c2 ∼ ω , c3 ∼ ω−1 , c4 ∼ ω−1 ; ω . 4π . (3.6)

Two of the parameters on the r.h.s. of eqs. (3.2), (3.4) are determined by the extremum

conditions of the potential. Furthermore, the electroweak scale constrains the vevs of M

and H by

v2
w = v2 + f2 + 2c3yTCfv = (246 GeV)2 , 〈M〉 =

f√
2
, 〈H〉 =

v√
2
. (3.7)

Finally, the requirement for the potential to be bounded from below imposes

λH , λM > 0 ; λH + λM > 2 (c2 + c4λH) yTC . (3.8)

The mass eigenstates are obtained by diagonalizing first the kinetic terms and then

applying a rotation to diagonalize the mass terms in the scalar and pseudoscalar sectors.

First, the Higgs fields M and H are expressed as(
M

H

)
=

1√
2

(
A B

−A B

)(
M2

M1

)
, A = (1− c3yTC)−1/2, B = (1 + c3yTC)−1/2. (3.9)

After this transformation, the fields M1,2 are written in terms of the charge eigenstates as

M1,2 =

 Σ±1,2
1√
2
(f1,2 + σ1,2 + iξ1,2)

 . (3.10)

The rotation angles α and β determine the physical states in the scalar and pseudoscalar

sectors so that the Goldstone bosons, G± and G0, provide the respective longitudinal

components of the W± and Z bosons, while h0, H0, A0, and H± are the neutral scalars,

pseudoscalar, and charged scalar mass eigenstates, respectively:(
h0

H0

)
=

(
cα −sα
sα cα

)(
σ2

σ1

)
,

(
G0

A0

)
=

(
sβ cβ

cβ −sβ

)(
ξ2

ξ1

)
,

(
G±

H±

)
=

(
sβ cβ

cβ −sβ

)(
Σ±2

Σ±1

)
.

(3.11)

The mixing angle β is defined so that tanβ = f2/f1. The masses of the lightest composite

states, including neutral scalars, are naturally expected to be of O(ΛTC) ∼ 1 TeV. For

bosonic TC the strong dynamics effect on the Higgs mass can be somewhat tamed by the

mixing of the composite and elementary neutral scalar states, since the latter state can

have a squared mass term much smaller than the former. This mechanism is analogous

to the TeV-scale seesaw recently put forward in [65]. Moreover, it has been shown [66]

that the top-quark loop contribution can greatly reduce the tree level TC prediction on

the Higgs mass. A further suppression of the light Higgs mass is expected in NMWT

because of walking dynamics [39]. From here on we assume that one or a combination of
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the mechanisms above is at work and use mh0 = 125± 1 GeV as an input to fix the value

of one of the free parameters of the low energy effective theory.

To compare the model predictions with the LHC and Tevatron measurements, we need

the coefficients of the SM Higgs linear couplings introduced in eq. (2.2) to be expressed in

terms of the bNMWT parameters:

aS =
[
(c2β − c2ρ)

(
(c2 − c4λH) c−1

ρ s−1
ρ (cα+3β + cα−βc2βc2ρ)

+4 (c2 + c4λH) cβsβ
(
cαcβt

−2
ρ + sαsβt

2
ρ

))
−
(
cα−ρs

2
2(β−ρ)sβ+ρλH + cα+ρsβ−ρs

2
2(β+ρ)λM

)
c−2
ρ s−2

ρ /yTC

]
/
[
4
(
c4λHs

2
β−ρ + (12c1 + c2) s2

β+ρ

)]
,

aV = sβ−α , af =
cα−ρ
sβ−ρ

, (3.12)

where sα, cα, tα are shorthands for sinα, cosα, tanα, respectively, with α, β defined by the

rotation matrices in eq. (3.11) and ρ by

sρ =

√
1− c3yTC

2
, cρ =

√
1 + c3yTC

2
. (3.13)

We are now ready to test the particle spectrum and its couplings against the latest exper-

imental data. First, we scan the parameter space looking for data points that produce the

right SM mass spectrum and satisfy the direct searches for charged particles at LEP [49]

and a heavy neutral scalar at LHC [67] as well as the EW precision constraints from the

S and T parameters [52–54]. More specifically, we impose the constraints

mh0 = 125± 1 GeV , mH± = mA0 > 100 GeV , mH0 > 600 GeV , |sα−ρ
sβ−ρ

| < 1 ,

S = 0.04± 0.09 , T = 0.07± 0.08 , r(S, T ) = 88% , mA0 ,mH0 < 5ΛTC . (3.14)

The quantity r(S, T ) is the correlation coefficient for the S and T parameters [54]. The

constraint on the trigonometric functions is to ensure that the heavy Higgs does not couple

to SM fermions more strongly than a SM Higgs with the same mass does; this allows us

to use straightforwardly the LHC constraint on mH0 . The upper bounds on mA0 ,mH0 are

enforced by the cutoff of O(ΛTC ≈ 4πvw) of the effective Lagrangian. We also require the

free parameters to produce the remaining SM mass spectrum and satisfy the bounds in

eq. (3.8). Then, we scan for such viable points in the domain

0 < λH , λM < (4π)2 , 2π < |c1|, |c2|, |c−1
3 |, |c−1

4 | < 8π , |c3yTC | < 1

|yt| < 4π , f = ±
√
v2
w − v2

(
1− c2

3y
2
TC

)
− vc3yTC , |v| < vw(1− c2

3y
2
TC)−1/2 , (3.15)

with m2
H ,m

2
M determined by the extremum conditions

∂V

∂h0
= 0 ,

∂V

∂H0
= 0, (3.16)

where V is the scalar potential of the effective Lagrangian in eqs. (3.2), (3.4), (3.5). The

results that we present in the following of this section can be applied directly to the Type-I

– 8 –
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2HDM by using the formulas in appendix A. The disclaimer is that we are testing only a

portion of the parameter space available to such a model, and more precisely the range of

values typical for underlying strong dynamics.

Note that the value of yt is fixed by the Higgs sector, and in the scan we only monitor

that its value remains below 4π. Actually, over the scanned 5000 viable points, we find

that on the average yt = 0.92±0.17 with the maximum (minimum) value being 1.48 (0.27).

Hence, the leading order perturbative treatment of the top Yukawa coupling which we have

applied in our analysis is justified.

We also check that the perturbative calculation of the diphoton decay rate holds for

each of the 5000 scanned data points. In doing so we perform a rough estimate of the

loop amplitudes by assuming the virtual particles to have momenta much smaller then

their masses and then by integrating the phase space volume up to the typical energy of

the process, which is equal to the light Higgs mass. While such an estimate misses the

enhancement of the amplitude given by on-shell virtual particles and the contribution of

high momenta, it still allows us to compare the relative order of magnitude of the two loop

contributions to the one loop order amplitude. The leading order contribution to the Higgs

decay amplitude to two photons is given by a virtual W at one loop, which we simply label

A1L
W . At next to leading order virtual scalars at two loops give the largest contribution,

since the cubic couplings can be of O(vw4π)2, while the other relevant couplings are SM-like

in size. Scalar cubic and quartic couplings, both large, might indeed give non-perturbative

contributions at even higher order. For this reason, besides the ratio between the two loop

leading contribution in figure 1 (A2L
s ) and A1L

W , we also calculate the ratio between A2L
s

and the virtual H± contribution at one loop (A1L
H±), both of which are given below:

A2L
s

A1L
W

∼ λh0h0h0λ
2
h0H+H−

8π2aV

v4
wm

4
W

m8
H±

,
A2L
s

A1L
H±
∼ λh0h0h0λh0H+H−

8π2

v2
w

m2
H±

, (3.17)

with

λijk =
1

2vw
∂ijkV . (3.18)

To ensure consistency of the perturbative calculation of the light Higgs decay rate to

diphoton, we require
A2L
s

A1L
W

< 0.1 ,
A2L
s

A1L
H±

< 0.1 , (3.19)

with the ratios estimated by eqs. (3.17). We find that all of the 5000 scanned data points

satisfy the first relation above, while 609 do not satisfy the second relation. In all the

following results we retain only the scanned data points that satisfy eqs. (3.19).

The distribution of viable data points of the bNMWT allowed parameter space in

the (S, T ) plane is shown in figure 2. The 90% Confidence Level (CL) allowed region is

shaded in green while the viable data points featuring m2
H > 0 (m2

H < 0) are plotted

in black (grey). We make this distinction because for positive m2
H the SM Higgs sector

alone would not break EW symmetry, and therefore EW symmetry breaking is generated

through bosonic TC interactions. The black dots are, thus, relevant for bNMWT while the

grey ones refer more generically to the Type-I 2HDM. It is clear that the viable region in

S and T accessible by bNMWT is very limited.
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h0
h0

h0

H±

γ

γ

Figure 1. Feynman diagram for the 2 loop contribution of virtual scalars to the h0 decay to

diphoton.

Figure 2. 90%CL viable region (in green) of the precision EW parameters S and T : in black are

the values relevant for bNMWT, while those in grey refer generically to Type-I 2HDM.

In figure 3 we plot the viable data points in the (aS , af ) and (aS , aV ) planes, respec-

tively, together with the 68% (green), 90% (blue), and 95% (yellow) CL regions obtained

in the previous section: these plots represent a slice of the af , aV , and aS parameter space

passing through the optimal point (blue star) given in eq. (2.13). There is a perfectly

specular viable region, which we do not show here, intersecting another χ2 global mini-

mum point, obtained by flipping the signs of aV , af , and aS in eq. (2.13). In figure 3, left

panel, the upper viable region, containing the best fit point, obtains the observed slight en-

hancement of the Higgs diphoton decay rate exclusively by the charged scalar contribution

which interferes constructively with the W boson contribution. This results from a rather

large linear coupling of h0 to S±. In the lower viable region, the slight enhancement of

the Higgs diphoton decay rate is entirely due to the SM fermions which couple to h0 with

the same sign as W± and, therefore, give constructive interference, while the scalar inter-

feres destructively to balance an otherwise excessive enhancement of the decay rate to two

photons. The same comments apply to the viable regions presented in figure 3, right panel.

The bNMWT data points are closely clustered around the SM values. This was some-

what expected, because of the small mixing of the two neutral Higgs fields for a heavy

– 10 –
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Figure 3. Viable data points in the (aS , af ) (left pane) and (aS , aV ) (right pane) planes, together

with the 68% (green), 90% (blue), and 95% (yellow) CL region: in black are the values relevant for

bNMWT while those in grey refer generically to Type-I 2HDM. The blue stars mark the optimal

coupling coefficients on the respective planes intersecting the optimal point with aV ′ = 0.

H mass. The choice of a heavy masses for the new states is naively dictated by strong

dynamics, which in the scaled up QCD case would predict masses of O(ΛTC) ≈TeV.

Finally, in figure 4 we show the bNMWT data points in the (aV , af ) plane that passes

through the SM point (aS = af = aV = 0) to which they approximately belong. In

bNMWT the Higgs-vector boson coupling is always reduced compared to its SM value,

as shown in figure 4, while the experiment favors an enhancement of the same coupling.

While bNMWT looks generally disfavored compared to the SM, most of the scanned data

points lie within the 90% CL region.

We note that figure 2 also includes bNMWT points with flipped sign of af , aV , and aS .

These points belong to the plane passing through the specular optimal point, and therefore

we do not include them in figures 3 and 4.

Among the scanned viable bNMWT data points featuring m2
H > 0, the one minimizing

χ2 is

aV = 1.00 , af = 0.98 , aS = 0.0 , S = T = 0 . (3.20)

The result above is derived in the limit of heavy H± for the diphoton decay amplitude,

eqs. (2.8). The average mass of H± and A for the viable data points is about 800 GeV: even

for the lightest charged scalar mass, equal to 170 GeV, the change in the light Higgs decay

rate to diphoton is smaller than 1%, and therefore negligible compared to the experimental

uncertainty. This justifies the heavy H± approximation we used for for the diphoton decay

amplitude, eqs. (2.8), in determining the optimal viable point given above.

To estimate the goodness of fit of the scanned data points, we have to determine the

number of degrees of freedom (d.o.f.) of the bNMWT parameter space, limited by the

constraints motivated by strong dynamics. Since the free variables in the bNMWT La-
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Figure 4. Viable data points in the (aV , af ) plane, together with the 68% (green), 90% (blue),

and 95% (yellow) CL region: in black are the values relevant for bNMWT while those in grey refer

generically to Type-I 2HDM. The blue star marks the optimal coupling coefficients on the (aV , af )

plane for aS = aV ′ = 0.

grangian in eqs. (3.2), (3.4) can be grouped in the coupling coefficients of eq. (2.2), defined

in terms of the TC Lagrangian variables by eq. (3.12), one can expect the Higgs physics

data presented in section 2 to allow at most for three d.o.f., plus two since we also include

the EW parameters S and T in the fit. In practice, the range of values found with the scan

for aS , S, T , is very small compared to the uncertainty affecting each of those parameters.

We assume, therefore, to have only two free parameter, af and aV , which produce the

following statistical results:

χ2
min/d.o.f. = 0.99 , P

(
χ2 > χ2

min

)
= 47% , d.o.f. = 17 . (3.21)

These numbers should be compared to the corresponding results in the SM, eq. (2.16),

which indeed produces a better fit.

For further comparison, we also give the corresponding results for the generic 2HDM

data points (m2
H < 0):

aV = 1.00 , af = 0.99 , aS = −0.4 , S = 0.01 , T = 0 ;

χ2
min/d.o.f. = 0.99 , P

(
χ2 > χ2

min

)
= 47% , d.o.f. = 17. (3.22)

The charged scalar for the viable data points has a mass on average equal to 2.6 TeV, with

a minimum around 400 GeV. This justifies the heavy mass limit we used in determining

the optimal point above.

The results obtained so far for bNMWT do not take into account the contributions

to Higgs physics coming from heavy charged vector bosons, which are a staple of strong

dynamics. In the next section we study this subject by introducing the relevant interaction

terms in the Lagrangian and by working out the corresponding Higgs physics phenomenol-

ogy.
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4 Extra charged vector bosons and experimental data fit

Extra vector bosons arise naturally in TC as composite resonances with a mass of the order

of the strong interaction scale ΛTC . Of particular interest to us here is the possibility that

an extra charged vector boson, W ′, be responsible for the observed slight enhancement to

the diphoton decay rate of the Higgs even if mW ′ � mh0 . Given the LHC constraints on

the mass mW ′ , equal to 2.55 TeV [48], it is safe to take the heavy W ′ limit, eq. (2.8), for

the Higgs decay rate to γγ in eq. (2.5).

To introduce, in the effective Lagrangian, direct Higgs couplings to an extra massive

vector boson which conserves gauge symmetry at the fundamental scale, we use the hidden

local symmetry principle [68, 69], which has been already applied to NMWT in [40, 70]:

here we just outline the main steps required to introduce composite vector bosons while

conserving gauge invariance in the fundamental theory.

We begin by defining the following covariant derivatives

DµNL = ∂µNL + igLW̃
µNL + igTCA

µ
LNL , DµNR = ∂µNR + igY B̃

µNR + igTCA
µ
RNR ,

(4.1)

where Aµ is the vector boson associated with the G ≡ SU(2) × SU(2) global symmetry

of LTC , which we have gauged above, and NL (NR) is a scalar field in the fundamental

of SU(2)L (U(1)Y ) and antifundamental of G. From the equations above, we can define a

new vector field and its transformation under the full gauged symmetry by

Tr
[
NLN

†
L

]
PµL =

DµNLN
†
L −NLD

µN †L
igTC

, PµL → uLP
µ
Lu
†
L , (4.2)

where uL is a unitary transformation operator of SU(2). The definition and transformation

law of PR are obtained simply by replacing L with R in eq. (4.2). The only dimension four,

gauge invariant Pµ non-derivative coupling terms to M are the following

LM−P = −g2
TCr2Tr

[
PLµM

′PµRM
′†
]

+
g2
TCr1

4
Tr
[
P 2
Lµ + P 2

Rµ

]
Tr
[
M ′M ′†

]
, (4.3)

where M ′ is the matrix representation of the EW doublet M . We do not consider derivative

couplings of the composite vectors to minimize the contributions to the oblique corrections,

in particular to the S-parameter. Assigning non-zero vevs for NL and NR, their kinetic

terms generate a squared mass term for two vector boson combinations:

m2
ATr

[
C2
Lµ + C2

Rµ

]
, CµL ≡ 〈P

µ
L 〉 = AµL −

gL
gTC

W̃µ , CµR ≡ 〈P
µ
R〉 = AµR −

gY
gTC

B̃µ . (4.4)

The resulting massless eigenstates give the ordinary Wµ and Bµ vector bosons, which in-

stead acquire mass through EW symmetry breaking. In addition, there are two vector

boson triplets, one vectorial (V µ) and the other axial (Aµ). Since their interaction terms,

given by eq. (4.3) evaluated at the vev defined in eq. (4.4), respect custodial symmetry

and give the same contribution to the axial-axial and vector-vector EW vector boson po-

larization functions [71], the total contribution of the vector bosons to the EW precision

parameters is identical to the SM one, and S and T are, therefore, zero [40, 70]. Moreover
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the vector boson contributions to FCNC have been tested against the experimental results

and shown to be phenomenologically viable [72]. To simplify our analysis we fix

r2 = −r1 , (4.5)

so that only W̃µ and the vector resonance, V µ, couple to the neutral Higgs fields. The

restrictions we have made on the couplings of the composite vector mesons can be released

at the expense of introducing more free parameters into the model. However, we take the

restricted interactions as sufficient for exhibiting the viability of the present model, and

expect that the values of the parameters we determine through our analysis will serve as

a useful benchmark example of viable portion of the parameter space also for cases where

additional interactions are included.

The charged vector boson mass matrix in the (W̃ , V,A) basis can be written in a

compact form as 
m2
W̃
− εm2

V√
2
− εm2

A√
2

− εm2
V√
2

m2
V 0

− εm2
A√
2

0 m2
A

 , (4.6)

with

mW̃ =
[
x2 +

(
1 + s2

)
ε2
]
m2
A , m2

V =
(
1 + 2s2

)
m2
A , (4.7)

and

s ≡ gTCf

2mA

√
r1 , x ≡ gLvw

2mA
, ε ≡ gL

gTC
. (4.8)

We now study the implications of this setup in light of the LHC and Tevatron data fit

we have at our disposal.

4.1 Mixing of vector fields

Let us begin with a rather general and simple case. We require that only W̃ , the elementary

gauge field, couples to h0, and therefore the W ′ coupling to the light Higgs is generated

only through terms mixing W̃ with the composite vector fields V and A. The squared mass

matrix in the gauge basis (W̃ , V,A) is obtained simply by setting s = 0 in eqs. (4.6), (4.7):
g2Lv

2
w

4 + ε2m2
A −

εm2
A√
2
− εm2

A√
2

− εm2
A√
2

m2
A 0

− εm2
A√
2

0 m2
A

 . (4.9)

We define the rotation to the mass eigenbasis in terms of x and ε, eqs. (4.8), by
W̃

V

A

 =


cϕ −sϕ 0
sϕ√

2

cϕ√
2
− 1√

2
sϕ√

2

cϕ√
2

1√
2



W

W ′

W ′′

 , cϕ =
1√
2

√√√√1 +
1− x2 − ε2√

(1 + x2 + ε2)2 − 4x2

, (4.10)
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with corresponding eigenvalues

m2
W,W ′ =

1

2

[
1 + x2 + ε2 ∓

√
(1 + x2 + ε2)2 − 4x2

]
m2
A , m2

W ′′ = m2
A . (4.11)

The mixing matrix in eq. (4.10) shows that only W and W ′ contribute to the gauge

field W̃ .

We checked that the Fermi coupling, GF , determined by evaluating the amplitude for

the muon decay (µ− → νµν̄ee
−), respects the usual relation

√
2GF = v−2

w = (246 GeV)−2 . (4.12)

The vector coupling coefficient aV is suppressed, compared to the result in eq. (3.12),

because of mixing:

aV = c2
ϕ′sβ−α , aV ′ = s2

ϕ′sβ−α , (4.13)

with

c2
ϕ′ =

g2
Lv

2
w

4m2
W

c2
ϕ =

2x2ε2

(1 + x2 + ε2)2 − 4x2 − (1− x2 + ε2)

√
(1 + x2 + ε2)2 − 4x2

. (4.14)

The W ′′ coupling to h0 is zero instead because we set r2 = −r1 in eq. (4.3). Finally, the

fermion and scalar coupling coefficients in eq. (3.12) remain unchanged.

The lower limit on the mass of a sequential3 W ′ from direct searches at ATLAS [48],

equal to 2.55 TeV at 95%CL, can be readily applied to the case above by properly rescaling

the lower limit:

ΓW ′→lν =
g2
W ′mW ′

48π
⇒ mW ′ > (2.55TeV)

(
gW ′

gW

)2

,
gW ′

gW
= −sϕ′

mW ′

mW
, (4.15)

with sϕ′ ,mW ′ ,mW defined in terms of x, ε, and mA by eqs. (4.14), (4.11). By plotting

the experimentally viable region defined by eqs. (4.15) on the x and ε plane, we find the

maximum allowed value of ε = 0.36 (at the 95%CL), reached at x = 0 (equivalent to the

limit of large mA).

In strong dynamics the value of mA is expected to be of O(TeV), which determines x

to be of O(10−2). In general this needs not to be the case, as larger values of x for small

ε are allowed by the experiment. On the other hand we are interested primarily in testing

bNMWT, and therefore in the following we will limit our analysis by assuming x � 1.

This choice, moreover, guarantees that the W couplings do not change dramatically. Also,

ε is expected to be small because of eqs. (4.8) and the fact that gTC � gL. An expansion

in both ε and x therefore produces

aV = sβ−α
(
1− x2ε2

)
+O

(
xnε5−n

)
, aV ′ = sβ−αx

2ε2 +O
(
xnε5−n

)
, n = 0, . . . , 5 .

(4.16)

In this limit the effect of mixing on the W ′ and W couplings is negligible. Moreover,

because the sum of aV and aV ′ is independent of ε, so is the Higgs decay rate to two photons.

3A sequential W ′ has the same couplings as the SM W .
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Therefore, the optimal values for bNMWT with mA = 1 TeV, ε < 0.36, and m2
H > 0 (m2

H <

0) correspond to the ones with no mixing (ε = 0), presented in eqs. (3.20) (eqs. (3.22)). In

In the next subsection we study the phenomenologically more appealing scenario in

which the composite vector fields feature a direct coupling to neutral Higgs fields.

4.2 Direct Higgs coupling to W ′ and W ′′

Next we want to study the effects of a direct Higgs coupling to the composite vector field

V , and consider s 6= 0. In this case, the charged vector boson mass matrix in the (W̃ , V,A)

basis is given by eq. (4.6). The mass eigenvalues are lengthy cubic roots. These can be

expanded in x and ε, which in TC are both expected to be small:

m2
W
∼= m2

Ax
2
[
1− ε2

]
, m2

W ′′
∼= m2

A

[
1 +

1

2

(
1 + x2

)
ε2 − 1

8

(
2 +

1

s2

)
ε4
]
,

m2
W ′
∼= m2

A

[
1 + 2s2 +

1

2

(
1 + 2s2 + x2

)
ε2 +

1

8

(
2 +

1

s2

)
ε4
]
, (4.17)

where contributions of O(xnε5−n) are neglected, with n = 0, . . . , 5. The W̃ and V coupling

terms to the light Higgs can be derived from the mass matrix by taking its derivative with

respect to vw and introducing a factor ζ to take into account the rotation of M to the mass

eigenbasis:

L ⊃ 2m2
A

vw
sβ−α

[(
x2 + ζs2ε2

)
W̃W̃ + 2ζs2V V − 2

√
2ζs2εW̃V

]
h0 , ζ = s−1

β−α
cα+ρ

sβ+ρ
.

(4.18)

The vector boson coupling coefficients get an enhancement factor because of the s coupling:

aV = ηW sβ−α , aV ′ = (ηW ′ + ηW ′′) sβ−α , (4.19)

where

ηW ∼= 1−
[
1 + s2 (3− ζ) + 2s4

]
x2ε2

(1 + 2s2)2 , ηW ′ ∼=
2ζs2

1 + 2s2
+

[
1 + 2s2 (1− ζ)

]
x2ε2

2 (1 + 2s2)2 − ζε4

8s2
,

ηW ′′ ∼=
x2ε2

2
+
ζε4

8s2
, (4.20)

at O(xnε5−n), with n = 0, . . . , 5. We collected together the W ′ and W ′′ contributions to the

Higgs decay to diphoton by summing up their respective coupling coefficients in eq. (4.19).

It is interesting to notice that, at all orders in x:

ηW + ηW ′ + ηW ′′ = 1 +
2ζs2

1 + 2s2
+O(ε5) . (4.21)

The fermion and scalar coefficients are still determined by eqs. (3.12). We obtain the opti-

mal value of s by performing the global fit in the limit of negligible vector mixing (ε = 0)

and decoupled neutral heavy Higgs:

af = aV = 1 , aS = 0 , aV ′ =
2s2

1 + 2s2
, ⇒ s = 0.21+0.18

−0.21 . (4.22)
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Figure 5. Viable data points in the (aV , aV ′) and (aV , af ) planes, together with the 68% (green),

90% (blue), and 95% (yellow) CL region: in black are the values relevant for bNMWT while those

in grey refer generically to Type-I 2HDM with the addition of two charged vector bosons. The

blue stars mark the optimal coupling coefficients on the respective planes intersecting the optimal

point with aS = 0.

We use the same set of viable points scanned over the bNMWT parameter space with

no W ′ and W ′′, and re-calculate the coupling coefficients aV and aV ′ at each data point

for random values of s and ε, with 0 ≤ s ≤ 1 and 0 ≤ ε ≤ 0.1, and mA = 1 TeV. We plot

the resulting bNMWT data points together with the experimentally favored regions in the

(aV , aV ′) and (aV , af ) planes in figure 5, and in the (aV ′ , af ) plane in figure 6, respectively,

all passing through the optimal data point defined in eq. (2.13). The plots are again limited

to the positive aV half-plane. For m2
H < 0 the mixing factor ζ, eq. (4.18), can be negative,

which makes aV ′ flip sign, compared to aV , because of eqs. (4.20). Already by visual

inspection, it is clear that the s coupling allows bNMWT to cover a large portion of the 68%

CL favored region. We verified that all the three parameters af , aV ′ , and (to a lesser degree)

aV are free (meaning that they are little correlated and with a range of values comparable to

the error affecting the optimal values in eq. (2.13)), which was expected since we introduced

the new parameter s. In this case the bNMWT data point minimizing χ2 for m2
H > 0 is

aV = 1.00 , af = 1.00 , aV ′ = 0.09 , aS = 0.0 , S = T = 0.00 ;

χ2
min/d.o.f. = 1.00 , P

(
χ2 > χ2

min

)
= 45% , d.o.f. = 16, (4.23)

while for m2
H < 0 we find

aV = 1.00 , af = 0.99 , aV ′ = 0.05 , aS = −0.4 , S = T = 0.00 ;

χ2
min/d.o.f. = 1.02 , P

(
χ2 > χ2

min

)
= 43% , d.o.f. = 16. (4.24)

The W ′ and W ′′ masses corresponding to the optimal points above are equal to about

1 TeV. In the scanned slice of parameter space the upper limit on vector boson masses
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Figure 6. Viable data points in the (aV ′ , af ) plane, together with the 68% (green), 90% (blue),

and 95% (yellow) CL region: in black are the values relevant for bNMWT while those in grey refer

generically to Type-I 2HDM with the addition of two charged vector bosons. The blue star marks

the optimal coupling coefficients on the (aV ′ , af ) plane for optimal aV and with aS = 0.

determined by eqs. (4.17), (4.22) corresponds to 1.15 TeV, which is consistent with the

ΛTC cutoff implied by the effective Lagrangian defined in eqs. (3.4), (4.3). We estimated

the two loop contributions of virtual heavy vector bosons to the Higgs decay to diphoton,

and found them negligible in comparison to two loop contributions of virtual scalars. This

result together with the fact that the scanned data points satisfy eqs. (3.19) ensures that

higher order contributions are negligible in first appoximation.

The two cases in eqs. (4.23), (4.24), respectively, are equally favored by the experiment

and both feature a probability greater than the one for the general fit, eq. (2.13), which

does not include the S and T EW parameters (and therefore has two less d.o.f.) but

gives a similar value of χ2
min. The value of χ2

min corresponding to the data points above is

smaller than that obtained without composite vector bosons, eqs. (3.21), (3.22), though the

additional free parameter counterbalances this gain. As a last remark, we note that aV ′ is

rather unconstrained by the chosen set of observables, and so a broader set of observables

related to W ′ physics would be necessary to further test the viability of bNMWT.

5 Conclusions and outlook

In this paper we have considered quantitatively how much the coefficients of Higgs couplings

to electroweak gauge bosons (aV ) and fermions (af ) as well as to possible extra scalars (aS)

can deviate from their corresponding values in the Standard Model (aV = af = 1, aS = 0)

in light of the current LHC and Tevatron data. We then considered a bosonic technicolor

model, bNMWT [41], and studied its viability by performing a scan on the parameter space
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which implements the direct constraints on the mass spectrum as well as the constraints

from precision EW data (in terms of the S and T parameters). The scalar sector of the

bosonic technicolor model we considered can be more generally viewed as a type-I 2HDM.

The essential consequence of underlying strong dynamics is the existence of new vec-

tor resonances in the particle spectrum. We implemented these new states in an effective

Lagrangian to study their effects. We considered in detail the implications of the effective

Lagrangian on the couplings of the Higgs boson to the physical W and Z bosons as well as

to fermions. Then, we studied first the simple case of minimal coupling to the SM fields,

which amounts to considering only the mixing of the two new triplets of vector bosons and

the SU(2)L gauge fields without direct interaction between the composite vector bosons

and SM fields. In this simple scenario we determined the 95%CL upper bound on the

amount of mixing allowed by experimental data. We showed that this generic scenario in

bNMWT cannot be resolved by the current data.

Finally we illustrated the possible effects of the direct coupling between composite

vector bosons and neutral scalar fields within our effective Lagrangian scheme. We showed

that the direct coupling produces a goodness of fit of the bNMWT predictions to the cur-

rent experimental data comparable to that of the SM, though somewhat lower (P -value for

the SM: 60% vs. 45% for bNMWT). Based on the results we have derived in this paper,

one can proceed to evaluate the cross sections for the production of composite vectors, for

example through Drell-Yan processes or quark-antiquark annihilation with one or three

leptons plus missing energy in the final state. Searches for such particles at LHC would

provide further constraints on the model or could lead to new major discoveries and help

decipher the physics underlying the electroweak sector of the SM.
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A Two Higgs doublet model potential

Let us write our bosonic technicolor Lagrangian explicitly as a two-Higgs doublet model

(2HDM). The starting point is given by eqs. (3.4), (3.5). The kinetic mixing term in

eq. (3.4) is rotated away and the model canonically normalized by eq.(3.9). Applying one

more rotation we can express the SM Yukawa couplings in the following form

LYuk = (yu)ijKH2Q̄iUj +(yd)ijKH
†
2Q̄iDj +(y`)ijKH

†
2L̄iEj +h.c. , K =

(
1− c2

3y
2
TC

)− 1
2 ,

(A.1)

where the full transformation is given by

H = KH2 , M = H1 − c3yTCKH2 . (A.2)

As eq. (A.1) shows, only one of the two Higgses (by convention H2) couples to SM fermions,

which ensures that there are no tree-level contributions to Flavor Changing Neutral Cur-

rents (FCNC): such a model in literature has been referred to as Type-I 2HDM [42].
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On the other hand, the most general renormalizable Higgs potential of a 2HDM can

be written as

V = m2
1H
†
1H1 +m2

2H
†
2H2 −m2

12

(
H†1H2 +H†2H1

)
+
λ1

2
(H†1H1)2 +

λ2

2
(H†2H2)2

+λ3(H†1H1)(H†2H2) + λ4(H†2H1)(H†1H2) +

[
λ5

2
(H†1H2)2

− λ6(H†2H1)(H†1H1)− λ7(H†2H1)(H†2H2) + h.c.
]
. (A.3)

The coefficients in eq. (A.3) can be expressed in terms of those in the potential

V (M,H), in the notation of [41], by:

m2
1 = m2

M , m2
2 =

[
m2
H +

(
2f2c1 +m2

Mc3

)
c3y

2
TC

]
K2 , m2

12 =
(
f2c1 +m2

Mc3

)
yTCK ,

λ1 =
1

3
λM , λ2 =

1

3

(
2c2c

3
3y

4
TC + λH + 2c3c4y

2
TCλH + c4

3y
4
TCλM

)
K4 ,

λ3 = λ4 = λ5 =
1

6
(c2 + c3λM ) c3y

2
TCK

2 ,

λ6 =
1

6
(c2 + 2c3λM ) yTCK , λ7 =

1

6

[
c4λH + c2

3y
2
TC (3c2 + 2c3λM )

]
yTCK

3 , (A.4)

The Higgs fields in eq. (A.3) are expressed in terms of the real degrees of freedom by

Hi =

 H+
i

1√
2
(vi + hi + iφi)

 , i = 1, 2 ; tanβ′ ≡ v1

v2
. (A.5)

The Goldstone boson G± (G0) provides the longitudinal components of the W± (Z0)

boson, while h0, H0, A0, and H± are the neutral scalars, pseudoscalar, and charged scalar

mass eigenstates, respectively:(
h0

H0

)
=

(
cα′ −sα′
sα′ cα′

)(
h1

h2

)
,

(
G0

A0

)
=

(
sβ′ cβ′

cβ′ −sβ′

)(
φ1

φ2

)
,

(
G±

H±

)
=

(
sβ′ cβ′

cβ′ −sβ′

)(
H±1

H±2

)
. (A.6)

The angles α′, β′ differ from α, β only because of the extra rotation in eq.(A.2) that makes

only H2 couple to SM fermions.
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