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1 Introduction

1.1 Outline

T-duality invariance can be manifested on all the fields of the massless sector of bosonic

strings [1–3]. This was based on the treatment of the compactification scalars, for di-

mensional reduction of d dimensions, as elements of the coset SO(d,d)/SO(d)2 [4]. This

symmetry was expanded to SO(D,D)/SO(D−1,1)2 for the full D dimensions to include all

fields without compactification, where the symmetry is broken spontaneously to the usual

SO(D−1,1), except when partially restored by dimensional reduction. (Generalization to

GL groups [5] was also treated, but turned out not to be convenient for supersymmetry,

and will not be considered here. For relations to later approaches, and extensions beyond

what is needed here, see [6–11] and references therein.)

We will work on a space with explicit Lorentz coordinates. Dependence of the (back-

ground) vielbein on them is completely fixed (up to gauge) by the coset constraints, as ap-

plied by fixing the associated parts of the torsion to take their “vacuum” values. Moreover,
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as in [1–3], D-dimensional spacetime will be dualized. To do the stringy generalizations

(of oscillator algebras together with the Lorentz algebras), we will need to introduce a new

current Σ for consistency with the Jacobi identity [12]. (The necessity of this current was

first realized in the context of AdS5×S5 [13, 14].) The usual oscillator Lie algebra will

become the extended affine Lie algebra (Lorentz and Σ generators included).

The generalized torsion is constructed from this affine Lie algebra in a general back-

ground, which acts as the stringy generalization of covariant derivatives. Because of the ad-

ditional currents, the enlarged vielbein that describes this background includes the Lorentz

connection, and the enlarged torsion includes also the curvature. Closure of the algebra

implies the orthogonality constraints EηET = η on the vielbein. Solving these together

with the coset constraints reduces the vielbein to the usual T-dual generalization of the

vielbein and Lorentz connection, as well as a new curvature-like field. There is also an

extension of dimensional reduction to the usual D coordinates. At the end we will obtain

the same results for the torsion constraints and curvature tensor as previously, but by a

much more direct way.

The rest of this paper is organized as follows: in the remainder of the Introduction we

summarize the general procedure. In the next section we review the description of fields on

general coset spaces, and then apply this to the case of spin for Poincaré/Lorentz to give

a “first-quantized” approach to general relativity. The corresponding affine Lie algebra is

described in section 3. In section 4 we introduce the vielbein and the coset constraints on

the torsion, and orthogonality. The new analysis of Lorentz connections and curvatures is

given in section 5, followed by our conclusions.

1.2 Procedure

The general procedure (to be applied in detail below for the present example) is thus:

1. Begin with a coset space G/H. By the usual construction (left and right group mul-

tiplication) this comes with two Lie algebras for G, one for “symmetry generators”

and one for “covariant derivatives”, represented by derivatives on the group space.

2. Generalize to the affine Lie algebras by making the group coordinates functions of the

worldsheet coordinate σ. The number of currents is double that of the original Lie

algebra, since they are also worldsheet vectors. (I.e., there are τ and σ components,

or “left” and “right”, depending on the basis. In the present case, the left and right

currents are also left-propagating and right-propagating on the worldsheet; this is

determined by the definition of the Virasoro operators, which we don’t discuss here.)

The covariant derivatives and symmetry generators become currents Z and Z̃ that

commute with each other, [Z, Z̃] = 0.

3. The zero-modes of this affine Lie algebra define an enlarged ordinary Lie alge-

bra/group, the inhomogeneous version IG of the original group G [13, 14]. For

manifest T-duality, double the coordinates to describe this enlarged group space,

using the standard construction for the affine Lie algebra of a group [15, 16].
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4. Make this group space into a general curved space (describing massless fields) by

multiplying the covariant derivative currents Z by a “vielbein” E: the group currents

Z are thus a basis for general currents Π on this space; they define the “vacuum”,

〈Π〉 = Z. The algebra of these currents Π replaces the structure constants of the

affine Lie algebra IG with covariant “torsion”. Requiring that the inhomogeneous

term still gives the group metric imposes orthogonality on the vielbein.

5. The coset constraints are then imposed by requiring that commutators of the currents

Π of H with arbitrary Π’s yield the same result as in the coset (before introducing

the vielbein). This implies the Π for H can be gauged to its coset value, and fixes

the H-dependence of the remaining currents. These constraints can be stated as

conditions on the torsion.

6. Apply any additional torsion constraints, such as those in ordinary (super)gravity.

7. Finally, to spontaneously break T-duality symmetry and return to the usual coordi-

nates, half of the currents for the symmetry generators Z̃ (forming a subalgebra) are

taken as Killing vectors [17, 18]. (This corresponds to removing the coordinates for

the inhomogeneous part of IG, reversing step 3 above.) Since they commute with the

basis Z for the covariant derivatives, the requirement that they commute with the

(curved space) covariant derivatives Π implies that the vielbein E is independent of

the corresponding coordinates.

2 Coset spaces and their generalizations

We briefly review coset spaces, their generalizations and related constructions like the

covariant derivatives. For further information see [22].

2.1 Group spaces

Coset constructions have proven useful in defining representations of the Poincaré, (anti)

de Sitter, and conformal groups, and their supersymmetric generalizations. With these in

mind, we now review the general procedure for defining fields on coset spaces.

Cosets are often used to construct nonlinear σ models: there one focuses on the coset

space itself, of which the scalar fields are elements. For example, one usually first-quantizes

string theory about symmetric backgrounds by treating the spacetime coordinates X(τ, σ)

(etc.) as coordinates of a coset space. (Of course, more general backgrounds are also

considered, but are less tractable.) The string wave function is then implicitly a scalar

functional of these coordinates (at fixed τ).

There is some difficulty with this approach for the superstring, since the ground state,

and thus the string field/wave function, is not a scalar. Similar remarks apply to intro-

ducing massless backgrounds into the string action, since the coordinates carry “curved”

indices, while coupling gravity to fermions requires also “flat” ones.

The generalization that solves this problem is simple: for the coset G/H, keep all the

coordinates of G (the “symmetry” or “isometry” group), rather than the usual procedure of
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immediately going to a unitary gauge where the coordinates of H (the “gauge”, “isotropy”,

or “stabilizer” subgroup) are gauged away. The dependence of the fields on the H coor-

dinates will be fixed, by defining their representations of H, but will be trivial only for

scalars.

For this purpose we need to distinguish the differential operators responsible for left

and right group multiplication:

g′ = gL g gR (2.1)

Parametrizing any group element g by coordinates αI in terms of the generators GI

[GI , GJ ] = −ifIJK GK (2.2)

(e.g., using any exponential parametrization), we can then write the corresponding in-

finitesimal transformations as

δg = iεILGIg + giεIRGI = (εILqI + εIRDI)g(α) (2.3)

where

qI = L M
I (α)∂M , (dg)g−1 ≡ idαML I

M GI (2.4)

DI = R M
I (α)∂M , g−1(dg) ≡ idαMR I

M GI (2.5)

(where ∂M ≡ ∂/∂ αM ) define the symmetry generators q and covariant derivatives D in

terms of the vielbein appearing in the differential forms invariant under one or the other

type of transformation. Because left and right group multiplication commute, so do the

symmetry generators and covariant derivatives:

[qI , DJ ] = 0 (2.6)

Thus the “covariant” derivatives are actually invariant; they become only covariant in

unitary H gauges, due to compensating gauge transformations.

2.2 Fields on coset spaces

We decompose the basis of generators GI of the symmetry group G into the generators Hι

of the isotropy group H and the remaining ones Ti of the coset G/H. The representation

space for the coset is constructed as follows: define the linear space with basis elements

〈0, m|. Let that space carry the matrix representation ρ (Hι)
k
m of the isotropy subgroup

algebra; i.e., we have:

〈0, m| Hι := 〈0, k| ρ (Hι)
k
m (2.7)

We also have the action of the whole group on this basis:

〈α, m| := 〈0, m| g−1(α) (2.8)

We can then express the representation of the symmetry generators and covariant deriva-

tives as differential operators on the wave function

ψm(α) := 〈α, m|ψ 〉 (2.9)
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The wave function ψm (α) depends also on the isotropy group coordinates αι, but this

dependence is fixed: in a convenient exponential parametrization,

ψm(α) := 〈0, m| e−i α
ιHι e−i α

i Ti |ψ〉 =
(
e−i α

ι ρ (Hι )
) k

m
〈0, k| e−i α

i Ti |ψ〉

=
(
e−i α

ι ρ (Hι )
) k

m
ψk (αi) ≡ em

k(αι )ψk (αi)
(2.10)

The vielbein em
k(αι) is dependent only on the isotropy group coordinates αι and can be

gauged to the identity.

From the above construction we know how the covariant derivatives corresponding to

the isotropy subgroup act on ψm(α):

Dι ψm (α) = 〈0, k| − i ρ (Hι)m
k g−1(α) |ψ〉

= − i ρ (Hι)m
kψk (α)

(2.11)

We can also calculate the action of the symmetry group generators on the wave function:

qI ψm(α) = 〈0, m| g−1(α)GI |ψ〉
= (GI ψ )m (α)

(2.12)

Since we know how the covariant derivatives with respect to the αι act, we can therefore

solve those constraints and replace partial derivatives (with respect to the αι) with matrices

in qI and DI . The dependence of all objects on the isotropy group coordinates is thus fixed.

The remaining covariant derivatives Di act nontrivially.

2.3 Curved spaces with isotropic coordinates

We can also covariantize the covariant derivatives DI with respect to (super) Yang-Mills

symmetry, see [22]. (The (super) Yang-Mills gauge group is unrelated to the isotropy gauge

group, except for the case of gravity.) We can write the (super) Yang-Mills covariantized

covariant derivatives as:

∇I := DI + i AI , [∇I , ∇J } = fIJ
K ∇K + i FIJ (2.13)

In the first-quantized approach to (super)gravity the derivatives are gauge covari-

antized with respect to the (super-)Poincaré group [12]. The Yang-Mills generators are

replaced with partial derivatives with respect to all coordinates:

DI → ∇I = e K
I ∂K = ê K

I DK (2.14)

The vielbein e K
I or ê K

I are arbitrary. The local Lorentz transformations are now included

with the rest of the coordinate transformations and the covariant derivatives transform

under the symmetry transformations as:

∇′
= eΛ∇ e−Λ where Λ := ΛM DM ≡ Λ̄A∇A (2.15)

The torsion T is a combination of the structure constants and field strengths of Yang-

Mills:

[∇I , ∇J ] = TIJ
K ∇K (2.16)
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We divide indices as in the section 2, for the isotropy group, which in our case will be the

Lorentz groups SO(D− 1, 1)2, and for the coset space: we can write ∇I ≡ (∇H , ∇G/H ).

Using the newly defined indices:

[∇H , ∇H ] = fH H
H ∇H

[∇H , ∇G/H ] = fH G/H
G/H ∇G/H

[∇G/H , ∇G/H ] ≡ RG/H G/H
H ∇H + TG/H G/H

G/H ∇G/H

(2.17)

The R in (2.17) is the usual curvature (its stringy analog will be calculated in the Riemann

tensor subsection 5.2); TG/H G/H
G/H is the usual torsion.

We have required that ∇H act as in coset space (which in our case will be flat space):

the fact that the torsions THH
H and TH H

G/H (= 0) take their free values implies that

∇H can be gauged to its free value. The isotropy transformation of the coset part ∇G/H
is fully fixed by the requirement that the torsions TH G/H

H (= 0) and TH G/H
G/H get

their free values. (We will see the stringy analog of this in subsection 4.2.) By keeping

this dependence on the H coordinates, rather than gauging them away entirely, we have

the first-quantized way to define the spin (for arbitrary representations), as a differential

operator on that space, see [12].

3 Affine Lie algebra and generalized T-duality

3.1 Current algebras

For application to the string, we consider current algebras on the worldsheet, or affine Lie

algebras

[ZM (1), ZN (2) ] = −i ηMN δ′ ( 2 − 1 ) − i fMN
P ZP δ ( 2 − 1 ) (3.1)

where f is the structure constants of the ordinary Lie algebra. (Note that all the generators

are understood as string currents, so they are dependent on the string coordinate σ ≡ σ1 ≡
“1”. There is an implicit 2π with every δ(σ). Also, for dimensional analysis there is

an implicit 1/α′ with η.) The metric η of the affine (Schwinger) term is invertible as a

consequence of our including both components of the current, as should be clear from the

Abelian case considered below. Due to our doubling of coordinates for manifest T-duality,

the group coordinates XM carry the same index. Acting on background fields φ, these

currents reduce to the group covariant derivatives DM of the ordinary (non-affine) algebra

(with the same structure constants),

[ZM(1), φ(X(2))] = −i(DMφ)δ ( 2 − 1 ) (3.2)

(Similar remarks apply to a second Lie algebra Z̃ for which q replaces D and [Z, Z̃] = 0.)

We are interested in the affine Poincaré algebra, where the index

M := (MN , M ,
MN ) (3.3)

has dimension 2D2, as we will now describe.

We begin with the current algebra associated with the usual X coordinates. In string

theory one naturally gets the interpretation of T-duality as the reflection subgroup of the
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bigger O(D,D) group. One can rewrite the string oscillator algebra using the explicit

O(D,D) vector

PM := (Pm, X
′m ) (3.4)

Using this generalized O(D,D) momentum one gets the algebra

[PM (1), PN (2) ] = − i ηM N δ
′ ( 2 − 1 ) (3.5)

where ηMN is the O(D,D) metric:

ηMN =

(
0 δ n

m

δ m
n 0

)
(3.6)

In the future we want to use a different basis for the string oscillator algebra (3.5).

Therefore we introduce the left/right vector

PM := (Pm, Pm̃ ) ≡ 1√
2

(Pm + X
′
m, Pm − X

′
m) (3.7)

In this basis the oscillator algebra has the same form as (3.5) except for the form of the

metric:

ηMN =

(
ηmn 0

0 − ηm̃ ñ

)
(3.8)

3.2 Lorentz

In the next step we want to merge the algebra (3.5) with the Lorentz algebra so(D−1, 1)2.

The reason is that the metric g and b field are in the coset space SO(D,D)/SO(D− 1, 1)2.

This suggests that the coordinate space should be obtained by modding out by the subgroup

SO(D− 1, 1)2. The left/right basis of (3.7) is then appropriate.

The generators for this Lorentz algebra are denoted as

SMN := (Smn, Sm̃ñ ) (3.9)

and satisfy the usual commutation relations

[Smn (1), Skl (2) ] = iη[m [k Sn ] l ] δ ( 2 − 1 ) (3.10)

[Smn (1), Sk̃ l̃ (2) ] = 0 (3.11)

99 Same for Left → Right

(where [. . . ] is the unweighted anti-symmetrization). Since P and S form the ordinary

Poincaré algebra, we have:

[Smn (1), Pk (2) ] = iηk [m Pn ] δ ( 2 − 1 ) (3.12)

[Smn (1), Pk̃ (2) ] = 0 (3.13)

99 Same for Left → Right
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However, the set of generators (SMN , PM ) does not form a closed affine Lie algebra.

The Jacobi identity requires a new field Σ such that

[P, P ] ∝ δ
′

+ Σ and [S, Σ ] ∝ δ
′

+ Σ (3.14)

Using the commutators [S, [P, P ] ] and the Jacobi identity, we obtain the new set of

generators

ZM := (SM N , PM , Σ
M N ) (3.15)

for which we have the following affine Lie algebra:

[Smn (1), Sk l (2) ] = −iη[m [k Sl ]n ] δ ( 2 − 1 ) (3.16)

[Smn (1), Pk (2) ] = iηk [m Pn ] δ ( 2 − 1 )

[Smn (1), Σk l
(2) ] = −i δmn

kl δ′ ( 2 − 1 ) − iδ[m
[k ηn ] sΣ

l]s δ ( 2 − 1 )

[Pm (1), Pn (2) ] = − i ηmn δ
′ ( 2 − 1 ) + iηmh ηn sΣ

hs δ ( 2 − 1 )

[Pm (1), Σk l
(2) ] = 0

[Σmn
(1), Σk l

(2) ] = 0

99 Same for Left → Right

[ Left, Right ] = 0

Thus we get the general structure of an affine Lie algebra (3.1). (Non-affine stringy Lorentz

algebras were considered in [19, 20]. Left and right spin algebras have also been used in [21],

but commuting with P . Neither of those had Σ.)

For dealing with antisymmetric pairs of indices we have introduced an implicit metric

such that for any two antisymmetric tensors we have

A ·B ≡ 1
2A

mnBmn (3.17)

The identity matrix with respect to this inner product is

δmn
pq ≡ δ[m

pδn]
q (3.18)

The only nonvanishing terms in the metric and structure constants are (as could be

guessed by dimensional analysis)

ηPP , ηSΣ ; fSPP , fSSΣ (3.19)

where we have lowered the upper index on f with η to take advantage of its total antisym-

metry, and used “schematic” notation, replacing explicit indices with their type:

M := (MN , M ,
MN ) := (S, P, Σ ) (3.20)

Explicitly these are, for the left-handed algebra,

(η)mn = ηmn, (η)mn
pq = δmn

pq ; fmn
pq = −δmn

pq, fmnpq
rs = η[m[pδq]n]

rs (3.21)

For the right-handed algebra we change the signs of the corresponding terms in ηMN but

not in f .
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4 Curved spaces with affine algebras

4.1 Background fields

We now introduce background fields following [1–3], but using the affine algebra (3.1).

Using the vielbein we can write:

ΠA(1) = EA
M(XM)ZM (4.1)

Then we get the affine Lie algebra for the ΠA operators:

[ΠA(1), ΠC(2)] ≡ −iηAC δ′ ( 2 − 1 )− iTACEΠE δ ( 2 − 1 ) (4.2)

where T is the stringy generalization of the torsion:

TAC
E = E[A

M(DMEC]
N )E−1N

E+ 1
2η
EDED

M(DME[A|
N )E−1N

FηF|C]+EA
MEC

NE−1P
EfMN

P

(4.3)

where [A | | C ] indicates antisymmetrization in only those indices. Note that the Jacobi

identities imply the total antisymmetry of the torsion, just as for the structure constants.

This torsion can be identified with that of “ordinary” curved-space covariant deriva-

tives (as in subsection 2.3) by use of the strong constraint: we write

∇A := EA
MDM (4.4)

Using this and the strong constraint

(∇Aφ)(∇Aψ) = 0 (4.5)

we get the same torsion in

[∇A, ∇C ] = TAC
D∇D (4.6)

when acting on fields, since the second term in (4.3) can be added for free.

By setting the coefficient of the Schwinger term to be the metric η, the vielbein is

forced to obey the orthogonality constraints:

EA
MηMN E C

N ≡ ηAC (4.7)

This choice does not affect the physics, and simplifies many of the expressions. For example,

it implies the total antisymmetry of the torsion, when the upper index is implicitly lowered

with η:

TAB C = 1
2E[A |

M(DME| B
N )EC ]N + EA

MEB
NEC

PfMN P (4.8)

where we have used E−1M
A = ηA BηM NEB

N . (Also note that in the first term the

antisymmetrization can be written as a cyclic sum without the 1/2, since it is already

antisymmetric in the last two indices.) Thus, because of orthogonality, the vielbein is like

(the exponential of) a 2-form, while the torsion is a 3-form; similarly, the Bianchi identities

are a 4-form.
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When solving the orthogonality constraint, note that we are also putting some parts

of E to zero or to some particular constant value, which comes from the coset constraints

on the torsion, as explained later. We get:

EA
M =


MN M

MN

AB δAB
MN 0 0

A ωA
MN eA

M 0
AB rABMN − 1

2 ω
CAB ωC

MN −eCMωCAB δABMN

 (4.9)

where the new fields e, ω and r were introduced. The r has a role to be explained later,

and satisfies

rABCD + rCDAB = 0 (4.10)

4.2 Coset constraints

Our aim is to generalize the coset construction described in subsection 2.3 to affine Lie

algebras, specifically the affine Poincaré algebra (3.16). Isotropy group dependence is fixed

by the constraint that the covariant derivatives with the Lorentz group indices S ≡ AB

act on fields by some particular matrix representation, i.e.,

(∇S ψ)S := (MS)S
S ψS (4.11)

For the covariant derivatives themselves, this implies, as described in section 2.3,

[∇S ,∇A ] = fSA
B∇B (TSA

B = fSA
B ) (4.12)

I.e., all covariant derivatives are in the same representations of S as in flat space. In

particular, this means the subalgebra of ∇S is unmodified from flat space, so we can

choose the gauge

∇S = DS (ES
M = δS

M ) (4.13)

(However, other gauges, such as lightcone gauges, may also be useful [12].) This gauge was

used, in addition to orthogonality, to obtain the expression for the vielbein in (4.9).

The rest of the coset constraint (4.12) gives the action of DS on the nontrivial compo-

nents of EA
K:

DS EP
P ≡ DAB eC

K = −ηC[A e
K

B ] + eC
MηM [A δB]

K

DS EP
S ≡ DAB ωC

KL = − ηC[A ωB ]
KL + ωC

MN η[M [A δB]
K δN ]

L
(4.14)

Thus in this gauge the dependence on the Lorentz coordinates is fixed for the vielbein,

as well as the (residual) gauge parameters. (E.g., the Lorentz gauge parameters still have

arbitrary dependence on x.)

Dimensional analysis is useful for further analysis of the torsion. Table 1 summarizes

the torsion engineering dimensions.

Note that most of the torsions, including all torsions of nonpositive dimension, have

already been fixed by the coset constraint.
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Torsion component Dimension

T Σ
S S − 2

T P
S S − 1

T S
S S 0

T P
S P 0

T S
S P 1

Torsion component Dimension

T P
P P 1

T S
S Σ 2

T S
P P 2

T S
P Σ 3

T S
ΣΣ 4

Table 1. Torsion dimensions.

5 Relations to previous tensors

5.1 Remaining torsion constraint

The “usual” torsion constraint (generalized to 2D-valued indices)

TPP
P = 0 (5.1)

eliminates the last surviving torsion of dimension 1, and gives the constraints that were

previously found in [1–3] by a different method. This can be expanded in schematic nota-

tion as

0 = TPPP = 1
2E[P |

K(DKE|P
H)EP ]H + EP

KEP
HEP

LfKHL (5.2)

(Colored indices are not summed.)

For comparison, the analog of the torsion that appears in [1–3] (but taking into account

orthogonality):

FABC := 1
2e[A|

K(∂Ke|B
H)eC]H (5.3)

is the same except that the range of indices is over only P , where (in our gauge) eA
M ≡

EA
M and DP = ∂M acting on a field. Thus, expanding the indices in (5.2) over (S, P, Σ)

will separate it into F and ω terms.

Using the structure of the vielbein EA
M in (4.9), from the former term of (5.2) we get:

FPPP + 1
2E[P |

S(DSE|P
P )EP ]P (5.4)

(Repeated schematic indices (S, P, Σ) are summed over the subset indicated.) The latter

term in this expression vanishes according to the first condition in (4.14) and structure of

the vielbein. The latter term of (5.2) gives:

EP
KEP

HEP
LfKHL = 1

2E[P
SEP

PEP ]
P fSPP

P → A | P → B | P → C

= 1
2ω[ABC]

(5.5)

We thus get the relation

FABC + 1
2ω[ABC] = 0 (5.6)

This agrees with the constraints on ωA
BC in [1–3],

ω[abc ] = −2Fabc , ωab̃c̃ = −Fab̃c̃ (5.7)

There are also constraints involving the dilaton, which work the same way as previ-

ously; these are needed to allow definition of a Ricci tensor and scalar (i.e., field equations

and action) independent of those connections that are not fixed by the above constraint.
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5.2 Riemann tensor

Previously no full curvature tensor with manifest T-duality was derived, and even those

pieces that were found came in an indirect way, not by commutation of covariant derivatives.

Here we duplicate the known curvature directly as a torsion, and the missing pieces are

identified as corresponding to the new field rABCD.

From (2.17) the curvature tensor is TP P
S ≡ RG/H G/H

H :

TP P
S = E[P

S(DS EP ]
R)E−1R

S + 1
2 η

S Σ E S
Σ (DS E

R
[P )E−1R

K ηK |P ]

+E P
[P (DP EP ]

R)E−1R
S + 1

2 η
S Σ E P

Σ (DP E[P
R)E−1R

K ηK |P ]

+1
2 η

S Σ EΣ
Σ(DΣ E[P

R)E−1R
K ηK |P ]

+EP
SEP

SE−1S
S fS S

S + E [P
S EP ]

P E−1P
S fS P

P + EP
PEP

PE−1Σ
S fP P

Σ

(5.8)

Rewriting using explicit forms of the schematic indices and f , and using (4.14) and (5.3),

after some algebra we get the final expression:

TAB
CD = e[A

M ∂M ωB ]
CD + ω[A |

C
H ωB]

HD − 1
2 ωM

CD ωMAB − FAB
N ωN

CD

+ rC DAB + ((DΣ)CD eA
K)eBK

(5.9)

In the usual representations, DΣ = qΣ = ∂Σ ; as part of dimensional reduction, we set

qΣ φ = 0. Then the curvature reduces to:

TAB
C D = e M

[A ∂M ω C D
B ] + ω C

[A | H ω
HD

B ] − 1
2 ω

C D
M ωMAB − F N

AB ω C D
N + rC DAB

(5.10)

This form was derived also in [1–3] up to the antisymmetric rCDAB part, required for

covariance. Here the curvature tensor was obtained in a more direct way.

r can also be fixed by constraining the corresponding part of the curvature to vanish:

Tabcd − Tcdab = Tãb̃c̃d̃ − Tc̃d̃ãb̃ = Tabc̃d̃ − Tc̃d̃ab = 0 (5.11)

As the final step we reduce the coordinates to the usual half by dimensional reduction,

with the conditions

qΣ φ = (qPL − qPR)φ = 0 (5.12)

Here q indicates a Killing vector of the original (“flat”) coset space, commuting with all

the flat covariant derivatives D. Since qΣ are Abelian, we can always choose coordinates

where qΣ = ∂Σ ; and since the rest are Abelian mod qΣ , we can also choose coordinates

where they are ∂PL − ∂PR mod ∂Σ terms. We have also fixed the dependence of the fields

on the Lorentz coordinates previously by the coset constraints. In that way the original

2D2-dimensional coordinate space is reduced to RD.

6 Conclusion

We outline the results we have obtained: we began with the generalized affine algebra

SPΣ (3.16), enlarging the configuration space to 2D2 dimensions. The background fields

were introduced via the vielbein EA
M(XN ). The orthogonality constraints were applied to
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them. Together with coset constraints on torsions the specific structure of the vielbein was

derived (4.9). From dimensional arguments we obtained one particular torsion constraint

reproducing that originally obtained in [1–3]. From the torsion TPP
S ≡ RG/H G/H

H we

got the curvature tensor. The result (5.10) matches the result from [1–3] except for the

antisymmetric part rCDAB, which can be fixed by an additional constraint. The resulting

curvature tensor has explicit SO(D,D) index structure, which was our goal.

Various generalizations suggest themselves:

1. supersymmetry (especially AdS),

2. α′ corrections, which may clarify the results of [6–11],

3. the corresponding first-quantization of the string (ghosts, BRST, etc.), and

4. string field theory (with vielbein fields).
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[22] S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One

Lessons in Supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

– 14 –

http://arxiv.org/abs/1306.4381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4381
http://arxiv.org/abs/1106.1585
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1585
http://dx.doi.org/10.1016/S0550-3213(01)00338-8
http://dx.doi.org/10.1016/S0550-3213(01)00338-8
http://arxiv.org/abs/hep-th/0106202
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106202
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.001
http://arxiv.org/abs/hep-th/0507047
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507047
http://dx.doi.org/10.1007/BF01215276
http://dx.doi.org/10.1007/BF01215276
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,92,455
http://dx.doi.org/10.1016/0370-2693(89)90233-5
http://dx.doi.org/10.1016/0370-2693(89)90233-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B223,157
http://dx.doi.org/10.1103/PhysRevD.50.2799
http://arxiv.org/abs/hep-th/9403144
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403144
http://dx.doi.org/10.1103/PhysRevD.59.046007
http://dx.doi.org/10.1103/PhysRevD.59.046007
http://arxiv.org/abs/hep-th/9809113
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809113
http://dx.doi.org/10.1016/0550-3213(91)90178-Z
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B354,113
http://dx.doi.org/10.1016/S0550-3213(02)00352-8
http://arxiv.org/abs/hep-th/0112160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112160
http://arxiv.org/abs/hep-th/0108200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0108200

	Introduction
	Outline
	Procedure

	Coset spaces and their generalizations
	Group spaces
	Fields on coset spaces
	Curved spaces with isotropic coordinates

	Affine Lie algebra and generalized T-duality
	Current algebras
	Lorentz

	Curved spaces with affine algebras
	Background fields
	Coset constraints

	Relations to previous tensors
	Remaining torsion constraint
	Riemann tensor

	Conclusion

