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C/ Nicolás Cabrera, 13–15, C.U. Cantoblanco, 28049 Madrid, Spain
bDepartment of Physics and Astronomy, University of Waterloo,

200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
cHEP Theory Group, Departamento de F́ısica, Universidad de Oviedo,

Avda. Calvo Sotelo s/n, 33007 Oviedo, Spain
dStanford Institute for Theoretical Physics and Department of Physics, Stanford University,

Stanford, CA 94305-4060, U.S.A.

E-mail: pab.bueno@estudiante.uam.es, chemissany.wissam@gmail.com,

meessenpatrick@uniovi.es, Tomas.Ortin@csic.es, Carlos.Shabazi@uam.es

Abstract: In this note we describe several procedures to construct, from known black-hole

and black-brane solutions of any ungauged supergravity theory, non-trivial gravitational

solutions whose “near-horizon” and “near-singularity” limits are Lifshitz-like spacetimes

with dynamical critical exponent z, “hyperscaling violation” exponent θ and Lifshitz ra-

dius ℓ that depends on the physical parameters of the original black-hole solution. Since

the new Lifshitz-like solutions can be constructed from any black-hole solution of any un-

gauged supergravity, many of them can be easily embedded in String Theory. Some of the

procedures produce supersymmetric Lifshitz-like solutions.

Keywords: p-branes, Black Holes in String Theory, D-branes, Holography and condensed

matter physics (AdS/CMT)

ArXiv ePrint: 1209.4047

c© SISSA 2013 doi:10.1007/JHEP01(2013)189

mailto:pab.bueno@estudiante.uam.es
mailto:chemissany.wissam@gmail.com
mailto:meessenpatrick@uniovi.es
mailto:Tomas.Ortin@csic.es
mailto:Carlos.Shabazi@uam.es
http://arxiv.org/abs/1209.4047
http://dx.doi.org/10.1007/JHEP01(2013)189


J
H
E
P
0
1
(
2
0
1
3
)
1
8
9

Contents

1 Introduction 1

2 The generalized FGK formalism 3

3 Solutions with Lifshitz-like asymptotics 6

3.1 Examples 7

4 More hvLf metrics 9

4.1 hvLf spaces from limiting procedures 9

4.2 Supersymmetric hvLf spaces from smearing 10

4.3 Higher dimensional generalization 13

5 Discussion 15

A Some properties of the hvLf metrics 16

1 Introduction

Gauge/gravity duality has found new and interesting applications in the study of strongly

coupled condensed matter systems [1–3]. In this context one has to work with the metrics

that are dual to scale-covariant field theories which are not conformally invariant. These

theories are characterized by a dynamical critical exponent z 6= 1 and a hyperscaling viola-

tion exponent θ 6= 0 [4–7]. The values z = 1 and θ = 0 correspond to conformally-invariant

theories dual to the AdS metric. For other values of z and θ, in terms of dimensionless

coordinates t, r, xi, the (d+ 2)-dimensional spacetime metric can be cast in the form

ds2d+2 = ℓ2r−2(d−θ)/d
[

r−2(z−1)dt2 − dr2 − dxidxi
]

, (1.1)

where d is the number of spatial dimensions on which the dual theory lives (i = 1, . . . , d)

and the parameter ℓ, with dimensions of length, is the Lifshitz radius. We will refer,

henceforth, to these metrics as hyperscaling-violating Lifshitz (hvLf) metrics.

hvLf geometries (1.1) with the particular hyperscaling violation exponent θ = d − 1

are intimately connected with compressible states with hidden Fermi surfaces as well as

with logarithmic violations of the area law of entanglement entropy (see for instance [5–

8]). hvLf solutions have also been of interest for their connection with string theory and

supergravity. We refer the reader to e.g. [6, 9–11].

It is known since the advent of the AdS/CFT duality that considering temperature in

the gauge theory corresponds to putting a black hole in the bulk of the gravity side [12, 13].

When the gauge theory is conformal, the corresponding black hole has AdS asymptotics
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in the boundary. Similarly, since Lifshitz field theory with hyperscaling violation has

anisotropic scale covariance, the black holes describing the geometry dual to its finite

temperature generalization must have a metric of the form (1.1) as asymptotic geometry.

Asymptotically Lifshitz black holes with θ = 0 and z 6= 1 have been extensively stud-

ied over the last few years. Analytic and numerical solutions to gravitational theories with

simple types of matter have been constructed. String theoretic black hole solutions having

Lifshitz asymptotics with θ = 0 with a general dynamical exponent have been numerically

computed (see [14, 15] and references therein). Analytical black hole solutions which could

be related to string and supergravity theories are still missing, though.1

So far, hvLf metrics (1.1) with θ 6= 0 have only been found in solutions to Einstein-

Maxwell-dilaton-type effective actions of the form

S =
1

16πGN

∫

√

|g|
{

R+
1

2
∂µφ∂

µφ− Z(φ)FµνFµν − 2Λ− V (φ)

}

. (1.2)

Simple analytic black hole solutions have been constructed for this model for specific choices

of V (φ) and Z(φ) in [5–8, 17]; analytical hvLf solutions to a model with 2 gauge fields and an

exponential scalar potential, are presented and analysed in ref. [18]. Finding embeddings

of these models and solutions in gauged supergravities and, eventually, in string theory

would be most interesting, in particular for asymptotically hvLf θ = d− 1 black holes.

In this work we report progress in this direction. In particular, we are going to show

how to construct systematically solutions of ungauged supergravity whose metrics are,

or approach in certain limits, hvLf metrics with certain values of z and θ. The first of

our constructions makes use of the FGK formalism originally developed to study static,

spherically symmetric, asymptotically flat, black hole solutions of 4-dimensional ungauged

supergravity theories [22], and we start by reviewing this formalism in section 2. We will

then generalize the FGK formalism to metrics which are not spherically symmetric. The

main result is that there are (at least) two cases in which the equations of motion of the

metric function and scalar fields are identical to those of the spherically symmetric one.

Thus, one can use the solutions of the standard black hole case and construct solutions

with entirely different spacetime metrics.

In section 3 we study the behaviour of the new solutions in the neighborhood of the

values of the radial coordinate corresponding, in the original solution, to the inner and

outer horizons, spatial infinity and the curvature singularity. We will find hvLf metrics

in some of these limits. In section 4 we investigate how hvLf metrics arise in other limits

of more standard metrics and propose other procedures to construct, in particular, super-

symmetric hvLf spacetimes by smearing extremal supersymmetric black hole solutions of

N = 2, d = 4 supergravity. In section 3 we briefly discuss the generalization of these results

to higher dimensions. A brief discussion of our results can be found in section 5 and the

appendix contains a summary of properties of hvLf metrics.

1The analytic black hole solutions in [16] suffer from naked singularities.
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2 The generalized FGK formalism

Following ref. [22] we consider the action

I=

∫

d4x
√

|g|
{

R+Gij(φ)∂µφ
i∂µφj ++2ℑmNΛΣF

Λ
µνF

Σµν−2ℜeNΛΣF
Λ
µν ⋆ F

Σµν
}

, (2.1)

where NΛΣ is the complex scalar-dependent (period) matrix. The bosonic sector of any

ungauged supergravity theory in 4 dimensions can be put in this form. The number of

scalars labeled by i, j, · · · and of vector field labeled by Λ,Σ, · · · , the scalar metric Gij and

the period matrix NΛΣ depend on the particular theory under consideration.

Since we want to obtain static solutions, we consider the metric

ds2 = e2Udt2 − e−2Uγmndx
mdxn , (2.2)

where γmn is a 3-dimensional (transverse) Riemannian metric to be specified later. Using

eq. (2.2) and the assumption of staticity of all the fields, we perform a dimensional reduction

over time in the equations of motion that follow from the above general action. We obtain

a set of reduced equations of motion that we can write in the form2

∇m

(

GAB∂
mφ̃B

)

− 1

2
∂AGBC∂mφ̃

B∂mφ̃C = 0 . (2.3)

Rmn + GAB∂mφ̃
A∂nφ̃

B = 0 . (2.4)

∂[mψ
Λ∂n]χΛ = 0 , (2.5)

where all the tensor quantities refer to the 3-dimensional metric γmn and we have defined

the metric GAB

GAB ≡







2

Gij

4e−2UMMN






, (2.6)

in the extended manifold of coordinates φ̃A =
(

U, φi, ψΛ, χΛ

)

, where

(MMN ) ≡







(I+RI
−1

R)ΛΣ −(RI
−1)Λ

Σ

−(I−1
R)ΛΣ (I−1)ΛΣ






, RΛΣ ≡ ℜeNΛΣ , IΛΣ ≡ ℑmNΛΣ . (2.7)

Eqs. (2.3) and (2.4) can be obtained from a three-dimensional effective action

I =

∫

d3x
√

|γ|
{

R+ GAB∂mφ̃
A∂mφ̃B

}

, (2.8)

but we still need to add the constraint eq. (2.5).

If we now decide to consider spherically-symmetric transverse metrics only, as it is

appropriate to describe single, static black holes, we can choose, as in ref. [22]

γmndx
mdxn =

dτ2

W 4
−1

+
dΩ2

−1

W 2
−1

, (2.9)

2See ref. [22] for more details on this reduction.
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where W−1 is a function of the (inverse) radial coordinate τ to be determined and

dΩ2
−1 ≡ dθ2 + sin2θ dφ2 , (2.10)

is the metric of the round 2-sphere of unit radius. With this choice, eq. (2.5) is automatically

solved, the equation of W−1(τ) can be integrated completely, giving

W−1(τ) =
sinh (r0τ)

r0
, (2.11)

and we are left with just

d

dτ

(

GAB
dφ̃B

dτ

)

− 1

2
∂AGBC

dφ̃B

dτ

dφ̃C

dτ
= 0 , (2.12)

GBC
dφ̃B

dτ

dφ̃C

dτ
= 2r20 . (2.13)

The integration constant r0 is the non-extremality parameter : when r0 vanishes, the metric

describes extremal black holes (if the solution satisfies the necessary regularity conditions).

The electrostatic and magnetostatic potentials ψΛ, χΛ only appear through their τ -

derivatives. The associated conserved quantities are the magnetic and electric charges

pΛ, qΛ and can be used to eliminate completely the potentials. The remaining equations of

motion can be put in the convenient form

U ′′ + e2UVbh = 0 , (2.14)

(U ′)2 +
1

2
Gijφ

i ′φj ′ + e2UVbh = r20 , (2.15)

(Gijφ
j ′)′ − 1

2
∂iGjkφ

j ′φk ′ + e2U∂iVbh = 0 , (2.16)

in which the primes indicate differentiation with respect to τ and the so-called black-hole

potential Vbh is given by3

− Vbh(φ,Q) ≡ −1

2
QMQNMMN , (QM ) ≡

(

pΛ

qΛ

)

. (2.17)

Eqs. (2.14) and (2.16) can be derived from the effective action

Ieff [U, φ
i] =

∫

dτ

{

(U ′)2 +
1

2
Gijφ

i ′φj ′ − e2UVbh

}

. (2.18)

Eq. (2.15) is nothing but the conservation of the Hamiltonian (due to absence of explicit τ -

dependence of the Lagrangian) but with a particular value of the integration constant (r20).

A fair number of solutions of this system for different theories of N = 2, d = 4 super-

gravity coupled to vector supermultiplets are known (see e.g. ref. [23, 24]). They describe

single, charged, static, spherically-symmetric, asymptotically-flat, non-extremal black holes

3As in ref. [23], we adopt the sign of the black-hole potential opposite to most of the literature on

black-hole attractors, conforming instead to the conventions of Lagrangian mechanics.
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which generalize the Reissner-Nordström solution and have two horizons that coincide

when the non-extremality parameter r0 vanishes. The metric covers the exterior of the

outer (event) horizon when the (inverse) radial coordinate4 τ takes values in the interval

(−∞, 0), whose limits are, respectively, the event horizon and spatial infinity. The inte-

rior of the inner (Cauchy) horizon corresponds to the interval (τs,+∞), whose limits are,

respectively, the singularity and the inner horizon.

We may also be interested in spacetime metrics which are not spherically symmetric,

in which case we have to use a different transverse metric. In principle, these metrics

are not appropriate to describe isolated, static black holes but here we are ultimately

interested in Lifshitz metrics with a transverse metric invariant under the 2-dimensional

Euclidean group, Thus, we can take, for instance, the following simple generalization of

the spherically-symmetric transverse metric eq. (2.9):

γmndx
mdxn =

dτ2

W 4
κ

+
dΩ2

κ

W 2
κ

, (2.19)

where Wκ is a function of τ and dΩ2
κ is the metric of the 2-dimensional symmetric space

of curvature κ and unit radius:

dΩ2
−1 ≡ dθ2 + sin2θ dφ2 , (2.20)

dΩ2
+1 ≡ dθ2 + sinh2θ dφ2 , (2.21)

dΩ2
0 ≡ dθ2 + dφ2 . (2.22)

In these three cases the equation for Wκ(τ) can be integrated and the results are

W−1 =
sinh r0τ

r0
, (2.23)

W1 =
cosh r0τ

r0
, (2.24)

W±
0 = ae∓r0τ , (2.25)

where a is a real arbitrary constant with dimensions of inverse length.

It turns out that if we follow now for the κ = 0,+1 cases the procedure described above

for the κ = −1 case we arrive to exactly the same system of equations (2.14)–(2.16) and,

therefore, to the same effective action eq. (2.18). It follows that all the solutions for
(

U, φi
)

obtained in the spherically-symmetric case κ = −1 are also solutions for the κ = 0,+1 cases

as well. In other words: every solution of the system of equations (2.14)–(2.16) provides

us with four different solutions of the original theory, by simply using the four different

transverse metrics.

Since, as mentioned above, there exists a number of solutions of those equations that

describe single, static, asymptotically-flat non-extremal black holes when we take κ =

−1 [23–25], we can simply take those solutions and study them setting κ = 0 or +1 in the

transverse metric. Observe that one integration constant has been fixed to normalized the

4Observe that τ has dimensions of inverse length, since r0 has, conventionally, dimensions of length.
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metric at spatial infinity, something we may not need to do in the κ = 0,+1 cases, but the

normalization could be changed at any moment, if necessary.

In what follows we are going to study the asymptotic behaviour of generic solutions

(U, φi), normalized to describe single, static, asymptotically-flat non-extremal black holes

for κ = −1 when we take the transverse metric with κ = 0.5

3 Solutions with Lifshitz-like asymptotics

Since we are going to use the metric functions e−2U corresponding to charged, spherically-

symmetric, asymptotically-flat, non-extremal black-hole solutions, we start by reviewing

their asymptotic behaviors at the outer (+) and inner (−) horizons6 (placed, respectively,

at τ = −∞ and τ = +∞) and at spatial infinity τ = 0.

• The standard normalization of these asymptotically-flat black holes requires that

lim
τ→0−

e−2U = 1 . (3.1)

• When τ approaches the two horizons, τ → ∓∞, the metric function behaves as

e−2U ∼ S±
4πr20

e∓2r0τ , (3.2)

where S+ (resp. S−) is the entropy of the outer (resp. inner) horizon, which is as-

sumed to be non-vanishing (which is equivalent to require regularity of the black-hole

solution). If we use the spherically-symmetric transverse metric the spacetime metric

approaches in these limits a product of a Rindler metric and a 2-sphere of area 4S±.
Studying the Rindler metric by conventional methods one finds that the temperatures

of the horizons T± obey the Smarr-like relation [29]

r0 = 2S±T± . (3.3)

• e−2U vanishes for some value of τs ∈ (0,+∞) at which the physical singularity of the

black-hole spacetime lies. We may also want to study the behaviour of e−2U near this

value of τ but we do not know of any general result on this respect. We will have to

study each particular case separately.

To find new solutions, we are going to plug black-hole metric functions in the general

static metric eq. (2.2) with the transverse metric eq. (2.19) with κ = 0, i.e. with eq. (2.22)

and eq. (2.25). It is convenient to set a = 1/r0 so no new length scale is introduced in the

metric, which takes two possible forms:

ds2(±) = e2Udt2 − e−2U
[

e±4r0τr40dτ
2 + e±2r0τr20

(

dθ2 + dφ2
)]

. (3.4)

5We leave the case κ = +1 for a future publication.
6Uncharged, static black holes only have outer horizon. The discussion of the behaviour of the metric

function in the interior of the inner horizon does not apply to them.
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Asymptotic behaviour of ds
2
(−). Using the general properties of the metric function

e−2U described above it is easy to see that in the limit τ → −∞ this metric behaves as

ds2(−) ∼
4πr20
S+

e2r0τdt2 − S+
4πr20

e−2r0τ
[

e−4r0τr40dτ
2 + e−2r0τr20

(

dθ2 + dφ2
)]

. (3.5)

The change of coordinates

r ≡ e−r0τ , t̃ ≡ 4πr20
S+

t/r0 , x1 ≡ θ , x2 ≡ φ , (3.6)

brings the metric to the form

ds2(−) ∼
S+
4π
r4
[

r−6dt̃ 2 − dr2 − dxidxi
]

, (3.7)

which is a hvLf metric of the form eq. (1.1) with z = 4, θ = 6 and radius

ℓ ∼ r0 , (3.8)

up to dimensionless factors (functions of the quotient S+/r
2
0); observe that this asymptotic

hvLf space lies in the class of Ricci flat hvLf spaces in eq. (A.8).

The metric ds2(−) is regular at τ = 0. Spatial infinity is not there because the radial

distance between points with τ = 0 and points with τ < 0 is finite and not infinite, as in

the black-hole case. For τ equal to a certain τs, e
−2U = 0 and the metric will be singular,

as in the black-hole case. Finally, in the τ → +∞ limit the metric is the product of

Rindler spacetime times R
2, which can be understood as a flat event horizon with the

same temperature as that of the inner horizon of the associated black-hole solution.

Asymptotic behaviour of ds2(+). The analysis is completely analogous to the previous

case: in the limit τ → −∞ we find a flat event horizon whose temperature is that of the

outer horizon of the associated black hole, there is a singularity at τ = τs and a hyperscaling

Lifshitz metric in the τ → +∞ limit. The Lifshitz radius is, once again, ℓ = r0.

3.1 Examples

The Schwarzschild black hole. This is the only uncharged, static, spherically-

symmetric, black-hole solution of the class of theories we are considering and has only

one horizon (the event horizon) at (conventionally) τ → −∞ in these coordinates, which

only cover the exterior. The metric function for the Schwarzschild black hole in these

coordinates is

e−2U = e2Mτ , (3.9)

The spacetime metric ds2(−) constructed with the Schwarzschild metric function takes the

explicit form

ds2(−) = e−2Mτdt2 − e−2MτM4dτ2 −M2
(

dθ2 + dφ2
)

. (3.10)

In the coordinates

e−MτM ≡ r , (3.11)
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it reads

ds2(−) = r2d(t/M)2 − dr2 −M2
(

dθ2 + dφ2
)

. (3.12)

which is the product of a 2-dimensional Rindler spacetime (Ri2) with R
2. The temperature

of the flat horizon would be that of the Schwarzschild black hole T ∼ M−1. Observe

that this is not just the asymptotic behaviour of the metric: the metric is everywhere

identically Ri2 × R
2. As is well-known, this metric is just a wedge of the Minkowski

spacetime which can be recovered by analytical extension of this metric.

Observe that the above metric makes sense for τ ∈ (−∞,+∞) or r ∈ (0,+∞) since

as discussed above, there is not spatial infinity at τ = 0.

The metric ds2(+) is in this case

ds2(+) = e−2Mτdt2 − e6MτM4dτ2 − e4MτM2
(

dθ2 + dφ2
)

, (3.13)

and, in the coordinates

eMτ ≡ r , (3.14)

it takes the form

ds2(+)=r
−2d(t/M)2−r4M2dr2−r4M2

(

dθ2+dφ2
)

=M2r4
{

r−6dt2−dr2−dθ2−dφ2
}

, (3.15)

which is the z = 4, θ = 6, ℓ ∼ M hvLf metric everywhere in the spacetime, and not just

asymptotically. Yet again, this metric is defined for all values of τ or for all r ∈ (0,+∞).

The Reissner-Nordström black hole. The embedding of the Reissner-Nordström

black hole in pure N = 2, d = 4 supergravity (the supersymmetrization of the Einstein-

Maxwell theory). The metric function of this solution in the τ coordinates is [23]

e−2U =

[

cosh r0τ −
M

r0
sinh r0τ

]2

, r20 ≡M2 − |Z|2 , (3.16)

where

Z =
1

2
p− iq , (3.17)

is the central charge of pure N = 2, d = 4 supergravity in the chosen conventions.

It is evident that the asymptotic behaviour of the metrics ds2(±) fits in the general case

discussed above. Having the explicit form of the metric, we can also study the behaviour

of the spacetime metric near the singularity at τs at which e−2U (τs) = 0. It is, however,

easier to do it in the coordinates in which the metric function has the standard form

e−2U =
r2

(r − r+)(r − r−)
, r± =M ± r0 . (3.18)

The coordinate transformation that relates these two forms of the metric function is

r = −
[

cosh r0τ −
M

r0
sinh r0τ

] [

sinh r0τ

r0

]−1

. (3.19)
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If we make this coordinate transformation in the full ds2(±) metrics, they take the form

ds2(±) =
(r − r+)(r − r−)

r2
dt2 − r40r

2

(r − r±)(r − r∓)5
dr2 − r20r

2

(r − r∓)2
(dθ2 + dφ2) . (3.20)

According to the general discussion, we should find the singularity in the extension of

the metric beyond τ = 0 to positive values of τ . This corresponds in these coordinates to

values of r “beyond r = +∞”. Thus, we define the coordinate u ≡ 1/r which overlaps with

r for u > 0 and extends the metric for u ≤ 0. In these coordinates the metric takes the form

ds2(±) = (1− r+u)(1− r−u)dt2−
r40

(1− r±u)(1− r∓u)5
dr2− r20

(1− r∓u)2
(dθ2+ dφ2) , (3.21)

and, in the u→ −∞ limit it approaches the metric

ds2(±) = r+r−u
2dt2 − r40

r±r5∓u6
du2 − r20

r2∓u2
(dθ2 + dφ2) , (3.22)

which can be put in the hvLf form with z = 3, θ = 4 (which implies C(θ, z) = 0) with

the coordinate change r′ ≡ 1/u using rescaled the coordinates t̃ ≡ r±t/r20, ρ ≡ r′/r∓,
x1 ≡ √

r+r−/r0θ, x2 ≡ √
r+r−/r0φ.

Observe that the two consecutive coordinate changes r = 1/u, u = 1/r′ mean that

we can get the same result taking the limit of the metric when r approaches r = 0 (which

corresponds to the value τ = τs) “from the left”. In fact, the same result is obtained if we

take the near-singularity limit from the right.

Summarizing, the interior of the inner horizon region r < r− has, therefore, two

boundaries, at r = r− and at r = 0. When the metric approaches r = r− from the left,

the metric ds2(+) approaches a hvLf metric with z = 4 and θ = 6 and the metric ds2(−)

approaches Ri2 × R
2, as we have seen before. When r approaches r = 0 the metric

approaches a hvLf metric with z = 3, θ = 4.

The fact that a hvLf metric can describe the near-singularity limit of a metric that has

been obtained as a deformation of a regular black-hole metric is very suggestive. Observe

that the deformed metric eq. (3.20) differs from the standard Reissner-Nordström metric

in factors of (r − r±), which are irrelevant in the r → 0 limit, and in the 2-dimensional

metric dΩ2
κ which has κ = −1 for the standard, spherically symmetric Reissner-Nordström

black hole. In the next section we are going to see that there is a limit of the Reissner-

Nordström black hole in which dΩ2
−1 approaches dΩ2

0. The near-singularity limit of this

Reissner-Nordström black hole will be described by a hvLf metric with z = 3, θ = 4.

4 More hvLf metrics

In this subsection we want to discuss some other ways of obtaining hvLf spacetimes.

4.1 hvLf spaces from limiting procedures

A 2-sphere looks locally (in small enough patches) like a plane. Thus, we can flatten

dΩ2
−1 by looking at a small neighborhood of θ = π/2 and we can study near-horizon
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and near-singularity limits of standard, spherically-symmetric, black-hole solutions. The

near-horizon limits will give, obviously, Ri2 × R
2 metrics (or AdS2 × R

2 metrics in the

extremal cases).

Let us consider the near-singularity limit of the Reissner-Nordström black hole in a

small patch around θ = π/2:

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2(dθ2 + dφ2)

∼ r+r−
r2

dt2 − r2

r+r−
dr2 − r2(dθ2 + dφ2) , (4.1)

which can can be put in the hvLf form with z = 3, θ = 4 and ℓ =
√
r+r− with the

coordinate change r/
√
r+r− → r, t/

√
r+r− → t.

We can also take the near-singularity limit of the Schwarzschild metric with negative

mass in a neighborhood of θ = π/2

ds2 =

(

1 +
2|M |
r

)

dt2 −
(

1 +
2|M |
r

)−1

dr2 − r2(dθ2 + dφ2)

∼ 2|M |
r

dt2 − r

2|M |dr
2 − r2(dθ2 + dφ2) , (4.2)

which can be put in the hvLf form with z = 4, θ = 6 and ℓ = |M |/2 with the coordinate

change 2r/|M | → ρ2, 4t/|M | → t.

4.2 Supersymmetric hvLf spaces from smearing

As was mentioned briefly in section 2, the extremal limit (r0 → 0) of the 4-dimensional

metric describes a single static black hole and the natural question, one we have been

ignoring, is what happens in the case κ = 0.

The first thing that changes is the asymptotic behaviour of e−2U , which for an

extremal black hole reads

lim
τ→−∞

e−2U =
S

π
τ2 , (4.3)

where S is the entropy of the black hole. The second thing is that the extremal limit

of W±
κ is just the constant a which has the dimension of inverse length, whence the

4-dimensional metric becomes

ds20 = e2U dt2 − e−2U
[

d(a−2τ)2 + d~x2
]

, (4.4)

where we have defined x1 = θ/a and x2 = φ/a. It is straightforward to see that in the

region τ → −∞ this leads to a hvLf space with θ = 4 and z = 3. Similarly to what

happens in the Schwarzschild black hole case in section 3.1, one can see that the extremal

RN black hole of electrical charge q, which has e−U = 1− |q|√
2
τ , is this asymptotic hvLf.

Now we are going to see that this solution is just a particular case of a very wide class

of solutions with hvLf asymptotics.

One of the most interesting features of the extremal RN black hole is that it is su-

persymmetric in pure N = 2, d = 4 supergravity. As is well known, the most general
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supersymmetric static solution of this theory can be written, using Cartesian coordinates

in the transverse space ~y3 ≡ (y1, y2, y3) as

ds2susy = e2Udt2 − e−2U d~y 2
3 , (4.5)

where the metric function has the form7

e−2U =
1

2
(H0)2 + 2(H0)

2 , (4.6)

where H0 and H
0 are two real harmonic functions in the flat transverse space which satisfy

the staticity constraint

H0∂mH0 −H0∂mH
0 = 0 ,m = 1, 2, 3 . (4.7)

In these coordinates, the standard, spherically symmetric (κ = −1), purely electric ex-

tremal RN black hole corresponds to the choice of harmonic functions

H0 = 0 , H0 = 1 +
1√
2

|q|
|~y3|

. (4.8)

However, other choices (usually discarded when one is only interested in black holes)

are possible and are also supersymmetric. For instance, one can consider harmonic func-

tions that depend on only one of the transverse coordinates, say y3 ≡ ρ. This corresponds,

physically, to the smearing of the spherically-symmetric solution in the (y1, y2) plane and,

mathematically, to the substitution of the factor 1/r by ρ in all the harmonic functions

of the spherically-symmetric solution. The staticity constraint eq. (4.7) is automatically

satisfied is it was in the spherically-symmetric solution.

From the the extremal RN solution, this choice gives the new smeared solution

ds2 =
1

2
(H0)

−2dt2 − 2(H0)
2
[

dρ2 + dyidyi
]

, H0 = 1 +
1√
2
|q|ρ , (4.9)

and this solution is identical to the κ = 0 solution in eq. (4.4)8 with τ = −ρ. Furthermore,

the z → ∞ limit, which gives the θ = 3, z = 4 hvLf space corresponds to the choice

H0 =
1√
2
|q|ρ , (4.10)

and, therefore, it is an exact, supersymmetric solution.

Once this connection between hvLf metrics and smeared supersymmetric black holes of

N = 2, d = 4 supergravity has been established, we can systematically construct supersym-

metric hvLf metrics using the well-known systematic procedure to construct all the super-

symmetric black hole solutions of any N = 2, d = 4 supergravity coupled to vector super-

multiplets [31–34] and choosing harmonic functions that depend on only one coordinate in

transverse space. The ρ→ ∞ limit is the same in all the cases (namely a θ = 3, z = 4 hvLf

7We use the conventions of ref. [23].
8Observe that, in the non-extremal case, we cannot view the κ = 0 solutions as the smearing of κ = −1

solutions.
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spacetime), provided that the original, spherically-symmetric solution has a regular near-

horizon limit. The scalar fields, which have non-trivial profiles in the smeared solutions,

become constant in the ρ→ ∞ limits, just as they do in the black-hole near-horizon limits.

There are, however, more possibilities, if we start from supersymmetric black holes

with singular horizon. A good example is provided by the supersymmetric D0-D4 black

holes embedded in the STU model [35–37].9 After the smearing, the three complex scalars

Zi, i = 1, 2, 3 and metric function of these solutions are given by

Zi = −4ie2UH0H
i , (4.11)

e−2U = 4
√

H0H1H2H3 , (4.12)

where the four harmonic functions H0, H
1, H2, H3 are

H0 = s0

{

a0 +
1√
2

|q0|
|~y3|

}

,

H i = s(i)

{

a(i) +
1√
2

|p(i)|
|~y3|

}

,

(4.13)

where a0, a
i are constants related to the asymptotic (r → ∞) values of the scalars, q0, p

i

are electric and magnetic charges and s0, s
i are the signs of those charges. Only two sets

of signs of charges lead to supersymmetric and regular black holes: all charges positive or

negative. In particular, none of these charges can vanish.

The associated smeared solutions are given by eqs. (4.11) and (4.12) with the harmonic

functions given by

H0 = s0 {a0 + b0ρ} ,
H i = s(i)

{

a(i) + b(i)ρ
}

.
(4.14)

The constants b0, b
i, which we can take to be positive, are related to electric and magnetic

fluxes. The staticity condition eq. (4.7) is satisfied for any values of the constants and, in

particular, we can take any number of them to vanish.

When all the b0, b
i constants are different from zero, we can take all the a0, a

i to

vanish or take the ρ → ∞ limit. In both cases e−2U = 4
√
b0b1b2b3ρ

2 and we get a θ = 3,

z = 4 hvLf spacetime with constant scalars.

When one of them (b0, for instance) vanishes we must keep a0 6= 0, and we get

Zi = −i a0b
i

√
a0b1b2b3

ρ−1/2 , e−2U = 4
√

a0b1b2b3ρ
7/2 (4.15)

which is a θ = 7/2, z = 5/2 hvLf spacetime, now with non-trivial scalars. Other choices of

vanishing constant b lead to different scalar profiles by the same θ and z.

It is easy to see that, for n = 0, · · · , 4 non-vanishing constants b, one gets a hvLf

spacetime with θ = 2 + n/2 and z = 1 + n/2 and various scalar profiles. Perhaps not

surprisingly C(θ,z) = (4− n)/n and only vanishes for n = 4.

9Again, we use the notation and conventions of ref. [23] where the details can be found.
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4.3 Higher dimensional generalization

In ref. [30] the FGK formalism was Generalised to higher dimensional cases, and it is only

natural to consider the higher dimensional generalizations of the results presented in the

foregoing sections, starting off by the ones in section 2: the D-dimensional generalization

of the FGK metric reads

ds2 = e2Udt2 − e−
2

d−1
U

[

dρ2

(d− 1)2 W
2d/(d−1)
κ

+
hij dx

idxj

W
2/(d−1)
κ

]

, (4.16)

where h is the metric of a d-dimensional Riemannian Einstein space; this metric is

normalized such that

R (h)ij = (d− 1) κ hij . (4.17)

The normalization is such that a d-sphere with the round metric has κ = −1.

A so-so calculation then shows that the conditions for the resulting FGK equations of

motion to be κ as well as Wκ independent, are

Wκ Ẅκ − Ẇ 2
κ = κ and Ẅκ = B2 Wκ ; (4.18)

B plays the rôle of the D-dimensional non-extremality constant which on dimensional

grounds can be written as rd−1
0 . The solutions to the conditions (4.18) are

W−1 =
sinh (Bρ)

B , W±
0 = a e∓Bρ and W1 =

cosh (Bρ)
B . (4.19)

By looking at the, in general, fractional powers of W that appear in the metric (4.16), we

see that in contradistinction to the 4-dimensional case, the putative horizon lies at ρ→ ∞
which means that the near-horizon behaviour for a non-extremal black hole implies

lim
ρ→∞

eU ∼ e−Bρ . (4.20)

The above means that given a solution to a D-dimensional FGK system, we can as before

deform the κ = −1 solution as in section 2, and obtain new solutions with properties

similar to the ones encountered in the foregoing sections. For example, concerning the

ρ→ ∞ behaviour of the metric we see that

The W
+
0 case. In this case the ρ→ ∞ spacetime is hvLf with

θ =
d(d+ 1)

d− 1
and z =

2d

d− 1
, (4.21)

which, as one can see from eq. (A.8), corresponds to the Ricci flat hvLf spaces.

The W
−

0 case. Together with the condition (4.20), we see that the resulting ρ → ∞
spacetime is a Rindler wedge times Rd.

In the κ = −1 case, the validity of the ρ-coordinate, i.e. ρ ∈ [0,∞) is principally

determined byW−1 and one imposes conditions on eU in order to obtain metrics describing

the spacetime outside the outer horizon. In particular, the zero of W−1 at ρ = 0, together

with the regularity of eU there, allows for the identification of ρ = 0 with asymptotic

spacetime. W0 is, however, an all-together different beast and the naive validity of the

coordinate, i.e. ρ ∈ [0,∞), can be extended till one encounters a zero or a pole in eU ; the

former signaling a horizon, the latter a singularity. Let us illustrate this point with
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The 5-dimensional STU model. The FGK equations for the 5-dimensional STU

model are completely separable, whence the full analytical solution is known. The general

solution satisfying eq. (4.20) and having constant scalars in the limit ρ → ∞ is given by

(see e.g. [24, 27])

e−3U =
|q1q2q3|

B3
sinh (α1 + Bρ) sinh (α2 + Bρ) sinh (α3 + Bρ) , (4.22)

where the q are the electrical charges and the α’s are some real constants; in the κ = −1

case they are chosen such that U(ρ = 0) = 1 and one obtains a Minkowski space with the

regular normalization. In the κ = 0 case, however, the point ρ = 0 is not asymptotic and

there is therefore no need to impose said condition on the α’s. In fact, let 0 < α1 ≤ α2 ≤ α3,

then we can extend the definition of ρ to the point ρs = −α1/B, where we have added a

subscript to highlight the fact that at that point we’re facing a curvature singularity.

As in section 3.1 we can consider the near-singularity metric: in general we will find

a hvLf space and the characteristic parameters (θ, z) will depend on the order of the zero

of e−3U in eq. (4.22). Denoting this number by p, whence p = 1, 2 or 3,10 we see that the

near-singularity hvLf is given by

θ = 3 +
p

2
, z = 1 +

p

2
whence C(θ,z) =

2(3− p)

p
≥ 0 , (4.23)

and, furthermore, the null energy condition (A.7) is always satisfied.

In higher dimensions we can also construct hvLf solutions by smearing extremal,

supersymmetric black-hole solutions. The procedure is entirely similar to the one followed

in four dimensions.

In a higher-dimensional context, it is natural to consider the following brane-like gen-

eralization of the hvLf metric (1.1)

ds2d+2=ℓ
2r−2(d−θ)/d

[

r−2(z−1)
(

dt2−dyadya
)

−dr2−dxidxi
]

, a=1, · · · , p , i=1, · · · d .
(4.24)

The p = 0 case is the original hvLf metric and a metric with d = 0 and p = 6= 0 can be

rewritten as a p = 0, d 6= 0 by a coordinate change.

It should come as no surprise that we can obtain metrics of this kind by smearing

extremal supersymmetric p-brane metrics. As an example, consider the 10-dimensional

Dp-brane solutions in the Einstein frame

ds2 = H
p−7
8 [dt2 − d~y 2

p ]−H
p+1
8 d~x 2

8−p ,

C(p+1) ty1···yp = ±e−φ0(H−1 − 1) ,

e−2φ = e−2φ0H
p−3
2 .

(4.25)

In all cases, we can take11

H ∼ ρ , (4.26)

10To wit: p = 1 implies α2 > α1, p = 2 means α3 > α2 = α1 and p = 3 means α3 = α2 = α1.

Let us in passing observe that the case p = 3 corresponds to the deformation of the 5-dimensional

Reissner-Nordström black hole.
11In the p = 8 case there is no smearing involved, since there is only one transverse dimension.
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and put the metric in the form

ds2 ∼ ρ
p+1
8
{

ρ−1[dt2 − d~y 2
p ]− dρ2 − d~x 2

8−p

}

,

C(p+1) ty1···yp =∼ ρ−1 ,

e−2φ ∼ ρ
p−3
2 ,

(4.27)

which is of the above form with p = p, z = 3/2 and θ = (8 − p)(p + 17)/16 for p < 8.

The case p = 0 (the D0-brane) is a standard hvLf metric with d = 8, θ = 8.5 and z = 3/2,

which satisfies the null energy condition (A.7) but does not avoid the null curvature

singularity in the IR region (ρ→ ∞). The string coupling constant reads eφ = r3/4, which

goes to zero in the UV. The case p = 8, after a change of coordinates ̺ ≡ ρ3/2 is also a

standard hvLf metric (p = 0) with d = 8, θ = 25/3 and z = 1 which also satisfies the null

energy condition (A.7) but is singular in the IR region (r → ∞).

5 Discussion

In this paper we have shown that hvLf metrics appear in many near-horizon and near-

singularity limits of well-known solutions or solutions that one can easily construct by

deforming them. The abundance of examples seems to suggest that hvLf metrics capture

the behavior of many spacetimes near certain curvature singularities; in particular near

timelike singularities such as those of the extremal RN black hole or the Schwarzschild

solution with negative mass.

Since some hvLf are holographically related to some well-known QFTs, this apparently

general property suggests the very attractive possibility of finding holographically related

QFTs that can describe those classical curvature singularities, at least in some regime.

Finding quantum systems with the right values of z and θ may be difficult, or impossible,

though. More work is needed to see if this possibility can be realized.
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This work has been supported in part by the Spanish Ministry of Science and Education

grant FPA2009-07692, the Principáu d’Asturies grant IB09-069, the Comunidad de

Madrid grant HEPHACOS S2009ESP-1473, and the Spanish Consolider-Ingenio 2010

program CPAN CSD2007-00042. The work of PM has been supported by the Ramón y

Cajal fellowship RYC-2009-05014. The work of PB and CSS has been supported by the

JAE-predoc grants JAEPre 2011 00452 and JAEPre 2010 00613. TO wishes to thank

M.M. Fernández for her constant support.

– 15 –



J
H
E
P
0
1
(
2
0
1
3
)
1
8
9

A Some properties of the hvLf metrics

The hvLf metric (1.1) is spatially homogeneous and covariant under the scale transforma-

tions

xi → λxi , t→ λzt , r → λr , ds2d+2 → λ2θ/dds2d+2 , (A.1)

where λ is a dimensionless parameter. Observe that this means that the Lifshitz radius ℓ

is only defined up to dimensionless factors. The Ricci tensors of metrics (1.1) are given by

Rtt =
(dz − θ)(d+ z − θ)

d r2z
(A.2)

Rrr =
(d+ z)θ − d(z2 + d)

d r2
(A.3)

Rij =
(θ − d)(d+ z − θ)

d r2
δij . (A.4)

This geometry generically suffers from a null curvature singularity at r = ∞ except

for a specific set of parameter values. The singularity exists even though all curvature

invariants remain finite. The tidal forces diverge as [7]

C(θ,z)r
2C(θ,z)+d , C(θ,z) =

d(z − 1)− θ

d− θ
(A.5)

where we have restricted to C(θ,z) > 0 for which the singularity is a null curvature singular-

ity as surfaces of constant r become null as r goes to infinity. We distinguish several cases:

• for θ = 0 we simply get the result in [19] which is appropriate for Lifshitz scaling.

Ways for resolving the null curvature singularities have been presented in [20, 21].

• The case of θ = 0 and z = 1 is the non-singular result of pure AdS.

• There are non-singular results for

C(θ,z) = 0 , or C(θ,z) + 1 ≤ 0 . (A.6)

The null energy condition in the bulk gives the conditions

C(θ,z) ≥ 0, (z − 1)(d+ z − θ) ≥ 0, (A.7)

which rules out the non-singular condition C(θ,z)+1 ≤ 0 and leaves the condition C(θ,z) = 0.

There is a class of Ricci-flat hvLf spaces: they are characterized by

θ =
d(d+ 1)

d− 1
and z =

2d

d− 1
−→ C(θ,z) = 0 . (A.8)

These spaces always solve the null energy condition and are regular in the IR interior

(r → ∞).
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[18] M. Alishahiha, E. Ó Colgáin and H. Yavartanoo, Charged black branes with hyperscaling

violating factor, preprint IPM/P-2012/050 [FPAUO-12/12] [arXiv:1209.3946] [INSPIRE].

[19] G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008

[arXiv:1111.1243] [INSPIRE].

– 17 –

http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1975
http://dx.doi.org/10.1155/2010/723105
http://arxiv.org/abs/0909.0518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0518
http://dx.doi.org/10.1007/JHEP11(2010)151
http://arxiv.org/abs/1005.4690
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4690
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://arxiv.org/abs/1112.0573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0573
http://dx.doi.org/10.1007/JHEP06(2012)041
http://arxiv.org/abs/1201.1905
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.1905
http://dx.doi.org/10.1007/JHEP05(2012)065
http://arxiv.org/abs/1112.2702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2702
http://dx.doi.org/10.1007/JHEP01(2012)125
http://arxiv.org/abs/1111.1023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1023
http://dx.doi.org/10.1007/JHEP06(2012)165
http://arxiv.org/abs/1205.0242
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0242
http://dx.doi.org/10.1103/PhysRevD.85.106006
http://arxiv.org/abs/1202.5935
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.5935
http://dx.doi.org/10.1007/JHEP11(2012)028
http://arxiv.org/abs/1207.1726
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1726
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://arxiv.org/abs/hep-th/9803131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
http://dx.doi.org/10.1007/JHEP07(2011)004
http://arxiv.org/abs/1105.4862
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.4862
http://dx.doi.org/10.1007/JHEP05(2012)122
http://arxiv.org/abs/1203.0576
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0576
http://dx.doi.org/10.1088/0264-9381/28/19/195011
http://arxiv.org/abs/1105.0612
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0612
http://dx.doi.org/10.1007/JHEP01(2012)094
http://arxiv.org/abs/1105.1162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1162
http://arxiv.org/abs/1209.3946
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3946
http://dx.doi.org/10.1103/PhysRevD.85.046008
http://arxiv.org/abs/1111.1243
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1243


J
H
E
P
0
1
(
2
0
1
3
)
1
8
9

[20] S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635

[INSPIRE].

[21] N. Bao, X. Dong, S. Harrison and E. Silverstein, The benefits of stress: resolution of the

Lifshitz singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].

[22] S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space,

Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].

[23] P. Galli, T. Ort́ın, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4

supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].

[24] T. Mohaupt and O. Vaughan, The Hesse potential, the c-map and black hole solutions,

JHEP 07 (2012) 163 [arXiv:1112.2876] [INSPIRE].

[25] P. Meessen, T. Ort́ın, J. Perz and C. Shahbazi, H-FGK formalism for black-hole solutions of

N = 2, D = 4 and D = 5 supergravity, Phys. Lett. B 709 (2012) 260 [arXiv:1112.3332]

[INSPIRE].
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